PLASMA OSCILLATIONS AND SCREENING IN HEG

L. G. MOLINARI

1. PLASMA OSCILLATIONS

In 1930 Rudberg made the first systematic measurements of the energy distribu-
tion of 50-400 eV electrons scattered from the surfaces of a number of metals. He
found peaks which occurred at fixed energy intervals from the peak of elastically
scattered electrons, irrespective of the primary bombarding energy or the scattering
angle.

In 1933 Wood noticed that thin layers of alkali metals turn from reflecting fo trans-
parent when illuminated by light from visible to UV [1].

Ruthemann extended Rudberg’s measurements to electrons transmitted through
thin films of various materials [3], finding energy losses at fixed energy intervals.
Measurements of electron energy losses in vapours of a number of materials con-
firmed the known atomic transitions, but showed no correlation with the energy
losses in the solid state [5].

The loss spectrum is made up of combinations of 15-ev and 7-ev losses, though
the various reported loss values differ considerably. There have been a number of
attempts to explain the origin of the loss lines in aluminum and other materials.
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FIGURE 1. Energy losses in Aluminum (from [8]). For Al, fw,; =
15.8eV assuming 3 free electrons per atom.
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The plasma oscillation theory bt David Bohm and David Pines' in 1953 [6]
yielded a satisfactory understanding of the loss mechanism. The energy losses
are due to collective excitation of the conduction electrons, the magnitude of the
elementary loss being given by fw,;, where

4me?n

Wyl =
P m

is the plasma oscillation frequency, n is the density of free electrons in the material.
Note that it does not depend on Planck’s constant. Subsequently, Murray Gell-
Mann and Keith Brueckner showed that the approximation used by Bohm and
Pines (RPA) can be derived from a summation of leading-order chain Feynman
diagrams in a dense electron gas [7].

2. DIELECTRIC FUNCTION

For a homogeneous system the retarded generalized dielectric function is
(1) Rk, w) = 1 - ol (k, w)

In linear response, a perturbation ¢(z) coupled to the density causes a density
variation
3 *R

(2) on(x,t) = /ﬂ d—weik'x_i“tww(k, w)

(2m)3 ) 27 eR(k,w)
Irrespective of the form of the external field, the response of the system is enhanced
in the vicinity of zeros of the dielectric function close to the real axis. Such zeros are
associated to collective excitations of the system, such as plasmons for the electron
gas, or zero sound in 3He.
Since IIR = II*R /eR | a zero of € is a pole of IIR, and poles occur in the lower half
w—plane. Therefore, if w (k) + iwg (k) is a zero of €N then it is always wa(k) < 0.
If such a zero exists and is simple, w(k) = wy(k) + iws(k), the polarization has
(Laurent) expansion

Z(k
Ik, w) = w—(w()k) + analytic term
The pole contribution of the integral is evaluated with the residue theorem for ¢ > 0:
. dk ik-x—iw; (k)t—|wa(k
IMNpote(X,t) = —z/ (27T)3A(k)e 1)t —lwa ()t
It is a superposition of waves with dispersion w = wq(k), that decay in time with
characteristic time |wo (k)| ™!, with amplitude Z(k)p(k,w; (k)).
The collective mode is long-lived if |ws| <« wi. A linear expansion in wo of the
complex equation €R(k,w; + iws) = 0 gives two real equations:
(3) 1—ov(k)Rell*(k,wi(k)) =0
ImIT*R(k, w)
L Rell* (k, w) lw=w: (k)
For the electron gas, the leading term is w = wy;. The density variation is a standing
wave dnpore(X,t) = A(x)e wrt,

(4) wa(k) = —

1D Pines (1924-2018) obtained his PhD with D.Bohm at Princeton in 1951, with the thesis
“The role of plasma oscillations in electron interactions”.
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Exercise 2.1. Show that the residue is
1 1
v(k) 2 el (k,wi (k))

Z(k) =
dw
2.1. Poles and dielectric function in RPA. We reproduce the evaluations in
[9] in RPA. Eq.(3) is solved in the region

hq®>  hkpq

>7
2+m

where ImIT(®)(¢,w) = 0 and wz(q) = 0. At the microscopic scale ¢ > kp, HEG is
no longer a valid description, while it is universal for small q.

0=1-vta [ e n e

With kp > p it is w > (Wp4+q — Wp) in the region. We expand in geometric series:

0=1-v@ity [ o 0(kr ) [yt~ + 2t ]

(2r)? %
4 dp hq®> | hq-p 1 (h¢*  hq-p
:1‘”@)@/(2@39(’”‘@ T tteEan T )

Integrals with odd powers of (p - q) vanish by parity. We confine to the first two
terms in ¢. The leading integral is the volume of the Fermi sphere. §wk% /(27)3 =
n/2, where n is the uniform density:

4 [hq2 n 3 hq? ( h

2
dp
—1-v(q)—s | LD Y g | 20(kp — p)pip; + ...
0 U(q)hoﬂ 2m 2 w?2m m> qu/(2ﬂ_)3 (ke = p)pip; +

nq[1 2 1 h%¢* 4m k% ]

=1-v(q)

w? nw? m2 (2r)3 5
Note the disappearance of & in the leading term.

e The Coulomb potential is special for the cancellation of ¢? in the leading term.
The result is:

_ 3 vp o
5) ) =+ Tyt

The RPA expression of the dielectric function at small q is:

2

3 v
erpPA(q, w) = *UT 1+ =-L£4

5w +...

e Zero sound in 3He (see [9]). The potential is short ranged and radial. For small
q: v(q) = [dxv(z)e 9 ~ yo[l — $a*q® + ...] where a® = [ dxv(r)r? /vy measures
the range of the potential. The equation ¢ = 0 at leading term now is:
2
0=1-vy—L
mw
The equation has solution if vy > 0 (repulsive potential) and the dispersion relation
is wave-like: w(q) = (y/von/m)q. It is necessary, for the density wave to propagate

that its velocity is y/von/m > vp.



4 L. G. MOLINARI

3. SCREENING IN HEG

An impurity with charge Ze is placed in x = 0 in the HEG. The perturbation
is V = —Ze? [ dxn(x)/|x|. The electrons respond to the perturbation and screen
the charge. We look at the equilibrium density in presence of the charge. The field
o(k,w) = —Z(4me? [k?)2md(w) is inserted in eq.(2):

3k, 4me?T*R (k, 0)
5 A ik-x )
(6) n(x) / @3¢ k2 — 4ne2I*R(k, 0)

In HEG the polarization depends on k. The angular integrals are done first:
0o k2dk 4 QH*R k ikr _ _—ikr
n(r) = 727rZ/ e (k,0) e , ¢
o (2m)3 k? — 4mwe?II*R(k, 0) ikr
z [t 4’ IR (k,0) 40
_ . / kdk e ( ? ) elk’l
d2ir k? — 4we?II*R(k, 0)
In RPA, the static limit of the Lindhard function is:

mkp k
O (k,0) = ~ 3729 (kF>

— 00

L /+OO kdk k?l—Fg(k/kF) eik’r'
dr2ir J_ k% + k2cg(k/kp)

For “large” r the phase rapidly oscillates, and one expects that the main contribu-
tion of the integral arises for small k. The drastic simplification is to approximate
g(k/kr) = g(0) = 1. This is the Thomas-Fermi approximation. The integral is
easily calculated:

VA +o00 k‘2 ) 7
) N — kdk —F __e=ikr — Z
n(r)re 47r2i7’/ k2 +k%Fe o TPy

on(r)rra =

e—k"rFT'

— 00
The screening is very efficient and occurs on a scale of few k;l. The exponential
decay is not correct, albeit a good approximation in realistic situation. The function
g has singular derivative in k = 2kp. For large r a more accurate evaluation gives:

C
on(r)rpa ~ ZT—3 cos(2kpr)

with a constant C' (see [9]). The impurity is surrounded by “Friedel oscillations”,
i.e. regions at regular distances of decaying negative and positive charge densities.
They were predicted by Friedel in 1952. (see Crommie, M., Lutz, C. and Eigler,
D. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524-527
(1993).)

3.1. Dielectric function of HEG. In linear response, the variation of the electron
charge density (the induced charge density) in response to the perturbation caused
by the electrostatic potential of an external charge density p®**(x,t) is:

2 / "
e ot —t")
—edn(r) = — d :C/Dret T x/ d x//i ext x//
@) =G [ D) [ da e
If the unperturbed electron system is invariant for space translations, the retarded
function depends on x — z’. In Fourier space, the induced charge is:

dme?
K2

(5pind(k, OJ) — Hret(k, w) pext(k’ w)
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The Maxwell equation divE = 47 (p°*t + pi"?) now is:

: ret 47T€2 ext
ik - E(k,w) =47 |1 + I (k,w) | P (k,w)
=4 ! “rt(k, w)
T etk W)
Pt (k,w)

=T eret (k7 w)
This is compared with the Maxwell equation ik - D(k,w) = 47p®(k,w).
Simple approximate expressions for the dielectric functions [10, 12] are:

2 6 2
(7) err(q) =1+ qTTF Grp = 2re o (Thomas-Fermi)
q Er
4 2
(8)  fpalgw)=1— — 1O (g w) (Lindhard)
q
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