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1. The propagator

In quantum mechanics, the time evolution in Hilbert space H is assigned by
a family of unitary operators (named propagator) |ψ(t)〉 = U(t, t′)|ψ(t′)〉, with the
natural property

U(t, t′)U(t′, t′′) = U(t, t′′)(1)

and strong continuity in both time-arguments1. Note that U(t, t) = 1, U(t, t′)† =
U(t′, t). If θ is a fixed reference time, the following factorization provides the full
propagator: U(t, t′) = U(t, θ)U(t′, θ)†.

A derivative in t of (1) and right multiplication by U(t′′, t) gives

[∂tU(t, t′)]U(t′, t) = [∂tU(t, t′′)]U(t′′, t)

which shows that [∂tU(t, t′)]U(t′, t) is independent of t′. Next, the derivative of
U(t, t′)U(t′, t) = 1 shows that i~[∂tU(t, t′)]U(t′, t) is self-adjoint and has the dimen-
sion of energy. Let’s name the operator H(t) (the Hamiltonian). The Schrödinger
equation follows:

i~∂tU(t, t′) = H(t)U(t, t′)(2)

with initial condition U(t′, t′) = I.
• The time-evolution is stationary if U(t + s, t′ + s) = U(t, t′) for all s, t, t′. The

Hamiltonian is time-independent and U(t, s) = e−
i
~ (t−s)H .

• The time-evolution is periodic with period τ , if U(t + τ, t′ + τ) = U(t, t′) for
all t, t′. The Floquet operator U(τ, 0) and U(t, 0) with 0 ≤ t < τ reconstruct the
whole propagator. The representation U(τ, 0) = exp(−iEτ) defines the self-adjoint
quasi-energy operator E, as important as H in stationary systems.

2. Some operator identities

A system of bosons or fermions is described by the Hamiltonian H = H1 +H2,
where H1 and H2 are the one and two particle operators

H1 =
∑
ab

habc
†
acb, H2 = 1

2

∑
abcd

vabcdc
†
ac
†
bcdcc(3)

An arbitrary one-particle basis is used, with corresponding canonical operators ca
and c†a. The matrix elements are hab = 〈a|h|b〉 and vabcd = 〈ab|v|cd〉 = vbadc
(invariance for exchange of particles). The ground state of H is |gs〉.
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The Heisenberg time-evolution of an operator governed byH isOH(t) = eiHt/~Oe−iHt/~.
It solves the equation of motion

i~
d

dt
OH(t) = eiHt/~[O,H]e−iHt/~.(4)

Let us evaluate [cr, H]. By means of the commutators

[cr, c
†
acb] = δarcb(5)

[cr, c
†
ac
†
bcdcc] = (δrac

†
b ± δrbc

†
a)cdcc(6)

we obtain [cr, H1] =
∑
b hrbcb and [cr, H2] = 1

2

∑
bcd(vrbcd ± vbrcd)c

†
bcdcc. The

indices c and d are exchanged in the second term; next the destruction operators

are exchanged: cccd = ±cdcc. Then [cr, H2] = 1
2

∑
bcd(vrbcd + vbrdc)c

†
bcdcc. Since

〈ab|v|cd〉 = 〈ba|v|dc〉, the final expression is obtained:

(7) [cr, H] =
∑
b

hrbcb +
∑
bcd

vrbcdc
†
bcdcc

The following algebraic identities are useful, and simple to obtain:∑
r

c†r[cr, H] = H1 + 2H2(8)

[c†r, H] = −
∑
a

c†ahar −
∑
abc

vabrcc
†
ac
†
bcc(9)

i~
d

dt
cr(t) =

∑
b

hrbcb(t) +
∑
bcd

vrbcd(c
†
bcdcc)(t)(10)

3. The time-ordered Green function

Let us introduce the symbol T of time-ordering of operators. Its action on a
product of creation/destruction operators of any set of states (we use a letter A),
at different times of Heisenberg evolution with the Hamiltonian H, is to reorder
them with times decreasing from left to right:

TA1(t1) . . . AN (tN ) = (±1)σAσ1
(tσ1

) . . . AσN
(tσN

), tσ1
> · · · > tσN

(11)

σ is the permutation that produces the time-ordered product: +1 for boson statis-
tics, or ±1 for Fermi statistics, according to the number of exchanges in σ being
even or odd.
The definition implies that creation/destruction operators may be permuted under
the symbol of T-ordering, up to a sign:

TA1(t1) . . . AN (tN ) = (±1)σTAσ1(tσ1) . . . AσN
(tσN

)(12)

The action of T on a product of generic operators written in second quantization
and at different times, is defined by linearity.

The 1-particle time-ordered Green function is:

iGrr′(t, t
′) = 〈gs|Tcr(t)c†r′(t

′)|gs〉(13)

If the action of T and the Heisenberg evolution are written explicitly, it is:

iGrr′(t, t
′) = θ(t− t′)e− i

~Egs(t
′−t)〈gs|crU(t− t′)c†r′ |gs〉

± θ(t′ − t)e− i
~Egs(t−t′)〈gs|c†r′U(t′ − t)cr|gs〉
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where + is for bosons, and − for fermions.

The interpretation is simple. If t > t′, the matrix element 〈gs|crU(t − t′)c†r′ |gs〉
is the projetion of the state c†r′ |gs〉 propagated in time t − t′, on the state c†r|gs〉.
States are not normalized: ‖c†r|gs〉‖2 = 〈gs|crc†r|gs〉 = 1± nr. If the normalization
is taken into account and if, for fermions, nr < 1 and nr′ < 1,

|Gr,r′(t, t′)|2 =
|〈gs|crU(t− t′)c†r′ |gs〉|2

(1± nr)(1± nr′)
is the probability that a particle created in a state r′, is observed in a state r after
a time t− t′, indistiguishable from the particles in the ground state.

The time-ordered Green function depends on the difference t− t′ and is discon-
tinuous at t− t′ = 0:

iGr,r′(t
+, t)− iGr,r′(t−, t) =〈gs|cr(t)c†r′(t)∓ c

†
r′(t)cr(t)|gs〉

=〈gs|crc†r′ ∓ c
†
r′cr|gs〉 = 〈r|r′〉

It is advantageous to Fourier transform to frequency space:

Gr,r′(t, t
′) =

∫ +∞

−∞

dω

2π
Gr,r′(ω)e−iω(t−t

′)(14)

With the knowledge of the Green function, the ground-state average of any 1-
particle operator may be evaluated:

〈gs|c†rcs|gs〉 = 〈gs|c†r(t+)cs(t)|gs〉 = 〈gs|Tc†r(t+)cs(t)|gs〉 = ±iGsr(t, t+)

〈O〉 = ±i
∑

rs
OrsGsr(t, t

+)(15)

For example, the ground-state average of the density of particles with spin m is:

nm(x, t) = 〈gs|ψ†m(x)ψmx)|gs〉 = ±iGmm(x, t;x, t+)

= ±i
∫
dω

2π
Gmm(x,x, ω)eiωη(16)

4. Green function of non-interacting fermions

Consider the Hamiltonian of non-interacting particles H0 =
∑
a ~ωac†aca. This

diagonal form results if the operators refer to the eigenstates of the single particle
Hamiltonian hua = ~ωaua. States are ordered in increasing energy, ~ω1 < ~ω2 ≤ ....
For N particles the Fermi energy is that of the highest occupied state εF = ~ωF .

The time evolutions are simple:

ca(t) = e−iωatca, c†a(t) = e−iωatc†a

One evaluates:

iG0
mm′(x, t;x′, t′) =

∑
aa′

〈x,m|a〉〈a|x′,m′〉〈gs|Tca(t)c†a′(t
′)|gs〉

=
∑
a

〈x,m|a〉 e−iωa(t−t′)〈a|x′,m′〉

× [θ(t− t′)θ(ωa − ωF )− θ(t′ − t)θ(ωF − ωa)](17)

≡i
∫
dω

2π
G0
mm′(x,x′, ω)e−iω(t−t

′)
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The identification of the Fourier transform requires the insertion of the Fourier
expansions of the temporal theta functions,

θ(t− t′) = i

∫
dω

2π

e−iω(t−t
′)

ω + iη

After shifts of variables the result is:

G0
mm′(x,x′, ω) =

∑
a

〈xm|a〉〈a|x′m〉
[
θ(ωa − ωF )

ω − ωa + iη
+
θ(ωF − ωa)

ω − ωa − iη

]
(18)

For the ideal gas of fermions |a〉 = |km〉. One finds G0
mm′(k, ω) = δmm′G0(k, ω),

G0(k, ω) =
θ(ωk − ωF )

ω − ωk + iη
+
θ(ωF − ωk)

ω − ωk − iη
(19)

=
1

ω − ωk + iηsign(ωk − ωF )
(20)

where ~ωk = ~2k2/2m.

5. The ground state energy

The operator identity eq.(8) yields an expression for the total energy, due to
Galitskii and Migdal.
First evolve the terms in time:

∑
r c
†
r(t)[cr(t), H] = H1(t)+2H2(t) and use [cr(t), H] =

i~ċr(t). Next take the expectation value on the exact ground state:

〈gs|H1(t)+2H2(t)|gs〉 = i~
∑
r

〈gs|c†r(t)
d

dt
cr(t)|gs〉 = i~ lim

t′→t

∑
r

∂

∂t
〈gs|c†r(t′)cr(t)|gs〉

For a single operator it is 〈gs|O(t)|gs〉 = 〈gs|e+ i
~HtOe−

i
~Ht|gs〉 = 〈gs|O|gs〉:

〈gs|H1 + 2H2|gs〉 = i~ lim
t′→t

∑
r

∂

∂t
〈gs|c†r(t′)cr(t)|gs〉

If t′ ≥ t+ a T-ordering can be introduced in the inner product without any change.
This allows to exchange the operators and obtain:

〈gs|H1 + 2H2|gs〉 = ∓~ lim
t′→t+

∂

∂t

∑
r

Grr(t, t
′)

The equation provides the expectation value of the 2-particle operator H2 in terms
of the 1-particle Green function2. The total energy is EGS = 〈H1〉+ 〈H2〉:

EGS = ± i
2

lim
t′→t+

∑
ab

[
i~δab

∂

∂t
+ hab

]
Gba(t, t′)(21)

In frequency space:

EGS = ± i
2

∑
ab

∫ +∞

−∞

dω

2π
[~ωδab + hab]Gba(ω)eiωη(22)

In the basis of position and spin, and for a potential that does not depend on spin:

EGS = ± i
2

∑
m

∫
d3x

[
i~
∂

∂t
− ~2

2m
∇2

x + U(x)

]
Gmm(xt,x′t′)

∣∣∣
(x′,t′)=(x,t+)

2The single particle average is: 〈H1〉 = ∓i
∑

ab habGba(t, t
+).
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In presence of translation invariance and spin independent interaction, the formula
simplifies to

Egs
V

= ±i (2s+ 1)

2

∫
d3k dω

(2π)4
[~ω + ε(k)]G(k, ω)eiωη

where V is the volume.

6. Equation of motion of the propagator

Let us evaluate

i~
∂

∂t
Grr′(t, t

′) = ~
∂

∂t

[
θ(t− t′)〈cr(t)c†r′(t

′)〉 ± θ(t′ − t)〈c†r′(t
′)cr(t)〉

]
= ~δ(t− t′)〈cr(t)c†r′(t

′)∓ c†r′(t
′)cr(t)〉+ ~〈Tdcr(t)

dt
c†r′(t

′)〉

= ~δ(t− t′)δrr′ − i
∑
b

hrb〈Tcb(t)c†r′(t
′)〉 − i

∑
bcd

vrbcd〈T (c†bcdcc)(t)c
†
r′(t
′)〉

∑
b

[
δrbi~

∂

∂t
− hrb

]
Gbr′(t, t

′) = ~δ(t− t′)δrr′ − i
∑
bcd

vrbcd〈T (c†bcdcc)(t)c
†
r′(t
′)〉

In the last term, the T ordering acts on the triplet as a single operator at time t.
To treat the three operators individually, the ambiguity of equal time is avoided by
adding infinitesimal time shifts that keep memory of the original order:

〈T(c†bcdcc)(t)c
†
r′(t
′)〉 =〈Tc†b(t

++)cd(t
+)cc(t)c

†
r′(t
′)〉

=〈Tcc(t)cd(t+)c†r′(t
′)c†b(t

++)〉

Inside a T product the operators may be permuted, up to a sign. The ++ and +
must be left in place as far as T is present. The matrix element has been written
with creation operators at the right, to comply with the definition of the two-particle
Green function:

i2Gabcd(ta, tb, tc, td) = 〈Tca(ta)cb(tb)c
†
d(td)c

†
c(tc)〉(23)

(note the positions of labels c and d). Because of T−ordering:

Gabcd(ta, tb, tc, td) = ±Gbacd(tb, ta, tc, td) = ±Gabdc(ta, tb, td, tc)(24)

The equation of motion of the propagator is obtained:∑
b

(i~δrb∂t − hrb)Gbr′(t, t′) = ~δrr′δ(t− t′) + i
∑
bcd

vrbcdGcdbr′(t, t
+, t++, t′)(25)

It is the first equation in an infinite hierarchy, obtained by Martin and Schwinger,
where each step involves higher order Green functions.
In the position representation, for spin-independent interactions, the equation is:

(i~∂t − h(x))Gmm′(xt,x′t′) = ~δmm′δ3(x− x′)δ(t− t′)(26)

+i
∑
m′′

∫
d3y v(x,y)Gmm′′m′′m′(xt,yt+,yt++,x′t′)

If the particles do not interact, the equation of motion does not involve the 2-particle
Green function. Let us pause for a while on Green functions of non-interacting
particles.
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7. Independent particles

For non-interacting particles the Green function is a distribution solving

(27) (δabi~∂t − hab)G0
bc(t, t

′) = ~δacδ(t− t′)

The equation does not have a unique solution, as one may add a solution of the
homogeneous problem. In frequency space it is (~ωδab − hab)G0

bc(ω) = ~δac, which
is recognized as the basis-projected equation for the resolvent operator:

(~ω − ĥ) Ĝ0(ω) = ~

with G0
ab(ω) = 〈a|G0(ω)|b〉. The resolvent Ĝ0(ω) = (ω− 1

~ ĥ)−1 exists for ~ω not in

the spectrum of ĥ. By assuming a discrete spectrum for ĥ:

G0
ab(ω) =

∑
j

〈a|j〉〈j|b〉
ω − 1

~εj

To make sense of the Fourier integral for G0
ab(t, t

′) one shifts poles (and cuts) off
the real axis by infinitesimal amounts. This can be done in various ways, leading
to Green functions that differ by solutions of the homogeneous equation. The most
useful ones are the retarded and the time-ordered Green functions.

The retarded Green function The whole spectrum of ĥ is shifted to the lower
half of the ω−plane by an infinitesimal amount:

G0R
ab (ω) =:

∑
j

〈a|j〉〈j|b〉
ω − 1

~εj + iη
(28)

In passing we note that the imaginary part of the diagonal matrix elements give
the weighted density of states:

− 1

π
ImG0R

a,a(ω) =:
∑
j

|〈a|j〉|2δ(ω − 1
~εj)(29)

The trace (which is basis-independent) is the density of states of the Hamiltonian:

− 1

π
Im trG0R(ω) =:

∑
j

δ(ω − 1
~εj)

Consider the inhomogeneous equation [i~δab∂t−hab]fb(t) = ga(t) with unknown
functions fa(t) and assigned sources ga(t). The general solution can be obtained
with the aid of the Green function:

fa(t) = f0a (t) +
1

~

∫
dt′
∑

b
G0
ab(t, t

′)gb(t
′);

where f0a (t) solves the homogeneus equation.
Since the retarded Green function is analytic in the upper half plane, its Fourier

transform to the time variables is zero for t′ > t, by the residue theorem,

G0R
ab (t, t′) =

∫ +∞

−∞

dω

2π
e−iω(t−t

′)GRab(ω)

= − i θ(t− t′)
∑
n

e−iωn(t−t′)〈a|n〉〈n|b〉

= − i θ(t− t′) 〈a|U(t, t′)|b〉
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This feature is of great importance in physics as it expresses causality: the particular
solution

fRa (t) =

∫
dtG0R

ab (t, t′) gb(t
′)

only depends on the values of the source g(t′) at earlier times t′ < t.
In a many body system, the retarded Green function is the expectation value

of the commutator (bosons) or anticommutator (fermions) at unequal times. The
definition holds also for interacting systems:

(30) iGRab(t, t
′) = θ(t− t′) 〈gs|

[
ca(t), c†b(t

′)
]
∓
|gs〉

Exercise 1. Evaluate the retarded Green function for free particles G0R(x, t;x′, t′)
(the result does not depend on statistics).

The time-ordered Green function - fermions. In the time ordered Green
function the Fermi frequency divides the spectrum into a portion that gains a
positive imaginary part and another that gains a negative imaginary correction:

G0T
ab (ω) =:

∑
j

〈a|uj〉〈uj |b〉
ω − 1

~εj + iη sign(εj − εF )
(31)

If states are ordered according to increasing energies, εF is the highest energy
available for N fermions in the ground state.
The Fourier transform to time variables is (in position-spin basis)

iG0T
mm′(x, t;x′, t′) =

∑
j

e−
i
~ εj(t−t

′)〈xm|uj〉〈uj |x′m′〉(32)

× [θ(t− t′)θ(εj − εF )− θ(t′ − t)θ(εF − εj)]
for t > t′ the propagation involves energy states above the Fermi energy (particle
excitations), for t < t′ it involves states below the Fermi energy (hole excitations).


