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1. LINEAR RESPONSE

To investigate the properties of a system, one has to interact with it. If the
interaction is weak, information about unperturbed properties may be gathered.
In the linear regime, a measurement of an observable gives the deviation from the
equilibrium value that is proportional to the perturbing field. The proportionality
is through a response function that is a property of the unperturbed system (such
as conductivity, dielectric function, magnetic susceptibility, ... ).

The theory of linear response provides an expression for such functions.

Let H be the Hamiltonian of the system under investigation. The interaction
with an external field gives a time-dependent Hamiltonian

Ht)=H+V({t), V({)=0fort<0

The state at ¢t < 0 is the ground state |Ep) of H. For ¢t > 0 the state is |U(¢)) =
U(t,0)|Eo) = e~ #TU;(t,0)|Ey). An observable O has mean value

(L(B)|O1L(t)) = (EolUs(t,0)T O (1)Ur(t, 0)| Eo)

1t .
Ur(t,0) :Texp,—/ dt'Vy (')
'LFL 0

In the linear regime we only keep terms linear in V', then:

(IO (0) ~ (5101 = - [t (o] On(t). Vi )] o

The left-hand-side is the measured variation JO(t) induced by the perturbation. In
the right-hand side, we exploit V'(t) = 0 for ¢ < 0, to rewrite the result.
This is the simple general formula for linear response (Ryogo Kubo, 1957):

1 [T
(1) 60(1) / dt'o(t — t')(Eo| [Om(t), Va(t')] | Eo)

The theta function enforces causality: the observed effect at time ¢ only depends
on the perturbation at earlier times.
To identify a response function, we consider two important cases.
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Perturbation coupled to the density. V(t) = [ dxn(x)p(x,t), where 7i(x) is
the density of particles of the system and p(x ) is an external field that is zero for
t < 0. The coupling to the density is appropriate to evaluating the variation of the
density (we omit the specification H for the Heisenberg evolution):

o[t
nloct) = [t [ axole ) (Eol o ), A< )] | En) ol )
The response function is the retarded correlator:

(2) /derEta:x)( "
(3) Dret(ﬂi a') = 0(t — t'){Eo| [i(x), a(a")] | Eo)

If the system is invariant for space-time translations, the correlator depends on
x — 2, and eq.(2) is a convolution integral. In Fourier space the Fourier modes
decouple and respond independently:

L et (k) (k)

(4) on(k) = 7

Exercise 1.1. Show that I (k) = I (—k), TR (k)* = TIR(—k).

Perturbation coupled to the current. For particles with charge ¢, the Hamil-
tonian H minimally coupled to a vector field is:

2
2m /dxn VA (x,1)

with jiu(%) = 315 3, [(Ok1]) (¥)¢s (%) — ¥ (x)(0k1]) (x)] (density current).

The charged current density is the vector operator J(x,t) = ¢j(x) — %ﬁ(x)A(x, t).
For ¢t < 0 there is no current. For ¢ > 0, in linear response it is (equal indices are
summed):

(5) H—f/dXJ Alx, 1)

2
(6) Jj(x) = —L<Eoln( )| Eo)Aj(x) — —/d o DS, a") Ay ()
@ iDj(,a') = 0(t = ¥){Eo| [j; (), ju(a")] | o)
In a homogeneous system, with uniform density n:

2 2

L D) At

(8) Ji(k) = | =nd, -

If the vector potential describes an electric field, E(k,w) = %‘"A(k7w), then the
induced current density is
e 2
Jj(k) = oju(k)Er(k),  ojk(k) = —-"—ndjy — ——Diju(k)
ojk is the conductivity tensor. In the textbook by Mahan [4] it is evaluated in a
model of independent electrons in a medium of randomly placed potential scatterers.
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2. THE LEHMANN REPRESENTATION

The retarded correlators that appear in Linear Response can be evaluated from
time-ordered correlators via the Lehmann representation in frequency space.
Let us consider the correlators of two observables A and B that evolve in time
according to a time-independent Hamiltonian with eigenstates H|E,) = E,|E,)
(|Ep) is the ground state). The correlators are functions of ¢ — ¢/

(9) iC5(t — ') =(Eo|[A(t), B(t)]|Eo)6(t —t')
(10) iChp(t —t') =(Eo|TOA()S B(t')| Eo)

=(Eo| TA(t) B(')|Eo) — (Eo|A|Eo)(Eo|B| Eo)

The operators A(t) and B(t) commute in the T ordering.

In frequency space the correlators have the following Lehmann representations:

(11) | orety () = /mdwaAB(w') CZB(w)—/mdw' Can(W)

] . .
oo w—w 41 oo w — w' 4 iy sign w’

with the spectral function

(12)  Cap(w) =) [AOan05(w — Euzl) — By Ap od(w + Zupth )]
n>0

and matrix elements Ay, = (Ep|A|Ey,) etc.

Proof. Insertion of the completeness ) - |Ey)(Ey| in the retarded correlator (9)
and the action of the time-evolution on the eigenstates makes time dependence
explicit:

IO (t— ) = 0t — )Y [Agu By ge™ K En=Po0=) _ By A gk (P Po) =0

Note that the term n = 0 cancels in the sum. The Fourier representation of the
Heaviside function is now used:

oo g —iw(t—t")
Ot —t) =1 / —wei,
oo 2T wHin
After shifts of the variable w one obtains the Fourier integral

re +Oodw71w re
Cy(e—t) = [ Sre o w)

AO,an,O _ BO,nAn,O
w— EngEo +in w4+ EngEo +in

— 00

(13) Chbw) =)

n>0

Similarly, insertion of the completeness in the time-ordered correlator (10) gives:
iOTp(t —1) =6(t — )3 Ag By pe b F0)e=)
> L »
+0(t' - t)ZnZOBO,nAn,OB’i(E" Fo)t=t) — Ag0Bo,0

The term n = 0 in the sum cancels the term Ag By (this is the reason for
considering the time-ordered correlator of fluctuations 64 = A — Apg. We could as
well consider [0A(t),0B(t)] without any change in eq.(9)).
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The insertion of the Fourier integrals of the Heaviside functions, and shifts in w
give the expression

AonBno BonAno
CT (0 = ;nn, _ ;nAn,
AB( ) Zn>0 W*@‘FZU w+@7in

The Lehmann expressions are obtained, with the same spectral function. ([l

Remark 2.1. Since E,, — Ey > 0, the two delta functions in the spectral function
(13) are mutually exclusive.

The poles of a retarded correlator only occur in Im w < 0.

The poles w, of a time-ordered correlator have Im w, with opposite sign of Re wy,.

2.1. Kramers-Kronig relations.

(14) Re C'5% (w) :][

2 du' Re O ()

T w—w

0 dw' Tm O (w')
T Ww—-w
(15) Im O (w) = ,]l
Proof. The retarded correlator is analytic in Im w > 0. For w real consider the
closed contour « given by the segment [—R, R] closed by a half-circle of radius R
in the upper half-plane. The following integral is zero:
j{ do' CTpW')
¥

2mi W — w + in
If RC%(Re') vanishes for large R, we obtain:
oo [T OB [ OB L

y ! y = y /!
oo 2MiW —w N oo 2T W —w

We used the Plemelj - Sokhotski formula

1 P
16 = ind(z —
(16) = T Fima )
Separation of real and imaginary parts gives the results. (I

2.2. Lehmann representation with translation invariance.
The relation beween retarded and time-ordered correlators is more explicit for local
operators if H is invariant for space translations, [H,P] = 0. The eigenstates of
H and P are now |En k, k), with eigenvalues E,, (k) and ik. We assume that the
ground state has zero momentum: P|FEp) = 0.

Consider the operators n(x) and 7A(y). With the operator identity 7(x) =
6*%"'??1(0)6%"'?, the matrix element is

(Bol(x)| Buic, k) = (Eo|(0)| By, k)e'™
Then, the spectral function of the density-density correlator is:
Dix —y,w) = Y ™D [[(Boli(0)| B, K) 8w — Z209=E0)
n>0,k

(Bl 2(0)| Ense, k) 25w + E2H0=E0)]
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‘We read the Fourier transform
En(k)—E
D(,w) = V3 [|(Eoln(0) | Enk, k) 5w — L20=E0)

n>0

— [(Eo|(0) | B, k)0 (w + E=L0=E0 )|

The notable facts are that the spectral function is real and has the same sign of w.
The correlators in momentum space have Lehmann representations

+oo D(k. o'
(17) Drt(k, w) = / dw’<7;w),
0 w—w +1n
+oo D(k. o'
(18) DT (k,w) = / ' (k')
oo w — w' 4 1 sign w’

The Plemelj - Sokhotski formula (16) and separation of real and imaginary parts,
give the useful relations:

(19) Re D™ (k,w) = Re D" (k,w’)
(20) Im D" (k,w) = ImD" (k,w) sign w

2.3. The retarded polarization. The time ordered density-density correlator is,
by construction, proportional to the total polarization:

DT (x,y) = hll(z,y)

In analogy, one defines the retarded polarization: AIl"(x,y) = D™ (x,y). It is:
(21) Rell"*(k,w) = Rell(k,w), ImII"*(k,w)=ImII(k,w)signw
Define the retarded proper polarization:

I (k,w) = Re IT* (k,w) + ilm IT* (k, w)signw
Exercise 2.2. Show that

(22) ew) = = f(k)r([k% @)

The denominator is the retarded generalized dielectric function €*(k,w).
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