
CORRELATORS, MATSUBARA FREQUENCIES, ETC.

LUCA GUIDO MOLINARI

1. “Imaginary time” evolution

In thermal-equilibrium theory it is very convenient to define a fictitious evolution
in a real parameter τ . If K = H − µN , the Heisenberg evolution of an operator is
defined as

OK(τ) = e
1
~ τKOe−

1
~ τK(1)

The evolution is not unitary: OK(τ)† = O†K(−τ).

Exercise 1. Show that, for the simple Hamiltonian K0 =
∑
r(εr − µ)c†rcr, it is

c†r(τ) = e
1
~ (εr−µ)τ c†r cr(τ) = e−

1
~ (εr−µ)τ cr

In particular, with τ = ~β it is cse
−βK = e−β(εs−µ)e−βKcs.

It is simple to obtain the thermal averages for bosons (−) and fermions (+):

〈c†rcs〉0 =
δrs

eβ(εs−µ) ∓ 1
(2)

tr[ρc†rcs] = tr[csρc
†
r] = e−β(εs−µ)tr[ρcsc

†
r], commute or anticommute. The result

follows (this anticipates the derivation of Wick’s theorem in thermal theory). �

Exercise 2. Let A1...Ak denote a product of destruction or creation operators of
any one-particle states. With N =

∑
r c
†
rcr show that eλNAje

−λN = e±λAj with
sign + if Aj creates a particle and sign − if it destroys a particle. Then show that
if [K,N ] = 0 it is:

〈A1...Ak〉K = 0

if the number of creators is not equal to the number of destructors. In particular k
must be even.

1.1. Interaction picture. Suppose that K = K0 + V . We define the interaction
evolution

e−
1
~ τK = e−

1
~ τK0U (τ, 0)

The operators U (τ, τ ′) = U (τ, 0)U (τ ′, 0)−1 have the property of propagators, and
solve the Schrödinger-like equation −~ d

dτU (τ, τ ′) = VK0
(τ)U (τ, τ ′), with formal

solution

U (τ, τ ′) = T exp−1

~

∫ τ

τ ′
dτ ′′VK0(τ ′′)(3)

The T-ordering is defined as the chronological ordering in real time.
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We now obtain a perturbative formula for the gran-canonical potential. With
τ = ~β, we get the useful formula

e−βK = e−βK0U (~β, 0)(4)

The trace gives the partition functions:

Z = Z0〈U (~β, 0)〉0(5)

the log and the Dyson expansion give a perturbative expansion of the gran-canonical
potential:

Ω− Ω0 =− kBT log〈U (~β, 0)〉0(6)

=〈V 〉0 −
kBT

2~2

∫∫ ~β

0

dτ1dτ2〈TδVK0
(τ1)δVK0

(τ2)〉0 + ...

where 〈. . .〉0 is the thermal average with K0.

Exercise 3. If A,B commute under T ordering, show that∫ ~β

0

dτ

∫ ~β

0

dτ ′〈TA(τ)B(τ ′)〉0 = ~β
∫ ~β

0

dτ〈A(τ)B〉0

The formula simplifies the second order term of the perturbative expansion of the
thermodinamic potential (6). A similar reduction is valid to all orders, and was
obtained by Bloch and De Dominicis (1958).

1.2. The reduction formula. In thermal theory there is no analogous of a Gell-
Mann and Low theorem to obtain the reduction formula. The state of a system is
known: it is the Gibbs state.

Let ψ1(τ1)...ψN (τN ) be a set of field operators evolved with K at different values
of τ in the interval (0, ~β). If K = K0 + V :

〈Tψ1(τ1)...ψN (τN )〉K =
〈TU (~β, 0)ψ1(τ1)...ψN (τN )〉K0

〈U (~β, 0)〉K0

(7)

where in the right hand side the operators evolve with K0.

Proof. First, tau-order the operators, up to a factor (−1)p. Write

ψK(τ) = U (τ, 0)−1ψK0
(τ)U (τ, 0)

and use U (τ, 0)U (τ ′, 0)−1 = U (τ, τ ′). Express the Gibbs state in interaction
picture with eqs. (4) and (5). Insert again a T ordering and collect all propagators
into a factor U (~β, 0). It is the analogous of the S matrix in zero-temperature.
Restore the original order of field operators under the T-ordering. This cancels the
permutation sign. �

2. Correlators

We study thermal averages 〈A(τ)B(τ ′)〉 = 1
Z tr[e−βKA(τ)B(τ ′)], with τ−evolution

driven by the gran-canonical Hamiltonian K.
Two simple important properties descend from the cyclic property of the trace and
the fact that τ− evolution commutes with the Gibbs operator:
• the correlator is a function of τ − τ ′:

〈A(τ)B(τ ′)〉 = 〈A(τ − τ ′)B〉(8)
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• the Kubo-Martin-Schwinger (KMS) property:

〈A(τ)B(τ ′)〉 = 〈B(τ ′ + ~β)A(τ)〉(9)

Remark 4. The KMS property characterizes thermal Gibbs states.
Proof: Suppose that a state ρ satisfies KMS: tr[ρA(τ)B(τ ′)] = tr[ρB(τ ′ + ~β)A(τ)]
for any pair of operators and parameters. In particular, if τ = τ ′ = 0 it is tr[ρAB] =
tr[ρB(~β)A]. Then: tr[(Bρ − ρB(~β))A] = 0. This (as a Hilbert-Schmidt inner
product) implies Bρ − ρB(~β) = 0 i.e. [B, ρeβK ] = 0 for all B. Then ρeβK is a
multiple of unity, i.e. it is the Gibbs thermal state. �
(see G. Parisi, Statistical Field Theory).

2.1. Matsubara frequencies. Now consider a τ−ordered correlator

−CT
AB(τ − τ ′) =〈TA(τ)B(τ ′)〉

=θ(τ − τ ′)〈A(τ)B(τ ′)〉 ± θ(τ ′ − τ)〈B(τ ′)A(τ)〉

where the plus occurs if the correlator is among “Bose-type” operators (ex: a
density-density correlator), and the minus occurs if the correlator is among “Fermi-
type” ones (ex: a Fermi Green function).
If we restrict times in 0 ≤ τ, τ ′ ≤ ~β, the correlator CT

AB is a function of τ − τ ′
in the interval [−~β, ~β]. The Fourier basis on such interval are the orthonormal
functions

1√
2~β

e−iωn(τ−τ ′), ωn =
nπ

~β
, n ∈ Z(10)

where ωn are named Matsubara frequencies, with the parity of n.

Proposition 5.

CT
AB(τ − τ ′) = 1

~β
∑

nCAB(iωn)e−iωn(τ−τ ′)

CAB(iωn) =
∫ ~β
0 dσ e+iωnσCT

AB(σ)

where the sum involves even Matsubara frequencies if A and B commute under T
ordering, odd Matsubara frequencies if the operators anticommute under T ordering.

Proof. The coefficient of the Fourier series is CAB(iωn) = 1
2

∫ ~β
−~β dσe

+iωnσCT
AB(σ).

The integral on the negative interval is shifted:

CAB(iωn) = 1
2

∫ ~β

0

dσeiωnσ[CT
AB(σ) + (−1)nCT

AB(σ − ~β)]

For 0 ≤ σ ≤ ~β and the KMS rule: −CT
AB(σ− ~β) = 〈TA(σ− ~β)B〉 = ±〈BA(σ−

~β)〉 = ±〈A(σ)B〉 = ∓CT
AB(σ). Therefore:

CAB(iωn) = 1
2 [1± (−1)n]

∫ ~β

0

dσeiωnσCT
AB(σ)

In n is even, the coefficient is identically zero if A,B anticommute, while if n is
odd the coefficient is zero if A,B commute. Then only even or odd Matsubara
frequencies appear in the sum, according to the statistics of the operators. �
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2.2. Green function of non-interacting particles.
For K0 =

∑
r(εr − µ)c†rcr one obtains the Green function for bosons or fermions;

nr is the BE or FD occupation number.

−G 0
µµ′(xτ,x′τ ′) =

∑
r

〈xµ|r〉〈r|x′µ′〉e− i
~ (εr−µ)(τ−τ ′)[θ(τ − τ ′)(1±nr)± θ(τ ′− τ)nr]

The frequency expansion is evaluated:

G 0
µµ′(xτ,x′τ ′) =

1

~β
∑
n

G 0
µµ′(x,x′, iωn)e−iωn(τ−τ ′)(11)

G 0
µµ′(x,x′, iωn) = −

∑
r

〈xµ|r〉〈r|x′µ′〉(1± nr)
∫ ~β

0

dσe−
i
~ (εr−µ)σ

=
∑
r

〈xµ|r〉〈r|x′µ′〉
iωn − 1

~ (εr − µ)
(12)

In particular, for the ideal gas of non-interacting free bosons or fermions it is:

G 0
µµ′(k, iωn) = δµµ′

1

iωn − 1
~ (εk − µ)

The only difference between bosons and fermions is the parity of the frequency ωn.

2.3. Matsubara sums. Thermal theory involves sums on Matsubara even or odd
frequencies, instead of frequency integrals on the real line. An important sum is
the following one:

Proposition 6.

1

~β
∑
ωn

eiωnη

iωn − 1
~ (ε− µ)

= ∓ 1

eβ(ε−µ) ∓ 1
(13)

Proof. This is a simple proof that avoids methods of complex analysis. For non
interacting particles, the density in x, µ is: 〈nµ(x)〉 =

∑
r |〈xµ|r〉|2n(εr). The same

average can be evaluated with the thermal Green function (12):

〈nµ(x)〉 = ∓G 0
µµ(xτ,xτ+) = ∓ 1

~β
∑
n

eiωnηG 0
µµ(x,x, iωn)

The comparison and the arbitrariness of the functions 〈xµ|r〉 prove the result.
Without the convergence factor the series would logarithmically diverge. �

2.4. An analytic technique. The two functions (related to Bose and Fermi dis-
tributions)

n∓(z) =
1

eβ~z ∓ 1
have simple poles at zn = iωn with n even for n−, and n odd for n+. The residues
are respectively ±1/(~β).
For a meromorphic function f that decays at infinity whose poles {zp} differ from
the poles of n− or n+, consider the integral on a big circle:∮

C

dz

2πi
eηzn∓(z)f(z) = ± 1

~β
∑
n

f(iωn)eiωnη +
∑
p

Res(fn∓, zp)
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The factor exp(ηz) with vanishing η ensures convergence on the half-circle in Rez <
0, while n∓ decays for Rez > 0. Since the integral vanishes for infinite radius, we
obtain the Matsubara sum:

1

~β
∑
n

f(iωn)eiωnη = ∓
∑
p

Res(fn∓, zp)

Eq.(13) results with f(z) = 1/(z − 1
~ (ε− µ)).

Exercise 7. Evaluate the useful thermal series:
1

~β
∑
n

1

iωn − 1
~ (ε− µ)

1

i(ωn − ν)− 1
~ (ε′ − µ)

(14)

1

~β
∑
n

1

(iωn − 1
~ (ε− µ))2

(15)

1

~β
∑
n

eiωnη log

(
iωn −

ε− µ
~

)
(16)

The sum with log requires the keyhole path.
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