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1. Linear Response

To investigate the properties of a system, one has to interact with it. If the
interaction is weak, information about unperturbed properties may be gathered.
In the linear regime, a measurement of an observable gives the deviation from the
equilibrium value that is proportional to the perturbing field. The proportionality
is through a response function that is a property of the unperturbed system (such
as conductivity, dielectric function, magnetic susceptibility, ... ).
The theory of linear response provides an expression for such functions.

Let Ĥ be the Hamiltonian of the system under investigation. The interaction
with an external field gives a time-dependent Hamiltonian

Ĥ(t) = Ĥ + V̂ (t), V̂ (t) = 0 for t < 0

The state at t ≤ 0 is the ground state |E0〉 of H. For t > 0 the state is |Ψ(t)〉 =

Û(t, 0)|E0〉 = e−
i
~ ĤtÛI(t, 0)|E0〉. An observable Ô has mean value

〈Ψ(t)|Ô|Ψ(t)〉 = 〈E0|ÛI(t, 0)†ÔH(t)ÛI(t, 0)|E0〉

ÛI(t, 0) = T exp
1

i~

∫ t

0

dt′V̂H(t′)

In the linear regime we only keep terms linear in V , then:

〈Ψ(t)|Ô|Ψ(t)〉 − 〈E0|Ô|E0〉 =
1

i~

∫ t

0

dt′〈E0| [ÔH(t), V̂H(t′)] |E0〉

The left-hand-side is the measured variation δO(t) induced by the perturbation. In
the right-hand side, we exploit V (t) = 0 for t < 0, to rewrite the result.
This is the simple general formula for linear response (Ryogo Kubo, 1957):

δO(t) =
1

i~

∫ +∞

−∞
dt′θ(t− t′)〈E0| [OH(t), VH(t′)] |E0〉(1)

The theta function enforces causality: the observed effect at time t only depends
on the perturbation at earlier times.
To identify a response function, we consider two important cases.
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Perturbation coupled to the density. V̂ (t) =
∫
dx n̂(x)ϕ(x, t), where n̂(x) is

the density of particles of the system and ϕ(x) is an external field that is zero for
t < 0. The coupling to the density is appropriate to evaluating the variation of the
density (we omit the specification H for the Heisenberg evolution):

δn(x, t) =
1

i~

∫ +∞

−∞
dt′
∫
dx′θ(t− t′)〈E0| [n̂(x, t), n̂(x′, t′)] |E0〉ϕ(x′, t′)

The response function is the retarded correlator:

δn(x) =
1

~

∫
d4x
′Dret(x, x′)ϕ(x′)(2)

iDret(x, x′) = θ(t− t′)〈E0| [n̂(x), n̂(x′)] |E0〉(3)

If the system is invariant for space-time translations, the correlator depends on
x − x′, and eq.(2) is a convolution integral. In Fourier space the Fourier modes
decouple and respond independently:

δn(k) =
1

~
Dret(k)ϕ(k)(4)

Exercise 1.1. Show that ΠT(k) = ΠT(−k), ΠR(k)∗ = ΠR(−k).

Perturbation coupled to the current. For particles with charge q, the Hamil-
tonian H minimally coupled to a vector field is:

Ĥ(t) = Ĥ − q

c

∫
dx ĵ(x)·A(x, t) +

q2

2mc2

∫
dx n̂(x)A2(x, t)(5)

with ĵk(x) = i~
2m

∑
σ[(∂kψ

†
σ)(x)ψσ(x)− ψ†σ(x)(∂kψ

†
σ)(x)] (density current).

The charged current density is the vector operator Ĵ(x, t) = q̂j(x)− q2

mc n̂(x)A(x, t).
For t < 0 there is no current. For t > 0, in linear response it is (equal indices are
summed):

Jj(x) = − q2

mc
〈E0|n(x)|E0〉Aj(x)− q2

~c

∫
d4x
′ Dret

jk (x, x′)Ak(x′)(6)

iDret
jk (x, x′) = θ(t− t′)〈E0| [jj(x), jk(x′)] |E0〉(7)

In a homogeneous system, with uniform density n:

Jj(k) =

[
− q2

mc
nδjk −

q2

~c
Djk(k)

]
Ak(k)(8)

If the vector potential describes an electric field, E(k, ω) = iω
c A(k, ω), then the

induced current density is

Jj(k) = σjk(k)Ek(k), σjk(k) = − q2

imω
nδjk −

q2

i~ω
Djk(k)

σjk is the conductivity tensor. In the textbook by Mahan [4] it is evaluated in a
model of independent electrons in a medium of randomly placed potential scatterers.
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2. The Lehmann representation

The retarded correlators that appear in Linear Response can be evaluated from
time-ordered correlators via the Lehmann representation in frequency space.
Let us consider the correlators of two observables Â and B̂ that evolve in time
according to a time-independent Hamiltonian with eigenstates Ĥ|En〉 = En|En〉
(|E0〉 is the ground state). The correlators are functions of t− t′.

iCret
AB(t− t′) =〈E0|[Â(t), B̂(t′)]|E0〉θ(t− t′)(9)

iCT
AB(t− t′) =〈E0|TδÂ(t)δB̂(t′)|E0〉(10)

=〈E0|TÂ(t)B̂(t′)|E0〉 − 〈E0|Â|E0〉〈E0|B̂|E0〉

The operators Â(t) and B̂(t) commute in the T ordering.

In frequency space the correlators have the following Lehmann representations:

Cret
AB(ω) =

∫ +∞

−∞
dω′

CAB(ω′)

ω − ω′ + iη
, CT

AB(ω) =

∫ +∞

−∞
dω′

CAB(ω′)

ω − ω′ + iη signω′
(11)

with the spectral function

CAB(ω) =
∑
n>0

[
A0nBn0δ(ω − En−E0

~ )−B0,nAn,0δ(ω + En−E0

~ )
]

(12)

and matrix elements A0,n = 〈E0|A|En〉 etc.

Proof. Insertion of the completeness
∑
n≥0|En〉〈En| in the retarded correlator (9)

and the action of the time-evolution on the eigenstates makes time dependence
explicit:

iCret
AB(t− t′) = θ(t− t′)

∑
n
[A0,nBn,0e

− i
~ (En−E0)(t−t′) −B0nAn0e

i
~ (En−E0)(t−t′)]

Note that the term n = 0 cancels in the sum. The Fourier representation of the
Heaviside function is now used:

θ(t− t′) = i

∫ +∞

−∞

dω

2π

e−iω(t−t
′)

ω + iη

After shifts of the variable ω one obtains the Fourier integral

Cret
AB(t− t′) =

∫ +∞

−∞

dω

2π
e−iω(t−t

′)Cret
AB(ω)

Cret
AB(ω) =

∑
n>0

[
A0,nBn,0

ω − En−E0

~ + iη
− B0,nAn,0

ω + En−E0

~ + iη

]
(13)

Similarly, insertion of the completeness in the time-ordered correlator (10) gives:

iCT
AB(t− t′) =θ(t− t′)

∑
n≥0

A0,nBn,0e
− 1

~ (En−E0)(t−t′)

+ θ(t′ − t)
∑

n≥0
B0,nAn,0e

1
~ (En−E0)(t−t′) −A0,0B0,0

The term n = 0 in the sum cancels the term A0,0B0,0 (this is the reason for
considering the time-ordered correlator of fluctuations δA = A−A00. We could as
well consider [δA(t), δB(t)] without any change in eq.(9)).
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The insertion of the Fourier integrals of the Heaviside functions, and shifts in ω
give the expression

CT
AB(ω) =

∑
n>0

[
A0,nBn,0

ω − En−E0

~ + iη
− B0,nAn,0

ω + En−E0

~ − iη

]
The Lehmann expressions are obtained, with the same spectral function. �

Remark 2.1. Since En − E0 > 0, the two delta functions in the spectral function
(13) are mutually exclusive.
The poles of a retarded correlator only occur in Im ω < 0.
The poles ωa of a time-ordered correlator have Im ωa with opposite sign of Re ωa.

2.1. Kramers-Krönig relations.

ReCret
AB(ω) = −

∫ +∞

−∞

dω′

π

ImCret
AB(ω′)

ω′ − ω
(14)

ImCret
AB(ω) = −−

∫ +∞

−∞

dω′

π

ReCret
AB(ω′)

ω′ − ω
(15)

Proof. The retarded correlator is analytic in Im ω > 0. For ω real consider the
closed contour γ given by the segment [−R,R] closed by a half-circle of radius R
in the upper half-plane. The following integral is zero:∮

γ

dω′

2πi

Cret
AB(ω′)

ω′ − ω + iη
= 0

If RCret
AB(Reiθ) vanishes for large R, we obtain:

0 =

∫ +∞

−∞

dω′

2πi

Cret
AB(ω′)

ω′ − ω + iη
= −
∫ +∞

−∞

dω′

2πi

Cret
AB(ω′)

ω′ − ω
− 1

2
Cret
AB(ω)

We used the Plemelj - Sokhotski formula

1

x− y ± iη
=

P

x− y
∓ iπδ(x− y)(16)

Separation of real and imaginary parts gives the results. �

2.2. Lehmann representation with translation invariance.
The relation beween retarded and time-ordered correlators is more explicit for local
operators if Ĥ is invariant for space translations, [H,P] = 0. The eigenstates of

Ĥ and P̂ are now |En,k,k〉, with eigenvalues En(k) and ~k. We assume that the

ground state has zero momentum: P̂|E0〉 = 0.
Consider the operators n̂(x) and n̂(y). With the operator identity n̂(x) =

e−
i
~x·P̂n̂(0)e

i
~x·P̂, the matrix element is

〈E0|n̂(x)|Enk,k〉 = 〈E0|n̂(0)|Enk,k〉eik·x

Then, the spectral function of the density-density correlator is:

D(x− y, ω) =
∑
n>0,k

eik·(x−y)
[
|〈E0|n̂(0)|Enk,k〉|2δ(ω − En(k)−E0

~ )

−|〈E0|n̂(0)|En−k,−k〉|2δ(ω + En(−k)−E0

~ )
]
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We read the Fourier transform

D(k, ω) = V
∑
n>0

[
|〈E0|n(0)|Enk,k〉|2δ(ω − En(k)−E0

~ )

− |〈E0|n(0)|En−k,−k〉|2δ(ω + En(−k)−E0

~ )
]

The notable facts are that the spectral function is real and has the same sign of ω.
The correlators in momentum space have Lehmann representations

Dret(k, ω) =

∫ +∞

−∞
dω′

D(k, ω′)

ω − ω′ + iη
(17)

DT(k, ω) =

∫ +∞

−∞
dω′

D(k, ω′)

ω − ω′ + iη signω′
(18)

The Plemelj - Sokhotski formula (16) and separation of real and imaginary parts,
give the useful relations:

ReDret(k, ω) = ReDT(k, ω′)(19)

ImDret(k, ω) = ImDT(k, ω) signω(20)

2.3. The retarded polarization. The time ordered density-density correlator is,
by construction, proportional to the total polarization:

DT(x, y) = ~Π(x, y)

In analogy, one defines the retarded polarization: ~Πret(x, y) = Dret(x, y). It is:

Re Πret(k, ω) = Re Π(k, ω), Im Πret(k, ω) = Im Π(k, ω) signω(21)

Define the retarded proper polarization:

Π?ret(k, ω) = Re Π?(k, ω) + iIm Π?(k, ω)signω

Exercise 2.2. Show that

Πret(k, ω) =
Π?ret(k, ω)

1− v(k)Π?ret(k, ω)
(22)

The denominator is the retarded generalized dielectric function εret(k, ω).
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