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1. Plasma oscillations

In 1930 Rudberg made the first systematic measurements of the energy distribu-
tion of 50-400 eV electrons scattered from the surfaces of a number of metals. He
found peaks which occurred at fixed energy intervals from the peak of elastically
scattered electrons, irrespective of the primary bombarding energy or the scattering
angle.
In 1933 Wood noticed that thin layers of alkali metals turn from reflecting fo trans-
parent when illuminated by light from visible to UV [1].
Ruthemann extended Rudberg’s measurements to electrons transmitted through
thin films of various materials [3], finding energy losses at fixed energy intervals.
Measurements of electron energy losses in vapours of a number of materials con-
firmed the known atomic transitions, but showed no correlation with the energy
losses in the solid state [5].
The loss spectrum is made up of combinations of 15-ev and 7-ev losses, though
the various reported loss values differ considerably. There have been a number of
attempts to explain the origin of the loss lines in aluminum and other materials.
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Figure 1. Energy losses in Aluminum (from [8]). For Al, ~ωpl =
15.8eV assuming 3 free electrons per atom.
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The plasma oscillation theory bt David Bohm and David Pines1 in 1953 [6]
yielded a satisfactory understanding of the loss mechanism. The energy losses
are due to collective excitation of the conduction electrons, the magnitude of the
elementary loss being given by ~ωpl, where

ωpl =

√
4πe2n

m

is the plasma oscillation frequency, n is the density of free electrons in the material.
Note that it does not depend on Planck’s constant. Subsequently, Murray Gell-
Mann and Keith Brueckner showed that the approximation used by Bohm and
Pines (RPA) can be derived from a summation of leading-order chain Feynman
diagrams in a dense electron gas [7].

2. Dielectric function

For a homogeneous system the retarded generalized dielectric function is

εR(k, ω) = 1− v(k)Π?R(k, ω)(1)

In linear response, a perturbation ϕ(x) coupled to the density causes a density
variation

δn(x, t) =

∫
d3k

(2π)3

∫
dω

2π
eik·x−iωt Π?R(k, ω)

εR(k, ω)
ϕ(k, ω)(2)

Irrespective of the form of the external field, the response of the system is enhanced
in the vicinity of zeros of the dielectric function close to the real axis. Such zeros are
associated to collective excitations of the system, such as plasmons for the electron
gas, or zero sound in 3He.
Since ΠR = Π?R/εR, a zero of εR is a pole of ΠR, and poles occur in the lower half
ω−plane. Therefore, if ω1(k) + iω2(k) is a zero of εR then it is always ω2(k) < 0.
If such a zero exists and is simple, ω(k) = ω1(k) + iω2(k), the polarization has
(Laurent) expansion

Πret(k, ω) =
Z(k)

ω − ω(k)
+ analytic term

The pole contribution of the integral is evaluated with the residue theorem for t > 0:

δnpole(x, t) = −i
∫

dk

(2π)3
A(k)eik·x−iω1(k)t−|ω2(k)|t

It is a superposition of waves with dispersion ω = ω1(k), that decay in time with
characteristic time |ω2(k)|−1, with amplitude Z(k)ϕ(k, ω1(k)).
The collective mode is long-lived if |ω2| � ω1. A linear expansion in ω2 of the
complex equation εR(k, ω1 + iω2) = 0 gives two real equations:

1− v(k) Re Π?(k, ω1(k)) = 0(3)

ω2(k) = − ImΠ?R(k, ω)
∂
∂ωReΠ?(k, ω)

∣∣∣
ω=ω1(k)

(4)

For the electron gas, the leading term is ω = ωpl. The density variation is a standing
wave δnpole(x, t) = A(x)e−iωplt.

1D.Pines (1924–2018) obtained his PhD with D.Bohm at Princeton in 1951, with the thesis
“The role of plasma oscillations in electron interactions”.
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Exercise 2.1. Show that the residue is

Z(k) =
1

v(k)

1
∂
∂ω ε

R(k, ω1(k))

2.1. Poles and dielectric function in RPA. We reproduce the evaluations in
[9] in RPA. Eq.(3) is solved in the region

ω >
~q2

2m
+

~kF q
m

where ImΠ(0)(q, ω) = 0 and ω2(q) = 0. At the microscopic scale q > kF , HEG is
no longer a valid description, while it is universal for small q.

0 = 1− v(q)
2

~

∫
dp

(2π)3
θ(kF − p)

2(ω|p+q| − ωp)

ω2 − (ω|p+q| − ωp)2

With kF > p it is ω > (ω|p+q| − ωp) in the region. We expand in geometric series:

0 = 1− v(q)
4

~ω2

∫
dp

(2π)3
θ(kF − p)

[
(ω|p+q| − ωp) +

(ω|p+q| − ωp)3

ω2
+ . . .

]
= 1− v(q)

4

~ω2

∫
dp

(2π)3
θ(kF − p)

[
~q2

2m
+

~q · p
m

+ +
1

ω2

(
~q2

2m
+

~q · p
m

)3

+ . . .

]
Integrals with odd powers of (p · q) vanish by parity. We confine to the first two
terms in q. The leading integral is the volume of the Fermi sphere. 4

3πk
3
F /(2π)3 =

n/2, where n is the uniform density:

0 = 1− v(q)
4

~ω2

[
~q2

2m

n

2
+

3

ω2

~q2

2m

(
~
m

)2

qiqj

∫
dp

(2π)3
θ(kF − p)pipj + . . .

]

= 1− v(q)
n

ω2

q2

m

[
1 +

2

n

1

ω2

~2q2

m2

4π

(2π)3
k5F
5

+ . . .

]
Note the disappearance of ~ in the leading term.
• The Coulomb potential is special for the cancellation of q2 in the leading term.
The result is:

ω(q) = ωpl +
3

10

v2F
ωpl

q2 + . . .(5)

The RPA expression of the dielectric function at small q is:

εRPA(q, ω) = 1−
ω2
pl

ω2

[
1 +

3

5

v2F
ω2
q2 + . . .

]
• Zero sound in 3He (see [9]). The potential is short ranged and radial. For small
q: v(q) =

∫
dxv(x)e−iq·x ≈ v0[1− 1

6a
2q2 + ...] where a2 =

∫
dxv(r)r2/v0 measures

the range of the potential. The equation ε = 0 at leading term now is:

0 = 1− v0
n

m

q2

ω2

The equation has solution if v0 > 0 (repulsive potential) and the dispersion relation

is wave-like: ω(q) = (
√
v0n/m)q. It is necessary, for the density wave to propagate

that its velocity is
√
v0n/m > vF .
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3. Screening in HEG

An impurity with charge Ze is placed in x = 0 in the HEG. The perturbation
is V̂ = −Ze2

∫
dxn̂(x)/|x|. The electrons respond to the perturbation and screen

the charge. We look at the equilibrium density in presence of the charge. The field
ϕ(k, ω) = −Z(4πe2/k2)2πδ(ω) is inserted in eq.(2):

δn(x) = −Z
∫

d3k

(2π)3
eik·x

4πe2Π?R(k, 0)

k2 − 4πe2Π?R(k, 0)
(6)

In HEG the polarization depends on k. The angular integrals are done first:

δn(r) = −2πZ

∫ ∞
0

k2dk

(2π)3
4πe2Π?R(k, 0)

k2 − 4πe2Π?R(k, 0)

eikr − e−ikr

ikr

= − Z

4π2ir

∫ +∞

−∞
kdk

4πe2Π?R(k, 0)

k2 − 4πe2Π?R(k, 0)
eikr

In RPA, the static limit of the Lindhard function is:

Π(0)(k, 0) = −mkF
π2~2

g

(
k

kF

)

δn(r)RPA =
Z

4π2ir

∫ +∞

−∞
kdk

k2TFg(k/kF )

k2 + k2TFg(k/kF )
eikr

For “large” r the phase rapidly oscillates, and one expects that the main contribu-
tion of the integral arises for small k. The drastic simplification is to approximate
g(k/kF ) = g(0) = 1. This is the Thomas-Fermi approximation. The integral is
easily calculated:

δn(r)TF ≈
Z

4π2ir

∫ +∞

−∞
kdk

k2TF
k2 + k2TF

e−ikr =
Z

2π
kTF

e−kTFr

r

The screening is very efficient and occurs on a scale of few k−1F . The exponential
decay is not correct, albeit a good approximation in realistic situation. The function
g has singular derivative in k = 2kF . For large r a more accurate evaluation gives:

δn(r)RPA ≈ Z
C

r3
cos(2kF r)

with a constant C (see [9]). The impurity is surrounded by “Friedel oscillations”,
i.e. regions at regular distances of decaying negative and positive charge densities.
They were predicted by Friedel in 1952. (see Crommie, M., Lutz, C. and Eigler,
D. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527
(1993).)

3.1. Dielectric function of HEG. In linear response, the variation of the electron
charge density (the induced charge density) in response to the perturbation caused
by the electrostatic potential of an external charge density ρext(x, t) is:

−eδn(x) =
e2

~

∫
d4x
′Dret(x, x′)

∫
d4x
′′ δ(t

′ − t′′)
|x′ − x′′|

ρext(x′′)

If the unperturbed electron system is invariant for space translations, the retarded
function depends on x− x′. In Fourier space, the induced charge is:

δρind(k, ω) = Πret(k, ω)
4πe2

k2
ρext(k, ω)
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The Maxwell equation divE = 4π(ρext + ρind) now is:

ik ·E(k, ω) =4π

[
1 + Πret(k, ω)

4πe2

k2

]
ρext(k, ω)

=4π
1

1− v(k)Π?ret(k, ω)
ρext(k, ω)

=4π
1

εret(k, ω)
ρext(k, ω)

This is compared with the Maxwell equation ik ·D(k, ω) = 4πρext(k, ω).
Simple approximate expressions for the dielectric functions [10, 12] are:

εTF (q) = 1 +
q2TF

q2

(
q2TF =

6πe2n0
EF

)
(Thomas-Fermi)(7)

εretRPA(q, ω) = 1− 4πe2

q2
Π(0)ret(q, ω) (Lindhard)(8)
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