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1) N identical particles (Identical particles, indistinguishability of identical particles,

Slater determinants and permanents,the basis of occupation numbers)
2) The Fock space (Creation and destruction operators, the algebra of (anti)commutation

relations)
3) Canonical (anti)-commutation relations (Field operators)
4) Second quantization of operators (one and two-particle operators)
5) Symmetries (space translations, rotations, dilations and virial theorem, parity)

In quantum mechanics a particle is objectified by a set of observables, i.e. a set
of fundamental operators, such as position, momentum and spin, characterized by
certain commutation relations. If they are represented irreducibly (i.e. any operator
that commutes with them is multiple of the identity), then any other observable of
the particle is a function of them. The fundamental operators of different particles
commute: this translates the concept of a particle being an autonomous entity.
However, two or more identical particles are indistinguishable, and the fundamental
operators become unphysical. Only observables that are invariant for permutation
of particles, i.e. symmetric functions of the fundamental operators, are meaningful.

A convenient formalism for the quantum description of identical particles is sec-
ond quantisation. There are various ways to introduce it. Here, it is a procedure
for rewriting physical operators in a basis of operators {ĉ†r, ĉr}∞r=1 that create and
destroy a particle in single-particle states |r〉, with commutation rules that take
care of the particle statistics.
Second-quantized operators are defined in Fock spaces for bosons or fermions, that
accomodate any number of particles. The formalism is efficient in describing new
quantum phenomena, as decays, absorption and emission processes of particles or
excitations such as photons, phonons, etc.

The creation and destruction operators with commutation rules (Bose statistics)
were introduced by Paul M. A. Dirac (1926, Quantum theory of light radiation and
absorption). Pascual Jordan extended the formalism to massive bosons (Jordan
and Klein, 1927) and to Fermi statistics, with anti-commutation rules (Jordan and
Wigner, 1928).

1. N identical particles

The Hilbert space of N particles is H (N) = H1 ⊗ · · · ⊗HN , where Hk is the
Hilbert space for the single k-th particle. H (N) is the closure of the finite linear
combinations of factored vectors |u1, . . . , uN 〉 = |u1〉⊗. . .⊗|uN 〉, where |uk〉 belongs
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to Hk, with the inner product among factored states

〈v1, . . . , vN |u1, . . . , uN 〉 = 〈v1|u1〉1 · · · 〈vN |uN 〉N(1)

where 〈 · | · 〉k is the inner product in Hk. The tensor product is linear in each term:

|u1, . . . , αui + βvi, . . . , uN 〉 = α|u1, . . . , ui, . . . , uN 〉+ β|u1, . . . , vi, . . . , uN 〉.

An operator Â on Hk corresponds to an operator Â(k) on H (N) with action

Â(k)|u1, . . . , uk, . . . uN 〉 = |u1, . . . , Âuk, . . . , uN 〉. By construction, operators of dif-

ferent particles commute: [Â(k), B̂(k′)] = 0.

Example 1.1. A Hilbert space for a spin-less particle is L2(R3). The products
f1(x1) · · · fN (xN ) and their linear combinations form a linear space whose closure
is the Hilbert space L2(R3N ) of functions with

∫
dx1 . . . dxN |f(x1, . . . ,xN )|2 < ∞.

1.1. Identical particles. If the N particles are identical, the spaces H1, ... , HN

are copies of the same one-particle Hilbert space H (H (N) = ⊗NH ). Since the
vectors in |u1, . . . , uN 〉 belong to the same space, it is possible to introduce the
permutation operators. If σ is the permutation σ(1, . . . , N) = (σ1, . . . , σN ), the
corresponding operator on factored states is

(2) P̂σ|u1, . . . uN 〉 = |uσ1 , . . . , uσN
〉

They extend by linearity to unitary operators on the whole space H (N), and form
a representation of the symmetric (non-Abelian) group SN :

(3) P̂σP̂σ′ = P̂σσ′ , P̂ †σ = P̂σ−1

An important subclass are the exchange operators. The exchange of particles i
and j is P̂ij |u1 . . . ui . . . uj . . . uN 〉 = |u1 . . . uj . . . ui . . . uN 〉. Since P̂ 2

ij = I, it follows

that P̂ij is self-adjoint with eigenvalues ±1.
Any permutation can be factored into exchanges, in various ways. However, the
parity of the number of exchanges in any factorization is the same: a permutation
is even or odd if the number of exchanges is even or odd1.

Let’s introduce the simmetrization operator Ŝ(N) (or Ŝ(N)+) and the antisim-

metrization operator Â(N) (or Ŝ(N)−) of N particles:

(4) Ŝ(N)± =
1

N !

∑
σ∈SN

(±1)σP̂σ

(+1)σ = 1 applies to the simmetrization Ŝ(N), while (−1)σ applies to Â(N), and
is +1 if σ is even, −1 if σ is odd.
We omit the simple proofs of

P̂σŜ(N) = Ŝ(N)P̂σ = Ŝ(N), P̂σÂ(N) = Â(N)P̂σ = (−1)σÂ(N)(5)

Proposition 1.2. Ŝ(N)± are projection operators:

Ŝ(N)†± = Ŝ(N)±, Ŝ(N)2± = Ŝ(N)±(6)

1SN is represented by N × N matrices σij with elements 0 and a single 1 in each column

and row, the determinant may be 1 or -1. There are N ! such matrices. The matrix exchanging

elements i, j has matrix elements σrs = δrs for r, s 6= i, j, σii = σjj = 0, σij = σji = 1. Its
determinant is −1. All factorizations that produce the permutation matrix must give the same

value of the determinant.
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Proof. In Ŝ(N)†± = 1
N !

∑
σ(±1)σP̂σ−1 , the sum on σ coincides with the sum on

inverse permutations σ−1, and σ has the same parity of σ−1. This gives self-
adjointness. The other property follows from (5): Ŝ(N)2± = 1

N !

∑
σ(±1)σŜ(N)±P̂σ =

1
N !

∑
σ Ŝ(N)± = Ŝ(N)±. �

Exercise 1.3. Show that Â(N)|u1 . . . uN 〉 = 0 if two vectors are equal.

Exercise 1.4. If |vk〉 =
∑N
k=1Mkj |uj〉, k = 1 . . . N , show that

Â(N)|v1 . . . vN 〉 = (detM)Â(N)|u1 . . . uN 〉(7)

The projection operators identify two Hilbert (sub)spaces:

H (N)+ = Ŝ(N)+H (N), H (N)− = Ŝ(N)−H (N)

A vector in H (N)+ is invariant under the action of any exchange operator, while
a vector in H (N)− changes sign under the action of any exchange operator:

P̂ijΨ+ = Ψ+, P̂ijΨ− = −Ψ−, ∀ i 6= j

In other words, H (N)+ is the eigenspace with eigenvalue 1 for all exchange opera-
tors, while H (N)− is the eigenspace with eigenvalue −1 for all exchange operators.
Therefore, H (N)+ and H (N)− are orthogonal subspaces of H (N).

1.2. Indistinguishability of identical particles. In quantum mechanics iden-
tical particles are indistinguishable. This means that the operators associated to
observables are symmetric functions of the fundamental 1-particle operators:

Ô(1, 2, . . . , N) = Ô(σ1, σ2, . . . , σN )

where for brevity we put i = (xi,pi, si). Therefore, they commute with all permu-

tation operators: [Ô, P̂σ] = 0.

Proof: 〈v1, ..., vN |Ô(1, ..., N)|u1, ..., uN 〉 = 〈vσ1 , ..., vσN
|Ô(σ1, .., σN )|uσ1

, ..., uσN
〉 =

〈v1, ..., vN |P̂ †σÔ(1, ..., N)P̂σ|u1, ..., uN 〉 for all factored states and permutations. Since

factored states generate the whole space, it is P̂ †σÔP̂σ = Ô. �
The only subspaces in H (N) that are left invariant by the action of the observ-

ables, and in particular by the time evolution, are H (N)±. For this reason they
are the Hilbert spaces for the physics of N identical particles.
The spin-statistics connection is a fundamental result of relativistic quantum field
theory, where a violation would correspond to a violation of causality. It states
that:

H (N)+ is the space for N bosons (integer spin),
H (N)− is the space for N fermions (half-integer spin).

Of particular relevance are the two classes of observables:

• 1-particle operators Â =
∑N
i=1 a(i), (total momentum P̂ =

∑N
i=1pi, particle

density n̂(x) =
∑N
i=1δ3(x− xi)), spin density Ŝ(x) =

∑N
i=1siδ3(x− xi), ...);

• 2-particle operators Â =
∑
i<j a(i, j), with a(i, j) = a(j, i) (the two-particle

interaction energy V̂ =
∑
i<jv(xi,xj)).
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1.3. Slater determinants and permanents. The inner product of two vectors
Ŝ(N)±|u1, . . . uN 〉 and Ŝ(N)±|v1, . . . vN 〉 is:

〈u1, . . . , uN |Ŝ(N)2±|v1, . . . , vN 〉 =
1

N !

∑
σ

(±1)σ〈u1, . . . , uN |P̂σ|v1, . . . , vN 〉

=
1

N !

∑
σ

(±1)σ〈u1|vσ1〉 . . . 〈uN |vσN
〉

=
1

N !
D±

 〈u1|v1〉 . . . 〈u1|vN 〉
...

...
〈uN |v1〉 . . . 〈uN |vN 〉

(8)

D+ is the permanent2 and D− is the determinant.
When the inner product is evaluated with the bra 〈x1,m1; . . . ;xN ,mN |, one gets

the permanent or the determinant of a matrix whose elements are functions:

D±

 v1(x1m1) . . . vN (x1m1)
...

...
v1(xNmN ) . . . vN (xNmN )

(9)

The result is a totally symmetric or antisymmetric N-particle function.

Exercise 1.5. The first N eigenfunctions of the 1D harmonic oscillator are

uk(x) =
1√

2kk!
√
π
e−

1
2x

2

Hk(x)

where Hk(x) = 2kxk + . . . are the Hermite polinomials. Show that the totally
antisymmetric N -particle function is

〈x1 . . . xN |Â(N)|u1 . . . uN 〉 = const. e−
1
2 (x

2
1+...+x

2
N )

∏
i>j

(xi − xj).

(the product is the Vandermonde determinant).

1.4. The basis of occupation numbers. Given a 1-particle orthonormal com-
plete set of vectors |r〉, r = 1, 2, 3 . . . the factored vectors |r1, r2, . . . , rN 〉 form an

orthonormal basis in H (N). Their projections Ŝ(N)±|r1, r2, . . . rN 〉 span the sub-
spaces H (N)±.

Remark 1.6. Since 〈ri|rj〉 = δij, by eq.(8) two vectors Ŝ(N)±|r1, . . . rN 〉 and

Ŝ(N)±|r′1, . . . r′N 〉 are orthogonal if |r′1, . . . r′N 〉 is not a permutation of |r1, . . . rN 〉.

Bosons. In evaluating the squared norm, the sum on permutations in eq.(8)
gives nonzero terms in correspondence of the identity permutation and permuta-
tions among vectors that are repeated. Then:

‖Ŝ(N)|r1, r2, . . . rN 〉‖2 =
n1!n2! . . . n∞!

N !

where nr is the number of times that |r〉 is present in the sequence |r1, . . . , rN 〉.
Since n1 + n2 + . . .+ n∞ = N , most occupation numbers nr are zero.

2The permanent of a matrix is evaluated as a determinant, but omitting the weights ±1. Note
that D+(AB) 6= D+(A)D+(B).
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Consider the normalized and orthogonal vectors

(10) |r1, . . . , rN 〉+ =

√
N !

n1! . . . n∞!
Ŝ(N)|r1, . . . rN 〉,

Conventionally, 1-particle basis vectors are in ascending order, r1 ≤ r2 ≤ . . . ≤ rN ,
to avoid replicas of the same symmetric vector. These vectors form an othonormal
basis of the space of N bosons H (N)+.

Fermions. A state |r〉 cannot appear twice in |r1, . . . , rN 〉, therefore nr =
0, 1. In evaluating the norm, only the identity permutation contributes, then

‖Â(N)|r1, r2, . . . rN 〉‖2 = 1
N ! The vectors

(11) |r1, r2, . . . rN 〉− =
√
N ! Â(N)|r1, r2, . . . rN 〉

where r1 < r2 < . . . < rN , form an orthonormal basis in the space of N fermions
H (N)−.

A vector |r1, . . . rN 〉± is proportional to the symmetric or the antisymmetric
sum on all permutations of |r1〉, . . . , |rN 〉. Therefore it carries the information that
each of the N particles has equal probability in the specified 1-particle states. The
information is specified by the occupation number of each state of the basis.
We introduce the equivalent notation:

(12) |n1, n2, . . . , n∞〉± ≡ |r1, r2, . . . rN 〉±
where nr is the occupation number of the single particle state |r〉, i.e. the number
of times that the vector |r〉 appears in |r1, . . . rN 〉. For bosons nr = 0, 1, 2, . . . , for
fermions nr = 0, 1. In any case n1 + · · ·+ n∞ = N .

Example 1.7. Let |1〉, |2〉, ... denote the vectors of a 1-particle basis.
- The vector for 6 bosons |2, 3, 3, 5, 5, 8〉+ (note the ascending order) can be repre-
sented as the number state |0, 1, 2, 0, 2, 0, 0, 1, 0, ...〉+.
- The vector for 6 fermions |2, 3, 4, 5, 6, 8〉− (ascending order, no repetitions) is
equivalent to the number state |0, 1, 1, 1, 1, 1, 0, 1, 0, ...〉−.
- The number state for fermions |1, 0, 1, 1, 0, ...〉− describes 3 particles in states |1〉,
|3〉 and |4〉, i.e. the state |1, 3, 4〉−.

The orthogonality and completeness relations in H (N)± are:

±〈n1, n2, . . . |n′1, n′2, . . .〉± = δn1,n′1
δn2,n′2

. . .(13) ∑
n1,n2,...

n1+n2+...=N

±|n1, n2, . . .〉〈n1, n2, . . . |± = ÎN(14)

2. The Fock space

It is advantageous to immerse the Hilbert space of N bosons or fermions in the
larger Fock spaces (V. Fock, 1928) for bosons or fermions:

F± = |0〉 ⊕H (1)⊕H (2)± ⊕ . . .⊕H (N)± ⊕ . . .

|0〉 is the vacuum state (zero particle), H (1) = H is the one-particle Hilbert space,
..., H (N)± is the Hilbert space of N bosons or fermions. In this construction,
vectors with different number content are orthogonal. Since H is separable, the
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Fock spaces F± are separable (i.e. it admits a dense numerable subset).
The vectors |n1, . . . , n∞〉± with unrestricted sum n1 + · · ·+ n∞ are a basis for F±.

In the large ambient of Fock space, operators that change the number of particles
may be defined. The basic ones are the operators that create or destroy one boson,

B̂† and B̂, or the operators that create or destroy one fermion Â† and Â. Since
many properties can be derived jointly, we often use the single notation ĉ†, ĉ (for
bosons they act on F+, for fermions they act on F−).

2.1. Creation and destruction operators. The creation operator of one particle
in a single-particle state |u〉 is defined through its action on factored vectors:

ĉ†|u〉Ŝ(N)±|u1, . . . , uN 〉 =
√
N + 1 Ŝ(N + 1)±|u, u1, . . . , uN 〉(15)

It simply adds a new particle in state |u〉 to the existing N particles, and reshuffles

the N + 1 states. In particular, ĉ†|u〉|0〉 = |u〉.

ĉ†|u〉 : H (N)± →H (N + 1)±, N = 0, 1, . . .

The action on a generic vector in F± is defined by linearity, once the vector is
expanded into factored vectors.

The destruction operator of a particle in a state |u〉 is defined as the adjoint of

ĉ†|u〉. For reasons that will be clear, it is useful to adopt the notation ĉ〈u|.

To find the action of ĉ〈u| on vectors, we consider the matrix element between two

factored states 〈v1, . . . , vN ′ |Ŝ(N ′)±ĉ〈u|Ŝ(N)±|u1, . . . , uN 〉. As ĉ〈u| = (c†|u〉)
† adds a

particle in the bra-vector, the matrix element is zero if N ′ 6= N − 1, meaning that
ĉ〈u| acts on the ket by removing a particle.
Let’s then evaluate the matrix element

〈v1, . . . , vN−1|Ŝ(N − 1)±ĉ〈u|Ŝ(N)±|u1, . . . , uN 〉

The operator adds a state |u〉 in the left N − 1 particle state:

=
√
N〈u, v1, . . . , vN−1|Ŝ(N)±|u1, . . . , uN 〉

=

√
N

N !
D±


〈u|u1〉 〈u|u2〉 . . . 〈u|uN 〉
〈v1|u1〉 . . . . . . 〈v1|uN 〉
. . . . . .

〈vN−1|u1〉 〈vN−1|uN 〉


The permanent or determinant is expanded with respect to the first row:

=

√
N

N !

N∑
j=1

(±1)j+1〈u|uj〉D±[〈vi|uk〉]k 6=j

=
1√
N

N∑
j=1

(±1)j+1〈u|uj〉〈v1, . . . , vN−1|Ŝ(N − 1)±|u1, . . . , /uj , . . . , uN 〉
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By the arbitrariness of the bra vector, and being the linear combinations of such
vectors a dense set in H (N − 1)±, we obtain the final formula:

ĉ〈u|Ŝ(N)±|u1, . . . , uN 〉 =
1√
N

N∑
j=1

(±1)j+1〈u|uj〉Ŝ(N − 1)±|u1 . . . , /uj , . . . , uN 〉

(16)

Destruction operators annihilate the vacuum state: ĉ〈u||0〉 = 0.

With the definition of the creation operator on factored states, and being the de-
struction operator its adjoint, the following properties of linearity and anti-linearity
follow:

(17) ĉ†|αu+βv〉 = αĉ†|u〉 + βĉ†|v〉, ĉ〈αu+βv| = α∗ĉ〈u| + β∗ĉ〈v|

2.2. The algebra of (anti)commutation rules. Creation and destruction oper-
ators obey a simple and important algebra. Consider the creation of two particles
in the single particle states |u〉 and |v〉

ĉ†|u〉ĉ
†
|v〉Ŝ(N)±|u1, . . . , uN 〉 =

√
(N + 2)(N + 1)Ŝ(N + 2)±|u, v, u1, . . . , uN 〉

If the order is exchanged, the boson state with vectors exhanged remains the same,
while for fermions an exchange means a minus sign:

ĉ†|v〉ĉ
†
|u〉Ŝ(N)±|u1, . . . , uN 〉 = ±

√
(N + 2)(N + 1)Ŝ(N + 2)±|u, v, u1, . . . , uN 〉

By respectively subtracting and summing, the following exact commutation and
anti-commutation properties result3:

[b̂†|u〉, b̂
†
|v〉] = 0, (bosons) {â†|u〉, â

†
|v〉} = 0, (fermions)(18)

By taking their adjoint, it follows that destruction operators exactly commute or
anticommute:

[b̂〈u|, b̂〈v|] = 0, (bosons) {â〈u|, â〈v|} = 0, (fermions)(19)

In particular, (â†|u〉)
2 = 0 and (â〈u|)

2 = 0 (Pauli principle).

To obtain the relations among creation and destruction operators, their actions
in different order are evaluated:

ĉ†|v〉ĉ〈u|S(N)±|u1, . . . , uN 〉 =

N∑
j=1

(±1)j+1〈u|uj〉S(N)±|v, u1 . . . , /uj , . . . , uN 〉

ĉ〈u|ĉ
†
|v〉S(N)±|u1, . . . , uN 〉 =

√
N + 1 c〈u| S(N + 1)±|v, u1, . . . , uN 〉 =

= 〈u|v〉S(N)±|u1, . . . , uN 〉 ±
N∑
j=1

(±1)j+1〈u|uj〉S(N)±|v, u1, . . . , /uj , . . . , uN 〉

By comparing the two expressions one concludes that

[b̂〈u|, b̂
†
|v〉] = 〈u|v〉 (bosons) {â〈u|, â†|v〉} = 〈u|v〉 (fermions)(20)

3[A,B] = AB −BA, {A,B} = AB +BA
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Symmetric or antisymmetric factored states are obtained by acting with creation
operators on the vacuum (the state is not normalized, in general):

Ŝ(N)±|u1, u2, . . . uN 〉 =
1√
N !

ĉ†|u1〉ĉ
†
|u2〉 . . . ĉ

†
|uN 〉|0〉(21)

In the formula bosonic creation operators commute, and may be exchanged. Fermionic
operators anticommute, and their exchange may imply a sign change.

3. Canonical (anti)commutation relations

In most applications, creation and destruction operators are introduced in asso-
ciation with a complete orthonormal basis |r〉, r = 1, 2, . . .. For brevity we write

ĉr = ĉ〈r| and ĉ†r = ĉ†|r〉.

• For bosons the canonical commutation relations hold:

[b̂r, b̂s] = 0, [b̂†r, b̂
†
s] = 0, [b̂r, b̂

†
s] = δrs (CCR)(22)

• For fermions the canonical anti-commutation relations hold:

{âr, âs} = 0, {â†r, â†s} = 0, {âr, â†s} = δrs (CAR)(23)

A canonical transformation of creation and destruction operators is a map to an-
other set of operators, that preserves the CCR or CAR rules. For example, the
exchange of âr with â†r is canonical (particle-hole symmetry).

The action of the operators is simple on the occupation number states |n1, . . . n∞〉±
referred to the same basis |r〉. With eqs.(10) and (12), we obtain
• for Bose operators

b̂†r|n1 . . . nr . . . n∞〉 =

√
N !

n1! . . . nr! . . .
b̂†rŜ(N)|r1, r2, . . . , rN 〉

=

√
(N + 1)!

n1! . . . nr! . . .
Ŝ(N + 1)|r, r1, r2, . . . , rN 〉

=
√
nr + 1 |n1 . . . , nr + 1, . . . n∞〉(24)

b̂r|n1 . . . nr . . . n∞〉 =

√
N !

n1! . . . nr! . . .

1√
N

N∑
i=1

δr,ri Ŝ(N − 1)|r1 . . . , /ri, . . . rN 〉

=
√
nr |n1 . . . , nr − 1, . . . n∞〉(25)

• for Fermi operators:

â†r|n1 . . . nr, . . . n∞〉 =
√
N !
√
N + 1 Â(N + 1)|r, r1, r2 . . . , rN 〉

=
√

(N + 1)!(−1)n1+...+nr−1Â(N + 1)|r1, . . . , r, . . . , rN 〉

=

{
(−1)n1+···+nr−1 |n1 . . . , nr + 1, . . . n∞〉 if nr = 0

0 if nr = 1
(26)

âr|n1 . . . nr . . . n∞〉 =

{
0 if nr = 0

(−1)n1+···+nr−1 |n1 . . . , nr − 1, . . . n∞〉 if nr = 1
(27)

(−1)n1+...+nr−1 counts the exchanges that bring the vector |r, r1 . . . rN 〉 to the vector
with r1 < · · · < r < · · · < rN .
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The operators n̂r = b̂†r b̂r and n̂r = â†râr are the occupation numbers of state |r〉:

n̂r|n1 . . . nr . . . n∞〉 = nr|n1 . . . nr . . . n∞〉(28)

In the basis |r〉, the following are normalized occupation number vectors:

|n1, n2, . . . , n∞〉 =
1√

n1! . . . n∞!
b̂†n1

1 · · · b̂†n∞∞ |0〉 (bosons)(29)

|n1, n2, . . . , n∞〉 = â†n1

1 · · · â†n∞∞ |0〉 (fermions)(30)

For Fermi statistics ni = 0, 1; a change of the order of the operators may produce
a sign.

Exercise 3.1. Prove for fermions: the number operators commute, the eigenvalues
of n̂r are 0, 1.

3.1. Field operators. The formalism is extended to operators that create and
destroy particles in states belonging to a continuum basis. An important example
is the single particle basis of position x and spin sz∑

m

∫
dx|x,m〉〈x,m| = I, 〈x,m|x′,m′〉 = δmm′δ3(x− x′)

The operators that create or destroy a particle in the (unphysical) states |x,m〉 are

named field operators. In place of the symbols ĉ〈x,m| and ĉ†|x,m〉, it is customary to

use the symbols ψ̂m(x) and ψ̂†m(x).
For bosons:

[ψ̂m(x), ψ̂†m′(x
′)] = δ3(x− x′)δm,m′(31)

[ψ̂m(x), ψ̂m′(x
′)] = 0, [ψ̂†m(x), ψ̂†m′(x

′)] = 0(32)

For fermions:

{ψ̂m(x), ψ̂†m′(x
′)} = δ3(x− x′)δm,m′(33)

{ψ̂m(x), ψ̂m′(x
′)} = 0, {ψ̂†m(x), ψ̂†m′(x

′)} = 0(34)

Given the one-particle state |u〉 and the function u(x,m) = 〈x,m|u〉, one has
the expansions

(35) ĉ〈u| =
∑
m

∫
dx 〈u|x,m〉 ψ̂m(x), ĉ†|u〉 =

∑
m

∫
dx 〈x,m|u〉 ψ̂†m(x)

On the other hand, given a single particle basis |r〉:

ψ̂m(x) =
∑
r

〈x,m|r〉ĉr, ψ̂†m(x) =
∑
r

〈r|x,m〉ĉ†r(36)

Let’s introduce the operators that create and destroy a particle in eigenstates of p
and sz: p|k,m〉 = ~k|k,m〉 and sz|k,m〉 = ~m|k,m〉. In a box of volume V = L3

with periodic b.c. the eigenstates form a discrete basis (k = (2π/L)n, n ∈ Z3). We

associate them to the canonical operators ĉ†km and ĉkm. Then, for example:

(37) ĉkm =

∫
V

dx√
V
e−ik·xψ̂m(x), ψ̂m(x) =

1√
V

∑
k

eik·xĉkm
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In the infinite volume, the basis |k,m〉 is continuous, and we associate to it the

field operators ψ̂†m(k) and ψ̂m(k). It is:

(38) ψ̂m(k) =

∫
dx

(2π)3/2
e−ik·xψ̂m(x), ψ̂m(x) =

∫
dx

(2π)3/2
eik·xψ̂m(k)

4. Second quantization of operators

The action of creation operators on the vacuum state gives factored states, that
generate the Fock spaces. For this reason creation and destruction operators asso-
ciated to a basis, are a basis of operators on F±.
The operators associated to the observables of identical particles commute with the
projectors S(N)±, and leave the subspaces H (N)± invariant. In this section, they
are expanded in creation and destruction operators.

The proof of the following identity is left to the reader. If |u〉 and |v〉 are any
two single-particle states, for any factored state:

ĉ†|u〉ĉ〈v|Ŝ(N)±|u1, . . . , uN 〉 =

N∑
j=1

〈v|uj〉Ŝ(N)±|u1, . . . , u, . . . , uN 〉(39)

(in the right-hand side, the vector |u〉 replaces the vector |uj〉). The iteration of
the formula with new vectors |u′〉 and |v′〉 gives:

ĉ†|u〉ĉ〈v|ĉ
†
|u′〉ĉ〈v′|Ŝ(N)±|u1, . . . , uN 〉 =

∑
j=1..N

〈v′|uj〉ĉ†|u〉ĉ〈v|Ŝ(N)±|u1, . . . , u′, . . . , uN 〉

=〈v|u′〉
∑

j=1..N

〈v′|uj〉Ŝ(N)±|u1, . . . , u, . . . , uN 〉

+
∑
j 6=k

〈v′|uj〉〈v|uk〉Ŝ(N)±|u1, . . . , u′, . . . , u, . . . uN 〉

In the last line u replaces uk and u′ replaces uj . The term with a single sum is

〈v|u′〉ĉ†|u〉ĉ〈v′|Ŝ(N)±|u1, . . . , uN 〉.
An exchange of operators by means of 〈v|u′〉 = c|v〉c

†
|u′〉 ∓ c

†
|u′〉c|v〉 gives

ĉ†|u〉ĉ
†
|u′〉ĉ〈v′|ĉ〈v|Ŝ(N)±|u1, . . . , uN 〉

= ±(ĉ†|u〉ĉ〈v|ĉ
†
|u′〉ĉ〈v′| − 〈v|u

′〉ĉ†|u〉ĉ〈v′|)Ŝ(N)±|u1, . . . , uN 〉

= ±
∑
j 6=k

〈v|uj〉〈v′|uk〉Ŝ(N)±|u1, . . . , u′, . . . , u, . . . uN 〉

=
∑
j 6=k

〈v|uj〉〈v′|uk〉Ŝ(N)±|u1, . . . , u, . . . , u′, . . . uN 〉(40)

In the last line, u and u′ replace uj and uk.

4.1. One-particle operators. They are sums of N identical operators acting on

1-particle subspaces, Â =
∑N
k=1 â(k), where â( · ) is a function of the fundamental

1-particle operators (e.g. position, momentum and spin).
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Upon insertion of two resolutions of the identity (not necessarily with same basis):

ÂŜ(N)±|u1, . . . uN 〉 = Ŝ(N)±
∑

k=1..N

|u1, . . . , âuk, . . . uN 〉

= Ŝ(N)±
∑
r

∑
k=1..N

〈r|â|uk〉|u1, . . . , r, . . . , uN 〉

=
∑
r,s

〈r|â|s〉
∑

k=1..N

〈s|uk〉S(N)±|u1, . . . , r, . . . , uN 〉

The last line is compared with (39) and, since the vectors S(N)±|u1 . . . uN 〉 generate
the Fock spaces:

(41) Â =
∑

r,s
ĉ†r〈r|â|s〉ĉs

If the basis vectors are eigenvectors of the single particle operator â with eigen-

values αr, the expansion is simple and suggestive: Â =
∑
r αrn̂r. n̂r = ĉ†r ĉr is the

occupation number operator of the state |r〉.
In the continuous basis of position-spin, the expansion reads:

Â =
∑
mm′

∫
dxdx′ψ̂†m(x)〈xm|â|x′m′〉ψ̂m′(x′)(42)

For local operators it is 〈x,m|â|x′m′〉 = δ3(x−x′) am,m′(x). A notable example is
the particle density operator:

n̂(x) =

N∑
i=1

δ3(x− xi) =
∑
m

ψ̂†m(x)ψ̂m(x)(43)

In the basis |k,m〉 (in a box) the kinetic energy operator is diagonal, while in the
basis |x,m〉 it recalls a 1-particle expectation value

(44) T̂ =

N∑
i=1

p̂2
i

2m
=

∑
k,m

~2k2

2m
ĉ†k,mĉk,m = − ~2

2m

∑
m

∫
dx ψ̂†m(x)∇2ψ̂m(x)

4.2. Two-particle operators. The operators are the sum of identical two-particle
operators: V̂ = 1

2

∑
i 6=j v(i, j) where v(i, j) = v(j, i). The symmetry implies the

exchange symmetry of matrix elements on 2-particle states

〈1, 2|v|1′, 2′〉 = 〈2, 1|v|2′, 1′〉

Let us evaluate

V̂ Ŝ(N)±|u1, . . . , uN 〉 = 1
2 Ŝ(N)±

∑
i 6=j

v(i, j)|u1, . . . , ui, . . . , uj , . . . , uN 〉

= 1
2

∑
r,s;r′,s′

〈r, s|v|r′, s′〉
∑
i6=j

〈r′|ui〉〈s′|uj〉S(N)±|u1, . . . , r, . . . , s, . . . uN 〉

After using (40) we obtain the following expression:

V̂ = 1
2

∑
r,s,r′,s′

ĉ†r ĉ
†
s〈r, s|v|r′, s′〉ĉs′ ĉr′(45)
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(note the order of the destruction operators, which is opposite to that of the ket
states in the matrix element). If field operators are used:

V̂ = 1
2

∑
mi

∫
dx1 . . . dx4 ψ̂

†
m1

(x1)ψ̂†m2
(x2)(46)

〈x1m1,x2m2|v|x3m3,x4m4〉 ψ̂m4(x4)ψ̂m3(x3)

The notation can be significantly simplified:

V̂ = 1
2

∫
d(1234)ψ̂†(1)ψ̂†(2)〈1, 2|v|3, 4〉 ψ̂(4)ψ̂(3)

If v only depends on the positions of the two particles:

〈x1m1,x2m2|v|x3m3,x4m4〉 = v(x3,x4)〈x1m1,x2m2|x3m3,x4m4〉 =

= v(x3,x4)δ3(x1 − x3)δ3(x2 − x4)δm1,m3δm2,m4

The operator gains a form similar to a first-quantized expectation value:

V̂ = 1
2

∑
m,m′

∫
dxdx′ψ̂†m(x)ψ̂†m′(x

′) v(x,x′) ψ̂m′(x
′)ψ̂m(x)(47)

Remark 4.1. In second-quantized form, operators share some general properties:
• there is no dependence on the total number N of particles: the operators act on
the Fock space, and have the same expression for any N ;
• if the numbers of creation and destruction operators are the same, they leave the
subspaces of N identical particles invariant;
• they are normally ordered, with destruction operators at the right of creation
operators. As a consequence, the expectation value of the operator on the vacuum
state (zero particle) is zero.

Exercise 4.2. Given Ĥ =
∑
rs hrsĉ

†
r ĉs, which is the transformation that diago-

nalizes the Hamiltonian? Study the Hamiltonian Ĥ = −t
∑
r(ĉ
†
r ĉr+1 + ĉ†r ĉr−1).

5. Symmetries

A unitary operator u on one-particle states in H defines a unitary operator

on H (N): ÛN = u⊗ u⊗ . . .⊗ u. ÛN commutes with exchange operators and
leaves the subspaces H (N)± invariant. The unitary operator on Fock spaces is

Û = I⊕ u⊕ Û2 ⊕ . . .⊕ ÛN ⊕ . . ..

Proposition 5.1. A one-particle unitary operator u induces a canonical transfor-
mation on creation and destruction operators:

Û†ĉ†|v〉Û = ĉ†|u†v〉, Û†ĉ|v〉Û = ĉ〈u†v|(48)

Proof. Û†ĉ†|v〉ÛŜ(N)±|v1, . . . vN 〉 = Û†ĉ†|v〉Ŝ(N)±|uv1, . . . , uvN 〉
=
√
N + 1Û†Ŝ(N + 1)±|v, uv1, . . . , uvN 〉 =

√
N + 1Ŝ(N + 1)±|u†v, v1, . . . , vN 〉

= ĉ†
u†|v〉Ŝ(N)±|v1, . . . vN 〉.

The second relation follows by adjunction. �

We present the unitary representations of space translations, rotations, dilata-
tions and parity on Fock space. They are important in the study of correlators.
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5.1. Space translations. For one particle, translations are represented by the
unitary group u(a) with the following action on position, momentum and spin
operators:

u†(a)xu(a) = x + a, u†(a)pu(a) = p, u†(a)su(a) = s

They imply u(a) = exp(− i
~a · p) and the following transformations of eigenvectors

u(a)|x,m〉 = |x + a,m〉, u(a)|k,m〉 = e−ik·a|k,m〉(49)

On F± translations are represented by the unitary operators

Û(a) = exp(− i
~a ·P), P =

∑
k,m

~k ĉ†kmĉkm(50)

with action:

Û(a)†ψ̂†m(x)Û(a) = ψ̂†m(x− a), Û(a)†ψ̂m(x)Û(a) = ψ̂m(x− a)(51)

Û(a)†ĉ†kmÛ(a) = eik·aĉ†km, Û(a)†ĉkmÛ(a) = e−ik·aĉkm.(52)

5.2. Rotations. On the Hilbert space of a particle with spin, space rotations act
as unitary operators specified by the vector transformation of the fundamental
operators:

u(R)†xiu(R) = Rijxj , u(R)†piu(R) = Rijpj , u(R)†siu(R) = Rijsj

The infinitesimal transformations yield the commutation rules of x, p, s with the
generator (angular momentum) jk = εijkxipj + sk. The action on basis vectors is

u(R)|x,m〉 =
∑

m′
D(R)m′m|Rx,m′〉, u(R)|k,m〉 =

∑
m′
D(R)m′m|Rk,m′〉

where D(R) is a unitary representation of rotations, of dimension 2s+ 1, generated
by the spin matrices.
To the single-particle representation there corresponds a representation on Fock
space, where the generator is the total angular momentum. The field operators
transform as follows:

Û(R)†ψ̂†m(x)Û(R) =
∑

m′
ψ̂†m′(R

−1x)D(R)†m′m(53)

Û(R)†ψ̂m(x)Û(R) =
∑

m′
D(R)mm′ ψ̂m′(R

−1x)(54)

The same relations hold for the field operators in the basis of momentum.

5.3. Dilations. Dilations, or scale trasformations, are here illustrated in the isotropic
case. They form a 1-parameter group of unitary transformations u(t) with the fol-
lowing action on fundamental operators:

u(t)†xiu(t) = etxi, u(t)†piu(t) = e−tp̂i, u(t)†siu(t) = si(55)

and on position and momentum eigenvectors

u(t)|x,m〉 = e
3
2 t|etx,m〉 u(t)|k,m〉 = e−

3
2 t|e−tk,m〉

With u(t) = exp(−itD), from (55) one obtains the generator D = 1
2~ (x · p+ p · x).

The representation on Fock space has action:

Û(t)†ψ̂†m(x)Û(t) = e−
3
2 tψ̂†m(e−tx) Û(t)†ψ̂m(x)Û(t) = e−

3
2 tψ̂m(e−tx)(56)

Û(t)†ψ̂†m(k)Û(t) = e
3
2 tψ̂†m(etk) Û(t)†ψ̂m(k)Û(t) = e

3
2 tψ̂m(etk)(57)
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Theorem 5.2 (Virial theorem). Let Ĥ =
∑
i Ĥi, where Û(t)†ĤiÛ(t) = enitĤi. If

|E〉 is an eigenstate of Ĥ, then∑
i

ni〈E|Ĥi|E〉 = 0.(58)

Proof. From Û†(t)Ĥ|E〉 = EÛ†(t)|E〉 one obtains:
∑
i e
nitHiÛ

†(t)|E〉 = EÛ†(t)|E〉.
A derivative in t = 0 gives

∑
i niĤi|E〉 + iĤD̂|E〉 = iED̂|E〉. The inner product

with |E〉 gives the result. �

Example 5.3 (Coulomb Hamiltonian). Ĥ = T̂ + Û , T̂ = 1
2m

∑n
i=1p

2
i , Û =

e2
∑
i<j |xi−xj |−1. For a scale transformation the kinetic term has weight nT = −2

while the Coulomb interaction has weight nU = −1. Then 〈E|T̂ |E〉 = − 1
2 〈E|Û |E〉.

5.4. Parity. Parity is the unitary self-adjoint operator π defined by the properties:
πxiπ = −xi, πpiπ = −pi and πsiπ = si. They imply π|x,m〉 = | − x,m〉 and
π|k,m〉 = | − k,m〉. The corresponding unitary operator on Fock space is

Û†πψ̂
†
m(x)Ûπ = ψ̂†m(−x), Û†πψ̂m(x)Ûπ = ψ̂m(−x)(59)

Û†πψ̂
†
m(k)Ûπ = ψ̂†m(−k), Û†πψ̂m(k)Ûπ = ψ̂m(−k).(60)
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