
FACOLTÁ DI SCIENZE E TECNOLOGIE

Corso di Laurea Triennale in Fisica

L’integrale di Feynman
per particelle in campo elettromagnetico

CODICE PACS: 03.65.-w

Candidato:

Francesco BORRA
794134

Relatore:

Prof. Luca Guido MOLINARI

Anno Accademico 2013-2014





Contents

I Formulation of the Path Integral 4

1 Motivation 4

2 Propagator 5

3 Position representation and Trotter Product 6

4 The Wiener measure and the nature of Feynman paths 10

5 Vector potential 14

6 Phase Space 17

7 Coherent states representation 18

II Applications and examples 24

8 Hamiltonian spectrum 24

9 Free Particle 24

10 Quadratic Lagrangians and classical trajectories 26

11 Uniform electric field 28

12 Harmonic Oscillator 29

13 Uniform magnetic field 30

III The Aharonov Bohm e↵ect - a topological approach 34

14 Motivation 34

15 Path Integral on multiply connected spaces 36

16 Aharonov-Bohm e↵ect on the circle 40

17 Aharonov-Bohm e↵ect on the plane 42

18 Experimental evidence 45

19 Interpretation 50

2



A Appendix: minimal homotopy theory 51

3



Part I

Formulation of the Path Integral

1 Motivation

Feynman proposed a formulation of quantum mechanics which is alternative
to the familiar Hilbert space one. In this section, the main ideas will be
roughly outlined.

The starting point is the attempt to determine the probability to find a
particle at some point B, assuming that it was localized at some other point
A before. As it is known from the double slit experiment and its variants,
in quantum mechanics exclusive alternatives can interfere. The “exclusive
alternatives” in this case are all the possible trajectories connecting the two
points. Yet, a proper definition of trajectory is troublesome in quantum
mechanics as it is not possible to define the position of a particle at any
given time. Nevertheless, it is possible to proceed as follows.

An impenetrable surface can be interposed between the two points. The
surface has some holes with detectors or other devices that can perform a
measure process. Anytime the particle passes through a hole, the alterna-
tives collapse and the particle proceeds beyond the surface from the hole,
so that the position of the particle can be specified in one point. If several
similar surfaces are interposed, then the position is well defined at some
instants and at some points which form a sort of path. In the limit of many
surfaces and many holes - which means no surfaces and no holes - the par-
ticle moves along a sort of trajectory which can be regarded as one of the
mutually exclusive alternatives.

In classical mechanics, the probability that the particle reaches B would
be the sum of the probabilities of the independent trajectories. In quantum
mechanics, according to the previous picture, there are paths and they are
allowed to interfere if all the detectors are turned o↵. The quantity that
accounts for the interference is the phase. No path is more important than
the others but each one carries a di↵erent phase. The square modulus of their
sum can be interpreted as a probability. The phase will be some function
of the trajectory and the correct choice is exp [(i/~)S(x(t))] where S is the
classical action associated with the trajectory.

The sum of the phases is then:

g(xf , tf ;xi, ti) =
X
paths

exp [(i/~)S(x(t))]

The quantity |g(B, t;A, 0)|2 is the probability that the particle reaches B
after a time t. Yet, as in quantum mechanics the position is never free of
uncertainty, a better definition of probability should involve a proper initial
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physical state and not just an initial position. Since trajectories are expected
to be a continuous set rather than a countable one, it would be interesting
to be able to write an integral instead of a sum.

A more rigorous approach to the problem will follow. A quantity called
propagator will be introduced and it will be shown to yield the function g
which has just been investigated. In addition, the propagator, as a more
abstract object, will allow the extension the previous path approach to tra-
jectories which belong to di↵erent spaces and not just the configuration
space.

2 Propagator

Given a linear di↵erential operator L, the Green function g(x) has the fol-
lowing property: Lg(x) = �(x)

Similarily, the propagator G can be defined for the Schrodinger equation
(S.E.) as a sort of Green function, with the only di↵erence that G is an
operator.

(H � i~@t)G(t, t
0

) = �i~�(t� t
0

) (1)

Given a state-vector at a certain time t
0

, the propagator yields its evolution
through time for t > t

0

:

| (t)i = G(t, t
0

) | (t
0

)i

Indeed, G(t, t
0

) | (t
0

)i is a solution of S.E. for t 6= t
0

, since

(H � i~@t)G(t, t
0

) | (t
0

)i = �i~�(t� t
0

) | (t
0

)i

Therefore, G(t, t
0

) is “almost” the time-evolution operator U(t, t
0

) and pre-
cisely ✓(t� t

0

)U(t, t
0

) which can be directly verified, considering the Leibniz
property and that d

dt✓(t� t
0

) = �(t� t
0

).
If the Hamiltonian is time-independent, then:

G(t, t
0

) = ✓(t� t
0

)e�
iH
~ (t�t0) (2)

The ✓ function will be omitted when not explicitly needed.
The propagators form a semi-group with the following properties:

• G(t, t
0

) = 0 if t < 0

• G(t
2

, t
1

)G(t
1

, t
0

) = G(t
2

, t
0

)

• G(t, t) = I

5



If H is time-independent, the propagator only depends on the di↵erence
of times t and t

0

and, consequently, it is invariant under time translation.
With an abuse of notation, one can write G(t, t

0

) = G(t � t
0

). Thus, from
now on, t

0

will be set to zero. It must be remarked that in literature the
term “Green function” is often referred to the Fourier transform of G, i.e.
the energy-dependent propagator.

3 Position representation and Trotter Product

The position representation is the kernel of G(t, t
0

):

 (y, t) = hy|G(t, t
0

) | (t
0

)i
=

Z
dx hy|G(t, t

0

) |xi hx| (t
0

)i

=

Z
dxG(y, t;x, t

0

) (x, t
0

)

The goal is to find an explicit expression for the kernel G(y, t;x, t
0

).

Let us consider the simple case of a potential which only depends on
the position. The Hamiltonian reads H = p2/2m + V (x). Since, in the
end, time evolution will appear as a succession of events, we can split the
time interval t := t � t

0

into N sub-intervals and, recalling the semi-group
properties, re-write G as a product (the ✓ function will be omitted):

e�
it
~ H =

h
e�

it
N~H

iN
The next step is to separate the momentum from the position i.e. the
potential from the kinetic part. This is a delicate passage since V and p2 do
not commute. If two operators, say A and B, commute then eAeB = eA+B

according to the Baker-Campbell-Hausdor↵ formula. In the present case,
according to the same formula, the best we can obtain is:

e�
it
N~ (T+V ) = e�

it
N~V e�

it
N~T + o(N�1)

where by definition an operatorR(h) = o(h) if 8 | i 2 H limh!0

||R(h) | i ||/h !
0. Hence, the product of N propagators reads:

e�
it
~ H = [e�

it
N~V e�

it
N~T + o(N�1)]N

If N is big enough, one can hope to neglect the terms o(N�1) in the previous
expression. This possibility is o↵ered by the Trotter formula, which will be
presented in the following simplified version:

8 | i 2 H lim
N!1

(eA/NeB/N )N | i = eA+B | i (3)
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with some operators A and B. Obviously the formula is true only under some
restrictive hypotheses on A and B and there are domain issues too. The
details will not be discussed here, but the main result1 is that if A ⇠ p2/2m,
B ⇠ V (x) (a “well-behaved” potential) and p2/2m+ V = H is self-adjoint,
then the Trotter product is valid. Consequently, an operator which is well
defined as an Hamiltonian for ordinary quantum mechanics, should also be
fine in the current description. Finally:

G(y, t;x) = lim
N!1

hy| [e� it
N~T e�

it
N~V ]N |xi

Since the potential V only depends on the position V=V(x), V itself and

its exponential are diagonal in the position basis, such as T = ~2k2
2m and

its exponential are diagonal in the impulse basis. It is useful to insert the
identity operator

R
dx |xi hx| between every couple of consecutive terms in

the previous equation.

G(y, t;x) = lim
N!1

Z
dx

1

...dxN�1

N�1Y
j=0

hxj+1

| e� it
N~T e�

it
N~V |xji (4)

Each term of the product can be rewritten this way:

hxj+1

| e� it
N~T e�

it
N~V |xji = hxj+1

| e� it
N~T |xji e� it

N~V (xj)

= hxj+1

| e� it
N~T

Z
dk |ki hk|

�
|xji e� it

N~V (xj)

= e�
it
N~V (xj)

Z
dk hxj+1

|ki hk|xji e� it
N~

~2k
2m

=
1

2⇡~e
� it

N~V (xj)

Z
dk e�

it
N~

~2k2
2m +

ik
~ (xj+1�xj) (5)

Now one can either integrate over k or just rearrange the new expression.
The latter procedure will be discussed in the section about the phase-space,
whereas the former approach will follow here. The integral above is Gaussian
and its value is r

mN

2i⇡t~e
�mN(xj+1�xj)

2/it~

Hence, each factor in equation (4) is the product of two exponentials. The
product is conveniently rewritten as the exponential of a sum. With a small
rearrangement, one gets the following meaningful result:

lim
N!1


m

2i⇡~(t/N)

�N/2 Z
dx

1

...dxN�1

⇥

⇥ exp

24 i(t/N)

~

N�1X
j=0

"
m

2


(xj+1

� xj)

t/N

�
2

� V (xj)

#35 (6)

1
There exist more than one su�cient condition for the Trotter product
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The sum in the exponent resembles the definition of a Riemann integral as
N goes to infinity and t/N goes to zero.

t

N

N�1X
j=0


m

2

(xj+1

� xj)2

t/N
� V (xj)

�
⇡
Z t

0

dt0
"
m

2


dx(t0)

dt0

�
2

� V (x(t0))

#
(7)

Nevertheless, the sum is not a genuine Riemann integral since the limit is
taken after the integration and, in general, it is not even true that xj �xj�1

should go to zero as t/N ! 0. This issue will be one of the main topics of
the next section.

The integrand in (7) is what in classical mechanics is called Lagrangian;
therefore its integral with respect to time is an analogue of the classical
action.

S(t) =

Z t

0

dt0L(t0)

The discrete version of S is sometimes called “sliced action” since Ssliced =P
S(xj , xj+1

). If N is fixed, the N integrals may be thought of as a “sum”

of e
i
~S(x(·)) over any possible broken line path connecting N points, while

keeping the first and the last points fixed, as well as the time interval t.
As N increases, seemingly-continuous successions of points appear and the
sum-over-paths interpretation becomes even more reasonable. Finally, if C
is the normalization constant, the following formula can be written:

G(xf , t;xi) = C
X
x(·)

x(0)=xi

x(t)=xf

e
i
~S(x(·)) (8)

This “sum” over paths can be interpreted as an integral on the “set of all
paths” satisfying the conditions above: a path integral. It is important
to underline that, in order to define an actual integral, a proper measure is
necessary and that in the present section no “bona fide measure” is presented
[27]. Thus, however simple the previous and the next expressions might be,
they make sense according to (6).

G(xf , t;xi) =

Z xf

xi

Dx(t) exp


it

~ S(x(t))
�

(9)

The previous formalism has been derived in one dimension but it can
also apply to systems with several degrees of freedom. Let us consider, for
example, a particle moving in R3. We write

G(x
f

, t;x
i

) =

Z xf

xi

Dx(t)Dy(t)Dz(t) exp


it

~ S(x(t), y(t), z(t))
�

(10)

as a formal expression for a multi-dimensional generalization of (6). If the
action can be split in a sum in which each addend depends on di↵erent set
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of variables, the system is separable. The integrations over the independent
coordinates can be divided and it is straightforward that:

S(x
1

,x
2

) = S
1

(x
1

) + S
2

(x
2

)

) G(x
1,f ,x1,f , t;x2,i,x1,i) = G(x

1,f , t;x1,i)G(x
2,f , t;x2,i).

Let us note that | h�| (t)i |2 = | h�|G | i |2 is the transition probability
from | i to |�i after the former has evolved for a time t. If now the two
states are :

| i 7! |xii |�i 7! |xf i
it follows that

|G(xf , t;xi)|2 (11)

is precisely the probability that a particle localized at xi is detected at xf at
time t: the search of such probability has been the introductory argument
for the path integral. It must be remarked that if | i is exactly |xii the
probability distribution is quite strange (38) and, in order to get a more
physical result, it is better to consider an appropriate initial state (e.g. a
coherent state) which is localized but which is not a position eigenvalue. If
such state is | 

xii then:

P (x
f

, t;x
i

) =

����Z d3xG(xf , t;xi) xi(x)

����2
Finally, the composition property of propagators (as elements in a semi-

group) can be rewritten in the position representation. Let us fix an inter-
mediate time tm such that 0 < tm < t.

G(xf , t;xi) = hxf |G(t, tm)G(tm, 0) |xii
= hXf |G(t, tm)

Z
dxm |xmi hxm|G(tm, 0) |xii

=

Z
dxmG(xf , t;xm, tm)G(xm, tm;xi, 0).

The previous integral is interpreted as a sum over all possible intermediate
positions a time tm and this means that the amplitude of “events occurring
in succession” multiply.

With an abuse of terminology, from now on, the kernel will be simply
referred to as the “propagator”.
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4 The Wiener measure and the nature of Feynman
paths

The trajectories appearing in the path integral can in principle assume any
possible shape. Even in the N ! 1 limit, there can be arbitrarily big
distances between two successive vertices on the broken lines. Nevertheless,
some paths are expected to be more meaningful then others (i.e. give the
most significant contribution to the sum). Therefore, it is useful to study
what the typical quantum path “looks like”.

In order to reach this goal, it is worth considering the classical analogue
of the path integral i.e. the Brownian motion, or “random walk” along with
the Wiener measure. This insight sheds some light on some points.

First, it clarifies what the path integral is not: an integral in strictly
mathematical terms, or at least not in a straightforward way, whereas the
classical Wiener integral is. Therefore, it becomes clearer which properties
are lost (or gained) after the quantization.

Second, the analogy with Brownian motion is a possible way to guess
some physical properties of the path. In particular, the knowledge of the
relationship between the typical length of a “jump” and its timespan will
allow to compare infinitesimal quantities in the short-time limit and thus to
recover Schrodinger equation from the path integral which is the ultimate
way of checking its consistency.

Let us consider a particle at some point x

0

in space, moving to a new
position at a fixed distance ` but in a random direction at regular time
intervals ✏. After the first step, the probability of the particle being in an
infinitesimal neighbourhood d3x of certain position x is:

P (x|x
0

)d3x =
1

4⇡`2
�(|x� x

0

|� `)d3x

Since P (x0|x) is only a function of x0 �x, the probability distribution after
N steps can be expressed as a convolution product, i.e. as a conditional
probability. Given the N � 1 step distribution and a fixed x

0

:⇢
P (x

1

, 1) = 1

4⇡`2
�(|x

1

� x

0

|� `)
P (x, N) =

R
d3x0P (x|x0)P (x0, N � 1)

By applying the Fourier transform FP (k, N) = (FP (k, 1))N and consider-
ing that FP (k, 1) = sin k`

k` , then:

FP (k, N) =


sin k`

k`

�N
⇡

1� (k`)2

6

�N
⇡ exp


�N(`k)2

6

�
The previous approximation is justified under the hypothesis that N ! 1
and `! 0 while the exponential remains finite, i.e. `2N is finite. Let x

0

= 0;
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after taking the anti-transform, the final result is:

P (x, N) =


2⇡N`2

3

�� 3
2

exp


� 3x2

2N`2

�
Time can be explicitly introduced in the previous formula by calling ✏N =
t� t

0

. Few additional substitutions yield

⇢(x, t;x
0

, t
0

) := P (x, t;x
0

, t
0

) =


1

4⇡D(t� t
0

)

� 3
2

exp


� (x� x

0

)2

4D(t� t
0

)

�
(12)

The previous probability distribution describes a di↵usion process governed
by a parameter D = `2/6✏, which in the case of classical Brownian motion
depends on the medium. Before moving to the next passage it is useful to
notice that ⇢ satisfies the heat equation:✓

@

@t
�Dr2

◆
⇢(x, t;x

0

, t
0

) = 0 (13)

where for simplicity we consider t > t
0

and x 6= x

0

Incidentally, let us
observe that limt!t0 ⇢(x, t;x0

, t
0

) = �3(x� x

0

).
Now that the probability of a particle moving from one region of space

to another has been determined, a measure for the space of paths can be
defined. Let us consider a partition of the time interval t � t

0

, namely
{t

0

, t
1

, ...tN}, and an equal number of Borel sets Ik ⇢ R3. The probability
that a particle travelling from x

0

to x

N

passes through the region Ik at
time tk (i.e. x(tk) 2 Ik) is almost :

m(x, t;x
0

, 0) =

Z
I1

d3x
1

Z
I2

d3x
2

...

Z
IN�1

d3x
N�1

⇥

⇥ ⇢(x
1

, t
1

;x
0

, t
0

)⇢(x
2

, t
2

;x
1

, t
1

)...⇢(x
N

, tN ;x
N�1

, tN�1

) (14)

It is “almost” a probability because the conditioned probability is P (A|B) =
P (A ^ B)/P (B). As a consequence, to recover a proper probability one
should divide the previous formula by ⇢(x, t;x

0

, t
0

). Alternatively, if the
end-point is not fixed, i.e. if one integrates over the last variable, one gets a
non-conditional probability.

As N ! 1 the motion of the particle is described by a broken line
trajectory just as those appearing in the path integral. The chance of big
jumps drops exponentially and the big-N limit suggests that the succession
of the vertices should appear as a continuous curve if the tj � tj�1

! 0
accordingly. Yet, there is no guarantee of di↵erentiability.

The previous description makes it possible to define the Wiener measure
in the space of paths for a Brownian particle. The basic results will be listed
below.
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• W(x, t;x
0

, t
0

) is the set of continuous curves connecting x

0

and x in
a time interval t� t

0

.

• “Cylindrical sets” are defined as the sets of paths

K(t
0

,x
0

; t
1

, I
1

; ...; tN�1

, IN�1

; tN ,x
N

),

i.e. the set of trajectories passing through Ik at tk as described above.
All Ks, their complements, their countable unions and finite intersec-
tions constitute the �-algebra.

• A positive measure for K can be defined as the conditional-probability
of the particle moving along one of the paths in K. Then µ(K) can be
defined as (14) either normalized or not.

The properties above identify a proper positive measure: the conditional
Wiener measure. By choosing a set IN for the last step instead of fixing the
final point, the non-conditional Wiener measure can be found.

A functional is a function Q : W(x, t;x
0

, 0) 7! R. Q can be integrated:

hQi =
Z

dµ(x(⌧))Q(x(⌧)) (15)

In practice, hQi can be evaluated like the path integral: one integrates Q
over broken lines with N vertices after setting tj � tj�1

= (t � t
0

)/N = ✏,
and finally lets N ! 1. Hence, in the discrete form, one gets:

dµ(x(t)) 7!
Y d3x

j

(4⇡D✏)3/2
exp

✓
�(xj+1

� xj)2

4D(✏/N)

◆
(16)

and
Q(x(t)) 7! Q(x

0

,x
1

, ...,xN )

The integral (15) is almost an average of the quantity Q over all possible
paths. Again, it is almost an average because it is not normalized. This fact
is clearer if one considers the functional 1 : x(t) 7! 1 i.e. if one evaluates
the “volume” of the space of all paths.

h1i = µ(W(x, t;x
0

, 0)) =

Z
dµ(x(⌧)) = ⇢(x, t;x

0

, 0) 6= 1

The previous formulas highlights certain similarities between the Wiener
integral and the position representation of the propagator. Keeping this in
mind, let us observe that expression (16) introduces a sort of kinetic term
in the exponent; therefore, in order to make a connection with Feynman
integral, it is natural to consider a functional that somehow accounts for the
potential:

F = exp

Z
dtU(x(t))

�
12



for some U(x). The average of F has a familiar form:

J =

Z
dµ(x(t)) exp


�
Z

d⌧U(x(⌧))

�
(17)

or, even more explicitly:

J = lim
N!1


1

4⇡D✏

� 3N
2
Z N�1Y

j=1

d3xj exp

"
N�1X
k=0

✓
�(xk+1

� xk)2

4D✏
� U(xk)

◆#
(18)

It can be shown that the new quantity J satisfies a modified heat equation:

@

@t
J = Dr2J � U(x)J (19)

This equation resembles that of the quantum propagator (1), just like the
expression for J is quite similar to G. There is indeed a correspondence:

D $ i~
m

U $ i

~V ) J $ G

(19) corresponds to S.E. up to a delta which arises immediately from allowing
t� t

0

to be negative (J = 0 if t < t
0

). Therefore, the path integral looks like
an analytic continuation of the Wiener integral. One may want to regard
the path integral as more than a sort of complex average of the functional
exp

⇥
i
~
R
dtL⇤. The idea would be to define a complex measure for Feynman

paths as

dµ(x(t)) = Dx(t) exp


i

~

Z
d⌧

m

2
ẋ

2

�
maybe in its discrete form. Unfortunately, as the complexification takes
place, a well-defined measure is lost: while in general it is possible to define
complex measures, the complexified Wiener measure is not countably addi-
tive [17].

Finally, we should analyse the Brownian paths. It can be shown that,
with respect to the Wiener measure, almost all Brownian trajectories are
nowhere di↵erentiable. In other words, a particle has a probability P = 1
of travelling along nowhere di↵erentiable path and P = 0 of moving along
a smooth path. This is not surprising for the random walks can be thought
of as broken lines composed of an infinite number of infinitesimal segments.
Therefore, an instant velocity is meaningless, whereas a mean velocity can
be defined and it will vary very irregularly. In the previous discussion, it was
implicit that the expression of ⇢, which ultimately determines the drifting
velocity, is expected to be finite and non-degenerate. This was assumed
when D was fixed. The direct consequence is:

�t ⇡ |�x|2 (20)

13



In other words, finite displacements cannot occur in an infinitesimal times-
pan and “big jumps” are forbidden. The close resemblance to Feynman
integral suggests that quantum paths should be alike. It should be said that
a naive extension of (20) to quantum path may be questionable and there
are other methods and approximations that yield (20) for Feynman paths
under more general hypotheses and that do not involve Brownian motion.
This last relation (20) is especially important and it will be used again. In
particular, (20) implies that, in the path integral, the velocity is not well
defined as a limit, since �x/�t ! 1, or, equivalently, given two vertices j
and j + 1 in (6), then (xj+1

� xj)/(t/N) ! 1 (as anticipated, the nowhere
di↵erentiability already accounts for this).

5 Vector potential

The path integral has been obtained from the Trotter formula under the hy-
pothesis that the potential is only dependent on the position. This excludes
magnetic fields from the description. In order to introduce them, it is rea-
sonable to simply introduce an electromagnetic potential in the Lagrangian
in (8). The classical electromagnetic Lagrangian is:

L =
m

2


dx

dt

�
2

� V (x) +
e

c

dx

dt
A(x)

In the path integral formalism, its integral (the Sliced action) should be
evaluated according to (7), as followsZ t

0

dt0
e

c

dx

dt0
A(x(t0)) =

e

c

Z
x(·)

dxA(x) =:
e

c

N�1X
j=0

(xj+1

� xj)A(x̃(j, j + 1))

x̃(j, j + 1) is the point in which the vector potential is evaluated in each
step and it should be some point on the segment connecting xj and xj+1

.
This choice would be of no concern if Riemann integration theory could be
applied: any choice, e.g. xj or xj+1

, would be appropriate. But this is a
stochastic integral (Ito’s theory [28]), not a Riemann integral, and the only
correct choice will be xj+1+xj

2

as will be shown later.
The correctness of the previous guess can be verified by checking that, in

an infinitesimal time interval, the propagator yields the same time evolution
as the Schrodinger equation. Since the path integration describes the evolu-
tion as a succession of steps, only the first step will be kept and its timespan
will be assumed infinitesimal. According to (20), also �x is infinitesimal
and its relation with �t is fixed. Let us evaluate the vector potential at
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some point xf + ↵(xi � xf ), ↵ 2 [0, 1].

 (xf , t) =
⇣ m

2i⇡~t

⌘
3/2
Z

d3xi  (xi, 0)⇥

⇥ exp

 
it

~

"
m

2


xf � xi

t

�
2

� V (x) +
e

c
(xf � xi)A(xf + ↵(xi � xf ))

#!
(21)

The purpose of the following passages is to get a first-order (in t) approxi-
mation of the previous expression. Let xi � xf = ⇠, then

 (xf , t) =

Z
d3⇠

⇣ m

2i⇡~t

⌘
3/2

exp

✓
im⇠2

2~t

◆
⇥

⇥ exp

✓
� it

~ [V (xf )�rnV (xf )⇠n] + o(t)

◆
⇥

⇥ exp

✓
� ie

~c⇠n [An(xf ) + ↵(⇠krk)An(xf )] + o(t)

◆
⇥

⇥

 (xf , 0) + ⇠nrn (xf , 0) +

1

2
⇠m⇠k

@2 

@xm@xk
(xf , 0) + o(t)

�
The exponentials can expanded in series. Since all quantities in the following
equation are evaluated in xf , the spatial dependence will be omitted.

 (t) =
⇣ m

2i⇡~t

⌘
3/2
✓
1� it

~ V
◆Z

d3⇠ exp

✓
im⇠2

2~t

◆
⇥

1� ie

~c⇠nAn � ↵
ie

~c⇠n⇠mrmAn � e2

2~2c2 ⇠n⇠kAnAk

�
⇥

⇥

 (xi, 0) + ⇠nrn (xi, 0) +

1

2
⇠m⇠k

@2 

@xm@xk

�
+ o(t) (22)

In the previous integral, all odd terms (i.e. those that are linear at least in
one ⇠k) vanish and the only integrals that are left have the following forms:R
x2e�ix2

or
R
e�ix2

. After some rearrangements, one gets:

i~ ̇ =

✓
� ~2
2m

r2 +
e2

2mc2
A2 + ↵

ie~
mc

(r ·A) +
ie~
mc

(A ·r) + V

◆
 

= � ~2
2m

r2 +
e2

2mc2
A2 + (↵� 1/2)

ie~
mc

(r ·A) +

+
ie~
2mc

(A ·r) +
ie~
2mc

r · (A ) + V  

where @ 
@t = ( (t)� (0))/t which is true for t ! 0. If we want the previous

equation to be the Schrodinger equation, the only possible choice of ↵ is
↵ = 1/2 and this fact is called “mid-point” rule.
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There is no mid-point rule for the scalar potential V and any point
x̃(j, j + 1) on the segment [xj ,xj+1

] would yield the correct result. The
reason is that, in the series expansion of V (x) about some x̃(j, j + 1), the
only term which remains is V (x̃(j, j+1)) since it is zero order in ✏ = t/N : in
the sliced action, V is multiplied by ✏ and, consequently, the error deriving
from changing the evaluation point (order ✏1/2) is always neglectable. On
the other hand, the vector potential is multiplied by xj+1

� xj which is of
order ✏1/2 and thus the error introduced by the change of evaluation point
(✏1/2 again) cannot be neglected since the overall error goes as ✏. Physically
speaking, the vector potential is coupled to the “velocity” which is a highly
oscillating quantity in Brownian-like paths and therefore the situation is
more delicate.

Gauge invariance arises naturally in the path integral formalism. By
replacing A with A+r� (�(x) is a smooth function of space) we get a new
integral expression with an additional term in the exponent:Z tf

ti

ẋ(t)r�(x(t)) =

Z
x(·)

dxr�(x) = �(x
f

)� �(x
i

) (23)

The previous passage seems obvious, but, since we are not dealing with
Riemann integrals, a couple of things should be remarked. The first equality
in (23) holds by definition:X

✏
xj+1

� xj

✏
�

✓
x

j+1

+ x

j

2

◆
=
X

(xj+1

� xj)�

✓
x

j+1

+ x

j

2

◆
where, before taking the limit, ẋ is a formal notation for a finite ratio. As
for the second equality in (23), which is a quite natural generalization of a
fundamental property of Riemann integrals, it holds only if the integral is
carried with the mid-point rule. Taking the limit in a di↵erent way (e.g.
evaluating � in the xj points) would lead to an additional term on the right
hand side of the equation.

Since all paths have the same end point and starting point, the quantity
above does not depend on the specific path, and the gauge transformation
has the following e↵ect on the propagator:

G(xf , t;xi, 0) 7! G(xf , t;xi, 0)e
ie
~c [�(xf )��(xi)]

Thus, the change of gauge equals to a unitary transformation:

 (x) 7! e
ie
~c�(x) (x)

Similarly, by replacing V with V �(1/c)@tf , where f(t) is a smooth function
of time, one gets

G(xf , t;xi, 0) 7! G(xf , t;xi, 0)e
ie
~c [f(tf )�f(ti)]

16



since Z tf

ti

dt @tf(t) = f(tf )� f(ti)

reasonably holds for the sliced integral. Again, f(tf ) and f(ti) are the same
for all paths. In the general case, let ⇤(x, t) be a function of both space and
time. The gauge transformation becomes

A 7! A+r⇤ V 7! V � 1

c
@t⇤

Thus, sinceZ
dt [@t⇤(x(t), t) + ẋ(t)r⇤(x(t), t)] =

Z
dt

d

dt
⇤(x(t), t) = ⇤(xf , tf )�⇤(xi, ti)

one gets again

G(xf , t;xi, 0) 7! G(xf , t;xi, 0)e
ie
~c [⇤(xf ,tf )�⇤(xi,ti)].

6 Phase Space

As anticipated during the derivation of the position representation, if the
integrals over impulses are not performed, additional N variables are kept.

G(xf , t;xi, 0) = lim
N!1

Z NY
j=1

dkj
2⇡~

N�1Y
l=1

dxl

exp

24 i

~

NX
q=1

"
t

N

 
k2q
2m

+ V (xq)

!
+ kq(xq � xq�1

)

#35 (24)

The exponential in the previous integral can be formally written as:

exp


i

~

Z
dt (pẋ�H(x, p))

�
The previous expression recalls the Hamiltonian formalism in classical me-
chanics which allows defining a class of canonical variables and a way to pass
from one to the other. Yet, in general, classical results cannot be extended
to the path integral formalism [28].
Quantum trajectories in phase space are not smooth and not even Brownian-
like. Furthermore, a classical trajectory in the phase space is completely
identified by the law of motion x(t) which fixes p(t). However, if, before
taking the limit, (24) is interpreted as a sum of broken-lines paths with
N steps, between each couple of vertices xi�1

and xi the momentum is re-
dundantly specified by ki. Thus the motion is not classical and p(t) has
discontinuities at each vertex. Another interpretation is possible: the time
t is divided into 2N intervals. The motion is classical and at each vertex
either the position or the momentum are alternatively specified.
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7 Coherent states representation

Coherent states can be defined in a rather general fashion as a set of vectors
in the Hilbert space H satisfying certain conditions. Namely, they must
be both the images of elements from some “label-set” L under a strongly
continuous map and they must yield a resolution of unity

R
L dl |li hl| with dl

being an appropriate measure. From now on, canonical coherent states will
be examined and they will be referred to simply as coherent states.

Canonical coherent states can be either defined as eigenstates of the low-
ering operator a = q+ipp

2~ or as minimum uncertainty states. Some definitions

are needed. The eigenstates of the harmonic oscillator can be labelled with
integers |ni. Then:

a |ni = p
n |n� 1i

a† |ni = p
n+ 1 |n+ 1i

[a, a†] = 1

a |0i = 0

Let now |zi be a vector such that

a |zi = z |zi

and let us expand it on the |ni basis.

z
X
n

µn |ni = z |zi = a |zi = a
X
n

µn |ni

=
X

µn

p
n |n� 1i =

X
µn+1

p
n+ 1 |ni

zµn =
p
n+ 1µn+1

implies that µn = znp
n!
µ
0

. µ
0

can be determined by

imposing 1 = hz|zi. The result is:

|zi = exp


� |z|2

2

�X
n

znp
n!

|ni

It follows that

hw|zi = exp


� |w|2 + |z|2

2
+ w⇤z

�
An equivalent form will be used later:

hw|zi = exp
⇥�1

2

[w⇤(w � z)� z(w⇤ � z⇤)]
⇤

(25)

There is another characterization of coherent states. They are harmonic
oscillator ground states displaced both in space and momentum. Let T⇠1

18



and D⇠2 be the corresponding displacement operators. It will be shown that

z = ⇠1+i⇠2p
2~ :

aT⇠1D⇠2 |0i = T⇠1D⇠2T
†
⇠1
D†
⇠2
aT⇠1D⇠2 |0i

= T⇠1D⇠2

✓
⇠
1

+ i⇠
2p

2~
+ a

◆
|0i

=


⇠
1

+ i⇠
2p

2~

�
T⇠1D⇠2 |0i

If we define |zi = T⇠1D⇠2 |0i, some properties follow directly from the obser-
vations above:

hz| q |zi = <(z)p
2~

hz| p |zi = =(z)p
2~

�p�q = h0| q2 |0i h0| p2 |0i = ~
2

Hence, the minimum uncertainty property has been proved. It is also true
that any minimum uncertainty state is a coherent state.

The wavefunction associated with |zi can be evaluated as T⇠1D⇠2 |0i.
The Schrodinger representation for |0i is ⇡1/4 exp(�x2/2). Then:

 z(x) = ⇡�1/4 exp

✓
i⇠

2

x

~

◆
exp

✓
�(x� ⇠

1

)2

2~

◆
Then, up to the irrelevant constant phase factor exp(i⇠

1

⇠
2

/~), the wavefunc-
tion can be written as:

 z(x) = ⇡�
1
4 exp


� |z|2

2
� x2 + z2

2
+

p
2zx

�
The coherent states allow to define a basis of vectors. Yet, their set C =
{|zi : z 2 C} is overcomplete and, consequently, the resolution is not unique.
The subset B ⇢ C, defined as B = {|wi 2 C : w = m + in;m,n 2 Z} is a
possible nontrivial complete set [3]. More in general, for any complete or
overcomplete set (characteristic set) S, it is true that 8 |zi 2 S, hz| i =
0, 8 | i 2 H ) | i = 0. The identity operator can be expanded on this
basis

I =
Z
C

d2z

⇡
|zi hz|

with d2z = d<(z)d=(z). It can be shown as follows:Z
C

d2z

⇡
|zi hz| =

Z
C

d2z

⇡

X
n,m

e�|z|2 z
⇤n

p
n!

zmp
m!

|ni hm|

=
X
n,m

1

⇡
p
n!m!

(⇡�n,mn!) |ni hm|

=
X
n

|ni hn| = I
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Just like the position improper eigenvectors allow the definition of a
representation for H on L2, the coherent states allow to represent H on the
Bargmann space. Bargmann space I is the Hilbert space of entire functions.

• I = {f : C ! C, f entire and
R
C d2z/⇡e�|z|2 |f(z)|2 < 1}

• The isomorphism can be defined as follows:

H ! I

| i 7!  (z) = e
|z|2
2 hz⇤| i

• The inner product is:

h�| i 7!
Z

d2z

⇡
e�|z|2�(z)⇤ (z)

or, alternatively

h�| i 7!
Z

dzdz⇤

2⇡i
e�|z|2�(z)⇤ (z)

• An orthonormal basis for this space is {zn/pn!}. Since hz⇤| a† | i =
z hz⇤| i, then

a†f(z) = zf(z)

and, in order to preserve the commutation rule [a, a†] = 1, then it
must be true that

af(z) =
d

dz
f(z)

Any operator which is a function of q and p is also a function of
a and a† and if it can be expanded is series, it can be written as
A =

P
i,j ai,ja

†iaj after using the commutation rules. Finally A =P
i,j ai,jz

i
�

d
dz

�j
.

The introduction of the entire representation yields a class of characteristic
sets for the resolution of unity. An analytic function that vanishes on an
infinite set containing an accumulation point is null: any set of this kind (e.g.
any curve in C) is a characteristic set and the overcompleteness becomes
evident.

Now it is possible to proceed as it was done for the position representa-
tion. By defining ✏ = t/N

G(zf , t; zi) = hzf | e�
it
~ H |zii = lim

N!1

Z N�1Y
k=1

d2zk
⇡

NY
j=1

hzj | e� i✏
~ H |zj�1

i
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Since N ! 1 and ✏! 0, the exponential can be expanded to the first order
in ✏. Let us first define the velocity, in a discrete form, as

dzj
dt

:=
zj � zj�1

✏

In addition, it is convenient to write

H(z⇤j , zj�1

) :=
hzj |H |zj�1

i
hzj |zj�1

i
and to evaluate hzj |zj�1

i according to (25). Hence, before taking the limit:

GN (zf , t; zi) =

Z N�1Y
k=1

d2zk
⇡

NY
j=1

hzj |zj�1

i

1� i✏

~H(z⇤j , zj�1

) +O(✏2)

�
(26)

=

Z N�1Y
k=1

d2zk
⇡

NY
j=1

exp


�1

2

⇥
z⇤j (zj � zj�1

)� zj�1

(z⇤j � z⇤j�1

)
⇤�⇥

⇥ exp


� i✏

~H(z⇤j , zj�1

) +O(✏2)

�

=

Z N�1Y
k=1

d2zk
⇡

exp

24✏ i~
NX
j=1

� 1

2i


z⇤j

dzj
dt

� zj�1

dz⇤j
dt

�
�H(z⇤j , zj�1

) +O(✏2)

35
The final approximation consists in replacing the zj�1

terms with zj , mean-
ing that terms of order ✏(zj � zj�1

) will be neglected. This can be question-
able. Terms of this kind in the position representation can indeed be consid-
ered “small” with respect to those of the first order because of what it was
said about Brownian paths. Here, instead, no Brownian-like path is avail-
able, and this can be seen as follows. As t ! 0, surely hx0|G |xi ! g �(x�x0)
but it is not true hz|G |z0i ! g0�(z � z0) and, consequently, the paths may
not even be continuous. The final formula is:

G(zf , t; zi) = lim
N!1

Z N�1Y
k=1

d2zk
⇡

exp


i

Z
dt


i

2

✓
z⇤

dz

dt
� z

dz⇤
dt

◆
� 1

~H(z⇤, z)

��
(27)

Another slightly di↵erent approach is possible in order to get a somehow
meaningful expression for the path integral in the coherent representation
without writing the explicit form of the product hzj |zj�1

i. Therefore, this
approach can be applied to more general definitions of coherent states. The
following approximation will be used:

hzj |zj�1

i = 1� hzj | (|zji � |zj�1

i) = 1� hzj |żji ✏ ⇡ exp [�✏ hzj |żji]
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where the “derivative” of |zji has been defined, only in a loose sense, as:

|żji := lim
✏!0

|zji � |zj�1

i
✏

It is possible to proceed further just as it was done to go from (26) to (27).

Let us set Dz(t) :=
QN

k=1

d2zk
⇡ , then:

G(zf , t; zi) = lim
N!1

Z
Dnz(t) exp


i

~

Z
dt [i~ hz|żi � hz|H |zi]

�
(28)

The interesting fact is that the action in the exponent looks like the following
genuine quantum action:Z

dt
h
i~h | ̇i � h |H | i

i
=

Z
dt h | i~@t �H | i

By setting to zero the first variation of the quantity above, the Schrodinger
equation is immediately recovered (the independent variations of | i and
h | yield the same result).

It has been shown for the position representation that the classical ac-
tion and the classical trajectories play an important role in determining the
propagator. In some simple cases they actually determine it completely.
It is possible to wonder if anything similar happens in the coherent states
representation. Let us consider the actions appearing in both of the formu-
lations above (27) and (28) as if they were classical, i.e. functionals of some
paths z(t). They depend both on z(t) and on its first derivative ż(t) but not
on higher derivatives. In particular, the absence of the second derivatives
implies that the di↵erential equations of motion for z(t), obtained with the
stationary action principle, will be of the first order. This fact suggests that
the coherent states representation may lead to a Hamiltonian formalism,
rather than to a Lagrangian formalism. Thus, z(t) can be thought of as
a motion in the phase space. This is not surprising since, as it has been
shown for the canonical states, the real and the imaginary parts of z are
proportional to the average position and momentum respectively.

Some problems arise. As mentioned before, classical trajectories are not
well defined in the phase space, as far as the quantum propagator is con-
cerned. It can be even shown that phase space paths are not even continuous.
Coherent trajectories are expected to be alike, as it has been shown above.
In addition, the fact that the equations of motion are of the first order means
that fixing the “position” z at a certain time unambiguously determines a
unique trajectory. Yet, when calculating the propagator, two “positions”
(zi and zf ) at two di↵erent times seem to be specified. Nevertheless, there
is in general no classical path connecting them.

However, since it is not forbidden to find a well behaved path, the station-
ary phase method is still possible. The boundary conditions problem can be
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overcome by looking back at the path integral. One notices that the motion
is formally described by two di↵erent paths, z(t) and z⇤(t), which are inde-
pendent. Hence, the boundary conditions read z(ti) = zi and z⇤(tf ) = z⇤f
and are associated with first order di↵erential equations as it should be.
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Part II

Applications and examples

8 Hamiltonian spectrum

The propagator yields useful information about the spectrum. Let H be
the Hamiltonian of the system under exam and let {|ni} be the complete
set of its eigenvectors, so that H |ni = En |ni. In addition, let us define
un(x) := hx|ni. For t > 0

G(y, t;x, 0) = hy| ✓(t)e� it
~ H |xi (29)

= ✓(t)
X
n

hy| e� it
~ H |ni hn|xi (30)

= ✓(t)
X
n

u⇤n(x)un(y)e
� it

~ En (31)

In order to obtain information about the spectrum, one may want to
replace the time dependence with an energy dependence via Fourier trans-
form. Yet, the ✓ function will limit the integration interval to [0,+1] and,
for some reasons (convergence and the positions of the poles), it is conve-
nient to give the energy a small imaginary i⌘ part so that the physical result
will hold as ⌘ ! 0. This means that one may use the Laplace transform
instead of the Fourier transform. Formally, in the operator notation, one
finds the resolvent:

G̃(E) = lim
⌘!0

Z 1

0

dt e
it
~ (E�H+i⌘) = lim

⌘!0

i~(E �H + i⌘)�1 (32)

In the position representation:

G̃(xf , E;xi) = lim
⌘!0

Z 1

�1
dt e

i(E+i⌘)t
~ G(xf , t;xi) = lim

⌘!0

i~
X
n

u⇤n(xi)un(xf )

E � En + i⌘

(33)
The poles of G̃(xf , E;x) are the eigenvalues of H. It should be remarked
that, before taking the ⌘ ! 0 limit, the poles lie below the real axis.

9 Free Particle

The position representation for the free propagator

G(t) = exp


� it

2m~p
2

�
can be evaluated both directly from the propagator and from (6).
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The former method is the following. As was done while deriving the
position representation for the general propagator, the completeness of the
momentum basis can be used.

G(xf , t;xi) =

Z
dk hxf |G |ki hk|xii

Then r
m

2i⇡~t exp

im

2~t(xf � xi)
2

�
The latter method makes use of (6) with V=0. The following identity is

needed:Z
du

p
ab

⇡
exp

h
�a (x� u)2 � b (u� y)2

i
=

s
ab

⇡(a+ b)
exp


� ab

a+ b
(x� y)2

�
It can be applied to the first and the second terms in the product, getting a
new similar product with N �2 terms. The procedure can be repeated until
only one term remains. After the N integrations, both the exponential and
the normalization constant become N -independent since only (t/N)N = t
is left. Therefore, the limit is not even necessary.

G(xf , t;xi) = lim
N!1


m

2i⇡~(t/N)

�N
2

Z N�1Y
k=1

dxk⇥

⇥ exp

24 i(t/N)

~

N�1X
j=0


m

2

(xj+1

� xj)2

t/N

�35
becomes

G(xf , t;xi) =

r
m

2i⇡~t exp

im

2~t(xf � xi)
2

�
It should be remarked that the classical action for the free particle is:

Sclassic =
m

2
v2t =

m

2

(y � x)2

t

Hence:
G(y, t;x) ⇠ e

i
h
Sclassic

The importance of classical trajectories in path integration will be clearer
in the next section.
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10 Quadratic Lagrangians and classical trajecto-
ries

If the Lagrangian is at most quadratic, the exact propagator can be calcu-
lated.

L = a(t)ẋ2 + b(t)ẋx+ c(t)x2 + d(t)ẋ+ e(t)x+ d(t)

It would be possible to compute the propagator with (6), but this procedure
would be rather long and di�cult. It is better to get the same result from
(9). Let us assume that the starting and the end-points are connected by a
unique classical trajectory satisfying the Euler-Lagrange equation:✓

d

dt

@

@ẋ
� @

@x

◆
L = 0 (34)

Let x̄(t) be the classical path and let us define the new coordinate y(t) such
that x(t) = y(t) + x̄(t). To put it in words, y(t) is the displacement at time
t from the classical trajectory and its boundary conditions are y(ti) = 0
and y(tf ) = 0. Since, for any given time, x̄(t) is fixed, then dy = dx
and, consequently, the elementary “path volume” does not change: Dy(t) =
Dx(t).

The Lagrangian under exam is quadratic and there will not be terms of
higher orders than the second in the Taylor expansion of the action.

S[x(·)] = S[x̄(·)] + �

�x(t)
S[x̄(·)]y(t) + 1

2

�2

�x2(t)
S[x̄(·)]y2(t)

= S[x̄(·)] + 1

2

�2

�x2(t)
S[x̄(·)]y2(t) (35)

The meaning of the previous expression must be clarified. The action S is a
functional and we need its derivative with respect to a path. Let us consider
the sliced action first. A broken path is identified by the array (a vector) of
its vertices {xj}, i = 0, 1, ..., N . Let {�xi} be a “small” path:

S({xj + �xj})� S({xj}) ⇡
X
k

@S

@xk

����
{xj}

�xk

Thus, the derivativative is a simple gradient. A path can be regarded a
vector with infinite elements (continuum cardinality). Let x(t) be a path
and let �x(t) be a “small” path. The derivative is defined as follows:

S[x(·) + �x(·)]� S[x(·)] ⇡
Z

�S

�x(t0)

����
x(·)

�x(t0) dt0 =:
�

�x(t)
S[x̄(·)]�x(t)

The second derivative is obtained in the same way.
(35) implies that the integral of the sum of all terms which are linear

in y(t) (or in ẏ(t)) must vanish. In practice, given a Lagrangian, one may
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collect all terms containing only x̄ and its derivatives, and then calculate Sc

after solving the Euler-Lagrange equation. Then, one gathers all quadratic
terms containing only y and its derivatives. The result is:

G(xf , tf ;xi, ti) = exp


i

~Scl(xf , xi)

� Z
0

0

Dy(t) exp


i

~

Z tf

ti

dt[aẏ2 + byẏ + cy2]

�
Consequently, the propagator is the product of a term only depending on
the classical action and a second function F (tf , ti).

G(xf , tf ;xi, ti) = exp [(i/~)Sclassic(xf , xi)]F (tf , ti) (36)

The function F (tf , ti) is the result of a Gaussian integration since the time
sliced Lagrangian has only quadratic and linear terms and can be calculated
exactly. It is worth noticing that the propagators under exam only depend
on the classical action and trajectory. This is of course a special case, yet,
since classical mechanics must be a limit case of the quantum description, it
is not unexpected that, under certain conditions, classical quantities appear.
The previous result suggests the following approach.

The classic limit can be obtained as ~ ! 0. Then, if ~ is small compared
to S =

R
dtL, even small variations of S will result in large variations

of iS/~ in the exponent. Therefore, these rapid phase shifts will produce
a sort of sum over random numbers on the unitary circumference in the
complex plane. The mean contribution is expected to be very small. On the
other hand, an important contribution should come from those groups of
paths whose small variations will not a↵ect S significantly. From a classical
point of view, such paths must belong to a neighbourhood of the stationary
trajectories for the action-functional, i.e. of those paths satisfying the Euler-
Lagrange equation. If the action is expanded in series about the stationary
trajectory and then truncated after the second order (the action will look like
(35)), then the approximated propagator can be solved exactly by following
the foregoing procedure. It can be demonstrated that the semi-classical
propagator is (in 3 dimensions):

G(x
f

, t;x
i

) =
1

(2⇡i~)3/2


det

✓
� @2Sc

@xf@xi

◆� 1
2

exp


i

~Sc

�
(37)

This is called the van Vleck propagator. This approximation is exact for
quadratic Hamiltonians. A full description must account for the phase shift
that occurs any time an eigenvalue of @2Sc

@xf@xi
changes sign. Furthermore, if

there are many classical trajectories, G will be a sum of addends like (37).

Let us point out that, despite its appearance, @2Sc
@xf@xi

is only a function of

time since both xf and Sc only depend on time once the classical trajectory
is fixed.
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Finally, let us observe that, if the classical trajectory is unique for every
xi and xf (e.g. the free particle), then (36) implies:

|G(xf , tf ;xi, ti)|2 = |F (tf , ti)|2 (38)

Hence, (11) implies that that if the initial state is a position eigenvalue, say
|xii, then it the particle is equally likely to be found anywhere in space at
a given instant, since the distribution |G|2 does not depend on position but
it only depends on time. This “probability distribution” is not normalized,
and not even normalizable. This is not surprising: as a wavefunction is
“squeezed” in space, it spreads in momentum space and, consequently, it
is more likely to detect the particle farther. |xii is the limit case with an
infinite momentum uncertainty. Nevertheless, this is not troublesome, for
|xii is not a legitimate physical state.

11 Uniform electric field

The propagator of a particle in a uniform electric field belongs to the previous
category with a(t) = m/2 and e(t) = qE. Indeed:

L = T + qEx

Here

F (tf , ti) =

Z
0

0

Dy(t) exp


im

2~

Z tf

ti

dtẏ2
�

is the free particle path integral with xf = xi = 0 i.e.
p

m
2i⇡~t .

The classical action can be obtained by integrating the Lagrangian along
the classical path xcl(t) = xi + v

0

t + (qE/2m)t2, which is a solution of the
Euler-Lagrange equation.

Scl =

Z t

0

(m/2)ẋcl
2(t0) + qExcl(t

0)dt0

Scl =
(qE)2

3m
+ Et2v

0

+
mtv2

0

2
+ Etx

0

Finally, by inserting the expression of v
0

(xf , t;xi) in the previous equation
and by combining all the previous results, it is possible to write the propa-
gator:

G(xf , t, xi) =

r
m

2i⇡~t exp
✓
i

~


m(xf � xi)2

2t
+

qEt(xf + xi)

2
� qEt3

24

�◆
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12 Harmonic Oscillator

Just like the position representation of the propagator for the free particle
was obtained without explicitly performing the sum over paths, the coher-
ent states representation for the harmonic oscillator can be evaluated in a
simple way. Let us first observe that the harmonic Hamiltonian induces a
“phase rotation” on coherent states.

Hh.o. =
1

2m
p2 +

m!2

2
x2 = ~!(a†a+ 1/2)

with
Hh.o. |ni = (~! + 1/2) |ni

Then (let ~ = 1):

Uh.o. |zi = Uh.o.

X
n

znp
n!

|ni = e�
i!t
2

X
n

znp
n!
e�i!nt |ni = e�

i!t
2
��ze�i!t

↵
Thus, the propagator is:

G(zf , t; zi) = hzf |G(t) |zii = e
i
2!t
⌦
zf |zie�i!t

↵
= exp


� |zf |2 + |zi|2

2
+ z⇤fzie

�i!t � i!t

2

�
One can verify that (33) yields the correct spectrum:

G(zf , E + i⌘; zi) = lim
⌘!0

Z 1

0

dt ei(E+i⌘)tG(zf , t; zi)

= lim
⌘!0

e�
|zf |2+|zi|

2

2

Z 1

0

dt
1X
n=0

eiEt
(z⇤fzi)

n

n!
e�i!tn�i!t/2

= lim
⌘!0

e�
|zf |2+|zi|

2

2

1X
n=0

(ziz⇤f )
n

n!

1

E � !(n� 1/2) + i⌘
.

Hence, the eigenvalues are En = !(n+ 1/2).
The propagator in the position representation can be obtained by inte-

grating the previous result four times:

G(xf , t;xi) = hxf |G |xii =
Z dz2f

⇡

dz2i
⇡

hxf |zf i hzf |G |zii hzi|xii

=

Z dz2f
⇡

dz2i
⇡
 zf (xf ) 

⇤
zi(xi)G(zf , t; zi)

Here we will only report the result which will be necessary for studying the
magnetic field.

G(xf , t;xi) =

r
m!

2⇡i~ sin(!t) exp


im!

2~ sin(!t)((x
2

f + x2i ) cos(!t)� 2xixf )

�
(39)
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13 Uniform magnetic field

The classical trajectory of a charged particle in a uniform magnetic field a
is cylindrical helix, coaxial to the direction of the field. Similarly, it can
be shown, in the Schrodinger picture, that in quantum mechanics the eigen-
states of such a particle can be factorized in those of a free Hamiltonian and a
bidimensional harmonic oscillator. Here, the corresponding propagator will
be found with the phase space formalism. Since the Lagrangian depends
explicitly on the vector potential, the gauge must be fixed. If B = |B| is
the norm of the magnetic field, then A can be written as follows (Landau’s
gauge):

A =

24 0
Bx
0

35
The phase space Lagrangian is

L = pẋ� 1

2m

h
p� e

c
A(x)

i
2

= pẋ� 1

2m


p2x + p2z +

⇣
py � e

c
Bx
⌘
2

�
The sliced action SN =

R
dtL is, according to (24):

Sn =
NX
j=1


pn(xn � xn�1

)� 1

2m


p2xn + p2zn +

⇣
pyn � e

c
Bxn

⌘
2

��
The vector potential has been evaluated in xn since in the Hamiltonian for-
malism, the magnetic field can be introduced with the following substitution
pn 7! pn � e

cA(xn). The propagator is then:

G(xf , t;xi) = lim
N!1

Z NY
j=1

d3pj

(2⇡~)3
N�1Y
l=1

d3xl exp


i

~SN

�

The variables yj and zj only appear in SN as
PN

j=1

[pyj(yj �yj�1

)+pzj(zj �
zj�1

)] =
PN�1

j=0

[yj(py,j�py,j+1

)�zj(pz,j�pz,j+1

)]. Since
R
dk exp[(i/~)px] =

(2⇡~)�(x), by integrating over all yj and zj variables, the following term
appears in the integral:

N�1Y
j=0

(2⇡~)2 �(py,j � py,j+1

)�(pz,j � pz,j+1

)

Hence

G(xf , t;xi) =

Z
dpzdpy
(2⇡~)2

N�1Y
j=1

dxj

NY
l=1

dpx,l
2⇡~ exp


i

~ (Sy,z + Sx)

�
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with

Sy,z = py(yf � yi) + pz(zf � zi)� t
p2z
2m

Sx =
NX
j=1


pxj(xj � xj�1

)� 1

2m


p2xn +

⇣
py � e

c
Bxj

⌘
2

��
Sx is the phase space Lagrangian of a one-dimensional harmonic oscillator
translated of x

0

= (c/Be)py from the origin and with frequency ! = Be/mc
(Landau frequency). The integration of exp[(i/~)Sx] is then (39):

Gh.o.(xf , t;xi) =

r
m!

2⇡~ sin(!t)⇥

⇥exp


i

~
m!

2 sin(!t)

⇥
((xf � x

0

)2 + (xi � x
0

)2) cos(!t)� 2(xf � x
0

)(xi � x
0

)
⇤�

The integration over pz of exp[pz(zf � zi)� t p2z
2m ] yields

Gz(zf , t; zi) =

r
m

2⇡i~t exp

i

~
m

2

(zf � zi)2

t

�
Then, finally:

G(xf , t;xi) =

Z
dpy
2⇡~ exp [py(yf � yi)]Gh.o.(py)Gz

py is quadratic in the exponent of the integral and, consequently, the previ-
ous integral is then a Gaussian one. The terms containing py or, equivalently,
x
0

can be written and integrated as follows:Z
dx

0

exp

"
� i

~m! tan

✓
!t

2

◆✓
x
0

� xf � xi
2

� yf + yi
2 tan(!t

2

)

◆
2

#
=

s
⇡~

im! tan(!t
2

)

Consequently, the propagator is:

G(xf , t;xi) =
h m

2⇡i~t

i
3/2 !t

2 sin !t
2

exp


i

~Sc

�
exp


i

~B
�

Where Sc is

Sc =
m

2


(zf � zi)2

t
+
!

2
cot

✓
!t

2

◆⇥
(xf � xi)

2 + (yf � yi)
2

⇤
+ !(xiyf � xfyi)

�
which is the classical action. The other term, B, is

B =
m!

2
(xfyf � xiyi)
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and it is a boundary term which can be eliminated with a gauge transforma-
tion. The previous formula has the following form G = N exp[(i/~)Sclassic].
This is not surprising, since the Lagrangian, though not one-dimensional, is
quadratic and, as a consequence, all the conclusions about classical paths
and the propagator hold.
The way to check that Sc is actually the classical action will be sketched. The
gauge does not need to be changed. In addition, since it is already known
that the motion along the z axis is a free motion, it is enough to evaluate
the action for the motion on the xy plane. The resulting Lagrangian is:

L =
m

2
ẋ2 +

m

2
ẏ2 +

eB

c
xẏ

The equations of motion are the following:

ÿ + !x = 0 ẍ� !y = 0 ) ...
x + ẋ = 0

...
y + ẏ = 0

The general solution is:

x =
1

sin(!(tf � ti))
[(xf � x

0

) sin(!(t� ti))� (xa � x
0

) sin(!(t� tf ))] + x
0

and the analogue for y (x ! y;xi ! yi;xf ! yf ;x0 ! y
0

). x
0

and y
0

are
determined by the equations of motion:

x
0

=
1

2
[(xf + xi) + (yf � yi) cos(!(tf � ti))]

x
0

=
1

2
[(yf + yi)� (xf � xi) cos(!(tf � ti))]

This is enough to obtain the classical action Sc by integrating the La-
grangian.

It is known that the spectrum for a particle in a magnetic field is discrete
if the free motion along z is not taken into account. In order to obtain this
discrete spectrum, equation (33) can be used. The poles of the transformed
propagator do not depend on the choice of the starting and the end points.
Thus, we set (xi, yi) = 0 and r = (xf , yf ).

G(r, t;0) =
m!

4⇡i~ sin !t
2

exp


im!

4~ r2 cot(
!t

2
)

�
By defining x := m!r2/~ and z := exp(i!t) the propagator can be rewritten
as (we use sin(↵) = (ei↵ � e�i↵)/(2i)):

G(r, t;0) =
m!

4⇡~
1

1� z
exp


xz

z � 1

�
exp


� i!t

2

�
exp


�m!r2

4~

�
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The previous expression includes the generating function of the Laguerre
polynomials Ln(x). Properties of these polynomials include:

1X
n=0

Ln(x)z
n =

1

1� z
exp


xz

z � 1

�

Ln(x) =
1X
k=0

✓
n

k

◆
(�1)k

k!
xk Ln(0) = 1, 8n

Hence:

G(r, t;0) =
m!

4⇡~ exp


�m!r2

4~

� 1X
n=0

Ln

✓
m!r2

~

◆
exp [�i(n+ 1/2)!t]

The last step is to take the Laplace transform:

G(r, E;0) = lim
⌘!0

m!

4⇡~ exp


�m!r2

4~

� 1X
n=0

Ln

✓
m!r2

~

◆
i

(E + i⌘)/~� (n+ 1/2)!

Hence, the eigenvalues, also known as Landau levels are En = ~!(n+ 1/2).
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Part III

The Aharonov Bohm e↵ect - a
topological approach

14 Motivation

The Aharonov-Bohm e↵ect (AB e↵ect from now on) is a well known quantum
phenomenon.

Let us consider a charged particle at some point xi and its amplitude
of being, under the quantum dynamics, at some other point xf , where it
can be detected, after a certain amount of time. No force or field is applied
to the particle, so that it can move freely. A solenoid producing a constant
magnetic field is placed somewhere in the experimental set. Two hypotheses
are needed: 1) the solenoid is infinitely long and 2) its surface is impenetrable
for the particle. Hence, the magnetic field is confined in an inaccessible
and finite region of space. From the classical point of view, no e↵ect on
the particle trajectory should be observed, since the field has only a local
e↵ect (Lorentz force) and it vanishes in the outer region. The quantum
case is di↵erent. In the Schrodinger equation, the quantity accounting for
the electromagnetic interaction is the vector potential and not the Lorentz
force; therefore, a description in terms of vector potential is needed.

There are di↵erent kinds of continuous paths connecting xi and xf and
they can be classified in terms of homotopy classes.

Paths that can be deformed into each other with continuity without
letting them through the solenoid (and without “cutting” them) belong to
the same homotopy class (see appendix). The need for this classification will
be seen as follows. Let us consider, for example, three di↵erent paths A, B
and C as shown in figure (1). These paths cannot be deformed one into the
other. Let us first choose the paths A and B. Their amplitudes appearing
in the path integral are exp((i/~)(SA + (e/c)

R
AA)) and exp((i/~)(SB +

(e/c)
R
B A)) respectively, with SBand SA being free actions. The di↵erence

in phase is proportional to SB � SA +
H
A. While SB � SA clearly depends

on the particular paths A and B, the quantityZ
B
Adx�

Z
A
Adx =

I
A,B

Adx =

Z
Surface(A,B)

Bds = �

is only determined by the homotopy classes of A and B. This is due to
the Stokes theorem. The only relevant quantity is now manifestly the flux
of the magnetic field. The path C winds clockwise around the solenoid.
Thus, if we consider B and C, we will find that the di↵erence in phase is
proportional to 2�; As for A and C, it is proportional to � again. Therefore,
there is a di↵erence in phase between trajectories from di↵erent classes and
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Figure 1: Path A, B and C cannot be deformed one into the other

this depends on the di↵erence of numbers of windings around the solenoid.
This di↵erence is proportional to integer multiples of �. The foregoing
observations imply that the total propagator should be like:

G ⇡
X

windings(n)

e
ie
c~n�

X
e

i
~S (40)

The amplitudes of paths sharing the same number (and direction) of
windings have been summed up, yielding the propagator for a single homo-
topy class. Afterwards the class propagators have been summed up with
an appropriate phase factor determined by the rule presented above. Obvi-
ously, since only relative phases are relevant, the phase of an arbitrary class
of trajectories has been set to zero and the other “winding numbers” have
been fixed accordingly.

The expression (40) di↵ers from the free propagator, meaning that the
magnetic field, though confined, has a measureable e↵ect on the particle dy-
namics. This can be verified experimentally with a double slit experiment as
shown in picture (2). The presence of the solenoid will shift the interference
figure on the screen.
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Figure 2: Double slit experiment and the AB apparatus

The foregoing discussion leads to concepts like homotopy classes and
“winding numbers”, suggesting a topological approach to the problem. Con-
sequently, the following sections will deal with path integrals in multiply-
connected spaces. The discussion will be more detailed than technically
needed for the AB e↵ect since the topic is interesting by itself and has a
range of applications including polymer physics, path integral for spinors
and systems of identical particles.

15 Path Integral on multiply connected spaces

The bidimensional physical space in which the AB e↵ect takes place is clearly
simply connected (R2). Instead, the insertion of an impenetrable solenoid
is a mathematical idealization and introduces a “hole” in the plane. This
means that the physical space can be approximated by a multiply-connected
space [27]. The new topology can be used to provide a good description of
the system but, wherever the formalism will lead, no ambiguity due to the
multiple-connectiveness should appear in the final result. The forthcoming
ideas were proposed and, in large part, developed by Schulman [27] [28].

Let us assume, from now on, that the configuration space is arcwise
connected. In addition, since the space can be regarded as a di↵erentiable
manifold, it is locally isomorphic to R2 and is required to have every rea-
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sonable local property of regularity. Thus, the space should be considered
locally simply connected, locally arcwise connected and semi-locally simply
connected. These local concepts will not be developed since almost no ex-
plicit use will be made of them. The required topology is summarized in the
appendix.

The first observation is that the Hamiltonian alone does not provide a
complete dynamics as long as the configuration space is not simply con-
nected. This can be seen with the following simple example.

Let us consider quantum mechanics on a segment I = [a, b] in which the
points a and b are identified. The free Hamiltonian is proportional to ��.
Given two functions f(x), g(x) 2 L2(I),Z

I
dxf⇤(x)(��g)(x) =

=

Z
I
dx(��f⇤)(x)g(x)� (g0(b)f(b)� g0(a)f(a))+ (f 0(b)g(b)� f 0(a)g(a)).

(41)

Hence, unless proper boundary conditions are imposed, the free Hamilto-
nian is not even symmetric. At a more subtle level, even though f ang g
vanish at the boundary, �� is essentially self-adjoint only under appropri-
ate boundary conditions. Therefore, it is not surprising that path integrals
in a multiply-connected spaces su↵er from an additional ambiguity.

Paths connecting the couple of points xi and xf 2 M can be divided
in homotopy classes, say {↵}. Let us first define the “partial amplitude”
G↵(xf , t, xi) for a single class ↵ as the sum over all paths in ↵. If now
the partial amplitudes are summed up, the old sum over all trajectories is
recovered. The core idea is that, in principle, the partial amplitudes can
enter the sum with class-dependent factors c↵.

G(xf , t;xi) =
X
↵

c↵G↵(xf , t;xi) (42)

All the partial amplitudes (class propagators) satisfy Schrodinger equation
individually. Let us consider the universal covering space M⇤ (it must be
assumed that there exists one) and a covering projection p. All paths can be
lifted via p�1 to M⇤ in a non-ambiguous way according to theorem (3)(see
appendix) once a starting point x⇤i,↵ 2 p�1(xi) is fixed. Let us choose the
same starting point x⇤i for all paths of all classes. On the other hand, if also
the end-points x⇤f↵ 2 p�1(xf ) were the same for paths in di↵erent classes,
these paths could be deformed one into the other (M⇤ is simply connected)
and p would map them down in M into the same class (see appendix). This
is, of course, impossible. In other words, di↵erent homotopy classes in M
are characterized by di↵erent end-points x⇤f↵ in M⇤.
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Now, let us suppose that everything is well behaved so that the Hamil-
tonian, the Schrodinger equation and the Lagrangian can be lifted with p�1

to M⇤. Since M⇤ is simply connected, there is no possible ambiguity when
calculating the propagator G↵ from x⇤i to x⇤f for a given class. Yet, when
going back to M, there is no dynamical prescription for not summing the
partial amplitudes with nontrivial coe�cients. Then:

GM(xf , t;xi) =
X
↵

c↵G
M
↵ (xf , t;xi) =

X
↵

c↵G
M⇤

(x⇤f↵, t;x
⇤
i )

The partial propagators are linear independent functions. This will
roughly justified. Suppose thatX

�

K�G�(xf , t;xi) = 0.

Thanks to the regularity hypothesis (semi-local simply-connectiveness), there
always exists an open neighbourhood V of xi which is simply connected, and
all paths entirely contained in it must belong to the same homotopy class,
say ↵. ↵ partial propagator becomes �-like as t ! 0. Other partial ampli-
tudes are sums over paths which must, roughly speaking, reach out distant
holes outside V : consequently, they give no contribution if t ! 0. This
yields K↵ = 0. Now let us choose a new class �. xf can be moved back-
wards along a representative b of � (� = [b]) until b ⇢ V and xf 2 V . The
previous argument implies K� = 0 8� 2 C(xi, xf ).

The numbers c↵ must satisfy certain conditions. In particular, c↵ must
be a commutative representation of the fundamental group ⇡

1

. There are at
least three di↵erent ways to prove this fact according to DeWitt and Laidlaw
[22], Dowker [10] and Schulman [28]. Schulman’s is the most intuitive and
goes as follows.

Let us attach a closed path h (⇠ := [h] 2 ⇡
1

(xf )) at xf and let us move xf
along it. While xf moves along ⇠ away and then back to the same position
in M , all the points x⇤f,↵ in M⇤ move to new ⇠-dependent locations x⇤f,↵[h].

Rigorously, this means that each path a ([a] = ↵ 2 C(xi, xf )) undergoes the
transformation ↵! ↵[h], which is clearly a 1:1 map of C(xi, xf ) onto itself.
While partial amplitudes change, no physical change has been made on M
and the total propagator must equal the old one up to a [h]-dependent phase
factor.X
↵

c↵G↵(xf , t;xi) = ei�⇠
X
↵

c↵G↵⇠(xf , t;xi) =
X
↵⇠�1

(ei�⇠)(c↵⇠�1)G↵(xf , t;xi)

Linear independence implies exp(i�⇠)c↵[⇠�1
]

= c↵. Now one can choose a
new path z (⇣ = [z] 2 ⇡

1

(xf )). If the previous procedure is repeated for [h]
and [z] in succession and then for [h z] and it is imposed that the results are
equal, finally:

�⇠⇣ = �⇠ + �⇣ .
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This is the expected commutative representation. It can be shown that
|c↵| = 18↵. Let a particular c↵ be 1. Then, a small rearrangement yields:

G(xf , t;xi) =
X
�2⇡1

ei�↵�1�G�(xf , t;xi)

Dowker’s approach, while less intuitive, may be more general. Let us
assume that M can be written as M = M⇤/G with G being a properly
discontinuous group of homeomorphisms (or, even better, a group of isome-
tries). In other words, we have identified the points in M⇤ which belong to
the same orbit of some g 2 G, meaning that M = M⇤/ ⇠ with x⇤

1

⇠ x⇤
2

if
x⇤
2

= g(x⇤
1

) for some g 2 G. This identification determines a covering pro-
jection p : M⇤ ! M⇤/G = M; x⇤ 7! [x⇤] =: x. Hence, the points in a single
orbit are nothing but the discrete set p�1(x), x 2 M. Let us fix a represen-
tative x⇤

0

in M⇤ for each orbit. The set corresponding to a particular choice
of representatives can be called F̄ and it is, of course, not unique.

A multi-valued wavefunction  (x) can be defined on M, by associating
with every x 2 M a di↵erent value for each preimage of x in M⇤. These
values can be regarded as images of a single-valued wavefunction on M⇤ =
[x2M p�1(x), say  M⇤ :

 (x) 7! { M⇤(g(x⇤
0

)); 8g 2 G for some given representative x⇤
0

2 p�1(x)}

= { M⇤(x⇤
0

) 8x⇤
0

2 p�1(x)} (43)

If now g is fixed in the first definition of  (x) (or, equivalently, a specific
preimage of x is chosen in the second), then  is single-valued at a certain
x 2 M. This procedure should be repeated for all x 2 M in order to define
a domain F̄ in M⇤. Therefore, the single-valued wavefunction on M is
identified as follows:  $  M⇤ |

¯F . However, once a point in F̄ is fixed, all
the other points are. This is a direct consequence of the requirement that
both  M⇤ and  are continuous, which suggests that F̄ and M should be
locally homeomorphic (x

1

! x
2

) x⇤
1

! x⇤
2

), apart from some unimportant
issues at the boundarty of F̄ . There are di↵erent possible choices for F̄
which are all “copies” of M in M⇤ and can be mapped one into the other
by elements in G. In particular, by fixing F̄ =: F̄e, all other domains are
F̄g = g(F̄e), meaning that they are in 1:1 correspondence with elements of
G.

Physics imposes that the domains F̄g are equivalent.

 M⇤(g(x⇤)) = ei�g M⇤(x⇤) ) ei�g0g = ei(�g+�g0 )

Thus, {ei�g} is an abelian representation of G. The path integral is readily
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obtained:

 M⇤(x⇤f , t) =

Z
M⇤

G(x⇤f , t;x
⇤
i ) M⇤(x⇤i )dx

⇤
i

=
X
g2G

Z
¯Fg
⇠
=

M
G(x⇤f , t; g(x

⇤
i )) M⇤(g(x⇤i ))dx

⇤
i .

A small rearrangement of the previous result is needed. One ought to extract
the exp(i�g) from the wavefunction and the propagator and remember that
the conjugate of exp(i�g) is exp(i�g�1)).

 M⇤(x⇤f , t) =
X
g2G

ei�g
Z
M⇤

G(g�1(x⇤f ), t;x
⇤
i ) M⇤(x⇤i )dx

⇤
i

=
X
g02G

e�i�g0

Z
M⇤

G(g0(x⇤f ), t;x
⇤
i ) M⇤(x⇤i )dx

⇤
i

The isomorphism between G and ⇡
1

is the final step to recover Schulman’s
form. Let us remark that the previous discussion implies that the homotopy
classes are in a 1:1 correspondence with elements of G or ⇡

1

.
A trivial but important conclusion is that c↵ = 18↵ 2 C(xi, xf ) is always

a legitimate choice since {1} is a commutative representation of any group.

16 Aharonov-Bohm e↵ect on the circle

A possible model for an ideal AB apparatus is the following. The solenoid
can be regarded as an infinitesimally thin cylinder which confines a finite
flux. The solenoid is set in the origin of the xy plane. The appropriate
magnetic field is thus B = ��2(x)ẑ with � being the flux. The correspond-
ing vector potential can be derived from an analogy between the present
case and an infinite wire with a current density J = I�2(x)ẑ generating a
magnetic field (Biot-Savart). The correspondence is A $ B, B $ J and
� $ I:

A(x) =
�

2⇡

�yî+ xĵ

x2 + y2
=

�

2⇡

1

r
ê✓ (44)

The vector potential appears in the Lagrangian as (e/c)Aṙ. In polar coor-
dinates it becomes (e�/c)✓̇ so that the Lagrangian can be written:

L =
m

2
(ṙ2 + r2✓̇2) +

e

c

�

2⇡
✓̇ (45)

From a classical standpoint, the last term, which accounts for the presence of
the solenoid, is not physical since the Lagrangian is defined up to the total
derivative of a function. The reason is that it only produces a boundary
term.
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Now let us consider a quantum system with the same Lagrangian (more
correctly, the corresponding Hamiltonian should be considered) in a simply
connected space (one should cut o↵ some part of M or re-interpret the an-
gular coordinate to get rid of multiply connectiveness). The addition of the
magnetic term to the free Lagrangian as in (45) corresponds to the unitary
transformation  (r, ✓) 7! e(e�/c)✓ (r, ✓), which cannot influence observable
quantities and, consequently the magnetic term itself can be transformed
away. In other words, the vector potential produces a gauge-dependent
boundary term.

If the space is not simply connected, we cannot get rid of the magnetic
term. Indeed

R
✓̇dt = ✓f � ✓i + 2⇡n is manifestly dependent on the number

of windings (n) of a specific path and is not an actual boundary term.

Let us now consider the simple case of a particle confined on a circum-
ference centred in the origin. The space under exam is SO(2) (or S1) and
its covering space is R. The projection map p is defined as

p : ✓ 7! ✓ � 2⇡


✓

2⇡

�
.

The square bracket is the integer part function. The fundamental group
⇡
1

⇠= (Z,+) is the infinite cyclic group generated by one element (+1 or
�1). One can consider a single loop either clockwise or counterclocwise. By
attaching together many loops, one gets closed paths with every possible
number or windings in both directions. The elements in G are clearly the
translations of integer multiples of 2⇡, meaning that G = {Tn such that Tn :
✓) 7! ✓ + 2n⇡} ⇠= ⇡

1

⇠= (Z,+).
The preimages of ✓f are p�1(✓f ) = {✓f (n) = ✓f + 2⇡n with n 2 Z} and

can be obtained one from the others by applying Tn. The points ✓f (n) are
the end-points for lifted paths of di↵erent homotopy classes of SO(2). Then,
these classes are indeed identified by these “winding numbers” n.

According to what was said in the previous section, the whole problem
will be lifted in R. For the homotopy class represented by n, the propagator
reads (I = R2m):

Gn(✓f , t; ✓i) = GR(✓f + 2⇡n, t; ✓i)

=

Z
D✓(t) exp


i

~

Z
dt

✓
I

2
✓̇2 +

e�

2⇡c
✓̇

◆�
= GR

free(✓f + 2⇡n, t; ✓i) exp


i

~
e�

2⇡c
(✓f � ✓i + 2⇡n)

�
=

r
I

2i⇡~t exp

i

~

✓
(✓f � ✓i + 2⇡n)2

t
+

e�

2⇡c
(✓f � ✓i + 2⇡n)

◆�
Since all information has been used (and the propagator must be uniquely
defined) all coe�cients c↵ can be set to 1. Finally, it should be observed
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that each addend brings the same multiplicative phase exp((e�/c)(✓f � ✓i))
which is a genuine boundary term that can be transformed away with a
unitary map. The propagator is then:

G(✓f , t; ✓i) =

r
m

2i⇡~t
X
n2Z

exp


i

~
e�

c
n

�
exp


i

~
(✓f � ✓i + 2⇡n)2

t

�
(46)

The previous derivation is based on the choice of a mathematical model
describing the vector potential (and the magnetic field) which yields the
correct dynamical description and the topological freedom on coe�cients c↵
has been disregarded. However, if one looks back at (46), the propagator
appears as the sum of a free partial propagator multiplied by a phase. Thus,
it is possible to consider the phases exp

⇥
i
~
e�
c 2⇡n

⇤
as the topological coef-

ficients a posteriori. In this more topological interpretation, a coe�cient
(which in our case has the form ei�n) represents the phase acquired by a free
particle after winding n times around the singularity.

17 Aharonov-Bohm e↵ect on the plane

If the radial dimension is restored, the configuration space M becomes
R2 � {0}. Its universal covering space M⇤ is R ⇥ (0,1] (or it could be
R2 itself). The introduction of the radial coordinate does not a↵ect the rel-
evant topology, since the multiple-connectiveness is still due to the angular
coordinate in the very same way as before. The fundamental group is the
same as for SO(2), and so the propagator should be formally alike. Clearly,
it is best to use polar coordinates. The covering projection is

p : (r, ✓) 7!
✓
r, ✓ � 2⇡


✓

2⇡

�◆
and is particularly appropriate since it is a local isometry. The direct cal-
culation of the propagator is rather lengthy, and then we will just give the
formula instead and justify it later. Three references for the direct demon-
stration are [18] [5] [16].

G(xf , t;xi) =
h m

2⇡i~t

i
exp


im

2~t(r
2

f + r2i )

� 1X
n=�1

exp


i
e�

2⇡~c2⇡n
�
⇥

⇥
Z 1

�1
d� exp [i�(✓f � ✓i + 2⇡n)] I|�|

✓
� imrfri

~t

◆
(47)

Functions I�(y) are the modified Bessel functions which are often associated
with cylindrical coordinates. The first observation is that if e�/2⇡~c is
an integer, then any reference to the magnetic field disappears as if � = 0.
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Therefore, the propagator should be the free propagator in polar coordinates.
The fact that winding numbers do not immediately disappear is only due to
the usual coordinate singularity in polar parameterization which should not
a↵ect physics. It is possible to eliminate the winding numbers as follows. By
expanding Dirac’s comb function D(↵) =

P1
n=�1 �(n + ↵) on the Fourier

basis (period 1), one gets:

1X
n=�1

e2⇡in↵ =
1X

n=�1
�(n+ ↵)

We apply this to (47) and we make use of the even parity of the modified
Bessel functions with integer subscript I(z)n = I�n(z):

G(xf , t;xi) =
h m

2⇡i~t

i
exp


im

2~t(r
2

f + r2i )

� 1X
n=�1

ein(✓f�✓i)In

✓
� imrfri

~t

◆
Let us call Jn(z) the ordinary Bessel functions. The identities

1X
n=�1

ein✓Jn(z) = eiz cos(✓) Jn(iz) = inIn(z)

allow to rewrite the propagator as

G(xf , t;xi) =
h m

2⇡i~t

i
exp


im

2~t(r
2

f + r2i � 2rirf cos(✓i � ✓f ))

�
(48)

which is precisely the free propagator and keeps no track of the windings.
The ease with which winding numbers have been dismissed as a coordinate-
dependent complication, makes us wonder how the multiply connectiveness
appears in (47) instead. Had the mathematical model introduced a solenoid
with a finite radius, it would have been obvious, while in (47) such informa-
tion is carried by coe�cients exp

⇥
i e�
2⇡~c2⇡n

⇤
and not by the n dependence

of the “free” partial amplitudes (the integral part). If the coe�cients are
interpreted as a consequence of the introduction of the potential (44) and
the c↵ are set to 1, then those points in which the vector potential is not
defined (the origin) must be excluded from the physical configuration space.
On the other hand, if one interprets c↵ = exp

⇥
i e�
2⇡~c2⇡n

⇤
, then the sum over

paths is irreparably split into homotopy classes.
Keeping the foregoing observation in mind, since to obtain (48) we have

only made use of a chain of identities, all the passages can be read backwards
and one can redundantly introduce winding numbers in the polar propagator
of the free particle. If we trust the topological formalism enough, each term
of the sum can be interpreted as a partial amplitude (as seen before, the par-
ticle can be thought of as moving freely in M). Then, in order to introduce
multiple-connectiveness, it is enough to add the class-dependent coe�cients
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which must have the form exp(i�n). If now we impose the appropriate phase
change under a 2⇡ rotation, (47) is justified.

Finally, the interference pattern is given by

|G|2 = 1

2

X
j,l

G⇤
jGl +GjG

⇤
l

In order to evaluate the pattern, it is convenient to assume that rirfm � ~t,
so that the asymptotical form of the Bessel function can be used:

I|�|(z) ⇡
1p
2⇡z

exp

✓
z � �2 � 1/4

2z

◆
For convergence’s sake, a small imaginary part can be implicitly added to
the mass m 7! m + iµ, and then one can take the limit µ ! 0. After a
substitution and the evaluation of a Gaussian integral, one gets:

G(xf , t;xi) =
1X

n=�1

h m

2⇡i~t

i
exp


im

2~t(rf � ri)
2

�
⇥

⇥ exp


i
e�

2⇡~c2⇡n+
imrfri
2~t (✓f � ✓i + 2⇡n)2

�
(49)

The most important partial amplitudes are those which involve the straight-
est paths. The corresponding winding numbers are n = 0,�1 and they are
referred to those the paths which do not wind at all. Thus, the probability
becomes

P (xf , t;xi

) = G⇤
0

G�1

+G⇤
�1

G
0

= 2
⇣ m

2⇡~t

⌘
2

cos2
✓
⇡

✓
e�

2⇡~c +
rfri(✓f � ✓i � ⇡)

~t

◆◆
(50)

Then this is the approximate observable quantity for an idealized experi-
mental set.

Finally, let us remark that (47) and (50) show a clear 2⇡~c/e flux period-
icity. Consequently, all the quantities of the system that depend on � must
have the same periodicity. Thus, it is convenient to define the fundamental
frequency

�
0

=
2⇡~c
e

(51)

which is very important in experimental observations.
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18 Experimental evidence

It was 1960, only a year after Aharonov and Bohm had published their
article, when Chambers [8] came up with the results of his experiment about
the AB e↵ect. The experimental apparatus closely resembles the ideal one
and it will be briefly described, without indulging in technical details.

A source of electrons S produces two coherent beams which are redi-
rected towards an observing plane O by an “electrostatic biprism”. The
electrostatic biprism (efe) (which is actually unnecessary) is composed of
three elements: f is a positively charged object and the two objects e are
two earthed metal plates. The electrostatic field which is produced clearly
bends the beams in the correct way.

On the plane O the beams meet and an interference pattern appears
(4:a). It should be remarked that this picture is in interesting itself as it
shows quantum interference at work. If an extended magnetic field is applied
to the region a0, the interference pattern is displaced on the screen but not
deformed (4:b). This is not surprising since in a semiclassical picture the
trajectories are curved by the Lorentz force.

Let us now introduce a localised magnetic field in the region a, instead.
This is achieved by inserting a vertical whisker, i.e. a very thin piece of
magnetized metal (diameter: 1µm, length: 0.5mm), which plays the role of
the solenoid. In addition, the whisker is placed “in the shadow” of f , so
that the electrons should not meet it on their way.

Let us apply (51) to the present case: it means that consecutive maxima
are expected to occur at a “distance” �

0

. The presence of the electric field
does not indeed change the topology of the configuration space, while it will
change the dynamics in some way which is not relevant.

The size of the whisker is not constant and it tapers along the z di-
rection. Thus d�/dz is not neglectable. If we imagine electrons moving
on di↵erent planes, we must conclude that the enclosed magnetic flux varies
with height and that the single interference fringe should change accordingly
without a displacement of the pattern as a whole. The interference fringes
are consequently expected to tilt as it is evident in (4:c).

The main issue - as remarked by Chambers himself and by his colleague
Pryce - is that since the flux varies in the whisker, a compensating radial field
H = (d�/dz)/2⇡r must be produced in the outer region. In a semiclassical
picture then the two beams move almost horizontally in a radial magnetic
field. As a result, the Lorentz force should bend one beam downwards and
the other upwards, thus creating a tilted interference pattern at a rate which
is consistent with the observation. Nevertheless, Chambers pointed out that
if the classical forces explanation was correct, there should be no fringe shift
at all where the size of the whisker is constant.

The attempt to dismiss the AB e↵ect as the result of some hidden force
is still been carried out and will be quoted later.
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Figure 3: Chambers’ experimental apparatus. From [8]

Figure 4: a) only biprism b) stray field c) magnetized whisker. From [8]
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Many experiments have been carried out since Chambers’. Let us con-
sider (again, only at a qualitative level) a particular class of them which is
meant to study the resistance oscillations in mesoscopic systems and their
relationship with the AB e↵ect. The experimental apparatus that will be
referred to is the one used by Webb et al. [30]. The goal is to measure the
resistance of a small golden ring (diameter: 784 nm; size 41 nm) with two
leads to be connected to an electrical circuit. A magnetic field perpendic-
ular to the section of the ring is enclosed by the ring. If the electrons are
confined inside the ring, the configuration space can be thought of as a torus
or, more optimistically, as a circle. In both cases, the fundamental group
⇡
1

is (Z,+), so that the topological description of this system (the class
coe�cients) must be similar to those that have been studied in the forego-
ing sections. In principle, all properties should thus be �

0

periodic. Yet,
since in the present case electrons are not free and move in metal, further
analysis is necessary. Resistance (or, equivalently, conductance) is related
to the probability that an electron starting from one lead reaches the other.
In vacuum, this probability oscillates as a result of the phase interference
according to the AB description. This fact is still true in a medium only
if the phase topological path dependence is not irreparably corrupted by
random processes. It seems unavoidable: unless the size of the ring is un-
realistically smaller than the mean free path, electrons will undergo several
scattering processes before reaching the target. The interesting fact is that
elastic scatterings can be shown to shift the phase in a deterministic way.
Therefore, even in the presence of impurities, the “phase memory” is not lost
until an inelastic collision occurs. The mean distance before this happens is
the “coherence distance” L� and decreases as the temperature rises. Hence,
in order to observe the AB e↵ect, the temperature needs to be adequately
low and that the size of system is of the same order of L� accordingly.

Picture (5) shows the result of the experiment of Webb et al. [30]. The
resistance oscillations peak at �

0

as it is shown in the Fourier-transformed
graph. Not surprisingly, a minor peak appears at the frequency �

0

/2 which
is the first harmonic and this second peak is also important. The precise
dependence of the �

0

-periodic contributions to resistance is determined by
the specific features of the paths (e.g. the impurities). Thus, if several
possibilities are available (the sample is cylindrical, i.e. it is an array of
rings, or the high temperature allows a nontrivial energy distribution), the
overall contribution is an average of random terms which keeps no track
of the �

0

oscillations. The �
0

/2 oscillations may survive instead because
of the “weak localization” phenomenon. Basically, the probability that an
electron remains where it is, is determined by the amplitude of closed paths.
If there are no magnetic fields 2, such paths are reversible and they appear

2
A condition for time reversibility is that the e↵ective potential depends only on the
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Figure 5: Magnetoresistance at 0,01 K. From [30]
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in pairs (one the inverse of the other with the same phase) they produce
constructive interference when � = 0 and give a positive contribution to
resistance. If the magnetic field is turned on, resistance decreases as the
pairs acquire a phase factor. Let us consider those paths that wind once
(if they don’t wind they are not influenced by � and, if they wind many
times, they are too long): since they enclose the flux twice as a pair, the
fundamental oscillations acquire a �

0

/2 frequency. Since now the resistance
dependence on � is completely determined (e.g. it is maximal at �=0 and
multiple integer of �

0

/2) there is no room for statistics. Two necessary
conditions for the weak localizations to occur are that the magnetic field
does not strongly interact with the ring and that L� is long enough.

It must be remarked that these resistance experiments, while interesting
on a phenomenological standpoint, give in general little contribution to the
understanding of the true nature of the AB e↵ect, since the magnetic field
is not prevented from reaching the ring. Thus, the puzzle of the no-field
interaction is not so evident.

It is worth mentioning another two more of experiments whose purpose
was to further investigate whether any force is actually involved in the AB
e↵ect. The first was similar in purpose to Chambers’. Instead of attempting
to create a long impenetrable solenoid, a toroidal magnet clad with a super-
conducting shield was placed between the source of electrons and the target
surface. The toroidal shape has the advantage of limiting the field leakage.
The experiment (Tonomura et al) successfully showed the AB e↵ect as an
appropriate displacement of the interference pattern.

In 2007 [7] further evidence was produced against a classical force-based
explanation of the AB e↵ect. Let us consider the solenoid formulation. Pre-
vious theoretical works had hinted that the two beams passing on the left
and on the right could be subject to two opposite forces, one pushing for-
ward the electrons and the other pulling them back. Hence, the relative
displacement of the left and right wave packets could quantitatively account
for the shift of the interference pattern and no phase shift would be needed.
But, if this was the case, there would be a � dependence of the time of flight
of the electron which was not observed when a beam was sent through the
hole of a square toroidal electromagnet. However, the magnet was macro-
scopic whereas the AB e↵ect is usually recorded at a considerably smaller
scale. The relevance of the size might be related to the interaction time and,
consequently, to the response of the solenoid to the passage of the electrons.

position. It must be remarked that this is a time reversal in a loose sense: it only applies

to the particle motion and not to the whole system. In particular, it does not apply to the

magnetic field. Thus, the trajectory of non-relativistic particle in a fixed magnetic field

is not reversible and, in this case, it can be checked in the path integral formalism that

G(x1, t;x2) 6= G(x2, t;x1).
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19 Interpretation

In the prevuois section a possible approach to the AB e↵ect has been de-
scribed, but there are of course other possibilities. While there seems to be
general agreement on the result, its interpretation is a pretty subtle matter
and is still controversial. Here is an idea of the debate.

It has been originally [1] suggested that either the particle is non-locally
interacting with the confined magnetic field or that the dynamics of particle
is locally influenced by the vector potential alone. Thus, the vector potential
and not the magnetic field would be the fundamental quantity. This seems
to be the commonly accepted explanation, consistent with the fact that
it is the vector potential and not the magnetic field (Lorentz force) which
appears in the Schrodinger equation. However, this may sound troublesome
since the vector potential is only defined up to a gauge transformation.

It is also possible to take seriously the topological approach and re-
gard it not just as a good tool. In this case, the fundamental quantity
for the AB e↵ect may be the flux � or even just the topological phase
exp [i(e/c~)�]. Bernido and Inomata [5] argued that the AB e↵ect could be
obtained from topological arguments alone since, if it was the case, topolog-
ical e↵ects should be observed in simple double slit experiments too. These
topological concepts have been refined and they have also been related to
gauge fields. The topological nature of the AB phase seems to be generally
accepted too.

Of course much of the interpretation process relies on how much we trust
the approximation, since of course infinitely long solenoids cannot be built
and the magnetic field cannot be completely prevented from “leaking” in
the outer region. But, much more important, the solenoid cannot be truly
impenetrable and the particle cannot be prevented from tunnelling inside
the solenoid at all or simply from interacting with the solenoid carriers.

It should be remarked that the AB e↵ect does not describe a situation in
which there is a potential which is not associated to a magnetic field. More
recent papers (Magni, Valz-Gris) [23] suggested that the AB e↵ect can be
treated with ordinary quantum mechanics as a limit case by considering a
succession of Hamiltonians Hn which converge, in a nontrivial way, towards
an HamiltonianH1 describing both a localized magnetic field and an infinite
potential wall confining it into a forbidden region.

Finally, the classical force explanation has still supporters such as Boyer
[6]. He claims that the AB e↵ect arises from electrodynamics of pointwise
objects as a relativistic e↵ect, but he argues that this is not evident since it
involves little known classical phenomena.
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A Appendix: minimal homotopy theory

This brief appendix is meant to introduce the terminology and operative
definitions rather than to explain the subject in a complete and consistent
way.
Let X be a topological space and I=[0,1]

Definition 1. A path is a continuous map ↵ : I ! X
The set of all paths such that ↵(0) = x

1

and ↵(1) = x
2

will be denoted
as C(x

1

, x
2

). There exists an associative product between paths

⇤ : C(x
1

, x
2

)⇥ C(x
2

, x
3

) ! C(x
1

, x
3

) ⇤ : (a, b) 7! ab

which simply means that if the starting point of b is the end-point of a the
two paths can be attached to form a new one. The parameter t is rescaled
so that ab(0) = x

1

, ab(1/2) = x
2

and ab(1) = x
3

. Given a path a(t) the
inverse path is defined as a�1 := a(�t). A path e is said to be null if
e(t) = x 8t 2 I. For any other path a, ae = ea = a whenever the product is
well defined.

Definition 2. X is arcwise connected if C(x, x0) is non-empty 8x, x0 2 X
Definition 3. Two paths a and b 2 C(x

1

, x
2

) are said to be homotopic if
there exists a continuous function

h : I ⇥ I ! X such that h(0, t) = a(t) and h(1, t) = b(t)

Given C(x
1

, x
2

), homotopy defines an equivalence relationship between
paths: a ⇠ b ) [a] = [b]. Homotopy classes will be labelled with greek
letters. Let us call ⇡(x

1

, x
2

) = C(x
1

, x
2

)/ ⇠. Given a point x, let us denote
⇡
1

(x) = ⇡(x, x) the quotient set of all closed paths starting and ending at
x.

Homotopy is compatible with the product: composition, associativity
and inversion do not depend of the choice of the representative. Therefore,
the product can be defined for homotopy classes by using representative
elements [a][b] = [ab].

Theorem 1. Given a point x 2 X , ⇡
1

(x) is a group with the multiplica-
tion between homotopy classes and it is called the fundamental group at
basepoint x.

If X is arcwise connected, fundamental groups at all basepoints are iso-
morphic and can be simply called ⇡

1

. Given x and x0, f : ↵ 2 ⇡
1

(x) 7!
[c�1]↵[c] 2 ⇡(x0) is an isomorphism if c 2 ⇡(x, x0).

Definition 4. X is simply connected if it is arcwise connected and ⇡
1

= {e}.
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Now let X ⇤ be another topological space

Definition 5. Let X be connected. p : X ⇤ ! X is a covering projection

if, 8x 2 X , there exists an open set V ⇢ X such that x 2 V and p�1(V ) =S
i Ui. Ui are open and disjoint sets in X ⇤ and the restriction of p to Ui is

a homeomorphism.
If X⇤ is connected and simply connected, p is a universal covering.

Not all topological spaces have a universal covering, but, when they do,
it is unique up to a homeorphism.

Theorem 2. If p is a covering projection, it is also a local homoemorfism.
In addition, #p�1(x) = #p�1(x0)8x, x0 2 X

Now we will use p to lift paths from X to X ⇤

Theorem 3. Let a 2 C(x, x0) be a path in X . The path p�1a : X ! X ⇤ is
uniquely defined if p�1a(0) is fixed.

This follows from the fact that p is a local homeomorphism. Once one
of the preimages of a(0) is chosen in one of the Ui (p(Ui) = V which is a
neighbourhood of a(0)) then the homeomorphism grants injectivity so that
the part of the path in V is lifted unambigously. One chooses a new point,
say a(t0) 2 V , and fixes a new open set V 0. Since p�1a must be continuous in
X⇤ and U 0

is are disjoint, there is only one possible preimage U 0
i of V

0 which
can be chosen. One proceeds this way until a(1) is lifted.

On the other hand, the projection function clearly allows sending paths
from X ⇤ to X in a non ambigous way p : C⇤(x⇤i , x

⇤
f ) ! C(p(x⇤i ), p(x

⇤
f )); a 7!

pa. There is a relationship between omotopy classes in X ⇤ and those in X .
Given a, b 2 C⇤(x⇤i , x

⇤
f ) if a ⇠ b in X ⇤, then pa ⇠ pb in X . The converse is

not true and this fact is one of the keys to path integral in multiply connected
spaces. If the paths are closed, the following theorem, which clearly applies
to the covering projection, holds.

Theorem 4. Let f : X ⇤ ! X be a continuos map. Then there exist an
homomorphism f̃ : ⇡

1

(x⇤) ! ⇡
1

(f(x⇤)) 8x⇤ 2 X ⇤. If f is a homeomorphism,
f̃ is an isomorphism.

There is another important object.

Definition 6. Let G be a group of homoeomorfism from X ⇤ to itself. Its
action on X ⇤ is properly discontinuos if 8x⇤ 2 X has a neighbourhood U
such that 8g 2 G, g 6= e, g(U) \ U = ;

To our practical purpose, pictorially, elements in G make single points
“jump” without dragging them continuously along paths. Then an appro-
priate subset (somehow to be called X ) can be chosen and its images under
elemnts g cover X ⇤ completely without overlapping. The following theorem
describes this correctly.
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Theorem 5. If G acts properly discontinuosly on X ⇤ and X ⇤/G is connected,
then p : X ⇤ ! X ⇤/G(=: X ) is a covering projection.

Theorem 6. Let X ⇤ be simply connected and let G acts properly discontin-
uosly on it, then X ⇤/G is isomorphic to ⇡

1

.
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