
THE GENERATING FUNCTIONAL
OF THERMAL CORRELATORS

FOR FERMIONS

NOTES BY LUCA G. MOLINARI

Abstract. Time-ordered thermal correlators and thermal Green functions

may be obtained from generating functionals, which depend on external fields
linearly coupled to the operators that enter the correlators. For Green func-

tions the generator depends on Grassmann fields.

Here the operator approach is used. In another note, a representation of the
generator as a functional integral with coherent states will be given. It has the

great advantage of treating fields and source-fields on an equal footing.

1. Introduction

Consider a many-particle system with Hamiltonian Ĥ, in thermal equilibrium
at inverse temperature β and chemical potential µ. The thermal average of an
operator is

〈Ô〉K =
1

ZK
tr( e−βK̂Ô )(1)

where K̂ = Ĥ − µN̂ and ZK = tr(e−βK̂) is the partition function and Ω =
−(1/β) logZK is the thermodynamic potential. The evolution in imaginary time
of an operator is:

(2) ÔK(τ) = e
1
~ τK̂Ô e−

1
~ τK̂ , 0 ≤ τ ≤ ~β.

Suppose that we are interested in thermal time-ordered correlators of the density,
〈T n̂K(x1) . . . n̂K(xn)〉K , where xj stands for τj and position xj . Such correlators
may be obtained from a generating functional. To this end, the Hamiltonian is
modified by a term that couples the density operators n̂(x) to a fictitious external
field ϕ(x, τ) that depends on τ :

V̂ (τ) =

∫
dx n̂(x)ϕ(x, τ)(3)

In presence of time-dependent sources, the time-evolution is given by a two-

parameter propagator Û (τ, τ ′), that solves the Schrödinger equation [K̂ +

V̂ (τ)]Û (τ, τ ′) = −~∂τ Û (τ, τ ′). In the interaction picture it factors into a source-
free and a residual propagator:

Û (τ, 0) = e−
1
~ τK̂ÛI(τ, 0)(4)
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The latter solves the equation V̂K(τ)ÛI(τ, 0) = −~∂τ ÛI(τ, 0), and can be repre-
sented as a Dyson time-ordered expansion:

UI(τ, 0) = T exp

[
−1

~

∫ τ

0

dτ ′VK(τ ′)

]
= T exp

[
−1

~

∫ τ

0

dτ ′
∫
dx′ n̂K(x′, τ ′)ϕ(x′, τ ′)

]
The system with sources is not in thermal equilibrium. However, it is useful to
introduce a source-dependent partition function that generalizes Gibbs’ static ex-
pression. Setting τ = ~β in (4) and taking the trace:

Z[ϕ] = tr Û (~β, 0) = tr [e−βK̂ÛI(~β, 0)] = ZK〈ÛI(~β, 0)〉K

This is the generating functional of the density correlators:

Z[ϕ] = ZK

〈
T exp

{
− 1

~

∫ ~β

0

dτ

∫
dx n̂K(x, τ)ϕ(x, τ)

}〉
K

(5)

The expansion in the source-field gives the thermal correlators i.e. in absence of
the sources (here x = (x, τ)):

Z[ϕ]

ZK
= 1 +

∞∑
r=1

(−1)r

r!~r

∫
dx1 . . . dxr〈T n̂K(x1) . . . n̂K(xr)〉K ϕ(xr) . . . ϕ(x1)

Alternatively, functional derivatives of Z[ϕ] in the source-field give correlators in
presence of sources (which may be put to zero in the end). For example,

~2 δ2Z[ϕ]

δϕ(x)δϕ(x′)
= ZK〈T U (~β, 0)n̂(x)n̂(x′)〉K = Z[ϕ]〈T n̂(x)n̂(x′)〉ϕ

where we define the average in presence of the sources as:

〈T n̂(x1)...n̂(xn)〉ϕ =
〈T U (~β, 0)n̂(x1)...n̂(xn)〉K

〈U (~β, 0)〉K
(6)

=(−~)n
1

Z[ϕ]

δnZ[ϕ]

δϕ(x1)...δϕ(xn)

The thermal correlator is:

〈T n̂(x1)...n̂(xn)〉K = (−~)n
1

Z[ϕ]

δnZ[ϕ]

δϕ(x1)...δϕ(xn)

∣∣∣
ϕ=0

(7)

2. Green functions

Since field operators are a basis for operators, the generating functional of their
thermal correlators is of special interest. Such correlators are named Green func-
tions. In absence of sources (thermal average):

(−1)rG (x1 . . . xr; y1 . . . ys) = 〈T ψ̂K(x1) . . . ψ̂K(xr)ψ̂
†
K(ys) . . . ψ̂

†
K(y1)〉K

Note the ordering of space-spin and time arguments. They are obtained from a
generating functional with two independent Grassmann sources:

Z[η, η] = ZK

〈
T exp

{
−
∫
dx [η(x)ψ̂K(x) + ψ̂†K(x)η(x)]

}〉
K

(8)
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In evaluating derivatives within a T -ordering, the Grassmann derivatives and the
field operators exactly anticommute:

δ

δη(x1)
. . .

δ

δη(xr)

δ

δη(ys)
. . .

δ

δη(y1)

〈
T e−

∫
dx [η(x)ψ̂(x)+ψ̂†(x)η(x)]

〉
K

=
〈
T δ

δη(x1)
. . .

δ

δη(xr)
e−

∫
dx η(x)ψ̂(x) δ

δη(ys)
. . .

δ

δη(y1)
e−

∫
dx ψ̂†(x)η(x)

〉
K

Now, the leftmost derivative δ/δη̄(x1) is anticommuted with the next r− 1 deriva-

tives. Its action on the source replaces it with the operator −ψ̂(x1) which is anti-
commuted back to the left with the same number of sign changes. This is done for

all derivatives in η̄(xj). The derivatives δ/δη(xj) exp[−
∫
dxψ̂†(x)η(x)] give factors

+ψ̂†(xj). The result is:

= (−1)r
〈
T ψ̂(x1) . . . ψ̂(xr)e

−
∫
dx η(x)ψ̂(x)ψ̂†(ys) . . . ψ̂

†(y1)e−
∫
dx ψ̂†(x)η(x)

〉
K

= (−1)r
〈
T UI(~β, 0)ψ̂(x1) . . . ψ̂(xr)ψ̂

†(ys) . . . ψ̂
†(y1)

〉
K

If sources are not put to zero, a correlator with sources is obtained:

(−1)r

Z[η, η]

δ

δη(x1)
. . .

δ

δη(xr)

δ

δη(ys)
. . .

δ

δη(y1)
Z[η, η]

=
〈T ÛI(~β, 0)ψ̂K(x1) . . . ψ̂K(xr)ψ̂

†
K(ys) . . . ψ̂

†
K(y1)〉K

〈ÛI(~β, 0)〉K
= 〈T ψ̂(x1) . . . ψ̂(xr)ψ̂

†(ys) . . . ψ̂
†(y1)〉η,η(9)

The factor Z[η̄, η]−1 normalizes the measure in presence of the sources. Now sources
may be turned off and:

G (x1 . . . xr, y1 . . . ys) =
1

ZK

δr+sZ[η, η]

δη(x1) . . . δη(xr)δη(ys) . . . δη(y1)

∣∣∣
η,η̄=0

(10)

Double derivatives give two-point time-ordered correlators:

G (x, y) = −〈T ψ̂K(x)ψ̂†K(y)〉K =
1

Z[η, η]

δ2Z[η, η]

δη(x)δη(y)

∣∣∣
0

(11)

F (x, y) = −〈T ψK(x)ψK(y)〉K = − 1

Z[η, η]

δ2Z[η, η]

δη(x)δη(y)

∣∣∣
0

(12)

F †(x, y) = −〈T ψ†K(x)ψ†K(y)〉K = −− 1

Z[η, η]

δ2Z[η, η]

δη(x)δη(y)

∣∣∣
0

(13)

The anomalous Green functions F (x, y) and F †(x, y) are non-zero in systems which
do not conserve the number of particles, as the B.C.S. model of superconductivity
or Bogoliubov’s model for superfluidity.

2.1. The classical field. A single functional derivative gives the average of the
Fermi field in presence of the sources, named classical field (a Grassmann field):

ψc`(x) =: 〈ψ̂(x)〉η̄η =
〈T ÛI(~β, 0)ψ̂K(x)〉K
〈ÛI(~β, 0)〉K

= − 1

Z[η, η]

δZ[η, η]

δη(x)
(14)
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Similarly one obtains

ψc`(x) =
δ

δη(x)
logZ[η, η].

If the sources are turned off, the thermal averages of the Fermi fields are time
independent. They may be nonzero in theories where the total number of particles
is not an exact symmetry, as in superfluidity.
Another derivative and anticommutations give:

δψc`(x)

δη(y)
= − 1

Z[η, η]

δ2Z[η, η]

δη(y)δη(x)
+

1

Z2[η, η]

δZ[η, η]

δη(y)

δZ[η, η]

δη̄(x)

= −〈T ψ̂(x)ψ̂†(y)〉ηη̄ + ψc`(x)ψ̄c`(y)

Let’s specify the T -ordering in the numerator of (14):

ψc`(x) =
〈ÛI(~β, τ)e

1
~ τK̂ ψ̂(x)e−

1
~ τK̂ÛI(τ, 0)〉K

〈ÛI(~β, 0)〉K
=
〈ÛI(~β, 0)Û (τ, 0)−1ψ̂(x)Û (τ, 0)〉K

〈ÛI(~β, 0)〉K

The equation of motion of the classical field is governed by K̂+~
∫
dx [η̄(x, τ)ψ̂(x)+

ψ̂†(x)η(x, τ)]. Then:

−~∂ψc`(x)

∂τ
=
〈ÛI(~β, 0)Û (τ, 0)−1[ψ̂(x), K̂]Û (τ, 0)〉K

〈ÛI(~β, 0)〉K
+ ~η(x)

=
〈ÛI(~β, τ)[ψ̂K(x, τ), K̂]ÛI(τ, 0)〉K

〈ÛI(~β, 0)〉K
+ ~η(x)

=
〈T ÛI(~β, 0)[ψ̂K(x), K̂]〉K

〈ÛI(~β, 0)〉K
+ ~η(x)(15)

3. Independent fermions and Wick’s theorem

The equation of motion (15) can be analytically solved for a quadratic Hamil-
tonian. The result can be used to evaluate the generator of Green functions. Let

K̂0 =
∫
dx ψ̂†(x)[h(x)− µ]ψ̂(x). The equation for the classical field is:[

~
∂

∂τ
+ h(x)− µ

]
ψc`(x, τ) = −~η(x, τ)

A functional derivative in η(x′) followed by turn-off of the sources, gives the equa-
tion for the thermal propagator of non-interacting particles:

(16)

[
~
∂

∂τ
+ h(x)− µ

]
G0(x, τ ; x′, τ ′) = −~ δ(x− x′)δ(τ − τ ′)

This Green function is used to solve the equation for the classical field:

ψc`(x) = − δ

δη(x)
logZ[η, η] =

∫
dy G0(x, y)η(y)

A functional integration gives the partition function with sources:

Z0[η, η] = Z0 exp
{
−
∫
dxdy η(x)G0(x, y)η(y)

}
(17)
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Proposition 3.1 (Wick expansion). For independent fermions, the thermal
Green functions of a k creation and k destruction operators factor in two-point
Green functions:

G0(x1 . . . xn; y1 . . . yn) = det{G0(xi, yj)}ij=1...n(18)

Proof. The expansion in the source fields of both sides of (17) is (i = xi, i
′ = yi):∑

r

∑
r′

(−1)r+r
′

r! r′!

∫
d1 . . . dr

∫
d1′ . . . dr′ 〈η1ψ̂1 . . . ηrψ̂rψ̂

†
1′η1′ . . . ψ̂†r′ηr′〉0

=
∑
k

(−1)k

k!

∫
d1d1′ . . . dkdk′ η1G0(1, 1′)η1′ . . . ηkG0(k, k′)ηk′

Terms with unequal numbers of ψ̂ and ψ̂† operators have null expectation. Com-
parison order by order in the sources gives the equality:

1

(k!)2

∫
d1 . . . dk

∫
d1′ . . . dk′ 〈η1ψ̂1 . . . ηkψ̂kψ̂

†
1′η1′ . . . ψ̂†k′ηk′〉0

=
(−1)k

k!

∫
d1d1′ . . . dkdk′η1G0(1, 1′)η1′ . . . ηkG0(k, k′)ηk′

The sources exit the thermal average as η1η1′ . . . ηkηk′ 〈ψ̂1 . . . ψ̂kψ̂
†
1′ . . . ψ̂

†
k′〉0. Equal-

ity follows after total antisymmetrization (sum on weighted permutations) of the
right hand side. �


