
EFFECTIVE INTERACTION AND POLARIZATION

NOTES BY L. G. MOLINARI

1. The effective interaction

In a many body system the “bare” interaction U0 between two particles in empty
space is “dressed” by polarization insertions. I give here a derivation of the expres-
sion of the polarization based on the diagrammatic expansion of the propagator.

The one-particle Green function (propagator) iG(x, y) = 〈E0|TSψ(x)ψ†(y)|E0〉?
is the sum of all diagrams with a particle being created at y and destroyed at x that
do not contain vacuum factors (spin is included in the variable. For the interaction
each variable has a spin pair). The first-order rainbow diagram is

i

~

∫
dx1dx2G

0(x, x1)G0(x1, x
+
2 )G0(x2, y)U0(x1, x2)

If we select the diagrams of G(x, y) with fixed configuration of three bare propaga-
tors, the sum of such diagrams defines the effective interaction U(x1, x2):

i

~

∫
dx1dx2G

0(x, x1)G0(x1, x2)G0(x2, y)U(x1, x2)

The zero-order term of U(x1, x2) is U0(x1, x2). The next ones arise in diagrams of
second and higher orders of G(x, y), and necessarily contain two U0 lines as follows:

i

~

∫
dx1dx2dy1dy2 G

0(x, x1)G0(x1, x2)G0(x2, y)
[
U0(x1, y1)Π(y1, y2)U0(y2, x2)

]
Π(y1, y2) is the polarization, that sums all possible insertions among the two factors
U0. Therefore, the effective potential is:

U(x1, x2) = U0(x1, x2) +

∫
dy1dy2U

0(x1, y1)Π(y1, y2)U0(y2, x2)(1)

The expression for Π is now derived by considering the diagrams associated to
contractions of G(x, y) that maintain the product of three bare propagators. Ac-
cordingly, we write the expansion of S from second order, where only V (t1) and
V (t2) are specified in second quantization1 and the contractions ψ(x) with ψ†(x1),
ψ(x1) with ψ†(x2) and ψ(x2) with ψ†(y) are frozen:

1

i

∞∑
N=2

1

(i~)N

∫
dx1dx2dy1dy2U

0(x1, y1)U0(y2, x2)

∫ +∞

−∞
dt′2...

∫ +∞

−∞
dt′N−1×

〈Tψ†(x1)ψ†(y1)ψ(y1)ψ(x1)V (t′2)...V (t′N−1)ψ†(x2)ψ†(y2)ψ(y2)ψ(x2)ψ(x)ψ†(y)〉?C
The star means that we avoid diagrams with vacuum factors; C means making only
contractions linking x1 to x2.
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1Note the absence of factors k!2k, as we consider topologically different diagrams.
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1st diagram with bare interaction and with polarization insertions.

The frozen contractions iG0(x, x1), iG0(x1, x2), iG0(x2, y) are specified:

1

i

i3

(i~)2

∫
dx1dx2G

0(x, x1)G0(x1, x2)G0(x2, y)

∫
dy1dyNU

0(x1, y1)U0(y2, x2)

×
∞∑
k=0

1

(i~)k

∫
dt1...dtk〈Tψ†(y1)ψ(y1)V (t1)...V (tk)ψ†(y2)ψ(y2)〉?C

=
i

~

∫
dx1dx2G

0(x, x1)G0(x1, x2)G0(x2, y)

×
[

1

i~

∫
dy1dy2U

0(x1, y1)U0(x2, y2)〈E0|TSψ†(y1)ψ(y1)ψ†(y2)ψ(y2)|E0〉?C
]

We leave the interaction picture:

〈E0|TSψ†(y1)ψ(y1)ψ†(y2)ψ(y2)|E0〉?C = 〈E|Tψ†(y1)ψ(y1)ψ†(y2)ψ(y2)|E〉C
The unwanted contractions are those that factor (disconnect) into a function of y1
and a function of y2

2.

〈E|Tψ†µ(x)ψµ′(x)ψ†ν(y)ψν′(y)|E〉C = 〈E|Tδ[ψ†µ(x)ψµ′(x)] δ[ψ†ν(y)ψν′(y)]|E〉(2)

We now write the expression of the effective potential (1) in full detail:

Uµµ′,νν′(x1, x2) = U0
µµ′,νν′(x1, x2) +

∑
ρρ′σσ′

∫
dy1dy2 U

0
µµ′,ρρ′(x1, y1)(3)

×Πρρ′,σσ′(y1, y2)U0
σσ′,νν′(y2, x2)

= +

Πρρ′,σσ′(x, y) =
1

i~
〈E|Tψ†ρ(x+)ψρ′(x)ψ†σ(y+)ψσ′(y)|E〉C(4)

2A 2-point correlator can be decomposed into connected and disconnected parts:

〈E|TA(x)B(y)|E〉 = 〈E|TA(x)B(y)|E〉C + 〈E|A(x)|E〉〈E|B(y)|E〉

By defining δA(x) ≡ A(x)− 〈E|A(x)|E〉, the connected correlator is

〈E|TA(x)B(y)|E〉C = 〈E|TδA(x)δB(y)|E〉
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The polarization Πρρ′,σσ′(x, y) is the sum of all topologically distinct connected
diagrams where a particle is being created with spin ρ and one destroyed with spin
ρ′ at the space-time point x and another pair of similar events occurs at y.

Because of time-ordering, the polarization is symmetric: Πρρ′,σσ′(x, y) =
Πσσ′ρρ′(y, x). The symmetry implies that the exchange symmetry of the bare inter-
action U0 is inherited by the effective potential:

Uµµ′,νν′(x, y) = Uνν′,µµ′(y, x)(5)

If the bare interaction does not modify the spin of the particles, i.e.
U0
µµ′νν′(x, y) = δµµ′δνν′U0(x, y), then the same property holds for the effective

interaction: Uµµ′νν′(x, y) = δµµ′δνν′U(x, y).
In this case, equation (3) is:

U(x1, x2) = U0(x1, x2) +
∑
ρσ

∫
dy1dy2U

0(x1, y1)Π(y1, y2)U0(y2, x2)(6)

Π(x, y) =
∑
µν

Πµµ,νν(x, y) =
1

i~
〈E|Tδn(x)δn(y)|E〉(7)

Π(x, y) is the scalar polarization.

2. Proper polarization

The polarization diagrams may be reordered as

Π = Π? + Π1 + Π2 . . .

where Π? is the sum of proper or irreducible polarization diagrams, i.e. diagrams
that cannot be disconnected into two polarisation diagrams by removal of a single
U0 line. Π1 is the sum of polarization diagrams that may be disconnected (into
polarization diagrams) in a unique way, i.e. there is just one line U0 whose re-
moval disconnects the diagram into two proper ones (Π1 = Π?U0Π?), and so on.
Therefore:

Π =Π? + Π?U0Π? + Π?U0Π?U0Π? + . . .

=Π? + Π?U0(Π? + Π?U0Π? + . . .)

=Π? + Π?U0Π.

In the same way one obtains Π = Π? + ΠU0Π?. These are the Dyson’s equations
for the polarization Π, in terms of the proper polarization. One of them is:

Π(x1, x2) = Π?(x1, x2) +

∫
dx3x4 Π?(x1, x3)U0(x3, x4)Π(x4, x2)(8)

As a consequence, one obtains a Dyson equation for the effective interaction in
terms of the proper polarization:

U(x1, x2) = U0(x1, x2) +

∫
dx3dx4 U

0(x1, x3)Π?(x3, x4)U(x4, x2)(9)

= +

Exercise 2.1. Show that U(1, 2) = U0(1, 2) +
∫
d3 d4U(1, 3)Π?(3, 4)U0(4, 2) and∫

d3 U0(1, 3)Π(3, 2) =
∫
d3 U(1, 3)Π?(3, 2).
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Exercise 2.2. Show that
∫
d1 Π(1, 2) = 0. Does this imply

∫
d1 Π∗(1, 2) = 0?

In analogy with electrostatics, let us set:

U(1, 2) =

∫
d3 ε−1(1, 3)U0(3, 2)(10)

where ε−1 is the functional inverse the generalized dielectric function ε(1, 2):∫
d2ε−1(1, 2)ε(2, 3) = δ(1, 3). Comparison with Ex.2.1 shows that

ε−1(1, 2) = δ(1, 2) +

∫
d3U(1, 3)Π?(3, 2)

Then: ε(1, 2) = δ(1, 2)−
∫
d3d4 ε(1, 3)U(3, 4)Π?(4, 2) so that

ε(1, 2) = δ(1, 2)−
∫
d3U0(1, 3)Π?(3, 2)(11)

3. Space-time translation invariance

If U0 and Π are space-time translation-invariant, then U and Π? are invariant. It

is convenient to expand them in k = (k, ω) space: f(x−x′) =
∫

d4k
(2π)4 e

ik(x−x′)f(k),

kx = k · x− ωt.
The Dyson equations become algebraic (matrix equations in spin variables):

U(k) = U0(k) + U0(k)Π?(k)U(k)

Π(k) = Π?(k) + Π?(k)U0(k)Π(k)

If spin factors, the solutions are:

U(k) =
U0(k)

1− U0(k)Π?(k)
, Π(k) =

Π?(k)

1− U0(k)Π?(k)
(12)

For a static interaction U0(x, x′) = v(x− x′)δ(t− t′), it is U0(k) = v(k). Then

U(k, ω) =
v(k)

ε(k, ω)
, Π(k, ω) =

Π∗(k, ω)

ε(k, ω)
(13)

ε(k, ω) = 1− v(k)Π?(k, ω)(14)

ε(k) is the (time ordered) generalised dielectric function.
Despite the bare interaction being static, the effective interaction is time-dependent
through the dielectric function, which describes the response of the medium. For
the Coulomb interaction,

U(k, ω) =
4πe2

|k|2 − 4πe2Π?(k, ω)

The long-range Coulomb interaction is modified by the screening produced by the
polarized medium.
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4. The ring diagram

The zeroth-order term of (4) is evaluated by Wick’s theorem (fermions), and
corresponds to the ring diagram

Π(0)(x, y) = − i
~
∑
µν

G(0)
µν (x, y)G(0)

νµ (y, x)(15)

It does not depend on the two-body interaction. The approximation Π? = Π(0), is
known as “ring approximation” or “random phase approximation” (R.P.A.). The
effective interaction U is the sum of insertions of rings, i.e. particle-hole excitations.

Exercise 4.1. Evaluate the ring diagram for non-interacting fermions with single-
particle spin-independent hamiltonian hw with eigenstates h|a〉 = ~ωa|a〉:

Π(0)(x,x′, ω) =
1

~
∑
µµ′

∑
ab

〈xµ|a〉〈a|x′µ′〉〈x′µ′|b〉〈b|xµ〉

×
[
θ(ωa − ωF )θ(ωF − ωb)
ω − (ωa − ωb) + iη

− θ(ωF − ωa)θ(ωb − ωF )

ω − (ωa − ωb)− iη

]
(16)

4.1. Ideal Fermi gas. The ring diagram for the ideal Fermi gas can be computed
analytically (Jens Lindhard, 1954). In momentum space:

Π(0)(q) = −2
i

~

∫
d4p

(2π)4
G0(p)G0(q + p)

After the integral in the frequency p0:

Π(0)(q, ω) =
2

~

∫
dp

(2π)3

[
θ(kF − p)θ(|p + q| − kF )

ω − (ω|p+q| − ωp) + iη
− θ(p− kF )θ(kF − |p + q|)

ω − (ω|p+q| − ωp)− iη

]
The real and imaginary parts are extracted with the Plemelj-Sokhotski formula.

4.2. Real part.

ReΠ(0)(q, ω) =
2

~
−
∫

dp

(2π)3
θ(kF − p)θ(|p + q| − kF )− θ(p− kF )θ(kF − |p + q|)

ω − (ω|p+q| − ωp)

The replacement θ(|p + q| − kF ) = 1− θ(kF − |p + q|) gives

ReΠ(0)(q, ω) =
2

~
−
∫

dp

(2π)3
θ(kF − p)− θ(kF − |p + q|)

ω − (ω|p+q| − ωp)

The change p + q→ −p gives:

Re Π0(q, ω) =
2

~
−
∫

dp

(2π)3
θ(kF − p)

[
1

ω − (ω|p+q| − ωp)
− 1

ω + (ω|p+q| − ωp)

]
The calculations can be carried to the end [1].
The result for ω = 0 is simple and useful:

Re Π0(q, 0) = − mkF
(π~)2

g

(
q

kF

)
, g(x) =

1

2
− 4− x2

8x
log
∣∣∣2− x
2 + x

∣∣∣(17)

The function g is plotted in Fig.1. It is g(0) = 1, g′(2) divergent, g(x) → 0 for
x→∞
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Figure 1. Left: the function g(x). Right: the coordinates are
x = q/kF and y = ω/ωF . In the shaded region between the
curves y = x2 ± 2x the imaginary part of Π(0)(q, ω) is non-zero
and particle-hole can be produced by exciting the Fermi ground
state with a particle of momentum ~q and energy ~ω. The line
y = 2x corresponds to the wave dispersion ω = vF q. v < vF
produces excitons, while v > vF produces plasma oscillations.

4.3. Imaginary part.

Im Π(0)(q, ω) =− 2π

~

∫
dp

(2π)3
δ(ω − ω|p+q| + ωp)

× [θ(kF − p)θ(|p + q| − kF ) + θ(p− kF )θ(kF − |p + q|)]

The delta and theta functions constrain the region of integration and offer an in-
terpretation: the sum of theta functions implies a particle-hole pair of states, and
the delta function appears as a condition of energy conservation. The first term
enforces ω > 0, while the second term enforces ω < 0.

Consider a process where a particle-hole pair is created from the unperturbed
Fermi ground state by absorbing energy ~ω (ω > 0) and momentum ~q. A particle
with momentum ~p below the Fermi surface (p < kF ) is excited to a state of
momentum ~(p + q) above the Fermi surface. The result is a particle-hole state
(an exciton) provided that energy conservation is fulfilled (the delta function):

~ω = ~ω|p+q| − ~ωp =
~2q2

2m
+

~
m
qp cos θ

Since kF ≤ p cos θ ≤ kF , we obtain a region where ImΠ(0) 6= 0, and the process of
exciting a particle-hole pair is possible by energy conservation (see Fig.1):

(18)
~q2

2m
− ~kF q

m
≤ ω ≤ ~q2

2m
+

~kF q
m

Outside this region the imaginary part of the polarization is zero for ω > 0.

5. The random phase approximation

The first and second order diagrams of the proper self-energy Σ?(p) of the ho-
mogeneous electron gas (HEG):
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The second diagram contains the ring diagram and is divergent:

i

~

∫
d4q

(2π)4
G0(p− q) (4πe2)2

|q|4
Π(0)(q)

The remedy is to sum all the single most divergent diagrams at each order. The
summation, including the first order, corresponds to replace the U0 line of the first
diagram with the screened interaction

URPA(q) =
4πe2

q2 − 4πe2Π(0)(q)

Now the perturbative series is convergent up to second order. At third order new
divergent diagrams appear.
The ring resummation was introduced by Gell-Mann and Brueckner in the per-
turbative evaluation of the correlation energy of the HEG [2]. The evaluation is
reported in the textbook by Fetter and Walecka [1].
The energy per particle in units e2/a0 is the Hartree-Fock term plus the (negative)
correlation (for an advanced review see [3])

εHEG =

[
3

10

α2

r2s
− 3

4π

α

rs

]
+

[
1− log 2

π2
log rs − 0.07110 +

log 2

6
− 3

4π2
ζ(3)

]
(19)

+α
7π2 − 6− 72 log 2

24π3
rs log rs − 0.010rs + . . .

The log rs term arises from the ring summation, the constant in the second bracket
is −0.0938417. The rs log rs arises from summation of next most divergent terms
of perturbation series.
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