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In this lecture we deal with the perturbative evaluation of the one-particle Green
function, also known as the propagator because it is proportional to the probability
amplitude for the propagation of a many-body state with one particle created at x,
to a many-body state with a particle being created at x′.
Particles cannot be distinguished, so in principle one cannot follow a particle trajec-
tory: it is a many-body evolution. We shall later consider a revival of the particle
concept as a quasi-particle, a many-body manifestation of a particle.

Let H = H0 + V . We shall always take for granted that:
1) the Gell-Mann & Low theorem applies,
2) H0 and its ground state |E0〉 are suited for the T-ordered Wick theorem.

With the reduction formula, the 1-particle Green function is:

Gmm′(x, x′) =
1

i

〈E0|TSψm(x)ψ†m′(x′)|E0〉
〈E|S|E〉

(1)

The scattering operator is available through the Dyson expansion:

S =T exp
1

i~

∫ +∞

−∞
dt VH0

(t)

=T exp
1

2i~
∑
µµ′νν′

∫ +∞

−∞
dt

∫
dxdy vµµ′νν′(x,y)ψ†µ(xt)ψ†ν(yt)ψν′(yt)ψµ′(xt)

The four operators are at the same time. Since their relative positions are fixed,
the ambiguity of equal times in a T-product is solved by writing:

ψ†µ(xt+++)ψ†ν(yt++)ψν′(yt+)ψµ′(xt)

Now they can be freely permuted inside the T-operator, up to signs.
To gain symmetry and identify events in spacetime, another time variable t′ is

introduced, with a delta function. Define the “bare interaction”:

U0
µµ′νν′(x, x′) = vµµ′νν′(x,x′)δ(t− t′)

where µ and µ′ are the spins of the particle that exits and enters at the vertex
x = (xt), and ν, ν′ the same at the vertex x′. Note the symmetry for exchange of
particles: U0

µµ′νν′(x, x′) = U0
νν′µµ′(x′, x). Finally we write:

S = T exp
1

2i~
∑
µµ′νν′

∫
d4x1d

4x2 U
0
µµ′νν′(x1, x2)ψ†µ(x+1 )ψ†ν(x+2 )ψν′(x2)ψµ′(x1)

The T-expansion of S is inserted in eq.(1). It remains to evaluate a series of time-
ordered ground-state averages of 4k+2 field operators, k = 0, 1, 2, .... Using Wick’s
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theorem, each average is a sum of total contractions, and each total contraction has
a graphical representation: a Feynman diagram.

There is an enormous advantage in dealing with the complicate perturbative
terms through the corresponding Feynman diagrams.

1. The Feynman diagrams of G

Let us begin with the first order term of the numerator of eq.(1):

1

2i~
∑
µµ′νν′

∫
d1d2U0

µµ′νν′(1, 2)〈E0|Tψ†µ(1+)ψ†ν(2+)ψν′(2)ψµ′(1)ψm(x)ψ†m′(x
′)|E0〉

The matrix element is evaluated via Wick’s theorem, and produces 6 total contrac-
tions.
• By contracting the source operators ψm(x) and ψ†m′(x′) among themselves, one
remains with the factors

〈E0|Tψm(x)ψ†m′(x
′)|E0〉 〈E0|Tψ†µ(1+)ψ†ν(2+)ψν′(2)ψµ′(1)|E0〉

The particle propagates from x′ to x without interactions (first factor) while the two
total contractions of V give two vacuum graphs, i.e. numbers (diagrams a and b in
Fig.1). The expression, integrated with U0, is the term iG0

mm′(x, x′)〈E0|S(1)|E0〉
of the expansion of G.
We shall prove that all diagrams with vacuum factors exactly cancel with the de-
nominator.
• Another total contraction is

〈E0|Tψm(x)ψ†ν(2+)ψν′(2)ψ†m′(x
′)|E0〉 〈E0|Tψ†µ(1+)ψµ′(1)|E0〉

where ψ†m′(x′) is contracted with ψν′(2) etc. i.e. the particle moves from x′ to x
through vertex 2. The other factor is a bubble closed in 1. The resulting expression
is i3G0(x, 2)G0(2, x′)G0(1, 1+) (diagram d in Fig.1). The total contraction with 2
and 1 exchanged (diagram c),

〈E0|Tψm(x)ψ†µ(1+)ψµ′(1)ψ†m′(x
′)|E0〉 〈E0|Tψ†ν(2+)ψν′(2)|E0〉

gives the same numerical value after integration and spin summation, because of
the symmetry of U0 under exchange. Up to vertex labels, the two diagrams are the
same. Only one is evaluated because this (exchange) multiplicity cancels the first
order prefactor 1/2.
• The last total contractions are those that do not split. The operators are here
permuted without sign changes:

〈E0|Tψm(x)ψ†ν(2+)ψν′(2)ψ†µ(1+)ψµ′(1)ψ†m′(x
′)|E0〉

The contractions are next to next: x′ → 1→ 2→ x (diagram e). The other possi-
bility is x′ → 1 → 2 → x (diagram f). After integrating 1,2 and spin summation,
the two contributions are the same. Again: consider just one diagram and omit the
prefactor 1/2.

Before stating the Feynman rules, that provide the analytic expression of each
Feynman diagram, let us get rid of the denominator and of the diagrams with
vacuum factors in the numerator, through the following statement.
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Figure 1. I diagrammi dello sviluppo del numeratore al primo
ordine in V .

Proposition 1.1. Let Ω be the product of creation and destruction operators at
different times. The time ordered average simplifies to considering only contractions
that do not contain vacuum factors.

〈E0|TSΩ|E0〉
〈E0|S|E0〉

= 〈E0|TSΩ|E0〉?(2)

Proof. The S operator is a time ordered exponential in the numerator

∞∑
k=0

1

(i~)k
1

k!

∫
dt1...dtk〈E0|TV (t1)...V (tk)Ω|E0〉

The average is evaluated by Wick’s theorem. We classify the total contractions
according to the number of operators V that are wholly contracted among them-
selves. Such contractions produce vacuum factors.
Since in the T symbol the operators V commute, the choice of which to contract is
irrelevant and gives the same vacuum terms. Then we have the factorization

〈E0|TV (t1)...V (tk)Ω|E0〉 =

k∑
`=0

(
k

`

)
〈E0|TV1...V`|E0〉〈E0|TV`+1...VkΩ|E0〉

This is put in the previous equation and the sums are exchanged:

∞∑
`=0

1

(i~)`
1

`!

∞∑
k=`

1

(i~)k−`
1

(k − `)!

∫
dt1...dt`〈E0|TV (t1)...V (t`)|E0〉

×
∫
dt`+1...dtk〈E0|TV (t`+1)...V (tk)Ω|E0〉?

With k′ = k − `, the numerator is:

Num =

∞∑
`=0

1

(i~)`
1

`!

∫
dt1...dt`〈E0|TV (t1)...V (t`)|E0〉

×
∞∑
k′=0

1

(i~)k′
1

k′!

∫
dt1...dtk′〈E0|TV (t1)...V (tk′)Ω|E0〉?

We identify the first factor as 〈E0|S|E0〉, that cancels the denominator. �
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2. The Feynman rules for G

Gmm′(x, x′) = G0 + G1 + G2 + ... is a perturbative series where Gk is the sum
of all topologically inequivalent Feynman diagrams without vacuum factors.

Each diagram of order k contains:
? an input point x′,m′ and an output point x,m;
? 2k internal points (trivalent vertices). In a vertex a particle line enters and exits,
as well as an interaction line.
? k interaction lines U0 that link pairs of vertices,
? 2k + 1 oriented lines iG0, that are a total contraction of TV1...Vkψψ

†.
? The general structure of a diagram is a line oriented from x′ to x, that goes
though a number of vertices. The other contractions only involve V s and produce
a number L of oriented loops. The vertices in the open line and in the loops are
connected by k interaction lines.

• A factor
1

i

1

(i~)k
i2k+1 = (

i

~
)k

• A factor (±1)L where L is the number of loops (+ refers to bosons).
This is seen by reordering the operators and factoring the total contraction
in order to produce the line x′ → 1 → ... → j → x and partitioning the
other pairs to make loops:

〈E0|T(ψxψ
†
j ) · · · (ψ2ψ

†
1)(ψ1ψ

†
x′)|E0〉 〈E0|T

k−j∏
i=0

ψ†iψi|E0〉

= [ij−1G0(x, 1)...G0(j, x′)]× [loop 1]× [loop L]

A loop is the total contraction 1→ 2→ ..→ r → 1 of 〈E0|Tψ†rψr...ψ
†
1ψ1|E0〉.

The contraction of the end operators is (±1)iG0(1, r), while between there
is the chain iG0(1, 2)...iG0(r − 1, r).

• An instantaneous interaction may produce equal times in a G0. However,
since V (t) = 1

2

∫
d1d2U0(1, 2)ψ†(1+)ψ†(2+)ψ(2)ψ(1), creators have a time

larger than destructors. Then it is always G0(yt,y′t+).
• Omit the factors 1/k! and 1/2k which compensate the multiplicity of the

same diagram when vertex labels are introduced, due to the exchange sym-
metry of the potential, U0(1, 2) = U0(2, 1), and the permutation symmetry
of the V s inside the T-product.

3. The self-energy

The structure of the diagrams for the propagator suggests the expression

G(1, 2) = G0(1, 2) +

∫
d3 d4G0(13)Σ(3, 4)G0(4, 2)

where the the self-energy Σ is the sum of all insertions that arise in the perturbation
expansion, according to the Feynman rules. A subclass of insertions is the local
self-energy, where the in and out points 4, 3 coincide. Inspection of the diagrams
shows that

Σlocµµ′(x, x′) =
±i
~
δ4(x− x′)

∑
νν′

∫
dy U0

µµ′,νν′(x, y)Gν′ν(y, y+)(3)
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where G is the exact propagator. In particular, for interactions that do not depend
on spin, and if Gµν = δµνG it is:

Σlocµµ′(x, x′) =
±i
~
δ4(x− x′)δµµ′(2s+ 1)

∫
dy v(x,y)G(yt,yt+)

=± 1

~
δ4(x− x′)δµµ′UH(x)(4)

where UH(x) =
∫
dyv(x,y)n(y) is the Hartree potential with the exact particle

density.
The proper self-energy Σ?µµ′(x, x′) is the sum of all self-energy diagrams that

cannot be split in two diagrams by removal of a single G0 line. The local self
energy Σloc belongs to this set.
The non-proper self-energy diagrams may be split. When the removal is done, two
points (in and out of a particle) are created and the two diagrams that are obtained,
are self-energy diagrams.
One may classify diagrams as Σ = Σ? + Σ(1) + Σ(2) + ... where Σ(1) are diagrams
that can be split by removing a G0 in only one way: the result are two Σ? diagrams.
In Σ(2) the splitting can be done in two ways: if both G0 are removed one remains
with three Σ? diagrams. It is now clear that (with obvious notation. Repeated
variables are integrated and summed):

Σ1,2 = Σ?1,2 + Σ?1,3G
0
3,4Σ?4,2 + Σ?1,3G

0
3,4Σ?4,5G

0
5,6Σ?6,2 + . . .

= Σ?1,2 + Σ?1,3G
0
3,4Σ4,2(5)

The proper self-energy diagrams alone generate all self-energy diagrams, by solving
the above integral equation.
This result is even more interesting for the propagator:

G1,2 = G0
1,2 +G0

1,3Σ?3,4G
0
4,2 +G0

1,3Σ?3,4G
0
4,5Σ?5,6G

0
6,2 + . . .

= G0
1,2 +G0

1,3Σ?3,4G4,2

= G0
1,2 +G1,3Σ?3,4G

0
4,2

In detail, this is the Dyson equation for the propagator:

Gµν(x, y) = G0
µν(x, y) +

∑
ρσ

∫
dx1 dx2G

0
µρ(x, x1)Σ?ρσ(x1, x2)Gσν(x2, y)(6)

It is an integral equation. Then, even a single self-energy diagram in this equation
produces an infinite sum of diagrams for the propagator.

Suppose that the exact density n(x) is known by some method, as DFT. Then
the Hartree potential can be evaluated. Such local insertions can all be summed to
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Figure 2. The Dyson equation for the propagator.

define the Hartree propagator (we consider the situation where spin factors):

GH(x, x′) = G0(x, x′) +
1

~

∫
dyG0(x, y)UH(y)GH(y, x′)(7)

When such tadpole insertions are adsorbed in GH , the Dyson equation simplifies as
only the bi-local self-energy need be considered (with internal lines that are GH):

Gµν(x, y) = GHµν(x, y) +
∑
ρσ

∫
dx1 dx2G

H
µρ(x, x1)Σ?bilocρσ (x1, x2)Gσν(x2, y)(8)

Figure 3. The proper self-energy graphs with local insertions ac-
counted for by GH , that replaces G0. There is 1 diagram of first
order, 3 of second order, then 20, 189, 2232, 31130, ... The number
of diagrams grows factorially with the perturbation order.

If the Hamiltonians H, H0 are invariant for space translations, also the propa-
gators are, as well as the self-energy (every single Feynman diagram is translation
invariant). In reciprocal space the Dyson equation becomes algebraic:

Gµν(k, ω) = G0
µν(k, ω) +

∑
ρσ

G0
µρ(k, ω)Σ?ρσ(k, ω)Gσν(k, ω)
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If the correlators are diagonal in the spin variables, and G0 is that of the ideal gas,
the equation gives the important expression:

G(k, ω) =
1

ω − 1
~εk − Σ?(k, ω)

(9)


