EFFECTIVE INTERACTION AND POLARIZATION NOTES BY L. G. MOLINARI

1. The effective interaction

In a many body system the "bare" interaction U^0 between two particles in empty space is "dressed" by polarization insertions. I give here a derivation of the expression of the polarization based on the diagrammatic expansion of the propagator.

The one-particle Green function (propagator) $iG(x,y) = \langle E_0|TS\psi(x)\psi^{\dagger}(y)|E_0\rangle_{\star}$ is the sum of all diagrams with a particle being created at y and destroyed at x that do not contain vacuum factors (spin is included in the variable. For the interaction each variable has a spin pair). The first-order rainbow diagram is

$$\frac{i}{\hbar} \int dx_1 dx_2 G^0(x, x_1) G^0(x_1, x_2^+) G^0(x_2, y) U^0(x_1, x_2)$$

If we select the diagrams of G(x, y) with fixed configuration of three bare propagators, the sum of such diagrams defines the effective interaction $U(x_1, x_2)$:

$$\frac{i}{\hbar} \int dx_1 dx_2 G^0(x, x_1) G^0(x_1, x_2) G^0(x_2, y) U(x_1, x_2)$$

The zero-order term of $U(x_1, x_2)$ is $U^0(x_1, x_2)$. The next ones arise in diagrams of second and higher orders of G(x, y), and necessarily contain two U^0 lines as follows:

$$\frac{i}{\hbar} \int dx_1 dx_2 dy_1 dy_2 \ G^0(x, x_1) G^0(x_1, x_2) G^0(x_2, y) \left[U^0(x_1, y_1) \Pi(y_1, y_2) U^0(y_2, x_2) \right]$$

 $\Pi(y_1, y_2)$ is the polarization, that sums all possible insertions among the two factors U^0 . Therefore, the effective potential is:

(1)
$$U(x_1, x_2) = U^0(x_1, x_2) + \int dy_1 dy_2 U^0(x_1, y_1) \Pi(y_1, y_2) U^0(y_2, x_2)$$

The expression for Π is now derived by considering the diagrams associated to contractions of G(x,y) that maintain the product of three bare propagators. Accordingly, we write the expansion of S from second order, where only $V(t_1)$ and $V(t_2)$ are specified in second quantization¹ and the contractions $\psi(x)$ with $\psi^{\dagger}(x_1)$, $\psi(x_1)$ with $\psi^{\dagger}(x_2)$ and $\psi(x_2)$ with $\psi^{\dagger}(y)$ are frozen:

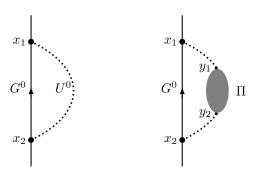
$$\frac{1}{i} \sum_{N=2}^{\infty} \frac{1}{(i\hbar)^N} \int dx_1 dx_2 dy_1 dy_2 U^0(x_1, y_1) U^0(y_2, x_2) \int_{-\infty}^{+\infty} dt'_2 \dots \int_{-\infty}^{+\infty} dt'_{N-1} \times dt'_{N-1} dx_2 dy_1 dy_2 U^0(x_1, y_1) U^0(y_2, x_2) \int_{-\infty}^{+\infty} dt'_2 \dots \int_{-\infty}^{+\infty} dt'_{N-1} dx_2 dy_1 dy_2 U^0(x_1, y_2) U^0(y_2, x_2) \int_{-\infty}^{+\infty} dt'_2 \dots \int_{-\infty}^{+\infty} dt'_{N-1} dx_2 dy_1 dy_2 U^0(x_1, y_2) U^0(y_2, x_2) \int_{-\infty}^{+\infty} dt'_2 \dots \int_{-\infty}^{+\infty} dt'_{N-1} dx_2 dy_1 dy_2 U^0(x_1, y_2) U^0(x_2, x_2) \int_{-\infty}^{+\infty} dt'_2 \dots \int_{-\infty}^{+\infty} dt'_{N-1} dx_2 dy_1 dy_2 U^0(x_1, y_2) U^0(x_2, x_2) \int_{-\infty}^{+\infty} dt'_2 \dots \int_{-\infty}^{+\infty} dt'_{N-1} dx_2 dy_1 dy_2 U^0(x_1, y_2) U^0(x_2, x_2) \int_{-\infty}^{+\infty} dt'_2 \dots \int_{-\infty}^{+\infty} dt'_{N-1} dx_2 dy_1 dy_2 U^0(x_1, y_2) U^0(x_2, x_2) \int_{-\infty}^{+\infty} dt'_2 \dots \int_{-\infty}^{+\infty} dt$$

$$\langle T\psi^{\dagger}(x_1)\psi^{\dagger}(y_1)\psi(y_1)\psi(x_1)V(t_2')...V(t_{N-1}')\psi^{\dagger}(x_2)\psi^{\dagger}(y_2)\psi(y_2)\psi(x_2)\psi(x)\psi^{\dagger}(y)\rangle_{\star C}$$

The star means that we avoid diagrams with vacuum factors; C means making only contractions linking x_1 to x_2 .

Date: Oct 2022 - revised Oct 23.

¹Note the absence of factors $k!2^k$, as we consider topologically different diagrams.



1st diagram with bare interaction and with polarization insertions.

The frozen contractions $iG^0(x, x_1)$, $iG^0(x_1, x_2)$, $iG^0(x_2, y)$ are specified:

$$\begin{split} \frac{1}{i} \frac{i^3}{(i\hbar)^2} \int dx_1 dx_2 G^0(x,x_1) G^0(x_1,x_2) G^0(x_2,y) \int dy_1 dy_N U^0(x_1,y_1) U^0(y_2,x_2) \\ & \times \sum_{k=0}^{\infty} \frac{1}{(i\hbar)^k} \int dt_1 ... dt_k \langle T\psi^{\dagger}(y_1)\psi(y_1)V(t_1)...V(t_k)\psi^{\dagger}(y_2)\psi(y_2) \rangle_{\star C} \\ &= \frac{i}{\hbar} \int dx_1 dx_2 G^0(x,x_1) G^0(x_1,x_2) G^0(x_2,y) \\ & \times \left[\frac{1}{i\hbar} \int dy_1 dy_2 U^0(x_1,y_1) U^0(x_2,y_2) \langle E_0 | TS\psi^{\dagger}(y_1)\psi(y_1)\psi^{\dagger}(y_2)\psi(y_2) | E_0 \rangle_{\star C} \right] \end{split}$$

We leave the interaction picture:

$$\langle E_0|TS\psi^{\dagger}(y_1)\psi(y_1)\psi^{\dagger}(y_2)\psi(y_2)|E_0\rangle_{\star C} = \langle E|T\psi^{\dagger}(y_1)\psi(y_1)\psi^{\dagger}(y_2)\psi(y_2)|E\rangle_C$$

The unwanted contractions are those that factor (disconnect) into a function of y_1 and a function of y_2^2 .

$$(2) \quad \langle E|T\psi_{\mu}^{\dagger}(x)\psi_{\mu'}(x)\psi_{\nu'}^{\dagger}(y)\psi_{\nu'}(y)|E\rangle_{C} = \langle E|T\delta[\psi_{\mu}^{\dagger}(x)\psi_{\mu'}(x)]\delta[\psi_{\nu}^{\dagger}(y)\psi_{\nu'}(y)]|E\rangle$$

We now write the expression of the effective potential (1) in full detail:

(3)
$$U_{\mu\mu',\nu\nu'}(x_1, x_2) = U^0_{\mu\mu',\nu\nu'}(x_1, x_2) + \sum_{\rho\rho'\sigma\sigma'} \int dy_1 dy_2 \ U^0_{\mu\mu',\rho\rho'}(x_1, y_1) \times \Pi_{\rho\rho',\sigma\sigma'}(y_1, y_2) U^0_{\sigma\sigma',\nu\nu'}(y_2, x_2)$$

$$\longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$$

(4)
$$\Pi_{\rho\rho',\sigma\sigma'}(x,y) = \frac{1}{i\hbar} \langle E|T\psi_{\rho}^{\dagger}(x^{+})\psi_{\rho'}(x)\psi_{\sigma}^{\dagger}(y^{+})\psi_{\sigma'}(y)|E\rangle_{C}$$

$$\langle E|TA(x)B(y)|E\rangle = \langle E|TA(x)B(y)|E\rangle_C + \langle E|A(x)|E\rangle\langle E|B(y)|E\rangle$$

By defining $\delta A(x) \equiv A(x) - \langle E|A(x)|E\rangle$, the connected correlator is

$$\langle E|TA(x)B(y)|E\rangle_C = \langle E|T\delta A(x)\delta B(y)|E\rangle$$

 $^{^2\}mathrm{A}$ 2-point correlator can be decomposed into connected and disconnected parts:

The polarization $\Pi_{\rho\rho',\sigma\sigma'}(x,y)$ is the sum of all topologically distinct connected diagrams where a particle is being created with spin ρ and one destroyed with spin ρ' at the space-time point x and another pair of similar events occurs at y.

Because of time-ordering, the polarization is symmetric: $\Pi_{\rho\rho',\sigma\sigma'}(x,y) = \Pi_{\sigma\sigma'\rho\rho'}(y,x)$. The symmetry implies that the exchange symmetry of the bare interaction U^0 is inherited by the effective potential:

(5)
$$U_{\mu\mu',\nu\nu'}(x,y) = U_{\nu\nu',\mu\mu'}(y,x)$$

If the bare interaction does not modify the spin of the particles, i.e. $U^0_{\mu\mu'\nu\nu'}(x,y) = \delta_{\mu\mu'}\delta_{\nu\nu'}U^0(x,y)$, then the same property holds for the effective interaction: $U_{\mu\mu'\nu\nu'}(x,y) = \delta_{\mu\mu'}\delta_{\nu\nu'}U(x,y)$. In this case, equation (3) is:

(6)
$$U(x_1, x_2) = U^0(x_1, x_2) + \sum_{\rho\sigma} \int dy_1 dy_2 U^0(x_1, y_1) \Pi(y_1, y_2) U^0(y_2, x_2)$$

(7)
$$\Pi(x,y) = \sum_{\mu\nu} \Pi_{\mu\mu,\nu\nu}(x,y) = \frac{1}{i\hbar} \langle E|T\delta n(x)\delta n(y)|E\rangle$$

 $\Pi(x,y)$ is the scalar polarization.

2. Proper polarization

The polarization diagrams may be reordered as

$$\Pi = \Pi^{\star} + \Pi^1 + \Pi^2 \dots$$

where Π^* is the sum of proper or irreducible polarization diagrams, i.e. diagrams that cannot be disconnected into two polarisation diagrams by removal of a single U^0 line. Π^1 is the sum of polarization diagrams that may be disconnected (into polarization diagrams) in a unique way, i.e. there is just one line U^0 whose removal disconnects the diagram into two proper ones ($\Pi^1 = \Pi^* U^0 \Pi^*$), and so on. Therefore:

$$\begin{split} \Pi = & \Pi^* + \Pi^* U^0 \Pi^* + \Pi^* U^0 \Pi^* U^0 \Pi^* + \dots \\ = & \Pi^* + \Pi^* U^0 (\Pi^* + \Pi^* U^0 \Pi^* + \dots) \\ = & \Pi^* + \Pi^* U^0 \Pi. \end{split}$$

In the same way one obtains $\Pi = \Pi^* + \Pi U^0 \Pi^*$. These are the Dyson's equations for the polarization Π , in terms of the proper polarization. One of them is:

(8)
$$\Pi(x_1, x_2) = \Pi^*(x_1, x_2) + \int dx_3 x_4 \, \Pi^*(x_1, x_3) U^0(x_3, x_4) \Pi(x_4, x_2)$$

As a consequence, one obtains a Dyson equation for the effective interaction in terms of the proper polarization:

(9)
$$U(x_1, x_2) = U^0(x_1, x_2) + \int dx_3 dx_4 \ U^0(x_1, x_3) \Pi^*(x_3, x_4) U(x_4, x_2)$$

$$\longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$$

Exercise 2.1. Show that $U(1,2) = U^0(1,2) + \int d3 \, d4 \, U(1,3) \Pi^*(3,4) U^0(4,2)$ and $\int d3 \, U^0(1,3) \Pi(3,2) = \int d3 \, U(1,3) \Pi^*(3,2)$.

Exercise 2.2. Show that $\int d1 \Pi(1,2) = 0$. Does this imply $\int d1 \Pi^*(1,2) = 0$?

In analogy with electrostatics, let us set:

(10)
$$U(1,2) = \int d3 \, \epsilon^{-1}(1,3) U^0(3,2)$$

where ϵ^{-1} is the functional inverse the generalized dielectric function $\epsilon(1,2)$: $\int d2\epsilon^{-1}(1,2)\epsilon(2,3) = \delta(1,3)$. Comparison with Ex.2.1 shows that

$$\epsilon^{-1}(1,2) = \delta(1,2) + \int d3 U(1,3) \Pi^{*}(3,2)$$

Then: $\epsilon(1,2) = \delta(1,2) - \int d3d4 \, \epsilon(1,3) U(3,4) \Pi^*(4,2)$ so that

(11)
$$\epsilon(1,2) = \delta(1,2) - \int d3U^{0}(1,3)\Pi^{*}(3,2)$$

3. Space-time translation invariance

If U^0 and Π are space-time translation-invariant, then U and Π^* are invariant. It is convenient to expand them in $k=(\mathbf{k},\omega)$ space: $f(x-x')=\int \frac{d^4k}{(2\pi)^4}e^{ik(x-x')}f(k)$, $kx=\mathbf{k}\cdot\mathbf{x}-\omega t$.

The Dyson equations become algebraic (matrix equations in spin variables):

$$U(k) = U^{0}(k) + U^{0}(k)\Pi^{*}(k)U(k)$$

$$\Pi(k) = \Pi^{*}(k) + \Pi^{*}(k)U^{0}(k)\Pi(k)$$

If spin factors, the solutions are:

(12)
$$U(k) = \frac{U^0(k)}{1 - U^0(k)\Pi^*(k)}, \qquad \Pi(k) = \frac{\Pi^*(k)}{1 - U^0(k)\Pi^*(k)}$$

For a static interaction $U^0(x,x') = v(\mathbf{x} - \mathbf{x}')\delta(t-t')$, it is $U^0(k) = v(\mathbf{k})$. Then

(13)
$$U(\mathbf{k}, \omega) = \frac{v(\mathbf{k})}{\epsilon(\mathbf{k}, \omega)}, \qquad \Pi(\mathbf{k}, \omega) = \frac{\Pi^*(\mathbf{k}, \omega)}{\epsilon(\mathbf{k}, \omega)}$$

(14)
$$\epsilon(\mathbf{k},\omega) = 1 - v(\mathbf{k})\Pi^{*}(\mathbf{k},\omega)$$

 $\epsilon(k)$ is the (time ordered) generalised dielectric function.

Despite the bare interaction being static, the effective interaction is time-dependent through the dielectric function, which describes the response of the medium. For the Coulomb interaction,

$$U(\mathbf{k}, \omega) = \frac{4\pi e^2}{|\mathbf{k}|^2 - 4\pi e^2 \Pi^*(\mathbf{k}, \omega)}$$

The long-range Coulomb interaction is modified by the screening produced by the polarized medium.

4. The ring diagram

The zeroth-order term of (4) is evaluated by Wick's theorem (fermions), and corresponds to the ring diagram

(15)
$$\Pi^{(0)}(x,y) = -\frac{i}{\hbar} \sum_{\mu\nu} G^{(0)}_{\mu\nu}(x,y) G^{(0)}_{\nu\mu}(y,x)$$

It does not depend on the two-body interaction. The approximation $\Pi^* = \Pi^{(0)}$, is known as "ring approximation" or "random phase approximation" (R.P.A.). The effective interaction U is the sum of insertions of rings, i.e. particle-hole excitations.

Exercise 4.1. Evaluate the ring diagram for non-interacting fermions with single-particle spin-independent hamiltonian hw with eigenstates $h|a\rangle = \hbar \omega_a |a\rangle$:

(16)
$$\Pi^{(0)}(\mathbf{x}, \mathbf{x}', \omega) = \frac{1}{\hbar} \sum_{\mu\mu'} \sum_{ab} \langle \mathbf{x}\mu | a \rangle \langle a | \mathbf{x}'\mu' \rangle \langle \mathbf{x}'\mu' | b \rangle \langle b | \mathbf{x}\mu \rangle$$

$$\times \left[\frac{\theta(\omega_a - \omega_F)\theta(\omega_F - \omega_b)}{\omega - (\omega_a - \omega_b) + i\eta} - \frac{\theta(\omega_F - \omega_a)\theta(\omega_b - \omega_F)}{\omega - (\omega_a - \omega_b) - i\eta} \right]$$

4.1. **Ideal Fermi gas.** The ring diagram for the ideal Fermi gas can be computed analytically (Jens Lindhard, 1954). In momentum space:

$$\Pi^{(0)}(q) = -2\frac{i}{\hbar} \int \frac{d^4p}{(2\pi)^4} G^0(p) G^0(q+p)$$

After the integral in the frequency p^0 :

$$\Pi^{(0)}(\mathbf{q},\omega) = \frac{2}{\hbar} \int \frac{d\mathbf{p}}{(2\pi)^3} \left[\frac{\theta(k_F - p)\theta(|\mathbf{p} + \mathbf{q}| - k_F)}{\omega - (\omega_{|\mathbf{p} + \mathbf{q}|} - \omega_p) + i\eta} - \frac{\theta(p - k_F)\theta(k_F - |\mathbf{p} + \mathbf{q}|)}{\omega - (\omega_{|\mathbf{p} + \mathbf{q}|} - \omega_p) - i\eta} \right]$$

The real and imaginary parts are extracted with the Plemelj-Sokhotski formula.

4.2. Real part.

$$\operatorname{Re}\Pi^{(0)}(\mathbf{q},\omega) = \frac{2}{\hbar} \int \frac{d\mathbf{p}}{(2\pi)^3} \frac{\theta(k_F - p)\theta(|\mathbf{p} + \mathbf{q}| - k_F) - \theta(p - k_F)\theta(k_F - |\mathbf{p} + \mathbf{q}|)}{\omega - (\omega_{|\mathbf{p} + \mathbf{q}|} - \omega_p)}$$

The replacement $\theta(|\mathbf{p} + \mathbf{q}| - k_F) = 1 - \theta(k_F - |\mathbf{p} + \mathbf{q}|)$ gives

$$\operatorname{Re}\Pi^{(0)}(\mathbf{q},\omega) = \frac{2}{\hbar} \int \frac{d\mathbf{p}}{(2\pi)^3} \frac{\theta(k_F - p) - \theta(k_F - |\mathbf{p} + \mathbf{q}|)}{\omega - (\omega_{|\mathbf{p} + \mathbf{q}|} - \omega_p)}$$

The change $\mathbf{p} + \mathbf{q} \rightarrow -\mathbf{p}$ gives:

$$\operatorname{Re} \Pi^{0}(\mathbf{q}, \omega) = \frac{2}{\hbar} \int \frac{d\mathbf{p}}{(2\pi)^{3}} \theta(k_{F} - p) \left[\frac{1}{\omega - (\omega_{|\mathbf{p}+\mathbf{q}|} - \omega_{p})} - \frac{1}{\omega + (\omega_{|\mathbf{p}+\mathbf{q}|} - \omega_{p})} \right]$$

The calculations can be carried to the end [1].

The result for $\omega=0$ is simple and useful:

(17)
$$\operatorname{Re} \Pi^{0}(q,0) = -\frac{mk_{F}}{(\pi\hbar)^{2}} g\left(\frac{q}{k_{F}}\right), \qquad g(x) = \frac{1}{2} - \frac{4 - x^{2}}{8x} \log\left|\frac{2 - x}{2 + x}\right|$$

The function g is plotted in Fig.1. It is $g(0)=1,\ g'(2)$ divergent, $g(x)\to 0$ for $x\to \infty$

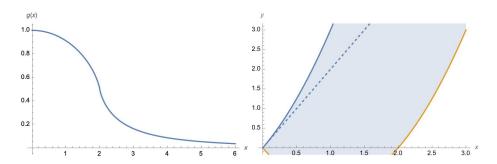


FIGURE 1. Left: the function g(x). Right: the coordinates are $x = q/k_F$ and $y = \omega/\omega_F$. In the shaded region between the curves $y = x^2 \pm 2x$ the imaginary part of $\Pi^{(0)}(q,\omega)$ is non-zero and particle-hole can be produced by exciting the Fermi ground state with a particle of momentum $\hbar q$ and energy $\hbar \omega$. The line y = 2x corresponds to the wave dispersion $\omega = v_F q$. $v < v_F$ produces excitons, while $v > v_F$ produces plasma oscillations.

4.3. Imaginary part.

$$\operatorname{Im} \Pi^{(0)}(q,\omega) = -\frac{2\pi}{\hbar} \int \frac{d\mathbf{p}}{(2\pi)^3} \delta(\omega - \omega_{|\mathbf{p}+\mathbf{q}|} + \omega_p) \times \left[\theta(k_F - p)\theta(|\mathbf{p}+\mathbf{q}| - k_F) + \theta(p - k_F)\theta(k_F - |\mathbf{p}+\mathbf{q}|) \right]$$

The delta and theta functions constrain the region of integration and offer an interpretation: the sum of theta functions implies a particle-hole pair of states, and the delta function appears as a condition of energy conservation. The first term enforces $\omega > 0$, while the second term enforces $\omega < 0$.

Consider a process where a particle-hole pair is created from the unperturbed Fermi ground state by absorbing energy $\hbar\omega$ ($\omega > 0$) and momentum $\hbar\mathbf{q}$. A particle with momentum $\hbar\mathbf{p}$ below the Fermi surface ($p < k_F$) is excited to a state of momentum $\hbar(\mathbf{p} + \mathbf{q})$ above the Fermi surface. The result is a particle-hole state (an exciton) provided that energy conservation is fulfilled (the delta function):

$$\hbar\omega = \hbar\omega_{|\mathbf{p}+\mathbf{q}|} - \hbar\omega_p = \frac{\hbar^2 q^2}{2m} + \frac{\hbar}{m}qp\cos\theta$$

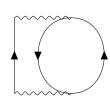
Since $k_F \leq p \cos \theta \leq k_F$, we obtain a region where $\text{Im}\Pi^{(0)} \neq 0$, and the process of exciting a particle-hole pair is possible by energy conservation (see Fig.1):

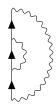
(18)
$$\frac{\hbar q^2}{2m} - \frac{\hbar k_F q}{m} \le \omega \le \frac{\hbar q^2}{2m} + \frac{\hbar k_F q}{m}$$

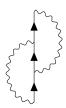
Outside this region the imaginary part of the polarization is zero for $\omega > 0$.

5. The random phase approximation

The first and second order diagrams of the proper self-energy $\Sigma^{\star}(p)$ of the homogeneous electron gas (HEG):







The second diagram contains the ring diagram and is divergent:

$$\frac{i}{\hbar} \int \frac{d^4q}{(2\pi)^4} G^0(p-q) \frac{(4\pi e^2)^2}{|\mathbf{q}|^4} \Pi^{(0)}(q)$$

The remedy is to sum all the single most divergent diagrams at each order. The summation, including the first order, corresponds to replace the U^0 line of the first diagram with the screened interaction

$$U_{\text{RPA}}(q) = \frac{4\pi e^2}{q^2 - 4\pi e^2 \Pi^{(0)}(q)}$$

Now the perturbative series is convergent up to second order. At third order new divergent diagrams appear.

The ring resummation was introduced by Gell-Mann and Brueckner in the perturbative evaluation of the correlation energy of the HEG [2]. The evaluation is reported in the textbook by Fetter and Walecka [1].

The energy per particle in units e^2/a_0 is the Hartree-Fock term plus the (negative) correlation (for an advanced review see [3])

$$(19) \quad \epsilon_{\mathsf{HEG}} = \left[\frac{3}{10} \frac{\alpha^2}{r_s^2} - \frac{3}{4\pi} \frac{\alpha}{r_s} \right] + \left[\frac{1 - \log 2}{\pi^2} \log r_s - 0.07110 + \frac{\log 2}{6} - \frac{3}{4\pi^2} \zeta(3) \right] \\ + \alpha \frac{7\pi^2 - 6 - 72 \log 2}{24\pi^3} r_s \log r_s - 0.010 r_s + \dots$$

The $\log r_s$ term arises from the ring summation, the constant in the second bracket is -0.0938417. The $r_s \log r_s$ arises from summation of next most divergent terms of perturbation series.

REFERENCES

- [1] A. L. Fetter and J. D. Walecka, Quantum theory of many-particle systems, McGraw-Hill 1971
- [2] M. Gell-Mann and K. A. Brueckner, Correlation energy of an electron gas at high density, Phys. Rev. 106, (1957) 364.
- [3] P. F. Loos and P. M. W. Gill, The uniform electron gas, WIREs Comput. Mol. Sci. 6 (2016), 410-429. https://doi.org/10.1002/wcms.1257.