EFFECTIVE INTERACTION AND POLARIZATION
NOTES BY L. G. MOLINARI

1. THE EFFECTIVE INTERACTION

In a many body system the “bare” interaction U° between two particles in empty
space is “dressed” by polarization insertions. I give here a derivation of the expres-
sion of the polarization based on the diagrammatic expansion of the propagator.

The one-particle Green function (propagator) iG(z,y) = (Eo|T'Sv(z)w' (y)|Eo)«
is the sum of all diagrams with a particle being created at y and destroyed at x that
do not contain vacuum factors (spin is included in the variable. For the interaction
each variable has a spin pair). The first-order rainbow diagram is

%/dxldeGO(x,xl)GO(xl,x;)Go(xg,y)UO(xl,acg)

If we select the diagrams of G(x,y) with fixed configuration of three bare propaga-
tors, the sum of such diagrams defines the effective interaction U(z1, z2):

%/d$1d962G0(fU7331)G0(9C1,$2)G0($2,Q)U($17$2)

The zero-order term of U(wxy,22) is U%(z1, 22). The next ones arise in diagrams of
second and higher orders of G(z,y), and necessarily contain two U° lines as follows:

%/d$1d$2dyld92 GOz, 21)G° (21, 22) GO (22, y) [U° (21, y1) (Y1, y2)U° (y2, 22)]

I1(y1,y2) is the polarization, that sums all possible insertions among the two factors
UC. Therefore, the effective potential is:

(1) U(x1,z2) = Uo(xl,xg) + /dyldyzUO(fCl,yl)H(yl,yz)Uo(yz,xz)

The expression for II is now derived by considering the diagrams associated to

contractions of G(z,y) that maintain the product of three bare propagators. Ac-

cordingly, we write the expansion of S from second order, where only V(¢1) and

V (t3) are specified in second quantization® and the contractions v(z) with 1 (x;),
with wT(xg) and v(z2) with ¥1(y) are frozen:

(1)
1 > o +oo , 400 )
7 Z /dI1dI2dy1dyzU (z1, 1)U (1127I2)/ dt2.../ dty 1%

— 00 —0o0

<T%/;(901)¢T ()Y (y1)o(@1)V (t3)-.V (En 1) (@2) 0 (y2)v (y2)d (22)0 ()01 (9)wc

The star means that we avoid diagrams with vacuum factors; C' means making only
contractions linking x; to xs.
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X1 ... T1e.
i
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1st diagram with bare interaction and with polarization insertions.

The frozen contractions iG%(z, x1), iG°(z1, x2), iG°(xa,y) are specified:

1 -3
;(;T)Q/d%‘ld@GO(ﬂU,xl)GO(l“hM)GO(ﬂ?%Z/)/dyldyNUO(l‘l,yl)Uo(y%332)

<3 e [ et () )V (8)-V (00 () )

k=0

= %/dmldeGO(sr:,xl)GO(ml,xg)GO(xg,y)

1
X L.h/dyldyQUO(xlayl)UO(CU%y2)<EO|TS¢T(?J1)¢(Z/1)1/)T(92)1/}(92)|E0>*C
We leave the interaction picture:

(Bo|TSYT (y1)v(y1) ¥ (y2)¥(y2) | Eo) e = (BITYT (y1)(y1) 0T (y2)2 (y2)| E) e

The unwanted contractions are those that factor (disconnect) into a function of y;
and a function of y,2.

(2) (BT (@) @] (@) ) E)e = (BIT3 (2)b (2)] 6] (y)w (1)]|E)

We now write the expression of the effective potential (1) in full detail:

(3) UHH/WV' (1‘1,:132) = USM/7VV'(x1’z2) + Z /dyldyg USWWP' (Sﬁl,yl)
pp'oa’

Xpr’,ao’ (yla yQ)Ugg/Wy/ (y?, $2)

’\/\/\/\/\/\Z’\/\/\/\/\/\+'\/\/\/\/‘.’\/\/\/\/‘—

(4) pr’pa’ (.’E, y) = %<E|T¢L(x+)¢p’(m)¢l (y+)wa’ (y)|E>C

2A 2-point correlator can be decomposed into connected and disconnected parts:
(EITA(z)B(y)|E) = (E|TA(x) B(y)|E)c + (E|A(2)|[E)(E|B(y)|E)
By defining §A(x) = A(z) — (E|A(z)|E), the connected correlator is
(E|TA(z)B(y)|E)o = (E|T6A()dB(y)|E)
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The polarization II,, ;o (x,y) is the sum of all topologically distinct connected
diagrams where a particle is being created with spin p and one destroyed with spin
p’ at the space-time point 2 and another pair of similar events occurs at .

Because of time-ordering, the polarization is symmetric: II,p o0 (z,y) =
o/ ppr (Y, ). The symmetry implies that the exchange symmetry of the bare inter-
action UV is inherited by the effective potential:

(5) Uppr v (,9) = Upwr e (Y, )

If the bare interaction does not modify the spin of the particles, i.e.
Ugu,yy/(:v,y) = 0,0, U°(z,y), then the same property holds for the effective
interaction: U (2,y) = dupu 60 U2, y).

In this case, equation (3) is:

(6) Uz, 22) = Uo(xl,fcz)+Z/dy1dyzU°(x1,y1)H(y1,y2)U°(yz,rE2)
po

™) 1(e,y) = 3 Ty () = =5 (B[ Ton(z)on(y) | B)

II(x,y) is the scalar polarization.

2. PROPER POLARIZATION

The polarization diagrams may be reordered as
=1+ 4112 ..
where IT* is the sum of proper or irreducible polarization diagrams, i.e. diagrams
that cannot be disconnected into two polarisation diagrams by removal of a single
U° line. TI! is the sum of polarization diagrams that may be disconnected (into
polarization diagrams) in a unique way, i.e. there is just one line U° whose re-

moval disconnects the diagram into two proper ones (II' = IT*U°IT*), and so on.
Therefore:

I =IT* + I*U°I* + U U + ...
=II* + MU (I1* + I*U°TT* + .. )
=IT* + IT*U°TL
In the same way one obtains II = IT* + IIU°II*. These are the Dyson’s equations
for the polarization II, in terms of the proper polarization. One of them is:

(8) H(Q?l,xg) = H*(Qil,l'g) + /d$3$4 H*(.’L'17.%‘3)U0(.T3,$4)H($4, 372)

As a consequence, one obtains a Dyson equation for the effective interaction in
terms of the proper polarization:

(9) U(CChIQ) = UO(Il,Ig) + /dll?gd:&l U()(l‘l,Ig)H*($3,14)U(1‘4,I2)

AMAAAA = AN ANAANIIIAAAAA

Exercise 2.1. Show that U(1,2) = U°(1,2) + [d3d4U(1,3)I1*(3,4)U%(4,2) and
[d3U°(1,3)I1(3,2) = [d3 U(1,3)I1*(3,2).
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Exercise 2.2. Show that [ d11I(1,2) = 0. Does this imply [d11I*(1,2) =07
In analogy with electrostatics, let us set:

(10) U(1,2) = /d3 e 1(1,3)U°(3,2)

where ¢! is the functional inverse the generalized dielectric function €(1,2):

[ d2e71(1,2)e(2,3) = §(1,3). Comparison with Ex.2.1 shows that
e 1(1,2) =6(1,2) + /dS U(1,3)1%(3,2)

Then: €(1,2) = 6(1,2) — [ d3d4e(1,3)U(3,4)11*(4,2) so that

(11) €(1,2) = 6(1,2) —/d3U0(173)H*(3,2)

3. SPACE-TIME TRANSLATION INVARIANCE

If U and II are space-time translation-invariant, then U and IT* are invariant. It
is convenient to expand them in k = (k,w) space: f(x—a') = [ (3;7)64 k=) £(k),
kr =k -x —wt.

The Dyson equations become algebraic (matrix equations in spin variables):

U(k) = U(k) + U°(k)IT* (k)U (k)
(k) = IT* (k) + IT* (k) U (k)T (k)

If spin factors, the solutions are:

U°(k) 1" (k)

(12) VW) =1 —mmm . W= T ommm

For a static interaction U%(z,2') = v(x — x")d(t — t'), it is U°(k) = v(k). Then

B v(k) I (k,w)
(13) U(k,w) = D) T(k,w) = )
(14) [ e(k,w) = 1 — v(l)IT* (k,w) |

(k) is the (time ordered) generalised dielectric function.

Despite the bare interaction being static, the effective interaction is time-dependent
through the dielectric function, which describes the response of the medium. For
the Coulomb interaction,

2

4me
k. w) =
Ulk,w) |k|? — 4me2TT* (k,w)

The long-range Coulomb interaction is modified by the screening produced by the
polarized medium.
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4. THE RING DIAGRAM

The zeroth-order term of (4) is evaluated by Wick’s theorem (fermions), and
corresponds to the ring diagram

(15) 1O (2, y) = hZG(O) )G9 (y, )

It does not depend on the two-body interaction. The approximation IT* = I1(9) | is
known as “ring approximation” or “random phase approximation” (R.P.A.). The
effective interaction U is the sum of insertions of rings, i.e. particle-hole excitations.

Exercise 4.1. FEvaluate the ring diagram for non-interacting fermions with single-
particle spin-independent hamiltonian hw with eigenstates hla) = hwgla):

(0)
) (x, x', ) hzzxm )l ') (1 [b) (bl

pup’  ab
O(we —wp)l(wp —wp)  O(wr —wa)0(wp — wr)
(16) { w— (wg —wp) +in B w— (wg —wp) —in

4.1. Ideal Fermi gas. The ring diagram for the ideal Fermi gas can be computed
analytically (Jens Lindhard, 1954). In momentum space:

i d*p
1) = -2 [ o

(p)G°(q+p)

After the integral in the frequency p°:
2 / dp {G(kF —p)b(p+dal—kr) 0p—Fkr)l(kr —|p+adl)
h) (2m) | w— (Wptq —wp) TN W = (Wptq) — Wp) — iN

The real and imaginary parts are extracted with the Plemelj-Sokhotski formula.

0 (q,w) =

4.2. Real part.

Rell ) (q,w) =

2][ dp O(kr —p)0(lp +a| —kr) —0(p — kr)0(kr — |p +dl)
h) (2m)3 W — (Wipt+q| — Wp)
The replacement 0(|p + q| — kr) =1 — 0(kr — |p + q|) gives
RelT® (q, ) _2 dp3 0(kr —p) —0(kr — [P +d|)
h) (27m) W — (Wpt+q| — Wp)
The change p + q — —p gives:
2 [ dp 1 1
ReIl’(q,w) = *][ 0(kr —p) [ - ]
hJ (2m)3 W= (Wptq —Wp) W+ (Wptq — Wp)

The calculations can be carried to the end [1].
The result for w = 0 is simple and useful:

mkp q 1 4—22 2—x
17)  Rell%(q,0) = — F — - | ‘ ‘
(17) ell”(q,0) = “wh? <kF> g() 5 5 8|55,

The function g is plotted in Fig.1. It is g(0) = 1, ¢’(2) divergent, g(x) — 0 for
T — 00
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FIGURE 1. Left: the function g(x). Right: the coordinates are

z = q/kr and y = w/wp. In the shaded region between the
curves y = x? + 22 the imaginary part of I1(®)(¢,w) is non-zero

and particle-hole can be produced by exciting the Fermi ground
state with a particle of momentum hAq and energy Aw. The line

y = 2x corresponds to the wave dispersion w = vpq. v < vp
produces excitons, while v > vp produces plasma oscillations.

4.3. Imaginary part.

27 dp
h ) (27)3
x [0(kr —p)0(Ip +d| — kr) + 0(p — kr)0(kr — |p +d])]

The delta and theta functions constrain the region of integration and offer an in-
terpretation: the sum of theta functions implies a particle-hole pair of states, and
the delta function appears as a condition of energy conservation. The first term
enforces w > 0, while the second term enforces w < 0.

Consider a process where a particle-hole pair is created from the unperturbed
Fermi ground state by absorbing energy fiw (w > 0) and momentum fiq. A particle
with momentum 7p below the Fermi surface (p < kp) is excited to a state of
momentum A(p + q) above the Fermi surface. The result is a particle-hole state
(an exciton) provided that energy conservation is fulfilled (the delta function):

Im I1(9) (q,w) = (W — Wiptq| + wp)

h2¢>  h
h/w = hW|p+q| — hwp = % —+ Eqpcose
Since kp < pcosf < kp, we obtain a region where ImII(?) # 0, and the process of
exciting a particle-hole pair is possible by energy conservation (see Fig.1):

W Hkra _ i Phrg

18
( ) 2m m 2m m

Outside this region the imaginary part of the polarization is zero for w > 0.

5. THE RANDOM PHASE APPROXIMATION

The first and second order diagrams of the proper self-energy 3*(p) of the ho-
mogeneous electron gas (HEG):
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The second diagram contains the ring diagram and is divergent:
i d*q (47e?)?
Z GO%p — o)=L 1100
h/(27r>4L @q)m4 (q)
The remedy is to sum all the single most divergent diagrams at each order. The

summation, including the first order, corresponds to replace the U° line of the first
diagram with the screened interaction

4re?

q% — 4me2I10) (q)

Now the perturbative series is convergent up to second order. At third order new
divergent diagrams appear.

The ring resummation was introduced by Gell-Mann and Brueckner in the per-
turbative evaluation of the correlation energy of the HEG [2]. The evaluation is
reported in the textbook by Fetter and Walecka [1].

The energy per particle in units e?/ag is the Hartree-Fock term plus the (negative)
correlation (for an advanced review see [3])

3a2 3 1—1log?2 log2 3
(19) enee = | =2 — 2214|208 000 007110 + —22 — 2_((3)
w2 6 472

Urpa(q) =

7r? — 6 — T2log 2
2473
The log s term arises from the ring summation, the constant in the second bracket
is —0.0938417. The r4logr, arises from summation of next most divergent terms
of perturbation series.

rslogrs —0.0107s + . ..
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