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Motivation

Quoting a recent review [1], many fundamental phenomena of strongly-correlated quantum
systems such as high-Tc superconductivity, the fractional quantum Hall effect and quark confine-
ment are still awaiting a universally accepted explanation. The main obstacle is the computational
complexity of solving even the most simplified theoretical models that are designed to capture the
relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper [2],
Richard Feynman suggested that such models might be solved by ”simulation” with a new type
of computer, whose constituent parts are effectively governed by a desired quantum many-body
dynamics. Measurements on this engineered machine, now known as a ”quantum simulator”,
would reveal some unknown or difficult to compute properties of a model of interest.

In this spirit and motivated by a recent proposal by Lev and coworkers [3, 4], in
the first part of this thesis, we will perform a theoretical investigation of a new class of
quantum simulators: the so called multimode disordered Dicke simulators.

Our approach is mostly inspired from Statistical Mechanics: indeed we will merge
together exact results obtained in the context of the Dicke model by Hepp and Lieb [5,
6, 7], with known results on disordered systems and neural networks [8, 9]. In this way
we will be able to generalize the standard approach to the superradiant phase transition
to the disordered case. As a byproduct of this analysis we will argue that this new class
of quantum simulators (properly engineered) may be an alternative (or complementary)
route toward quantum computation [10].

Also the second part of the thesis has a ”quantum simulators motivation”. Recently
Bloch’s group [11] implemented an Ising quantum magnet with long-range antiferro-
magnetic interactions, which exhibits a peculiar devil’s staircase phase diagram, predicted
long ago by Bak and Bruinsma [12].

This result, joined with recent theoretical investigations by Lesanowsky and cowork-
ers [13] suggested to us to reconsider these spin models in the context of the fractional
quantum Hall effect (FQHE) [14].

In the second part of this thesis we will show that the quantum Hall Hamitonian
projected on the lowest Landau level can be mapped, in the so called thin torus limit [15],
on the lattice gas studied by Bak and Bruinsma. This observation will lead us to pre-
dict a devil’s staircase scenario for the Hall conductance as a function of the magnetic

vii



viii Thesis overview

field. This work stimulated us to investigate the connection between Laughlin wave-
function [16] and Tao-Thouless states [17], that we will explore in the last section of the
second part.

Main results

In this thesis we are going to present the following results, based on four works, the first
two published, the third under review and last one in preparation:

• We consider a system composed of trapped atoms within a multimode cavity,
whose theoretical description is captured by a disordered multimode Dicke model.
We show that in the resonant, zero-field limit the system exactly realizes a paradigm
of spin glasses, the Sherrington- Kirkpatrick (SK) model. Upon a redefinition of the
temperature, the same dynamics is realized in the dispersive, strong-field limit.
This regime also gives access to spin-glass observables which can be used to detect
replica symmetry breaking. (P. R., E. Tesio, S. Caracciolo, (2015). Replica symmetry
breaking in cold atoms and spin glasses. Physical Review B, 91(1), 014415).

• Using an approach inspired from spin glasses, we show that the multimode dis-
ordered Dicke model is equivalent to a quantum Hopfield network. We propose
variational ground states for the system at zero temperature, which we conjecture
to be exact in the thermodynamic limit. These ground states contain the informa-
tion on the disordered qubit-photon couplings. These results lead to two intriguing
physical implications. First, once the qubit-photon couplings can be engineered, it
should be possible to build scalable pattern-storing systems whose dynamics is
governed by quantum laws. Second, we argue with an example of how such Dicke
quantum simulators might be used as a solver of “hard” combinatorial optimiza-
tion problems. (P. R., M. Cosentino Lagomarsino, G. Viola, (2015). Dicke simula-
tors with emergent collective quantum computational abilities. Physical Review Letters,
114(14), 143601.)

• We consider the so-called thin-torus limit of the Hamiltonian describing interacting
electrons in a strong magnetic field, restricted to the lowest Landau level, and we
show that it can be mapped onto a one-dimensional lattice gas with repulsive in-
teractions, with the magnetic field playing the role of a chemical potential. The sta-
tistical mechanics of such models leads to interpret the sequence of Hall plateaux
as a fractal phase diagram, whose landscape shows a qualitative accordance with
experiments. (P. R., L. G. Molinari, P. Ratti, M. Gherardi, Devil’s staircase phase dia-
gram of the fractional quantum Hall effect in the thin torus limit. This work is currently
under review on Physical Review Letters.)

• We provide an explicit second quantization picture for fractional quantum Hall
wavefunctions (Jack polynomials or Jacks times a Vandermonde determinant), in-
troducing a four fermions generalized squeezing operator, which allows to repre-
senting these states as a Jastrow operator applied to a reference state, which is in
general a simple periodic one dimensional pattern. Interestingly, Laughlin states
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are squeezed Tao-Thouless states. (P. R., A. Di Gioacchino, M. Gherardi, L. G.
Molinari, Second quantization picture of fractional quantum Hall states. This work is in
preparation).

Organizational note

The present thesis consists of two parts, for a total of six Chapters plus an introduction on
collective phenomena in Physics (Chapter 1). The first part is devoted to the presentation
of our results [18, 19] on multimode disordered Dicke quantum simulators, which are
the focus of Chapter 4. To make this part self contained and accessible to the non-expert
reader, we present the fundamental background in the first two chapters. In Chapter 2
we describe basic notions of spin glass physics, associative neural networks and their
connection with non-deterministic polynomial (NP) hard problems (we remark that this
chapter is not intended to be a self contained monograph on these topics). In Chapter 3
our goal is to present the statistical mechanics approach to the Dicke model due to Hepp
and Lieb [5]. We briefly review the experimental state of the art, with particular emphasis
on the recently proposed multimode disordered Dicke simulators with ultracold atoms.

In the second part we present our results on the FQHE in the thin torus limit. The
goal of Chapter 5 is to review lattice gas models in one dimension with repulsive long-
range interactions. In Chapter 6 we obtain the Quantum Hall Hamiltonian projected on
the lowest Landau level in second quantization and we present the modern approach
to fractional quantum Hall states as Jack polynomials. This background is essential to
presenting our original work in Chapter 7. In the following we add a brief description
of the content of each chapter:

Chapter 2: we give an introduction to spin glass physics [8]. The SK model is
presented as a benchmark to define fundamental keywords of disordered systems,
such as frustration, quenched disorder, self-averaging and replicas. The Hopfield model
is introduced as a paradigm for associative neural networks. Particular emphasys
is given to the statistical mechanics approach due to Amit, Gutfreund and Som-
polinsky [9, 20]. In the last section we explain the connection between disordered
systems and NP-hard problems and we define the number partitioning problem [21].

Chapter 3: we review the statistical mechanics approach to the Dicke model [5, 6,
7]. From this viewpoint, superradiance is understood as a quantum phase transition.
In the end we try to review, at the best of our knowledge, the current experimen-
tal state of the art of Dicke simulators. We describe the experiment by Esslinger
group [22] and the proposal by Lev and coworkers [3] to obtain a multimode disor-
dered Dicke simulator, which is the main motivation of our work.

Chapter 4: here we present our original contributions. In a preliminary paper [18]
we put on rigorous grounds the qualitative connection between multimode dis-
ordered Dicke simulators and the Sherrington-Kirkpatrick model in two physical
limits. In a second work [19] we recognized that these class of Dicke simulators are
exactly the quantum counterpart of Hopfield networks. In the end we argue with
an example (number partitioning) of how such Dicke quantum simulators might
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be used as a solver of ”hard” combinatorial optimization problems. Most of this
chapter is a reproduction of our published results.

Chapter 5: we introduce the lattice gas model with repulsive long-range interac-
tions and we prove the main steps to build up the devil’s staircase phase diagram
of the model [12]. We explicitely construct Hubbard ground states [23] and we
prove the Burkov-Sinai formula [24].

Chapter 6: we review the fundamental facts about electrons systems in two dimen-
sions. We introduce Landau levels and the basic facts about quantum Hall effect.
The goals of this chapter are two: i) the first is to obtain the Quantum Hall Hamil-
tonian projected on the lowest Landau level in second quantization. Remarkably
this step produces a sort of dimensional reduction of the problem. ii) the second is
to introduce an approach to fractional quantum Hall states recently pointed out by
Haldane and Bernevig [25].

Chapter 7: by restricting the analysis to the so-called thin torus limit (thus ne-
glecting quantum correlations!), we show that the quantum Hall problem can be
mapped on a classical lattice gas with repulsive interactions with the magnetic field
acting as a chemical potential. The statistical mechanics of such models leads to in-
terpret the sequence of Hall plateaux as a fractal phase diagram, whose landscape
shows a qualitative accordance with experiments. This work is currently under
review. In the last section we propose a second quantization picture of fractional
quantum Hall states. This work is in preparation.



CHAPTER 1

Emergent collective phenomena in classical and quantum
many-body systems

1.1 Emergent collective phenomena in classical physics

We begin with a trivial observation: the most part of the physical phenomena that we
observe in our everyday life emerge from the interaction of a huge number of single
constituents of the physical system under consideration. In this sense they are collective
phenomena. For instance, if we look up to the sky, we may observe flocking birds and
recognize that they realize some sort of order (see Figure 1.1). In this case microscopic
constituents are single birds interacting (socially) with the other birds of the flock. If
regarded as a physical system (instead of a biological one), using more technical terms,
birds are self-organized active matter, and thus they are by definition out of equilibrium.
This terminology is borrowed from Statistical Mechanics. Actually both terminology and
techniques firstly developed in the context of Statistical Mechanics are useful in order to
investigate this physical system.

This statement is much more general: nowadays Statistical Mechanics techniques
are widely used in order to characterize quantitatively systems that were considered
typically (until a few years ago) outside the standard physics realm. In Fig. 1.2, 1.3
we show two examples, that are representative of entire research fields: economics (and
finance) and biological neural networks.

In econophysics one of the goals of researchers is to predict tipping points (such as the
2001 and 2008 financial crisis), or, more feasible, to build up quantitative indicators in
order to estabilish the health of a given market. Also here statistical mechanics is useful.
For instance the phenomenon of wealth condensation can be understood as a classical
phase transition. Usually single constituents are the agents operating on a given market.

In a biological neural network neurons interact with each other through synapses,
which mediate both electric and chemical signals (obviously this description is a tremen-
dous oversimplification of a real neural network). It is widely believed that the plasticity
of the synapsis is involved in the capability of human brain to store and process informa-
tion. Memory can be understood as a collective phenomenon emerging from the inter-
action of single constituents (neurons and synapsis). Simplified toy models of artificial
neural networks (often proposed by physicists) shed light on this statement. Artificial
neural networks will play a major role in the first part of this thesis.

1



2 1.2 Emergent collective phenomena in quantum many-body systems

Figure 1.1: Flocking birds are a remarkable example of self organization in active matter. Both
terminology and techniques borrowed from Statistical Mechanics are useful to investigate these
biological systems, when regarded as physical systems.

The trivial observation at the beginning of this introductory chapter still works in the
case of many-body quantum systems.

Figure 1.2: Speculative bubbles in a financial market: the time series of the SP 500 index is shown.
Time period goes from 1985 to date. The two main financial crashes of the last twenty years are
clearly visible (2001 and 2008).

1.2 Emergent collective phenomena in quantum many-body systems

Quantum systems with many degrees of freedom often exhibit (in extreme conditions)
exotic states of matter characterized by non-trivial quantum correlations. One of the
goals of condensed matter physics is to understand how these correlations emerge from
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Figure 1.3: Pictorial representation of a neural network in human brain. Schematically neurons
interact with each other through synapses, which mediate both electric and chemical signals (Ob-
viously this description is a tremendous oversimplification of a real neural network).

the interaction of microscopic constituents. In order to do so theorists propose simplified
models encoding the fundamental ingredients in order to capture a given phenomenon.
These toy models can be studied both with analytical and numerical techniques.

In this thesis we are mainly interested in two different many-body quantum systems
which display emergent collective phenomena in extreme conditions:

• atoms-light interacting systems that undergo a superradiant phase transition in the
strong coupling regime;

• two dimensional interacting electrons at low temperature in a strong magnetic
magnetic field, where the so called fractional quantum Hall effect is observed (see
Fig. 7.2).

In the first part of this thesis, in particular, we will consider multimode disordered
Dicke simulators and we will suggest that the collective phenomena emerging in this
new class of quantum simulators are closely related to quantum computation. Inter-
est in this topic is remarkable due to the D-Wave system, the first commercially available
quantum annealer (see Fig. 1.5). For an introduction on the reason why quantum anneal-
ing protocols should outperform classical simulated annealing strategies, we suggest a
beautiful talk by Hidetoshi Nishimori at Google Quantum Labs.

More in general quantum simulators represent the new frontier in order to investi-
gate and understand strongly-correlated quantum systems. Most of them rely on the
technological progress achieved with ultracold atoms in the last twenty years. The real-
ization of a Bose-Einstein condensate in 1995 (see Fig. 1.6) is surely a cornerstone in this
field.
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Figure 1.4: Fractional quantum Hall landscape: the Hall resistivity exhibits plateaux at integer and
fractional values of the von Klitzing constant h̵/e2. In particular only odd denominators plateaux
are observed at fractional fillings in the two lowest Landau levels. Nowadays more than fifty
plateaux are observed only in the lowest Landau level.

Figure 1.5: The D-Wave architecture is based on superconducting qubits. The first version was a
128-qubit processor, superseded in 2013 by a 512-qbit processor. Whether this quantum annealer
outperforms classical computers is source of debate.
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Ultracold atoms are used, since this discovery, to ”simulate” toy models which are
supposed to describe interesting strongly-correlated systems: the Bose-Hubbard model
and its superfluid-to-Mott insulator quantum phase transition is a paradigm in this field.
We stress that ultracold atoms are not the only quantum platform to ”simulate” strongly
correlated systems. Atom-light interaction, for instance, can be engineered in photonic
crystals or in circuit quantum electrodynamics (QED).

Figure 1.6: Bose-Einstein condensation in a gas of rubidium atoms. The momentum distribution
is showed at three different stages: just before the appearance of the condensate (left), just after
(centre) and after a further evaporation (right).
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CHAPTER 2

A short introduction to spin glasses, associative neural
networks and NP-hard problems

The study of spin glasses has a long tradition in physics, dating back to the seventies [8].
The concept of spin glass was originally introduced to describe magnetic alloys that ex-
hibit a non-periodic freezing of the orientations of the magnetic moments together with
slow response and linear low- temperature heat capacity characteristic of conventional
glasses [26].

It is worth remarking that nowadays spin glass techniques are heavily employed out
of the condensed matter community: indeed many important devolpments in a plethora
of different fields of science, such as biophysics [27, 28, 29], econophysics [30], computa-
tional complexity [31] and neural networks (and more recently machine learning), came
out as a byproduct of smart applications of spin glass methods.

In the following our strategy will be to introduce the main ideas and definitions of
spin glass physics directly considering null models containing the fundamental ingredi-
ents for this thesis. We think that this approach is the easiest one to present the essential
background.

A possible route to modelling a spin glass is to consider an Ising model with non-
translational invariant couplings between different spins. The simplest way to accomplish
this requirement is to take random interactions: each pair of spins has a given a priori
probability to be ferromagnetic or antiferromagnetic. This ingredient has a huge impact
on the physical properties of the system, that we will try to examine in the following
sections, introducing two celebrated paradigms of spin glass physics: the Sherrington-
Kirkpatrick model [32] and the Hopfield neural network [33]. The thermodynamics of
the two models is very similar: we will investigate in full detail only the second one.

2.1 A benchmark for spin glass physics: the Sherrington-Kirkpatrick
model

Usually fully connected models of statistical mechanics are exactly solvable through
mean field methods. When dealing with spin glasses, however, these standard techniques
fail also in the simplest cases. In this sense, the Sherrington-Kirkpatrick model [32] is a
paradigm because it brutally exhibits all the technical issues typical of a spin glass prob-
lem.

9



10 2.1 A benchmark for spin glass physics: the Sherrington-Kirkpatrick model

The SK model is a fully connected Ising model with disordered interactions. It con-
sists of N boolean spins σi ∈ {+1,−1}, i = 1, ..,N that (in condensed matter language)
represent the interacting magnetic dipole moments of atomic spins. The interaction be-
tween the spins can be ferromagnetic (Jij > 0) or anti-ferromagnetic (Jij < 0). The sign
and the strength of the couplings are supposed to be chosen with a given probability
distribution P (Jij). The model is defined through its Hamiltonian function:

HJ [σ] = −
1

√
N

∑
1≤j<i≤N

Jijσiσj , (2.1)

and by specifying the probability distribution P (Jij) for the spin-spin interactions. The
scaling factor in front of the Hamiltonian guarantees that the free energy is an extensive
observable. The simplest choice for P (Jij) (in order to perform analytical calculations)
is to choose the couplings as independent normal random variables:

P (Jij) =
1

√
2πJ2

e−
(Jij−J0)

2

2J2 .

Both the spins {σi} and the disordered couplings {Jij} should be considered as dynam-
ical variables. However disorder is usually assumed to be quenched: this means that on
the typical timescales of the spin dynamics, the couplings do not fluctuate: technically all
the averages over the disorder distribution have to be taken on the free energy.This assumption
has important consequences on the thermodynamics of the model, that we will discuss
in the following.

Spin Glasses are typically systems where quenched disorder and frustration coex-
ist. Formally a system is frustrated if there exists a loop on which the product of the
couplings is negative. In order to analyze the concept of frustration Parisi, in the in-
troduction of [8], suggests as an example the social behavior of three people. If each
person has to choose between two sides and they like each other, they will choose the
same side. Then there are two equivalent scenarios and the problem exhibits a trivial
symmetry. This case is closely related to the ferromagnetic Ising model, where the two
possible ground states are characterized by all spins aligned. Otherwise,when the three
persons hate each other the situation is no more naive. There are three scenarios where
two enemies have to be on the same side and consequently they are frustrated. This
case is equivalent to the antiferromagnetic triangular Ising model, where the spins on a
triangular lattice want to stay anti-aligned.

The triangular antiferromagnet displays a large number of ground states but the free
energy barriers that separate these configuration are quite low. At non zero temperature,
the system can move easily from one free energy valley to another and the energy land-
scape displays a network of many ground states connected by small energy barriers [34].

On the other hand, spin glasses display a more complex behavior: the Hamiltonian
(2.1) exhibits again frustration, indeed it is impossible for the system to find an optimal
configuration such that all the unfavorable interactions are excluded, even in the ground
state. A spin glass has an exponential number of low energy states which do not cor-
respond to the ground states. They are separated by high energy barriers and in the
thermodynamic limit these barriers diverge. At low temperature, if the system falls in
one of these valleys, it is not able to escape and, as a consequence, ergodicity is broken.



A short introduction to spin glasses, associative neural networks and NP-hard problems 11

Figure 2.1: Frustration in a system of three spins: spin glasses are typically systems where
quenched disorder and frustration coexist. In the first image there is no frustration: spins can
find an optimal configuration and the product of the interactions along the triangle is positive.
In the second image the product of the interactions along the triangle is negative: the system is
frustrated, there is no configurations that can exclude all the unfavorable interactions. This image
is reproduced from [34].

2.1.1 Self-averaging observables and the replica trick

As anticipated above, spin glasses are typically systems with quenched disorder in the
Hamiltonian. In principle, we could expect that all the observables depend on the par-
ticular realization of the couplings Jij , including the free energy density of the system

f
(N)
J = −

1

βN
logZJ = −

1

βN
log Tr{σi} e

−βHJ [σ] .

This does not sound really physical, because it would imply that the macroscopic prop-
erties of the system are highly sample dependent. In fact, both common sense and ex-
perience suggest that if the system is large enough, thermodynamic properties do not
depend on the disorder anymore. The observables that satisfy this property are called
self-averaging. Free energy density is one of them. In formulas:

lim
N→∞

f
(N)
J = ∫ dJP (J) f

(∞)
J ≡ ⟪f

(∞)
J ⟫ . (2.2)

Above we introduced the notation ⟪⋯⟫ to indicate the average over the distribution
P (J). This notation will be extensively used in the following.

Quenched averages always demand the calculation of a difficult integral involving
the logarithm of the partition function. In order to overcome this problem we introduce
the so called replica trick. The method consists in computing the average free energy as
the analytic continuation of the average of the partition function of n uncoupled replicas
of the initial system. If n is a real number, we have the following trivial identity:

logZ = lim
n→0

Zn − 1

n
.
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If n is an integer, the partition function of n uncoupled replicas of the initial system is:

ZnJ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑
{σai }1≤i≤N

e−βH[{σi}]
⎤
⎥
⎥
⎥
⎥
⎥
⎦

n

= ∑

{σai }
1≤a≤n
1≤i≤N

e−β∑
n
a=1H[{σai }] ,

i.e. it is possible to rewrite the sum over the configurations of one system to the power
n as a sum over the configurations of n replicas of the same system with the same cou-
plings Jij . The average free energy per spin of a system made by n uncoupled replicas
is:

fn = −
1

βNn
log⟪ZnJ ⟫ .

It turns out that the free energy per spin is:

lim
n→0

fn = ⟪fJ⟫ . (2.3)

The proof is straightforward:

lim
n→0

fn = −
1

βN
lim
n→0

1

n
log⟪ZnJ ⟫ = −

1

βN
lim
n→0

1

n
log [∑

J

P (J)ZnJ ] =

= −
1

βN
lim
n→0

1

n
log [∑

J

P (J) (1 + n logZJ)] = −
1

βN
∑
J

P (J) logZJ =

= −
1

βN
⟪logZJ⟫ = ⟪fJ⟫ .

The replica approach is extremely useful for spin glass systems. In particular, the SK
model was solved for the first time using the replica method by Parisi [35]). Here we do
not explore in full detail his solution. However we will see replicas at work when we
will deal with the statistical mechanics of Hopfield networks.

2.2 Associative neural networks: the Hopfield model

The Hopfield model was originally proposed in 1982 by John Hopfield [33] as a simple
toy model of neural network in order to understand, at least qualitatively, how memory
works in the human brain.

The first problem to deal with was to give a good definition of memory. Hopfield
overcame this issue proposing the following very general definition, that we quote lit-
terally: “Any physical system whose dynamics is dominated by a substantial number of locally
stable states... The physical system will be a potentially useful memory if, in addition, any pre-
scribed set of states can readily be made the stable state of the system”. This definition is a
useful starting point, because it can be implemented in a simple mathematical model of
neural network.

Let us consider a set of N binary neurons. Each neuron is an Ising spin with two
possible states, σi = +1 (neuron is firing) or σi = −1 (neuron is silent). The phase space of
the possible configurations of N binary spins is SN = {−1,+1}

N for a total of 2N possible
configurations. In the human brain, neurons are interconnected through synapses that
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Figure 2.2: The Hopfield network is a rude modellization of a neural networks (in background).
Synapses are the interconnections (red lines) between different neurons (blue dots) and are tuned
properly in order to store information (see text).

make it possible to send both electrical and chemical signals from a neuron i to a neuron
j. As a first rude approximation we can think that synapses are the main responsible for
the tendency of two given neurons to fire or to be silent together. In the Hopfield net
synapses are represented by a set of real numbers Jij : If Jij > 0, the corresponding pair
of neurons is positively correlated and the two neurons tend to fire at the same time.

In order to define a neural network model, the discrete phase space built from neu-
rons and synapses must be endowed with a dynamics. Hopfield considered the follow-
ing asyncronous discrete-time updating rule for neuronal states:

σi (t + 1) = sign
⎛

⎝

N

∑
j

Jijσj (t)
⎞

⎠
. (2.4)

At time step t, a neuron is randomly chosen and its internal state is modified according
to the above equation. This dynamics always ends up on a fixed point, which is defined
through the stability equation:

σi
⎛

⎝

N

∑
j

Jijσj
⎞

⎠
≥ 0 , ∀i = 1, ...,N . (2.5)

The previous equations define the first step of Hopfield’s definition of a memory. At this
stage, we would like to find a prescription to choose as fixed point any possible state of
the neuronal phase space. This goal can be obtained by a suitable tuning of the synapses.

Let us fix the set of memory patterns that we want to store in the neural network:

ξµi 1 ≤ i ≤ N , 1 ≤ µ ≤ p . (2.6)
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These patterns are simply a set of p special neuronal configurations of the phase space. If
we want to promote them to be the stable states of the system, we must use the following
prescription for the synapses:

Jij =

⎧⎪⎪
⎨
⎪⎪⎩

1
N ∑

p
µ=1 ξ

µ
i ξ

µ
j ∀i ≠ j ,

0 ∀i = j .
(2.7)

According to this definition, the Jij ’s are symmetric (Jij = Jji). Using equation (2.5), it is
possible to show that the p memory patterns ξµ are stable states of the system, as long as
they are not too much correlated.

Interestingly, the dynamical rules defined in equation (2.4) minimize the following
energy function:

H [σ] = −
1

2

N

∑
i,j

Jijσiσj . (2.8)

This can be used to prove that the memory patterns are not only the stable states of
the systems, but they are also the degenerate global minima of (2.8). Remarkably the
Hamiltonian has the same functional form of an Ising model, with couplings given by
(2.7).

To summarize, we introduced a deterministic dynamical rule on a discrete neuronal
phase space in order to define a neural network with a given set of stable states. By a
suitable choice of the synapses, any possible state of the system can be promoted to be a
stable state. In this sense the network is able to store information. Moreover, it is possible
to show that if we start the dynamics close enough to a memory (close in the sense of the
Hamming distance), the neural network is able to retrieve the stored information.

In his original paper, Hopfield defined an asynchronous dynamics as in equation
(2.4). This is nothing but a Monte Carlo dynamics at T = 0 and thus it can be generalized
in the following way:

σi (t + 1) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

σi (t) with probability p+ = e
βσi(∑

N
j Jijσj)

e
βσi(∑Nj Jijσj)+e−βσi(∑

N
j
Jijσj)

,

−σi (t) with probability p− = 1 − p+ ,

where the parameter β = 1/T has a straightforward interpretation as the temperature of
the system. Ideally this generalized noisy dynamics defines a Fokker-Planck equation,
whose stationary solution is given by a Gibbs distribution e−βH [9]. Within this standard
mapping, all the properties of Hopfield networks presented here (and not proved) can
be derived through statistical mechanics techniques. This was done for the first time in a
series of remarkable papers by Amit, Gutfreund and Sompolinsky [9, 20]. This approach
naturally defines a dictionary for translating to spin glass language claims formulated in
the one of neural networks.

From the statistical mechanics viewpoint, the Hopfield model is an infinite range
Ising model with couplings given by (2.7). The probability measure of a given neuronal
configuration {σi}1≤i≤N is given by its Gibbs measure:

GN,β [σ] ≡
1

ZN,β
e−βHN [σ]
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where ZN,β is the partition function. A useful parameter to characterize the state of the
neural network is the overlap of a generic state with the νth pattern:

mν =
1

N

N

∑
i=1

⟨σi⟩ ξ
ν
i , (2.9)

where ⟨⋯⟩ is the thermal average. In statistical mechanical language this overlap will be
the order parameter of the system in the ferromagnetic phase.

The Hopfield model exhibits two different regimes in the low temperature phase:

• the retrieval phase (ferromagnetic phase), p
N
→ 0 as N →∞.

In this case p is finite whereas the size of system grows to infinity. At the critical
temperature T = TC = 1 the system exhibits a second order phase transition, from
a disordered phase to an ordered phase. Below TC , there are 2p equilibrium states,
which are the degenerate minima of the free energy. Each one of these states is
correlated to one of the learned patterns {ξµi }1≤i≤N and the overlap (2.9) is non
zero and thus, in neural networks language, retrieval is possible. This regime can
be studied without replicas [9].

• the confused phase (spin glass phase), p
N
→ α finite, as long as N →∞.

For α ≥ α2 ≈ 0.15, the network is in the spin glass phase (retrieval is not possible)
at low temperature. The equilibrium state of the system is uncorrelated with any
of the learnt patterns. This phase is a manifestation of the clear physical intuition
that we can not store in the network an arbitrary number of memories.

For α ≤ α1 ≈ 0.05, retrieval is possible and the system is still in its ferromagnetic
phase. For α1 ≤ α ≤ α2 the spin glass state is the ground state but the retrieval is still
efficient. In the finite α regime we need replicas to investigate the thermodynamics
of the system [20].

In the next sections we will present this statistical mechanics analysis in full detail.

2.3 Retrieval phase: the limit of finite p

The free energy density is given by

fβ = −
1

β
lim
N→∞

[
1

N
⟪log Trσ e

−βH[σ]⟫] ,

where ⟪⋯⟫ is the average over the probability distribution of the memories {ξνi }
1≤ν≤p
1≤i≤N .

For a given realization of the ξ’s, the partition function can be written as

Z =Trσ e
−βH

= e−
βp
2 Trσ exp

⎡
⎢
⎢
⎢
⎢
⎣

β

2N

p

∑
µ=1

(
N

∑
i=1

σiξ
µ
i )

2⎤
⎥
⎥
⎥
⎥
⎦

=

= (Nβ)
p
2 e−

βp
2 ∫

p

∏
µ=1

dmµ

2π
exp [−

Nβm2

2
+
N

∑
i=1

log [2cosh (βm ⋅ ξi)]] ,
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where we introduced the notation m and ξ for indicating compactly the p-component
vectors mµ and ξµi . The last line is obtained using a property of Gaussian integral and
performing explicitly the summation over the spins σi. For finite p, the integral over m
can be evaluated with the saddle point approximation:

−
1

Nβ
logZ =

1

2
m2

−
1

Nβ

N

∑
i=1

log [2cosh (βm ⋅ ξi)] .

The equilibrium state of the system is the lowest free energy solution of

∂ logZ

∂mµ
= 0 =m −

1

N

N

∑
i=1

ξitanh (βm ⋅ ξi) .

This result is sample dependent as long as N is finite. In the thermodynamic limit sum-
mation can be replaced by an average over the distribution of patterns for the law of
large numbers (this is true only if the memories are uncorrelated). In conclusion we
obtain the following mean-field equations (exact in the thermodynamic limit):

fβ =
1

2
m2

−
1

β
⟪log [2cosh (βm ⋅ ξ)]⟫ , (2.10)

m = ⟪ξtanh (βm ⋅ ξ)⟫ . (2.11)

It is possible to prove thatm is the average overlap between the local magnetization and
the ξ’s:

mµ = ⟪⟨σi⟩ ξ
µ
i ⟫ ,

where
⟨σi⟩ = tanh (βm ⋅ ξi)

is the thermal average of the i-th spin. Among the solutions of equation (2.11) there is
the paramagnetic one m = 0. This solution is stable in the high temperature phase. In
the low temperature regime new solutions appear that can be completely classified. This
is the goal of the next section.

2.3.1 Classification of the low-temperature solutions in the ferromagnetic phase

In order to perform explicit calculations, we must specifying the probability distribution
for the memory patterns. Let us consider

P ({ξµi }) =∏
µ,i

p (ξµi ) , (2.12)

with
p (ξµi ) =

1

2
δ (ξµi − 1) +

1

2
δ (ξµi + 1) . (2.13)

We can expand the saddle point equations (2.10), (2.11) in powers ofm in order to obtain:

f = −T log 2 +
1

2
(1 − β)m2

+O (m4
µ) ,

mµ =βmµ +
2

3
β3

(mµ)
3
− β3mµm

2
+O (m4

µ) .
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Above T = Tc = 1, these equations have only one solution, the paramagnetic state char-
acterized by m = 0 and f = −T log 2. This solution is unstable below TC , where new
non-paramagnetic solutions appear.

Let us denote the number of nonzero components of m as n. From the previous
equation, solutions are symmetric under permutation of mµ or under exchange of the
sign of each component of m. For this reason we can consider only solutions such that
the first n components are positive and the others are zero, without loss of generality.

For n = 1, we obtain the following simple equations:

f =
1

2
(m1)

2
−

1

2
log [2cosh (βm1)] ,

m1 =tanh (βm1) .

Interestingly, these are the mean field equations for the fully connected ferromagnetic
Ising model. The local magnetization is given by

⟨σi⟩ = ξ
1
i tanh (βm1) .

This state is a ferromagnetic state up to a gauge transformation of the spins. By symme-
try, there are 2p equivalent states related to the different memories. We can prove that
these states are the global minima of free energy in a neighborhood of T = 0. In this limit
we have, for n = 1:

E (T = 0) = −
1

2
,

m (T = 0) = (1,0,0, ...,0) ,

and in general, for all values of n:

E = −
1

2
m2,

m = ⟪ξsign (m ⋅ ξ)⟫ ,

but m2 ≤ 1 and thus the n = 1 solutions are the global minima. This can be proved nu-
merically at every temperatures. In addition to these global minima there are solutions
with n > 1, which correspond to metastable states of the network. Physically they are
spurious states with non-zero overlap with more than one memory at the same time.

Let us consider solutions of equations (2.10) and (2.11) such that all n non-zero com-
ponents have the same module:

m =mn (1,1, ...,1,0,0, ...,0) ,

where the first n components have unitary values and the others p − n components are
zeros. By symmetry there are 2n(p

n
) of such solutions. These states exist for every tem-

perature T < 1. The mean field equations for the symmetric states are

fn =
n

2
m2
n −

1

β
⟪log [2cosh (βmnzn)]⟫ ,

mn =
1

n
⟪zntanh (βmnzn)⟫ ,
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where

zin =
n

∑
µ=1

ξµi .

It is possible to evaluate the behavior of such solutions by expanding these equations at
T = 1 and T = 0. At T = 1 the averages give:

fn ≃ −
3n (T − 1)

2

4 (3n − 2)
,

m2
n ≃

3 (1 − T )

3n − 2
,

and thus T = 1 is the critical temperature for the appearance of all the symmetric solu-
tions. The free energy is monotonically increasing with n. Therefore the n = 1 solutions
are the global minima of the free energy also in this limit. At T = 0 the expansion gives
two different results which differ if n is even or odd. For odd n:

f2k+1 (T = 0) = −
2k + 1

24k+1
(
2k

2
)

2

,

m2
2k+1 (T = 0) =

1

22k
(
2k

2
) ,

whereas for even n:

f2k (T = 0) = −
2k

24k+1
(
2k

2
)

2

,

m2
2k (T = 0) =

1

22k
(
2k

2
) .

All the functions of the sequence fn are bounded from below by f1 = −
1
2

and from above
by f2 = −

1
4

. Moreover the sequence for even n is monotonically decreasing with k while
the sequence with odd n is monotonically increasing, both with common limit − 1

π
for

k →∞.
The local stability of these solutions can be studied by analyzing the eigenvalues of

the Hessian matrix of the free energy:

Hµν
=

∂2f

∂mµ∂mν
.

A detailed analysis of the Hessian matrix shows that the states overlapping with a single
memory are the only stable solutions near T = 1. At lower temperature also other odd-n
solutions become stable. Even-n solutions are unstable for all T . At T = 0 all the odd-n
solutions are stable, thus forming a hierarchy of metastable states.

2.4 Limit of finite α: from the retrieval to the spin glass phase

Let us now proceed with the analysis of thermodynamic properties of the Hamiltonian
(2.8) in the limit of finite α [20]. In this case, in the low temperature phase, the random
overlaps with most of the patterns will be weak, typically of order 1/

√
N . However, one
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or a finite number of overlaps could condense macroscopically. In other words, they
may assume fixed and finite values as N → ∞. In order to consider this possibility, it is
useful to introduce external fields, aligned to a finite number of patterns {ξνi }

1≤ν≤s
1≤i≤N (with

s≪ p). Then the Hamiltonian will have a new term due to the presence of such external
fields:

Hh [σ] = −
1

2
∑
i,j

Jijσiσj −
s

∑
ν=1

hν
N

∑
i=1

ξνi σi. (2.14)

For finite α we need the replica trick to get some insight into the physical properties of
the system. As a first step we consider the averaged replicated partition function:

⟪Zn⟫ = ⟪ ∑

{σai }
1≤a≤n
1≤i≤N

exp

⎡
⎢
⎢
⎢
⎢
⎣

βN

2

n

∑
a=1

p

∑
µ=1

⎛

⎝

1

N

N

∑
j=1

ξµj σ
a
j

⎞

⎠

2

+ β
s

∑
ν=1

hν
N

∑
i=1

n

∑
a=1

ξνi σ
a
i

⎤
⎥
⎥
⎥
⎥
⎦

⟫ (2.15)

where a is the replica index and hν are the external fields coupled to the projections of
the configurations on the first s patterns.

With a few pages of algebra and a little bit of massage, we obtain the following func-
tional form for the averaged free energy:

fn =
α

2
+

1

2n

s

∑
ν=1

n

∑
a=1

(ma
ν)

2
+

α

2βn
Tr log [(1 − β)1 − βQ]+ (2.16)

+
αβ

2n

n

∑
a≠b

rabqab −
1

nβ
⟪logZ0⟫ ,

where Qab = qab and

Z0 = Tr{σai }
1≤a≤n
1≤i≤N

exp(
αβ2

2

n

∑
a≠b

rabσ
a
i σ

b
i + β∑

a
∑
ν

(ma
ν + h

ν
) ξνσai ) .

All the parameters involved in the equation above have a straightforward interpretation
in replica language:

ma
µ =

1

N
⟪
N

∑
i=0

ξµi ⟨σai ⟩⟫ , (2.17)

qab =
1

N
⟪
N

∑
i=1

⟨σai ⟩ ⟨σ
b
i ⟩⟫ , (2.18)

rab =
1

α

p

∑
µ>s

⟪[
1

N

N

∑
i=1

ξµi ⟨σai ⟩] ⋅ [
1

N

N

∑
i=1

ξµi ⟨σbi ⟩]⟫ =
1

α

αN

∑
µ=s+1

⟪ma
µm

b
µ⟫ . (2.19)

Now the goal is to minimize the free energy as a function of these parameters. In princi-
ple we do not have a good reason to believe that the parameters introduced above have
some non-trivial dependence from the replica indices: all the fictitious replicas were
introduced on the same footing at the beginning of the calculation. This observation nat-
urally leads to the replica symmetric ansatz (RS) that we will discuss in the next section.
In fact, this ansatz is only a first rude approximation, because the replica symmetric so-
lution turns out to have negative entropy at zero temperature. In order to deal with this



20 2.4 Limit of finite α: from the retrieval to the spin glass phase

unphysical result, replica symmetry must be broken in some way. Parisi was the first to
propose a consistent scheme to break replica symmetry in the SK model [35, 36]. In the
context of Hopfield networks this scheme is unnecessary: the RS solution is already a
good approximation and replica symmetry breaking only slightly modifies this analysis.

2.4.1 Replica symmetric solutions

Inspired by the previous discussion, we consider the following replica symmetric ansatz:

ma
µ =m

b
µ ∀µ , (2.20)

qab = q a ≠ b , (2.21)

rab = r a ≠ b . (2.22)

The free energy evaluated on this three dimensional subspace is given by:

f(m,q, r) =
α

2
+

1

2

s

∑
ν=1

(mν)
2
+

α

2βn
[log (1 − β + qβ) −

qβ

(1 − β + qβ)
]+

+
αβ

2
r (1 − q) −

1

β
∫

dz
√

2π
e−

z2

2 ⟪log 2cosh [β
√
αrz + β (m +h) ⋅ ξ]⟫ , (2.23)

and by differentiation we obtain the saddle point equations:

mν = ⟪ξνtanh [
√
αrz + (m +h) ⋅ ξ]⟫

z
, (2.24)

q = ⟪tanh2
[β

√
αrz + β (m +h) ⋅ ξ]⟫

z
, (2.25)

r =
q

(1 − β + qβ)
2
, (2.26)

where the average ⟪...⟫z is the combined average over the discrete distribution of the
ξν ’s (ν = 1, . . . , s) and over a Gaussian noise z of zero mean and unitary variance.

For h = 0 equation (2.24) can be compared with the one obtained in the finite p limit
(2.11). The ferromagnetic contribution of the s condensed overlaps is supplemented by
a spin glass contribution generated by the gaussian noise z, physically produced by the
sum of the overlaps with the rest of the patterns.

Equations (2.24), (2.25) and (2.26) have two kinds of stable solutions: (1) a solution
withm = 0, q, r ≠ 0, which is a Spin Glass state characterized by no macroscopic overlap
with a finite number of patterns. (2) A ferromagnetic solution with non zero m. It is
instructive to consider the zero temperature limit, where the mean field equations can
be solved exactly. In particular we have:

mν = ⟪ξνerf [
1

√
2αr

(m +h) ⋅ ξ]⟫ , (2.27)

q = 1 −CT , (2.28)

r =
1

(1 −C)
2
, (2.29)

with

C = (
2

πrα
)

1
2

e−
m2

2rα .
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These equations have always a spin glass solution with mν = 0. For α > αC = 0.138 this
is the only solution. For α < αC , there are also the ferromagnetic solutions with m ≠ 0.
They appear at α = αC with an overlap m = 0.967 (very close to unity) with the single
memory patterns.

The average energy per spin when the system exhibits a macroscopic overlap m with
one of the learned patterns is:

E = ⟪−
1

2N2

p

∑
µ=1

N

∑
ij

ξµi ξ
µ
j σiσj⟫+

α

2
= −

m2

2
+
α

2
(1 − r) .

At α = αC , E = −0.5014, whereas as α → 0, for finite m, E → −0.5. For finite α the
system is able to slightly lower its energy by relaxing a small fraction of the spins, to
accommodate for fluctuations in the overlap of the other patterns.

Figure 2.3: Phase diagram for the Hopfield model. The system exhibits three different phases.
Below the curve TC the phase is ferromagnetic: the states with m ≠ 0 are the global minima of the
free energy. The phase transition at TC is a first-order phase transition. In the limit T → 0 the phase
is ferromagnetic for α < 0.051. Above the curve TM the system has a spin glass behavior: m = 0

and q, r ≠ 0. In the limit T → 0 the spin glass phase is observed for α > 0.138. Between TC and
TM the spin glass state is again the global minimum of the free energy. However ferromagnetic
solutions are metastable states. These states start to appear just below TM in a discontinuous way.
The curve TR in the main plot is the instability temperature for replica symmetric solutions and is
showed on an expanded scale in the inset. This image is reproduced from [20].

Let us focus on the spin glass solution, where m = 0 and q, r ≠ 0. These conditions
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imply that:

r =
⎡
⎢
⎢
⎢
⎣
1 + (

2

πα
)

1
2 ⎤⎥
⎥
⎥
⎦

2

. (2.30)

Moreover, using this last result, the energy of the spin glass state is equal to:

E = −
1

π
− (

πα

2
)

1
2

.

In the limit α → 0, E → − 1
π

and C =
√

2
παr

→ 1. This limit coincides with the value ofE of
the symmetric solutions in the finite p case, where the state mixes n patterns, in the limit
n→∞. This implies that, as p→∞, the numerous states which mix many patterns merge
to form the spin glass phase. Comparing the energy of the spin glass and ferromagnetic
states, the spin glass energy results to be lower in the range 0.051 < α < 0.138, whereas
the ferromagnetic states becomes the absolute minima below 0.051. Thus at α = αC the
spin glass state is definitely the ground state of the system.

The analytical calculation presented here can be numerically extended at non zero
temperature, in order to produce the phase diagram of figure (2.3).

Both the SK model and the Hopfield network are intimately related with non-deterministic
polynomial problems. In the next section we discuss qualitatively this connection.

2.5 Non-deterministic poynomial (NP) problems and the connection
with spin glasses

In many cases, an optimization problem can be cast as a problem of minimizing a given
cost or energy function H(S1, S2, ...SN) with respect to N variables S1, S2, ...SN (some-
times subject to some constraints). The task is to find a set of values for these variables (a
configuration) for which the function H({Si}) has the minimum value. In many impor-
tant optimization problems, the set of feasible configurations from which an optimum
is to be chosen is a finite set (for finite N ). In such a case, we say that the problem is
combinatorial in nature. If the variables Si are discrete and each takes on a finite number
of values, then the problem is clearly a combinatorial one. Here we focus on this type
of optimization problem, and assume that we have to minimizeH({Si}) with respect to
the discrete set of the variables Si [37].

An optimization problem is said to belong to the class P (P for Polynomial), if it can
be solved in polynomial time (i.e., the evaluation time goes like some polynomial in N )
using polynomially (in N , again) resources. Existence of such a polynomial bound on
the evaluation time is somehow interpreted as the “easiness” of the problem. However,
many important optimization problems seem to fall outside this class, like the famous
traveling salesman problem (see Figure 2.4).

Another important class of problems which can be solved in polynomial time by non-
deterministic machines. This class is the famous NP (Non-deterministic Polynomial)
class. P is included in the NP class, since a deterministic Turing machine is just a special
case of non-deterministic Turing machines. Unlike a deterministic machine, which takes
a specific step deterministically at each instant (and hence follows a single computational
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Figure 2.4: An instance of the Travelling salesman problem. The task is to find the shortest route
connecting all the cities on the map (for instance with the euclidean metrics). This task is NP-hard.
The solution on the left can be easily improved eliminating crossing lines. The improved solution
is showed on the right.

path), a non-deterministic machine has a host of different ‘allowed’ steps at its disposal
at every instant. At each instant it explores all the ‘allowed’ steps and if any of them
leads to the goal, the job is considered to be done. Thus it explores in parallel many
paths (whose number goes typically exponentially with time) and checks if any one of
them reaches the goal.

Among the NP problems, there are certain problems (known as NP-complete prob-
lems) which are such that any NP problem can be “reduced” to them using a polyno-
mial algorithm. For instance the number partitioning problem that we will define in the
following is a representative of this class. This roughly means that if one has a routine to
solve an NP-complete problem of size N then using that routine one can solve any NP
problem at the cost of an extra overhead in time that grows only polynomially with N .
The problems in this class are considered to be hard, since so far no one can simulate a
general nondeterministic machine by a deterministic Turing machine without an expo-
nential growth of execution time. In fact it is largely believed (though not proved yet)
that it is impossible to do so (i.e., P≠NP) in principle.

There are some excellent deterministic algorithms for solving certain optimization
problems exactly . These algorithms are, however, quite small in number and are strictly
problem specific. For NP or harder problems, only approximate results can be found us-
ing these algorithms in polynomial time. These approximate algorithms too are strictly
problem specific in the sense that if one can solve a certain NP-complete problem up to a
certain approximation using some polynomial algorithm, then that does not ensure that
one can solve all other NP problems using the same algorithm up to the said approxi-
mation in polynomial time.
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Exact algorithms being scarce, one has to go for heuristics algorithms, which are
based on certain intuitive moves, without guarantee on either the accuracy or the run
time for the worst case instance. However, these algorithms are generally easy to formu-
late and are quite effective in solving most instances of the intended problems. A general
approach towards formulating such approximate heuristics may be based on stochastic
(randomized) iterative improvements. The easiest one in this family is the local mini-
mization algorithm. In this algorithm one starts with a random configuration C0 and
makes some local changes in the configuration following some prescription (stochastic
or deterministic) to generate a new configuration C1 and calculates the corresponding
change in the cost. If the cost is lowered by the change, then the new configuration C1 is
adopted. Otherwise the old configuration is retained. Then in the next step a new local
change is attempted again, and so on. This reduces the cost steadily until a configuration
is reached which minimizes the cost locally. This means that no further lowering of cost
is possible by changing this configuration using any of the prescribed local moves: the
algorithm essentially stops there. But generally, in most optimization problems (such as
in spin glasses), there occur many local minima in the cost-configuration landscape and
they are mostly far above the global minimum. It is likely that the algorithm therefore
gets stuck in one of them and ends up with a poor approximation. One can then start
afresh with some new initial configuration and end up with another local minimum. Af-
ter repeating this for several times, each time with a new initial configuration, one may
choose the best result from them. A better idea would be to get somehow out of shallow
local minima. One can introduce some fluctuations or noise in the process so that the
movement is not always towards lower energy configurations, but there is also a finite
probability to go to higher energy configurations (the higher the final energy, the lower
the probability to move to that), and consequently there appear chances to get out of
the shallow local minima. Initially, strong fluctuations are adopted (i.e., the probabil-
ity to go to higher energy configurations is relatively high) and slowly fluctuations are
reduced until finally they are tuned off completely. In the mean time the system gets
a fair opportunity to explore the landscape more exhaustively and settle into a reason-
ably deep cost or energy minimum. Kirkpartick et al. in 1983 [38] suggested an elegant
way: A fluctuation is implemented by introducing an “artificial” temperature T into the
problem such that the transition probability from a configuration Ci to a configuration
Cf is given by min{1, exp−[∆if /T ]}, where ∆if = Ef − Ei, with Ek denoting the cost
or energy of the configuration Ck. A corresponding Monte Carlo dynamics is defined,
say, based on detailed balance, and the thermal relaxation of the system is simulated. In
course of simulation, the noise factor T is reduced slowly from a very high initial value
to zero following some annealing schedule. At the end of the simulation one is expected
to end up with a configuration whose cost is a reasonable approximation of the global
minimum one. If the temperature is decreased slowly enough, then the global minimum
is attained with certainty in the limit t → ∞ [39]. Even within a finite time and with a
faster cooling rate, one can achieve a reasonably good approximation.

As has been mentioned already, many combinatorial optimization problems can be
cast into the problem of finding the ground state of some classical (spin glass like) Hamil-
tonian H({Si}). In particular, finding the ground state of the SK model and of the Hop-
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Figure 2.5: An instance of the Number Partitioning problem: a partition of a set of positive integer
numbers is produced in such a way to minimize the absolute value of the difference of the sum of
the elements of the two resulting sets. In this simple case a zero energy solution is found.

field network (in the spin glass phase) are both NP-hard problems. One can therefore
analyze the problem by using statistical mechanics (as we did in the first sections) so as
to apply Montecarlo techniques like simulated annealing.

In the last section of the chapter we define another famous NP-hard problem, num-
ber partitioning, that we mentioned above. This problem, as long as SK and Hopfield
models, will play a role in the rest of the first part of this manuscript.

2.5.1 The number partitioning problem

Number partitioning asks the following: given a set ofN positive numbers S = {n1, . . . , nN},
is there a partition of this set of numbers into two disjoint subsets R and S −R, such that
the sum of the elements in both sets is the same? For example, can one divide a set of
assets with values n1, . . . , nN , fairly between two people? This is the decision version of
the problem and is known to be NP-complete [37].

This problem can be phrased trivially as an Ising model as follows. Let ni (i =

1, . . . ,N = ∣S∣) describe the numbers in set S, and let

H = (
N

∑
i=1

niσi)

2

(2.31)

be an energy function, where σi = ±1 is an Ising spin variable.
It is clear that if there is a solution to the Ising model with H = 0, then there is a

configuration of spins where the sum of the ni for the +1 spins is the same for the sum
of the ni for the −1 spins. Thus, if the ground state energy is H = 0, there is a solution to
the number partitioning problem.

This Ising glass has degeneracies – i.e., there are always at least two different solutions
to the problem. This can be seen by noting that if σ∗i denotes a solution to the problem,
then −σ∗i is also a solution. Physically, this corresponds to the fact that we do not care
which set is labeled as ±. The existence of a symmetry transformation which leaves the
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couplings unchanged (as there are no linear terms) implies that all energy levels ofH are
degenerate. It is possible that there are 2m ground states (with m > 1). This means that
there are m physically distinct solutions to the computational problem. We can remove
this double degeneracy by fixing σ1 = 1. This also allows us to remove one spin: now
only σ2, . . . , σN are included on the graph, and σ1 serves as an effective magnetic field.
So in general, we require N − 1 spins, which live on a complete graph, to encode this
problem.

If the ground state has H > 0, we know that there are no solutions to the partitioning
problem, but the ground state we do find is (one of) the best possible solutions, in the
sense that it minimizes the mismatch. Minimizing this mismatch is an NP-hard problem,
and we see that we do not require any more fancy footwork to solve the optimization
problem – the same Hamiltonian does the trick. The number partitioning problem, as
long as many others spin glass problems, can be investigated with statistical mechanics
techniques. This was done, for instance, in ref. [21].



CHAPTER 3

Light-matter interaction at the quantum level: the Dicke
model

In this chapter we review fundamental facts on superradiance, a concept introduced in
1954 by R. Dicke [40] in order to describe the collective spontaneous emission of photons
from a collection of atoms. Loosely speaking superradiance occurs when a group of N
emitters, such as excited two-level atoms, interact with a common light field. If the
wavelength of the light is much greater than the separation of the emitters, then the
emitters interact with the light in a collective and coherent fashion. Whenever this length
scale separation is achieved, the atomic sample emits light as a high intensity pulse (with
rate ∝ N2). This result is drastically different from the expected exponential decay (with
rate ∝ N ) of a group of independent atoms radiating spontaneously.

Superradiance can be elegantly understood in a statistical mechanical framework as
a quantum phase transition [41]. This was firstly highlighted by Hepp and Lieb [5], who
solved the so called Dicke model. Here we present this solution following the more
comprehensible and intuitive approach of Wang and Hioe [7].

This research field is source of renewed interest thanks to the advent of quantum
simulators based on ultracold atoms. Recently several proposals and experiments have
been put forward to simulate the toy Hamiltonian of the Dicke model. In this chapter
we will try to review the state of the art, at the best of our knowledge. We stress that our
original work is mainly motivated by some of these proposals.

3.1 Thermodynamics of the Dicke model: the superradiant phase tran-
sition

One of the primary goals of Quantum Optics is to understand the interaction between
qubits (two-level systems) and quantized radiation fields. From this viewpoint, a bench-
mark model, widely investigated, is the Rabi model, whose Hamiltonian is given by
(h̵ = 1)

HR = ωa†a +∆σz +Ω (a + a†)σx . (3.1)

The equation above describes the interaction (in the dipole approximation) of a monochro-
matic radiation field of frequency ω with a single two-level system with energy levels
splitted by ∆. Photons are described by a single bosonic harmonic oscillator, whereas
the atom is frozen at fixed position and therefore only internal degrees of freedom have

27
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to be taken into account. For a two-level system these degrees of freedom are described,
as usual, by Pauli matrices:

σx = (
0 1

1 0
) , σy = (

0 −i

i 0
) , σz = (

1 0

0 −1
) .

Despite its apparent simplicity, finding out the exact spectrum of the Hamiltonian op-
erator in (3.1) is a formidable task: only recently it was proved that this model is inte-
grable [42], in the sense that the spectrum is given by the zeros of a trascendental function
whose power series in Ω is known.

A simpler version of this interacting quantum system is obtained in the weak cou-
pling (Ω ≪ ω) and quasi-resonant (2∆ ∼ ω) regime. If these conditions are fullfilled
we can perform a rotating wave approximation in order to obtain the so called Jaynes-
Cummings Hamitonian

HJC = ωa†a +∆σz +Ω (aσx + a† σ−) , (3.2)

with: σ+ ∶= (σx + iσy)/2, σ− ∶= (σx − iσy)/2. Besides the energy itself, this systems is
endowed with another conserved charge, generating a continuous U(1) symmetry:

C = a†a +
σz

2
. (3.3)

The existence of such a commuting operator allows to decompose the Hamiltonian op-
erator as a direct sum on two-dimensional invariant subspaces, and therefore to exhibit
explicit simple expressions both for the eigenvalues and the eigenvectors of the problem.

The Dicke model is a natural many-body extension of these single atom systems and
describes a collection of N two level atoms interacting with a common quantized radia-
tion field. Its Hamiltonian is given by

HD =
M

∑
s=1

ωsa
†
sas +

1

2
∆

N

∑
j=1

σzj +
1

2
√
V

⎡
⎢
⎢
⎢
⎢
⎣

(
M

∑
s=1

λ′s(as + a
†
s))

⎛

⎝

N

∑
j=1

(σ+j + σ
−
j )

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (3.4)

Here atoms interact with M photonic modes of (in principle) different frequencies ωs,
V is the volume of the atomic cloud, and λ′s is a mode-dependent coupling constant
between the photons and the two-level systems. In the original formulation by Dicke,
the coupling constants are

λ′s = ∆d (2π/ωs)
1
2 (N/V )

1
2 , (3.5)

where d is the projection of the atomic dipole moment along the polarization vector
of the electromagnetic field. Remarkably, the strenght of interaction can be tuned by
varying the atomic density ρ = N/V . Loosely speaking we would like to prove that
there exists a density threshold for which the macroscopic properties of the Dicke model
abrubtly change, in order to understand how superradiance emerges from the interac-
tion between the microscopic constituents of the system. As anticipated above, a natural
framework for investigating this collective phenomenon is equilibrium statistical me-
chanics.
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From now on, we will consider, for safe of clarity, a single mode (M = 1) Dicke Hamil-
tonian. For future convenience it is useful to measure all the parameters in (3.4) in units
of ω. This amounts to study the following rescaled Hamiltonian

H = a†a +
N

∑
j=1

[
1

2
ε σzj +

λ

2
√
N

(a + a†
)σxj ] , (3.6)

with ε = ∆/ω e λ = λ′ ρ/ ω.

3.1.1 Partition function of the Dicke model

In this section we present the equilibrium statistical mechanical approach to the Dicke
model, following the paper by Wang and Hioe [7], who simplified the original solution
by Hepp and Lieb [5]. It is worth remarking that here we do not prove their method to
be correct. For a mathematical proof see [6].

At equilibrium informations about the macroscopic properties of the system are en-
tirely contained in the partition function Z(N,T ) = Tr e−βH , where β = 1/T is the inverse
of the temperature. The trace is over the Hilbert spaces of both the photons and the
atoms. In order to perform the calculation we need to choose a convenient basis.

For the bosonic degrees of freedom we choose the coherent states ∣α⟩, with the fol-
lowing properties:

1. ∣α⟩ is an eigenstate of the annihilation operator a

a ∣α⟩ = α ∣α⟩; ⟨α∣a†
= ⟨α∣α∗ .

2. The ∣α⟩’s are an (over)complete set of states:

∫
d2α

π
∣α⟩⟨α∣ = 1 ,

with ∫ d2α ∶= ∫∫ d(Im(α)) d(Re(α)).

By definition the partition function is

Z(N,T ) = ∑
s1=±1

⋯ ∑
sN=±1

∫
d2α

π
⟨s1⋯sN ∣⟨α∣e−βH ∣α⟩∣s1⋯sN ⟩ . (3.7)

The first step is to evaluate the matrix element ⟨α∣e−βH ∣α⟩. We define the rescaled op-
erators b ∶= a/

√
N and b† ∶= a†/

√
N . These operators satisfy the commutation relations

[b, b†] = 1/N . In terms of these rescaled variables, we can rewrite equation (3.6) as

H =
N

∑
j=1

[b b†
+
ε

2
σzj +

λ

2
(b + b†

)σxj ] . (3.8)

Let us consider, as an example, the following string of b’s:

bb†b†b = (b†b +
1

N
)b†b = b†bb†b +

1

N
b†b = b†

(b†b +
1

N
)b +

1

N
b†b = b†b†bb +

2

N
b†b.
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From this example we can argue that every contraction performed to obtain the normal
ordered string can be discarded in the thermodynamic limitN →∞. Using this property,
it turns out that

⟨α∣Hr
∣α⟩ ≃ (⟨α∣H ∣α⟩)

r
=
⎡
⎢
⎢
⎢
⎣
αα∗ +

N

∑
j=1

[
ε

2
σzj +

λ

2
√
N

(α + α∗)σxj ]
⎤
⎥
⎥
⎥
⎦

r

.

Therefore the photonic matrix element is

⟨α∣e−βH ∣α⟩ = ⟨α∣∑
r

(−βH)r

r!
∣α⟩

= exp

⎧⎪⎪
⎨
⎪⎪⎩

−β
⎡
⎢
⎢
⎢
⎣
αα∗ +

N

∑
j=1

(
ε

2
σzj +

λ

2
√
N

(α + α∗)σxj )
⎤
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

.

(3.9)

The argument that we used here in order to obtain this result is purely heuristic and
is not a formal proof. Hepp and Lieb proved rigorous bounds for the Dicke partition
function in such a way to prove this result.

Once the photonic matrix element is evaluated, we consider the spin trace. It is con-
venient to define:

hj =
ε

2
σzj +

λ

2
√
N

(α + α∗)σxj .

Obviously this set of operators commute with each other. Using this definition and (3.9),
it turns out that

⟨s1⋯sN ∣⟨α∣e−βH ∣α⟩∣s1⋯sN ⟩ =

= e−β∣α∣
2

⟨s1⋯sN ∣ exp
⎛

⎝
−β

N

∑
j=1

hj
⎞

⎠
∣s1⋯sN ⟩

= e−β∣α∣
2

⟨s1⋯sN ∣
N

∏
j=1

e−βhj ∣s1⋯sN ⟩

= e−β∣α∣
2
N

∏
j=1

⟨sj ∣e
−βhj ∣sj⟩ , (3.10)

and the partition function (3.7) is written down as

Z(N,T ) = ∫
d2α

π
∑
s1=±1

⋯ ∑
sN=±1

e−β∣α∣
2
N

∏
j=1

⟨sj ∣e
−βhj ∣sj⟩

= ∫
d2α

π
e−β∣α∣

2

(⟨+1∣e−βh∣ + 1⟩ + ⟨−1∣e−βh∣ − 1⟩)
N

= ∫
d2α

π
e−β∣α∣

2

(Tr(e−βh))
N
, (3.11)

with:

h =
ε

2
σz +

λ

2
√
N

(α + α∗)σx .
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The eigenvalues of h are easily found to be

µ = ±(
1

2
ε)(1 +

4λ2[Re(α)]2

ε2N
)

1
2

. (3.12)

Using (3.12) in (3.11):

Z(N,T ) = ∫
d2α

π
e−β∣α∣

2

(eβ∣µ∣ + e−β∣µ∣)
N

= ∫
d2α

π
e−β∣α∣

2
⎧⎪⎪
⎨
⎪⎪⎩

2 cosh

⎡
⎢
⎢
⎢
⎢
⎣

(
1

2
βε)(1 +

4λ2[Re(α)]2

ε2N
)

1
2
⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

N

.

(3.13)

In conclusion we are able to write the partition function as a single integral

Z(N,T ) =

√
N

√
πβ
∫

∞

−∞
dy e−Nβy

2
⎧⎪⎪
⎨
⎪⎪⎩

2 cosh

⎡
⎢
⎢
⎢
⎢
⎣

(
1

2
βε)(1 +

4λ2y2

ε2
)

1
2
⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

N

=

√
N

√
πβ
∫

∞

−∞
dy exp [Nφ(y)] ,

with

φ(y) ∶= −βy2
+ log

⎡
⎢
⎢
⎢
⎢
⎣

2 cosh
⎛

⎝
(

1

2
βε)(1 +

4λ2y2

ε2
)

1
2 ⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (3.14)

Finally we are able to evaluate the partition function with the saddle point method:

Z(N,T ) ∝ max
−∞≤y≤∞

exp [Nφ(y)] . (3.15)

3.1.2 Saddle point equations and superradiant phase transition

In this section we apply the saddle point method in order to investigate the behavior of
the partition function. As a first step we evaluate the derivative of (3.14):

φ′(y) = −2βy +
2βλ2y

ε
(1 +

4λ2y2

ε2
)

− 1
2

tanh
⎛

⎝
(

1

2
βε)(1 +

4λ2y2

ε2
)

1
2 ⎞

⎠
. (3.16)

This equation has two different stationary points, the trivial one in y = 0 and the other
one given by the solution of the following equation:

ε

λ2
η = tanh[(

1

2
βε)η] , (3.17)

with η ∶= (1 + 4λ2y2/ε2)
1
2 . By direct inspection, it is straightforward to see that for λ2 < ε,

equation (3.17) has no solution, and therefore in this case the only stationary point is the
trivial one in y = 0. Let us consider (3.17) for λ2 > ε . There are two possible scenarios.
For β < βc, with βc defined implicitely through

ε

λ2
= tanh[(

1

2
βcε)] ,
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the equation has no solution. On the other hand, if β > βc, (3.17) has a single non-
zero solution η = η0. It is possible to show that this solution minimizes the free energy
in the strong coupling (λ2 > ε) and low temperature (β > βc) regime. This is the so
called superradiant regime. From physical intuition, we expect that the mean number of
photons n̄, is a good order parameter to characterize the phase transition. By definition
this observable is given by

n̄ = ⟨
a†a

N
⟩ =

Tr [(a
†a
N

) e−βH]

Z(N,T )
. (3.18)

A slight modification of the previous calculations allows to evaluate the order parameter:

Tr [(
a†a

N
) e−βH] =

1

N
∫

d2α

π
∣α∣2e−β∣α∣

2

f(Re(α))

=
1

πN
∫

∞

−∞
dv v2e−βv

2

f(v)∫
∞

−∞
dwe−βw

2

+

+
1

πN
∫

∞

−∞
dv e−βv

2

f(v)∫
∞

−∞
dww2e−βw

2

,

with v ∶= Re(α), w ∶= Im(α) and

f(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

2 cosh

⎡
⎢
⎢
⎢
⎢
⎣

(
1

2
βε)(1 +

4λ2x2

ε2N
)

1
2
⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

N

.

Within standard manipulations we end up with:

n̄ =

∫
∞

0 dy y2 exp{N [−βy2 + log [2 cosh(( 1
2
βε) (1 + 4λ2y2

ε2
)

1
2
)]]}

∫
∞

0 dy exp{N [−βy2 + log [2 cosh(( 1
2
βε) (1 + 4λ2y2

ε2
)

1
2
)]]}

. (3.19)

The saddle point method allows to identify two different regimes:

• If λ2 < ε or if λ2 > ε and β < βc, then n̄ = 0.

• If λ2 > ε and β > βc, n̄ = y2
0 ≠ 0, with y0 the maximum of φ in (3.14).

A straightforward analysis shows that the mean number of photons n̄ is a continuous
function, and therefore superradiance is a second order phase transition.

In the zero temperature limit T → 0 (β →∞), all the equations of the previous section
get simpler. For instance:

lim
β→∞

φ(y) = β

⎡
⎢
⎢
⎢
⎢
⎣

−y2
+

1

2
ε

√

1 +
4λ2y2

ε2

⎤
⎥
⎥
⎥
⎥
⎦

,

and thus, in order to characterize the transition we consider the following function:

ϕ(y) ∶= −y2
+

1

2
ε

√

1 +
4λ2y2

ε2
, (3.20)
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and its derivative:

ϕ′(y) = 2y

⎡
⎢
⎢
⎢
⎢
⎣

−1 +
λ2

ε
(1 +

4λ2y2

ε2
)

− 1
2
⎤
⎥
⎥
⎥
⎥
⎦

.

The two stationary points are:

y = 0 or y2
=

1

4λ2
(λ4

− ε2) .

and the second one exists if and only if λ2 > ε. Thus the energy of the superradiant
ground state can be evaluated exactly in the thermodynamic limit.

3.2 Dicke quantum simulators: state of the art

The Dicke model was originally proposed in order to describe superradiance, i. e. how
single atoms in a cloud (interacting with light) can cooperate in order to produce an
enhancement of spontaneous emission. This phenomenon, as we tried to explain in the
previous section, can be understood as a quantum phase transition. Nonetheless, in
the Quantum Optics community there is an ongoing debate to understand whether this
phase transition is physical rather than an artifact of approximations: this is the so called
A2-problem [43].

A possible loophole to circumvent this problem and realize a genuine superradiant
phase transition is to provide quantum simulators that can mimic effectively the Dicke
Hamiltonian (3.4) in all the parameter regimes. This is the same philosophy behind the
ultracold atoms realization of the superfluid to Mott insulator phase transition in the
Bose-Hubbard model [44]: something very difficult to observe in real life condensed
matter systems may be fruitfully investigated in a completely tunable analogic version of
the corresponding toy model.

In order to simulate the Dicke model, we mainly identify two large classes of quan-
tum simulators: cavity QED with ultracold atoms and circuit QED with superconduct-
ing qubits. Both these platforms present advantages and limitations, that are currently
mainstream reaserch topics. In the following we will focus out attention on the ultracold
atoms proposals and realizations of the Dicke Hamiltonian.

A promising route to realize the superradiant transition has been proposed recently
in the setting of cavity quantum electrodynamics by Carmichael and coworkers [45]. In
their scheme strong coupling between two ground states of an atomic ensemble is in-
duced by balanced Raman transitions involving a cavity mode and a pump field. This
idea circumvents the thought to be unattainable condition for the Dicke quantum phase
transition which requires a coupling strength on the order of the energy separation be-
tween the two involved atomic levels. This setup was recently implemented and evi-
dences of a superradiant transition have been reported [46].

To date, however, the most popular implementation of an effective Dicke Hamilto-
nian is the experiment realized in Zurich by Esslinger’s group in 2010 [22]. We stress
that their implementation is rather different in spirit respect to the original Dicke model.
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3.2.1 Self organization of a BEC in an optical cavity

Esslinger and coworkers considered a BEC placed inside an high-finesse optical cavity.
Intuitively the cavity field is able to mediate an infinitely long range interaction between
all the atoms in the sample. In such a setting a phase transition from a uniform Bose-
Einstein condensate to a self-organized phase has been predicted once the atoms induce
a sufficiently strong coupling between a pump field and an empty cavity mode. The
experimental setup is schematically shown in Figure (3.1).

Remarkably the description of a BEC in an optical cavity is in one-to-one correspon-
dence with the Dicke Hamiltonian [47]. Let us consider a zero-temperature BEC of a
number of N atoms of mass m which is inside a high-Q optical cavity with a single
quasi-resonant mode of frequency ωC . The atoms are coherently driven from the side by
a pump laser field. The pump laser frequency ω is detuned far below the atomic reso-
nance frequency ωA, so that the atom-pump (red) detuning ∆A = ω − ωA far exceeds the
rate of spontaneous emission. One can then adiabatically eliminate the excited atomic
level and the atom acts merely as a phase-shifter on the field [48]. The dispersive atom-
field interaction has a strength U0 = g

2
0/∆A, where g0 is the single-photon Rabi frequency

at the antinode of the cavity mode. We describe the condensate dynamics in one di-
mension along the cavity axis x, where the cavity mode function is cos kx. The motion
perpendicular to the cavity axis requires a trivial generalization of the theory, and with a
standing-wave side pump the self-organization effect occurs quite similarly in two and
three dimensions.

The many-particle Hamilton operator in a frame rotating at the pump frequency ω

and with h̵ = 1 reads [48]

H = −∆C a
†a+∫

L

0
Ψ†

(x)[−
h̵

2m

d2

dx2
+U0 a

†a cos2
(kx)+iηt coskx(a†

−a)]Ψ(x)dx, (3.21)

where Ψ(x) and a are the annihilation operators of the atom field and the cavity mode,
respectively. The cavity length is L, the detuning ∆C = ω − ωC is the effective photon
energy in the cavity. Atom-atom s-wave scattering is neglected. Besides the dispersive
interaction term U0 cos2 kx, there is another sinusoidal atom-photon coupling term de-
scribing an effective cavity-pump with the amplitude ηt = Ωg0/∆A, where Ω is the Rabi
frequency of the coupling to the transverse driving field.

Self-organization is a transition from the homogeneous to a λ-periodic distribution.
The minimum Hilbert-space for the atom field required to describe this transition is
spanned by two Fourier-modes,

Ψ(x) =
1

√
L
c0 +

√
2

L
c1 coskx , (3.22)

where c0 and c1 are bosonic annihilation operators. In the low excitation regime these
two modes can be assumed to form a closed subspace, so c†

0c0 + c
†
1c1 = N is a constant

of motion giving the number of particles. On invoking the Schwinger-representation in
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Figure 3.1: Esslinger’s group experiment: a BEC is placed inside a single mode optical cavity and
pumped in the transverse direction z with a standing wave laser. The frequency of the pump
laser is far red-detuned with respect to the atomic transition line but close detuned to a particu-
lar cavity mode. Correspondingly, the atoms coherently scatter light into the cavity mode with a
phase depending on their position within the combined pump–cavity mode profile. a) Below a
critical pumping Pcr the density of the BEC is uniform along the cavity axis. The formation of a
macroscopic cavity field is suppressed due to the destructive interference of individual scatterers.
b) Above the critical pumping atoms self-organize in a checkerboard pattern (c) in order to max-
imize cooperative scattering. This results in the formation of a macroscopic cavity field, that can
be measured outside the cavity.
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Figure 3.2: Experimental phase diagram: the mean intracavity photon number is displayed as a
function of the pump power and of the pump-cavity detuning. Every pixel depicted in the plot
is a single experiment run with different parameters. This result is in good agreement with the
theoretical prediction of the Dicke model (red dashed curve).

terms of the spin Ŝ with components

Ŝx =
1

2
(c†

1c0 + c
†
0c1) , (3.23)

Ŝy =
1

2i
(c†

1c0 − c
†
0c1) , (3.24)

Ŝz =
1

2
(c†

1c1 − c
†
0c0) , (3.25)

the Hamiltonian Eq. (3.21) confined into the two-mode subspace reads

H = −δC a
†a + ωRŜz + iy(a

†
− a)Ŝx/

√
N + ua†a ( 1

2
+ Ŝz/N) , (3.26)

where δC = ∆C − 2u, ωR = h̵k2/2m, u = N U0/4, and y =
√

2Nηt. In the first three terms
we can recognize the Dicke-model Hamiltonian with a coupling constant y tunable via
the transverse driving amplitude ηt. The last term is inherent to the BEC-cavity system,
however, it does not essentially change the conclusions to be drawn here as long as
∣u∣ < ∣δc∣. The theoretical predictions of the Dicke model can be then compared with
experiments, see Figure (3.2).

Once the mapping is exhibited, it is clear that this realization of the Dicke Hamilto-
nian is deeply different in spirit from the original model with two-level atoms. Here are
the vibrational degrees of freedom of the BEC, as a whole, to form a collective angular
momentum algebra (in the thermodynamics limit and at zero temperature) interacting
with the cavity field.

In this thesis we are mostly interested in generalized Dicke simulators where the
fundamental building blocks are genuine two-level atoms, in the spirit of Carmicheal
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Figure 3.3: (a) Level structure of three-level Λ atoms, dressed by a pump laser at frequency ωL,
cavity mode(s) at frequency ωC , and a microwave field represented by h. The detuning from two-
photon resonance, δ, is assumed to be much smaller than the detuning of laser and cavity photons
from the atomic transition, ∆. (b) Proposed experimental setup. Atoms are tightly trapped by trap-
ping lasers, which are far detuned from the atomic transition, and pumped transversely. Spins are
self-organized as discussed in the text for a single-mode cavity, with a sinusoidal mode function
as depicted: spins at even antinodes interact ferromagnetically with spins at other even antinodes,
but antiferromagnetically with spins at odd antinodes. Spin-spin interactions are strongest for
spins trapped at antinodes; therefore, ordering is strongest at antinodes and weakest at nodes.

proposal, partly realized in [46]. This class of Dicke simulators, properly generalized,
will be the subject of our investigations in Chapter 4. The main motivation of our work
are the two paper by Lev and coworkers [3] and Strack and Sachdev [4], where they
considered a multimomodal disordered generalization of Dicke simulators.

3.3 Multimode disordered Dicke simulators

In this section we briefly review the proposal by Gopalakrishnan, Lev and Goldbart.
These authors suggest that ultracold atoms trapped in multimode optical cavities may
be viable platforms for investigating spin glass phenomenology at the quantum level.

Let us consider Λ-type atoms whose lower levels (which will be our two spin states,
∣+⟩ and ∣−⟩) are separated by a microwave transition whereas the excited level, ∣e⟩, is
separated from both by an optical transition. The ∣±⟩ states are assumed to be tightly
confined at the intensity extrema of trapping lasers that are far detuned from the ∣±⟩ →

∣e⟩ transition; i.e., the atomic positional degrees of freedom are assumed to be frozen
out. Disorder can be introduced using diffusers. The atoms are confined in an optical
cavity having multiple degenerate modes, at a frequency red-detuned from the ∣+⟩ → ∣e⟩

transition by ∆ ∼ 1 GHz; other modes are typically farther-detuned (e.g., by ∼ 15 GHz
for a 1 cm cavity). Additionally, the atoms interact with a pump laser oriented transverse
to the cavity axis, red-detuned from the ∣−⟩ → ∣e⟩ transition by ∆+δ, where δ ≃ 10 MHz is
the detuning from two-photon resonance. The microwave ∣+⟩ ↔ ∣−⟩ transition is driven
at a weak Rabi frequency.

Under these conditions, the spin-spin interactions can be understood as follows: an
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atom in the ∣−⟩ state can scatter a laser photon into a cavity mode, thus changing its
state to ∣+⟩; this virtual cavity photon, being δ higher in energy than laser photons, is
reabsorbed into the laser after a time ∼ 1/δ. The reabsorption involves flipping the state
of a ∣+⟩ atom (typically a different one from the initial atom) to ∣−⟩. This entire process
generates an interaction between two atoms arbitrarily far apart, and hence an effective
long range spin model with couplings depending both on the position of the atoms and
on the profiles of the cavity modes.

We further assume that the cavity photon leakage rate per mode, κ≪ δ, and also that
the atomic-excited-state decay rate, γ ≪ ∆. In this “dispersive” regime, the conservative
virtual-excitation processes fall off as 1/δ and 1/∆ respectively, whereas the dissipative
processes fall off as κ/δ2 and γ/∆2 respectively. Generally, dissipation does not change
the mean-field properties even beyond this regime.

Hence, upon adiabatic elimination [48] of the state ∣e⟩, the Hamiltonian H of the atom-
light system takes the form

H =Hat +∑
M

α=1
ωαa

†
αaα +

Ω

∆

N,M

∑
α,i=1

gα(xi)σ
i
−a

†
α + h.c., (3.27)

where ωα is the frequency of cavity mode α; aα destroys a cavity photon; Ω is the strength
(i.e., Rabi frequency) of the pump laser; gα(xi) describes the coupling to mode α at the
position xi of atom i; and the σ operators are Pauli matrices acting on the atomic ground-
state manifold. One can rewrite the coupling gα(xi) as gΞα(xi), where g is an overall
coupling strength (assumed to be the same for all strongly-coupled modes) and Ξα(xi)

a normalized mode profile. The terms in Hat = ∑i(hxσ
i
x + hzσ

i
z) represent transitions

that do not involve the cavity, and are due to the ∣+⟩ ↔ ∣−⟩ microwave driving: hx is the
microwave Rabi frequency, hz is the detuning, and σi are the Pauli matrices for atom
i. Note that the model described above, while similar in some ways to the multimode
Dicke model, differs from it in the crucial respect that, in the present case, the different
modes have distinct spatial profiles; it is this feature, not present in the multimode Dicke
model, that enables frustration to be realized.

This proposal is the main motivation of the theoretical analysis that we perform in
Chapter 4. Using an approach inspired from spin glasses, we show that the multimode
disordered Dicke model is equivalent to a quantum Hopfield network. We propose vari-
ational ground states for the system at zero temperature, which we conjecture to be exact
in the thermodynamic limit. These ground states contain the information on the disor-
dered qubit-photon couplings. Our results lead to two intriguing physical implications.
First, once the qubit-photon couplings can be engineered, it should be possible to build
scalable pattern-storing systems whose dynamics is governed by quantum laws. Sec-
ond, we argue with an example of how such Dicke quantum simulators might be used
as solvers of ”hard” combinatorial optimization problems.



CHAPTER 4

Dicke simulators with emergent collective quantum
computational abilities

In this chapter we present our original work. The following sections are an adaptation
of our published results.

4.1 Replica symmetry breaking in cold atoms and spin glasses

Replica Symmetry Breaking (RSB) appeared for the first time as a necessary ingredient
to solve the Sherrington-Kirkpatrick (SK) model for spin glasses [32], an Ising model
characterized by a fully connected network and quenched random interactions. This
model was introduced to be exactly solvable and not to reproduce a physical system.
Nonetheless, through the years we have accumulated a number of examples of complex
problems in biology, informatics, and economy in which RSB is found to play a funda-
mental role [8].

One of the reasons why the SK model received particular attention is that it allows
for a solution via the celebrated Parisi Ansatz [35]. In a nutshell, Parisi suggested RSB
as a consistent scheme to break the permutational symmetry of fictitious copies of the
system (introduced with the replica trick). Physically, RSB in disordered spin systems is
interpreted with the emergence of a spin-glass phase characterized by many pure states
organized in an ultrametric structure [36, 49].

A fascinating proposal to observe glassy behaviour in a physical system came from
the study of light propagation in Kerr-like disordered media [50, 51, 52], where the
slowing-down as the critical point is approached is expected to occur on a much faster
timescale than ordinary matter. Progress in this direction is encouraging: for instance,
the observation of the mode-locking transition in Random Lasers has been recently re-
ported [53]. A scheme to measure the Edwards-Anderson order parameter in interacting-
replicas has been presented in [54] for a Bose gas. Despite these efforts, however, no
conclusive results regarding the nature of the spin-glass phase have been presented so
far.

In the last years, cold and ultracold atoms emerged as a powerful tool to test funda-
mental models of Condensed Matter physics [55] and disordered systems [56, 57, 58, 59].
Notable attention has been devoted to the Dicke model [40], describing the interaction

39
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between M electromagnetic modes and N two-level systems. The superradiant quan-
tum phase transition (QPT) of the single-mode Dicke model was predicted [47] and
observed [22] in a Bose-Einstein Condensate with cavity-mediated long-range interac-
tions, as detailed in the previous chapter. The appearance of quantum chaos at the Dicke
QPT threshold was investigated in [60], and the Jaynes-Cummings-Hubbard model in-
troduced in [61] can be rewritten as a multimodal Dicke model. This has been recently
suggested as a quantum emulator for the fractional quantum Hall effect [62].

In the spirit outlined above we consider the multimode Dicke Hamiltonian intro-
duced in [3, 4], where a spin-glass dynamics is obtained for a system of atoms placed
in a multimode cavity. Here we focus our attention on the possible emergence of RSB
in this setup, and the corresponding spin-glass observables. A simple and insightful re-
sult is obtained in the resonant, zero field regime (using the terminology adopted in [3]),
where the system exactly realizes the SK Hamiltonian. In the case of a non-zero cou-
pling one can also access the momenta of the overlap distribution and the ultrametric
properties which characterize the Replica Symmetric broken phase. This opens up new
interesting opportunities for the validation of spin-glass mean field theories and the ob-
servation of spin-glass transitions in a highly controllable system. We also wish to stress
here that, from a theoretical standpoint, our mapping allows for an exact solution of the
multimode Dicke model in the strong-field limit with quenched disordered interactions.

4.1.1 Model and zero-field limit

The Hamiltonian of the system is a multimode Dicke model with spatially-varying cou-
plings for M photonic modes and N two-level systems [3, 4]:

H =Hat +
M

∑
m=1

ωma
†
mam +Ω

N

∑
i=1

M

∑
m=1

gim(a†
m + am)σxi . (4.1)

Here Hat = hx∑
N
i=1 σ

x
i +hz∑

N
i=1 σ

z
i , where hx is the Rabi frequency and hz is the detuning

of the h field, see Fig. 4.1. The coupling coefficients appearing in the Hamiltonian (4.1)
can be finely tuned, offering a high level of control. Disorder is introduced by the pres-
ence of many cavity modes, described by the the spatially-varying couplings gim. We
focus our analysis here on the case where a large number of modes can be supported by
the cavity, as in confocal or concentric geometries [63].

Following [3, 4] we proceed by integrating out the photonic modes in order to ob-
tain an effective spin model. In the resonant limit hz = 0 (zero field limit), the partition
function Z(N,β) = Tr e−βH (β being the inverse temperature) can be calculated as fol-
lows. First we operate a spin-dependent translation to the creation operators (analogous
transformations apply to the annihilators):

a†
m → a†

m +
Ω

ωm

N

∑
i=1

gimσ
x
i ∀m = 1, . . . ,M .

We note that these transformations leave unaltered the commutation relations among
the photonic modes. Using these new variables the partition function can be put in the
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Figure 4.1: (a) Sketch of the multimode cavity setup. As in Ref. [3], N atoms are placed within a
multimode cavity, kept at fixed positions by trapping beams (not shown in the figure) and pumped
transversely. Ordering is strongest at the antinodes of the intra-cavity field (red full line), and
atoms occupying even antinodes interact ferromagnetically with atoms at even antinodes, and
antiferromagnetically with atoms at odd antinodes. (b) Upon adiabatic elimination of the upper
state ∣e⟩ [3], a Dicke interaction is realized by the ∣1⟩ − ∣2⟩ transition and a field h (Rabi frequency
hx, detuning hz).

form Z(N,β) = ZFB(N,β)ZSK(N,β), where ZFB is a free boson partition function and
ZSK is given by:

ZSK(N,β) = ∑
σ1=±1

⋯ ∑
σN=±1

e−βHSK ,

HSK = −
N

∑
i,j=1

Jijσiσj + hx
N

∑
i=1

σi (4.2)

where the M -dependence is encoded in the local couplings:

Jij (M,{ωm}) = Ω2
M

∑
m=1

gimgjm

ωm
. (4.3)

The Hamiltonian (4.2) describes an Ising model with spatially varying couplings in an
external magnetic field. When M →∞, by the central limit theorem [4] the Jij ’s become
independent random gaussian variables, and are distributed according to:

P (Jij) =
1

(2π)1/2J
exp [(Jij − J0)

2
/2J2] .

We note that in order to obtain relevant disorder fluctuations in the thermodynamic limit
(N → ∞), we must require that J0 = J̃0/N , J = J̃/

√
N , J̃0 and J̃ being intensive quanti-

ties. J̃0 and J̃ parametrizes the disorder introduced by the gim, their ratio representing a
control parameter for the system (see Fig. 4.2). We remark that this condition implicitly
imposes large number of modes (M ∼ N ) for the observation of spin-glass transitions,
see also [3]. Since the couplings gim evolve on the timescale of atomic motion, while
the relevant light-atoms interactions occur on a much faster timescale, the random gim
coefficients are frozen in a single realization of the system. As a consequence,HSK is ex-
actly the Hamiltonian of the Sherrington-Kirkpatrick model [32] with an external field hx
(which does not play a fundamental rôle in what follows). We therefore conclude that in
the resonant regime the thermodynamic properties of the disordered Dicke model (4.1)
are described by the partition function ZSK , so that the system (4.1) effectively realizes
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Figure 4.2: Phase diagram for the disordered multimode Dicke model, see [64]. At weak disorder
(large J̃0/J̃), a critical temperature is found below which the system is ferromagnetic (FM) and
exhibits superradiance (SR). Above this critical temperature and for weak disorder, the system is
paramagnetic (PM) and exhibits normal radiance (NR). At relatively low temperatures and strong
disorder (small J̃0/J̃), the system enters the spin-glass (SG) phase and displays RSB.

the SK model. The phase diagram for this model is well-known [64] and displays a spin-
glass phase, so that RSB is expected also for the disordered multimode Dicke model (4.1)
in the resonant regime (see Fig. 4.2).

We now wish to turn our attention to the case of non-zero hz . Restricting to a single
photonic mode (M = 1) with uniform couplings (Ωgi = g , ∀ i), the resonant case reduces
to the fully connected Ising model and displays a classical paramagnetic (PM) to ferro-
magnetic (FM) phase transition. The only effect of introducing a non-zero external field
hz is the appearance of a threshold in the interaction strength g2 > hz for the occurrence
of the PM/FM transition [5, 6, 7]. Since the atomic density enters the expression of g, this
suggests that in our disordered multimode case a non-zero hz might introduce a thresh-
old for the atomic density below which the phase is always paramagnetic, but this is not
expected to change in a qualitative way the existence of a spin-glass phase. Indeed, as
discussed below the system still realizes the SK model in the dispersive regime, with hz
acting as a relevant quantity in the detection of RSB.

4.1.2 Dispersive regime and RSB

To gain a first qualitative insight into the dispersive regime we consider the partition
function for non-zero hz and we use the Golden-Thompson inequality:

Tr[e−β(X+Y )
] ≤ Tr[e−βXe−βY ] , (4.4)

which is valid for Hermitian operatorsX and Y . Assuming the inequality to be saturated
in Eq. (4.4) and splitting the original Hamiltonian (4.1) as X = hz∑i σ

z
i , Y = H −X , we

recover the same bosonic decoupling as in the resonant limit and the partition function
for the effective spin model can be approximated as:

Z(N,β) ≃ ZFB Tr [eβ∑ij Jijσ
x
i σ

x
j e−βhz∑i σ

z
i ] . (4.5)

In the following we will neglect the hx term for simplicity, but our results are easily
extended to the hx ≠ 0 case, leaving our conclusions unaffected. The symbol “Tr” has to
be intended as the trace over the 2N dimensional Hilbert space of the spins, the photonic
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modes being already integrated out. We remark that Eq. (4.4) is saturated by requiring an
appropriate relation between hz and Ω, namely βΩ2 = λ tanh (2βhz). This is a standard
result in the context of the Hamiltonian formulation of spin models, such as the classical
Ising model [65]. Given the partition function in the form (4.5), we are now able to
establish a close connection with the usual observables employed in the characterization
of the spin-glass phase. The key point in understanding this correspondence consists
in rewriting the spin-glass observables in a transfer matrix language. Following [36], at
fixed disorder it is possible to introduce an overlap between pure states (thermodynamic
phases) α, β [66]:

qαβ =
1

N

N

∑
i=1

mα
i m

β
i , mα

i = ⟨σi⟩α ,

where the thermal average ⟨⋅⟩α has to be intended only on configurations belonging to
the pure state α. Given the number S of pure states of the system and Pα the probability
that a typical configuration belongs to the state α, the probability distribution for two
configurations to have an overlap q is given by:

P (q) =
S

∑
α,β=1

PαPβ δ (q − qαβ) (4.6)

and acts as an order parameter for the spin-glass transition [36]. Intuitively, qαβ mea-
sures the ‘similarity’ between the thermodynamic phases α and β. The breaking of the
permutational symmetry of the fictitious copies introduced by the replica trick is physi-
cally interpreted as the proliferation of pure states with different macroscopic properties
and different overlaps. Hence, in the spin-glass phase P (q) has a non-trivial behav-
ior if Replica Symmetry is broken. In particular, the distribution P (q) can be proven
to be equivalent to the probability distribution of the overlap between fictitious repli-
cas [36], which can be probed when computing the SK dynamics. We remark that P (q)

has been proven to be accessible in Monte Carlo simulations [67, 68, 69], and has the
property of being a non self-averaging quantity in the presence of RSB [8]. The mo-
menta ⟨qn⟩ = ∫ dq q

nP (q) of the overlap distribution P (q) can be calculated in a very
physical way, introducing two replicated Hamiltonians of the SK model which interact
ferromagnetically:

H2 = HSK [σ(1)] +HSK [σ(2)] − 2y
N

∑
i=1

σ
(1)
i σ

(2)
i .

The corresponding partition function Z2 can in fact be shown to be a generating function
for the momenta ⟨qn⟩ ∼ [∂ logZ2/∂y

n]y=0 [36]. Another interesting feature of the spin-
glass phase, the ultrametric topology of pure states [49], can be extracted looking at the
partition function built with the following three-replicas Hamiltonian:

H3 = HSK [σ(1)] +HSK [σ(2)] +HSK [σ(3)]+

−
N

∑
i=1

(y1σ
(1)
i σ

(2)
i + y2σ

(2)
i σ

(3)
i + y3σ

(3)
i σ

(1)
i ) .
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Figure 4.3: Graphical representation of the interacting-replicated partition functions, with Z2 on
the left and Z3 on the right. Each layer represents aHSK copy, interacting ferromagnetically with
another replica with coupling strength yi.

The replicated partition functions Z2(y) and Z3(y1, y2, y3) can be rewritten within the
transfer matrix formalism as Z2(y) = Tr [T (y)2], Z3(y1, y2, y3) = Tr [T (y1)T (y2)T (y3)],
where

T (h) = eβ∑ij Jijσ
x
i σ

x
j eβh

∗∑i σ
z
i (4.7)

is the transfer matrix and h∗ is the solution of the equation: tanhh∗ = e−2βh. [70] Graph-
ically, the replicated partition functions can be visualized as different layers interacting
with each other through the ferromagnetic coupling yi as in Fig. 4.3. Since the multi-
mode Dicke partition function (4.5) is written as Z = Tr[T (h⋆z)] we find that the same
operatorial content captures both the disordered Dicke model (4.1) and the interacting-
replica systemsH2 andH3. Therefore, a non-zero (generic) hz enters the definition of the
transfer matrix T , whose eigenvalues can be used to calculate the momenta of the over-
lap distribution and gain access to the observables of the spin-glass phase, at least in a
Montecarlo simulation. From an experimental point of view the measure of the overlap
distribution at fixed disorder proved to be challenging, because it requires in principle
the capability to produce at least two copies of the system with the same disorder. A
proposal in this direction came, for instance, in the context of Ref. [54] for Bose glasses.
Essentially, the main idea we wish to convey is that the multimode Dicke model realizes
SK in the resonant limit (hz = 0), but switching on an additional field allows one to ob-
tain information on the RSB phase via the overlap distribution P (q), without having to
create interacting copies of the system. We remark in fact that in our approach there are
not two replicated SK hamiltonians interacting with each other as in the original Parisi
works, but rather a single Hamiltonian with an additional parameter (hz) playing the
role of the coupling y. It would be nice to find at least one experimental observable in
the unreplicated system which allows to gain information about the overlap distribution.

The previous discussion relies on the approximation taken in the Golden-Thompson
inequality (4.4), and is therefore valid for intermediate values of hz . We now wish to
take into examination the dispersive limit hz ≫ Ω, where as in the resonant case hz = 0

we will find that the disordered multimode Dicke model realizes a SK dynamics.
Let us consider the original partition function Z(N,β) for non-zero hz and insert an

identity in the form 1 = eβXe−βX , where X = hz∑i σ
z
i as above. Applying the Baker-

Campbell-Haussdorf formula (BCH), in the limit hz ≫ Ω the only contributions come
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from commutators in the form:

[βX, [βX, [⋯[βX, [βX,H]]⋯] .

By making use of the explicit form of H we see that at first order [X,H] ∝ ∑ik gik(ak +

a†
k)σ

y
i , while [X, [X,H]] ∝ ∑ik gik(ak + a

†
k)σ

x
i , thus showing that these terms can be

exactly resummed leading to the partition function

Zdisp(N,β) = Tr[e−βH̃e−βhz∑i σ
z
i ] , (4.8)

where the effective Hamiltonian H̃ is given by:

H̃ =H0 +Ω∑
i,m

gim(am + a†
m)(A(βhz)σ

x
i +B(βhz)σ

y
i ) .

Here we defined H0 = ∑
M
m=1 ωma

†
mam, while A and B are two functions whose Tay-

lor series is determined through the explicit BCH calculation. An appropriate rotation
of the Pauli matrices can be performed to recover the original form of the interaction
∼ ΩEFF(a

†
m + am)σxi , provided that the coupling strength is rescaled as ΩEFF(βhz) =

Ω
√
A2 +B2. Factorizing again the free boson partition function ZFB as above, we find

that Zdisp exactly reduces to the partition function (4.5). Alternatively, one can absorb the
coupling Ω into the temperature as β → β̄ = βΩ2

EFF. Given the partition function (4.8) we
now make use again of the transfer matrix formalism and write it as Zdisp = TrT (h⋆z).
The transfer matrix is in the form T = V2V1, and its elements can be explicitly written
as [65]

⟨σ1 . . . σN ∣V1 ∣σ′1 . . . σ
′
N⟩ =

N

∏
k=1

e−βhzσkσ
′
k

⟨σ1 . . . σN ∣V2 ∣σ′1 . . . σ
′
N⟩ =

N

∏
i=1

δ
σi,σ

′
i

N

∏
i,j=1

eβ̄Jijσiσ
′
j .

With these definitions, the trace operation reduces to a classical sum over the spin con-
figurations {σ} and we obtain

Zdisp = Tr (V2V1) = ZFB ∑
{σ}{σ′}

⟨σ1 . . . σN ∣V2 ∣σ′1 . . . σ
′
N⟩ ⟨σ′1 . . . σ

′
N ∣V1 ∣σ1 . . . σN⟩ =

= ZFB ∑
{σ}{σ′}

eβ̄∑ij Jijσiσje−βhz∑j σjσ
′
j

N

∏
i=1

δ
σiσ

′
i

= e−NβhzZFBZSK(N, β̄) . (4.9)

The effective spin model emerging from the disordered multimode Dicke model (4.1)
in the dispersive regime is therefore given again by the SK model, upon redefining the
temperature as β → β̄. Once again, reintroducing hx does not change this result in a qual-
itative way. The connection established above with spin-glass observables is therefore
confirmed in the dispersive limit, as the partition function is in the form Zdisp = TrT .

The derivation presented above shows that in the strong-field (dispersive) regime
the SK model is exactly retrieved from a multimode Dicke dynamics. However, we note
that in the regime hz ≫ Ω the spin glass phase is not accessible, because the system
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is well below the usual strong coupling threshold of the Dicke model. This would in
fact result in an effective temperature β̄ whose value never approaches the critical one
of the SK model. The main point we wish to make here is that the disordered Dicke
model is thermodynamically equivalent to SK in both the zero-field (hz = 0) and strong-
field (hz ≫ Ω) regimes. This suggests that this connection extends also for generic and
intermediate values of hz , as discussed earlier in this Section (see the discussion after
Eq. (4.7)), in the same way as the multimode Dicke model with the same couplings is
equivalent to a ferromagnetic fully-connected Ising model [5, 6, 7]. The results presented
here are intended to be the first step in this direction.

To summarize, we analyzed a multimode Dicke model with quenched disorder, re-
cently proposed for cold atoms in cavity setups [3, 4]. Spin-glass dynamics and frus-
trated interactions are expected, and we are able to prove that in the resonant (zero-field)
regime the system exactly realizes the paradigmatic SK model (as already anticipated
in the context of Ref. [3]). Quite surprisingly, in the dispersive (strong-field) regime
this result stays unaffected upon a redefinition of the temperature. Moreover, for non-
vanishing values of the coupling the operatorial content of the multimode Dicke model
gives access to the spin-glass observables which characterize the Replica Symmetry bro-
ken phase. In the strong-field limit the equivalence between the multimode Dicke model
and the SK model once again becomes exact, but the spin glass phase is not physically
accessible. However, our work suggests that the connection between the SK and the
multimode Dicke models extends into the domain of intermediate couplings, which will
be the focus of the next section.

The system offers a high degree of tunability and control, and we stress that the
dispersive regime might be more accessible experimentally as absorption and radiation
pressure are reduced. From a theoretical standpoint, our approach provides an exact,
strong-field solution of the multimode Dicke model with quenched disorder. With a
view to the study and validation of spin-glasses mean field theory, dispersive cavity-
mediated long range interactions in cold atomic gases appear as a promising benchmark
for future research, as they allow for the physical realization of the paradigmatic SK
model for spin glasses. The detection (in experiments or in Monte Carlo simulations) of
the overlap distribution would in fact give information on the Replica Symmetry Broken
phase in a highly tunable and controllable physical system.

Beyond the experimental investigation of spin glass physics, multimode disordered
Dicke simulators may be interesting for quantum computation applications. This is the
focus of our work (Dicke sim) that we present in the next section.

4.2 Dicke simulators with emergent collective quantum computational
abilities

The connection of experimentally realizable quantum systems with computation con-
tains promising perspectives from both the fundamental and the technological view-
point [2, 71]. For example, quantum computational capabilities can be implemented
by “quantum gates” [72] and by the so-called “adiabatic quantum optimization” tech-
nique [10, 73, 74]. Today’s experimental technology of highly controllable quantum sim-
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ulators, recently used for testing theoretical predictions in a wide range of areas of quan-
tum physics [75, 76, 77], offers new opportunities for exploring computing power for
quantum systems.

In the case of light-matter interaction at the quantum level, the reference benchmark
is the Dicke model [40]. Studies of its equilibrium properties have predicted a super-
radiant transition to occur in the strong coupling and low temperature regime [5, 6, 7].
The superradiant phase is characterized by a macroscopic number of atoms in the ex-
cited state whose collective behaviour produces an enhancement of spontaneous emis-
sion (proportional to the number of cooperating atoms in the sample). Crucially, this
phenomenology is in direct link with experimentally feasible quantum simulators. Re-
cently, Nagy and coworkers [47] argued that the Dicke model effectively describes the
self-organization phase transition of a Bose-Einstein condensate (BEC) in an optical cav-
ity [22, 78]. Additionally, Dimer and colleagues [45] proposed a Cavity QED realization
of the Dicke model based on cavity-mediated Raman transitions, closer in spirit to the
original Dicke’s idea. Evidence of superradiance in this system is reported in [46]. An
implementation of generalized Dicke models in hybrid quantum systems has also been
put forward [79]. More generally, Dicke-like Hamiltonians describe a variety of physical
systems, ranging from Circuit QED [80, 81, 82, 83, 84] to Cavity QED with Dirac fermions
in graphene [85, 86, 87, 88]. Additionally, disorder and frustration of the atom-photon
couplings have an important role in the study of BEC in multimode cavities [89, 90].
Recent works [3, 4] discussed a multimodal-Cavity QED simulator with disordered in-
teractions. The authors argue that these systems could be employed to explore spin-
glass properties at the quantum level [3, 4, 18]. In a follow-up work [91] Gopalakrishnan
et al. found an interesting analogy with Hopfield networks at the perturbative level.
However, the possible quantum computation applications of this new class of quantum
simulators remain relatively unexplored.

Here we consider a multimode disordered Dicke model with finite number of modes.
We calculate exactly (in the thermodynamic limit) the free energy of the system at tem-
perature T = 1/β and we find a superradiant phase transition characterized by the same
free-energy landscape of the Hopfield model [33] in the so-called “symmetry broken”
phase, with the typical strong-coupling threshold of the Dicke model. From the theoret-
ical standpoint, our results generalize to the case of quenched disordered couplings the
remarkable analysis performed by Lieb et al. [5, 6, 7]. The choice of frozen couplings is
compatible with the characteristic time scales involved in light-matter interactions. The
calculation of the partition function leads us to suggest variational ground states for the
model, which we conjecture to be exact in the thermodynamic limit.

The physical consequences of this analysis are fascinating: once the multimode strong-
coupling regime is reached and qubit-photon couplings are engineered, it should be pos-
sible to build a pattern-storing system whose underlying dynamics is fully governed by
quantum laws. Moreover, Dicke quantum simulators here analyzed may be suitable to
implement specific optimization problems, in the spirit of adiabatic quantum compu-
tation [10, 73, 74]. We point out a non-polynomial optimization problem [10, 73, 92],
number partitioning, which could be implemented in a single mode cavity QED setup
with controllable disorder. Computing applications based on cavity mediated interac-
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Figure 4.4: In the Dicke model, photons (yellow lines) mediate a long range interaction between
qubits (green circles). The drawing sketches schematically a six qubits system within its fully-
connected graph and its internal level structure. In the standard single-mode Dicke model the
exchange coupling is fixed at the same value for every pair of qubits. In systems where both many
modes and disorder are present, the exchange couplings are qubit-dependent and take the form
given by Eq. (4.12).

tions might owns the advantage to be a viable way to generate entagled many-body
states with remarkable scalability properties, as recently shown in Ref. [93].

Summarizing the results of Chapter 2, Hopfield’s main idea [33] is that the retrieval
of stored information, such as memory patterns, may emerge as a collective dynamical
property of microscopic constituents (“neurons”) whose interconnections (“synapses”)
are reinforced or weakened through a training phase (e.g. Hebbian learning [94, 95]).
This is achieved in his model through a fictitious neuronal-dynamics whose effect is to
minimize the Lyapunov cost function:

E = −
1

2

N

∑
i,j=1

TijSiSj , (4.10)

where N is the number of neurons, Si = 1 if the i-th neuron is active, and −1 other-
wise, and the p stored patterns ξ(k)i = ±1 (k = 1,⋯, p) determine the interconnections Tij
through the relation: Tij = 1/N ∑k ξ

(k)
i ξ

(k)
j − p δij . The analysis in Ref. [33] shows that

the long-time dynamics always converges to one of the p stored patterns, i.e. these con-
figurations are the global minima of the cost function (4.10). The interpretation of this
result is that a suitable choice of the interconnections allows to store a given number of
memory patterns into the neural network. Data retrieval is achieved through an algo-
rithm that minimizes the energy function (4.10). A phase transition to a “complex” phase
marks the intrinsic limitation on the number of patterns p that can be stored. If p exceeds
the critical threshold p ∼ 0.14N many failures in the process of retrieval occur [9, 20].

Here we consider the following multimode Dicke Hamiltonian:

H =
M

∑
k=1

ωa†
kak +∆

N

∑
i=1

σzi +
N,M

∑
i,k=1

g̃ik (ak + a
†
k)σ

x
i , (4.11)
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effectively modelling quantum light-matter interaction of N two-level systems with de-
tuning ∆ and M electromagnetic modes supposed to be quasi-degenerate at the com-
mon frequency ω and with couplings that we parametrize for future convenience as
g̃ik = Ωgik/

√
N , where Ω is the Rabi frequency and the dimensionless gik’s are both atom

and mode-dependent. In Cavity QED realizations, ω represents the detuning between
the cavity frequency and the pumping frequency and could be both positive or nega-
tive. A possible choice of the couplings is gil = cos(klxi), being kl the wave vector of the
photon and xi the position of i-th atom [4].

4.2.1 Free energy of the multimode disordered Dicke model

We are interested in the thermodynamic properties of this system in the limit M ≪ N ,
and thus in evaluating the partition function Z = Tr e−βH . This evaluation can be per-
formed rigorously in the thermodynamic limit (N →∞) using the techniques introduced
in Refs. [5, 6, 7]. We first consider the fully-commuting limit ∆ = 0. In this case the evalu-
ation of the partition function is straightforward and we obtain Z = ZFB ZH , where ZFB
is a free boson partition function and ZH is a classical Ising model with local quenched
exchange interactions of the form:

Jij = −
Ω2

N

M

∑
k=1

gik gjk

ω
. (4.12)

The physical interpretation of this result is that photons mediate long range interactions
among the atoms, resulting in an atomic effective Hamiltonian described by a fully-
connected Ising model (see Fig. 4.4). The role of the couplings gik can be understood
from Eq. (4.10) in the context of the Hopfield network. They are the memory pattern
stored in the system. By computing exactly the free energy of the model, we will show
that this interpretation stays unaltered in the more complicated case ∆ ≠ 0.

We now proceed to the evaluation of the quantum partition function. We use the
method of Wang and coworkers [7, 96] (proved to be exact in the thermodynamic limit
for M/N → 0 [6]). We reviewed extensively this approach in Chapter 3. We introduce a
set of coherent states ∣αk⟩ with αk = xk + iyk, one for each electromagnetic mode k, and
we expand the partition function on this overcomplete basis:

Z = ∫

M

∏
k=1

d2αk
π

TrA ⟨{α}∣ e−βH ∣{α}⟩ , (4.13)

where TrA is the atomic trace only. The only technical complication is the calculation
of the matrix element in (4.13). This turns out to be equal, apart from non-extensive
contributions, to the exponential of the operator in Eq (4.11) with the replacements
ak, a

†
k → αk, α

∗
k [6, 7]. At this stage the trace over the atomic degrees of freedom

can be easily performed. The integral over the imaginary parts of αk’s give an overall
unimportant constant. Finally, defining the M -dimensional vectors x = (x1, x2,⋯, xM)

and gi = (gi1, gi2,⋯, giM), and with the change of variables m = x/
√
N , the partition

function assumes a suitable form for performing a saddle-point integration, i.e. Z =
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∫ d
Mm e−Nf(m). Here f is the free energy

f(m) = βm ⋅m −
1

N

N

∑
i=1

logG(m,gi) , (4.14)

with: G(m,gi) = 2 cosh [β (∆2 +Ω2(gi ⋅m)2)
1
2 ].

The order parameter m describes the superradiant phase transition. Physically, it
gives the mean number of photons in every mode [60]. Its value is determined by min-
imizing the free energy in Eq. (4.14). Solutions of this optimization problem are, in
principle, gi-dependent, but in the thermodynamic limit both the free energy and the
saddle-point equation are self-averaging [9]. Thus we conclude that the free energy and
the saddle point equations are given by

f(m) = βm ⋅m − ⟨logG(m,g)⟩g ,

m =
Ω2

2
⟨
(g ⋅m)g

µ(g)
tanh (βµ(g))⟩

g

, (4.15)

with: µ(g) = (∆2 +Ω2(g ⋅m)2)
1
2 and ⟨⋯⟩g representing the average over the disorder

distribution. Eq. (4.15) reduces to the mean-field equations for the Hopfield model for
∆ → 0 [9]. Thus, ∆ may be intended as a quantum annealer parameter. To fully specify
the model, the probability distribution for the couplings is needed. In the following we
will assume

P (g) =
M

∏
k=1

(
1

2
δ (gk − 1) +

1

2
δ (gk + 1)) , (4.16)

but we have verified that the results are qualitatively robust as long as the disorder
is not too peaked around zero in accordance with the classical results of Ref. [9]. To
locate the critical point it suffices to expand in Taylor series Eqs. (4.15). As in the con-
ventional Dicke model, a temperature-independent threshold Ω2

c = 2∆ emerges. For
Ω < Ωc, the phase transition is inhibited at all temperatures. Whenever the magni-
tude of the coupling exceeds this threshold value, the critical temperature is located at
Tc = ∆/arctanh (2∆/Ω2).

Above the critical temperature Tc the only solution to (4.15) is a paramagnetic state,
with mk = 0 for all k. Below Tc, different solutions appear. We now set out to classify
these solutions and their stability under temperature decrease. For this analysis, we con-
sidered both the Hessian matrix ∂2f/∂mk∂ml and numerical optimization (Figure 4.5) .
The key point, as mentioned above is that in this “symmetry-broken” phase the system
takes 2M degenerate ground states (as well as many metastable states energetically well
separated from the ground states). In other words, also in this fully quantum limit the
free-energy landscape still closely resembles that of the Hopfield model [9].

The ground state solutions have the explicit form:

mk =m
(1)

(0,0,⋯,0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−1 times

, 1,0,⋯,0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M−k+1 times

) . (4.17)
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Figure 4.5: Order parameter m(1) in Eq. (4.18) as a function of ∆ in the ultrastrong coupling
regime (Ω > Ωc) at T = 0. On the theoretical curve (dashed line) are superposed the results (green
dots) of a naive numerical optimization algorithm minimizing the ground state energy ansatz in
Eq. (4.20). The parameters of the simulation are Ω = 4, N = 100, M = 10. Green dots are the result
of a single realization of the disorder.This plot suggests that at N = 100 the system is already close
to the thermodynamic limit behavior. The classical Hopfield model is recovered in the limit ∆→ 0.

Equation (4.15) for the order parameter m(1) reduces to: 2µ(m(1)) = Ω2 tanh (βµ(m(1))),
where µ(m(1)) =

√
∆2 +Ω2(m(1))2. In the zero temperature limit the order parameter

can be evaluated exactly:

m(1)
= ±

√
Ω2

4
−

∆2

Ω2
. (4.18)

4.2.2 Zero temperature limit: Dicke simulators as quantum memories and quantum
annealers

At zero temperature the most interesting state is the ground state (GS) of the Hamilto-
nian (4.11). Inspired by the calculation above we propose the variational ansatz for the
GS:

∣GS⟩ = ∣α1, α2,⋯, αM ⟩ ∣spin(α1,⋯, αM)⟩ , (4.19)

where ∣α1, α2,⋯, αM ⟩ is the product of M coherent states and the spin part is factorized.
The mean value of the energy in this GS is given by:

EGS(m) =m ⋅m − ⟨
√

∆2 +Ω2(g ⋅m)2⟩
g
. (4.20)

This expression exactly equals the free-energy computed previously in the limit β → ∞,
which leads us to conjecture that our factorized variational ansatz is exact. The quantum
phase transition is located at the critical coupling Ω = Ωc =

√
2∆, at which the paramag-

netic solution becomes unstable. In the symmetry-broken phase we have 2M degenerate
ground states of the form

∣GS⟩k = ∣0,0,⋯,0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−1 times

,±m(1), 0,⋯,0
´¹¹¹¹¹¸¹¹¹¹¹¶

M−k times

⟩ ∣spin(±m(1)
)⟩k , (4.21)
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with k = 1,⋯M . The spin wave function is also factorized ∣spin(±m(1))⟩k = ∏i ∣si⟩k, with

∣si⟩k =
1

N

⎛

⎝
−
−∆ +

√
∆2 + β2

ik

βik
∣ei⟩ + ∣gi⟩

⎞

⎠
, (4.22)

where N a normalization, βik = gikm
(1) and ∣ei⟩, ∣gi⟩ are σzi ’s eigenstates. It is worth

noting that, as expected, the ground state energy is a self-averaging quantity, whereas
the ground states are not, being disorder-dependent also in the thermodynamic limit.

The above calculation shows that in the superradiant phase the ground state of the
system is a quantum superposition of the 2M degenerate eigenvectors given by Eqs. (4.21)
and (4.22). Their explicit form suggests that at fixed disorder and mode number the in-
formation about the disordered couplings belonging to the k-th mode is printed on the
atomic wave function. Moreover, the photonic parts of the wave functions are all or-
thogonal for k1 ≠ k2 in the thermodynamic limit. This implies that in principle a suitable
measure on the photons-subsystem causes the collapse over one of the 2M ground states
and gives thus the possibility to retrieve information (“patterns”) stored in the atomic
wave function.

One may wonder how these ideas may translate into a feasible experimental scheme.
As mentioned above, a single-mode Dicke model has been recently realized with cavity-
mediated Raman transitions in cavity QED with ultracold atoms [46]. A multimode
cavity QED setup supporting disordered couplings has been proposed in refs. [3, 4], and
preliminary evidence of superradiance in this system was found in [97]. Setups operat-
ing in multimode regime were recently suggested also in circuit QED [98, 99, 100]. Thus,
the ideas on quantum pattern retrieval may directly apply on cavity-QED experimental
setups similar to the ones studied in refs. [3, 91, 101]. The only missing ingredient is a
concrete strategy to tune the atom-photon interactions. While this step might be techni-
cally involved, single-atom manipulation techniques are rapidly developing [102]. This
technology should make it possible to fix the position of the atoms, and thus tune the
coupling constants.

We surmise that multimode Dicke quantum setups with controllable disorder could
be used beyond storage, to simulate specific optimization problems. Indeed, finding the
ground state of classical spin models with disordered interactions is equivalent, in most
cases, to finding solutions of computationally expensive non-polynomial (NP) prob-
lems [92]. For example, the simplest NP-hard problem, number partitioning, could be
implemented in a single-mode cavity QED setup with controllable disorder as follows.
Number partitioning can be formulated as an optimization problem [21]: given a set
A = {a1, a2, . . . , aN} of positive numbers, find a partition, i.e. a subset A′ ⊂ A, such that
the residue: E = ∣∑aj∈A′ aj −∑aj∉A′ aj ∣ is minimized. A partition can be defined by num-
bers Sj = ±1: Sj = 1 if aj ∈ A′, Sj = −1 otherwise. The cost function can be replaced by a
classical spin hamiltonian: H = ∑

N
i,j=1 aiajSiSj , whose ground state is equivalent to the

minimum partition. In a single-mode cavity QED network, couplings have the simple
form gi = cos(kxi) [4]. By the definition of a = maxA aj and ãj = aj/a, single-atom ma-
nipulation techniques might make possible to engineer the gi’s in order to implement a
given instance of the problem, provided that the cavity is in the “blue” detuned regime
and hence the couplings have appropriate sign (see Eq. 4.12). With a suitably slow an-



Dicke simulators with emergent collective quantum computational abilities 53

nealing of the atomic detuning ∆ (to ensure applicability of the adiabatic theorem), the
system should collapse on qubit configurations that are solutions of the corresponding
optimization problem.

4.3 Conclusions and future directions

In the previous section we provided the first rigorous analysis of the multimode disor-
dered Dicke model, valid beyond the weak-coupling regime and exact in the thermody-
namic limit. The equivalence between multimodal disordered Dicke model and a quan-
tum Hopfield network [103], together with the proposal of a cavity QED setup imple-
menting a non-polynomial optimization problem, demonstrates the possibility of quan-
tum computational abilities of this new class of quantum simulators. Our proposal is
conceptually complementary to a standard quantum computation perspective [104, 105].
Indeed, the information can be “written” on the qubits through a quantum anneal-
ing on the detuning ∆, similarly to what happens for adiabatic quantum computa-
tion [10, 73, 74]. Another important point is that this multimode cavity QED setup is
an all to all architecture, which means that the effective spin system is fully connected.
This is particularly relevant, because the most part of NP problems allow for a represen-
tation in terms of Ising Hamiltonian with fully connected couplings and it is completely
non-trivial to map such a problem on a local architecture.

Before discussing possible future directions of our work, we point out two recent
proposals which share the same spirit of our ideas. The first one is by Lewenstein
group [106]: the authors suggest a trapped ions setup, in order to implement number
partitioning and Mattis spin glasses (a simplified version of an Hopfield network). The
second one (especially interesting in our opinion) is by Lechner, Hauke and Zoller [107]:
they suggest a quantum annealer with local interactions only, but able to produce an
all to all architecture. If we understand correctly, the trick to achieve this result is the
following: a local lattice gauge theory is implemented on a set of extended (physical
plus auxiliary) qubits and the input of the optimization problem is encoded in the gauge
fields. On the other hand the output of the problem is printed on the physical qubits,
that effectively experience a long-range interaction because of the gauge constraints.

In conclusion we want to point out possible further developments of our work:

• for the moment we proposed two models in the spin glass realm (Hopfield netwok
and number partitioning), that seem suitable for implementation in a cavity QED
setup. It would be interesting to understand if other spin glass problems can be
mapped naturally on a cavity QED architecture;

• we do not understand, looking at Lev proposal, if at the moment it is possible to
discuss a concrete strategy to implementing controllable disorder;

• in order to overcome this problem, other viable quantum platforms may be more
suitable to implement a Dicke simulator. Among the others, we cite architectures
based on photonic crystals [108] or circuit QED with superconducting qubits [98].
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CHAPTER 5

One dimensional lattice gases with long range repulsive
interactions

5.1 The one dimensional repulsive lattice gas model

In 1982 Bruinsma and Bak [12] introduced and solved (at zero temperature) a one di-
mensional model of lattice gas with repulsive long range interactions:

E(n) =
1

2
∑
j≠i
V (∣i − j∣)ninj − µ∑

i

ni , (5.1)

where µ is the chemical potential and ni = 0,1 are the occupation numbers. This model
is trivially dual to an antiferromagnetic long range Ising model in an external magnetic
field and exhibits a peculiar phase transition at zero temperature: the mean density
(magnetization) as a function of the chemical potential (external magnetic field) has a
complete devil’s staircase structure (see Figure (5.1)). This means that tuning µ, the sys-
tem undergoes an infinite (fractal) series of second order phase transitions.

The physical reason for this weird phenomenon is the following: at fixed rational
density, the ground state of the model is a different periodic configuration, with the
property to be incompressible. The devil’s staircase structure of the phase diagram is
a byproduct of this hierarchy of incompressible ground states. This statement can be
understood looking at the standard definition of incompressibility.

The compressibility is defined as the relative volume decrease per unit increase in
pressure;

κ ≡ −
1

V

∂V

∂P
(5.2)

It is usually more convenient to calculate thermodynamic properties as a function of
volume rather than as a function of pressure so that the following expression is often
more useful:

κ−1
≡ −V

∂P

∂V
= V

∂2E

∂V 2
. (5.3)

For systems of many particles the energy in the thermodynamic limit is an extensive
quantity and the energy per particle depends on the volume and the particle number
only through the particle density, E = Nε(n) where n = N/V is the density. This relation-
ship allow us to connect the compressibility with the chemical potential; µ = ∂E/∂N =

57
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d(nε(n))/dn. Comparing with Eq. (5.3) we find that

κ−1
= n2 dµ

dn
(5.4)

When we say that the system is incompressible we mean that κ = 0. This occurs when-
ever the chemical potential of the system increases discontinuously as a function of den-
sity. That is what we really mean by incompressibility.

Whenever the ground state is incompressible the increase in energy when a particle
is added to the system and the decrease in energy when a particle is removed from the
system differ even in the thermodynamic limit. It follows that it costs a finite energy to
create particle-hole pairs which are not bound to each other. In this circumstance we say
that the system has a ‘gap’.

Our strategy will be the following: firstly we will review the explicit construction of
the ground states of (5.34). This is due to Hubbard [23]. Then we will give a formal proof
of the incompressibility of these ground states [12, 24].

5.2 Explicit construction of the Hubbard ground states

In a remarkable paper Hubbard [23] studied orderings of electrons in one dimensional
conductors. When the electrostatic energy is dominant, a 1D lattice-gas model results,
and Hubbard gave a general method to determine the exact ground state.
Consider a chain of N sites. The particle configuration is a vector n of occupation num-
bers ni = 0,1 (i = 1, . . . ,N ). Particles interact via two-body forces that depend on their
distance, and not with themselves. Hubbard’s Hamiltonian is:

E(n) =
1

2
∑
j≠i
V (∣i − j∣)ninj (5.5)

We search for the configuration (GS) that minimizes E(n), at fixed number of particles
m = ∑

N
i=1 ni, or density ρ ∶= m/N . Since the potential is repulsive, intuition suggests to

allocate particles on the lattice as far as possible from each other. However, the prescrip-
tion of the density does not allow to do this evenly. Hubbard analytically solved the
problem for the infinite chain and for potentials satisfying the two conditions:

V (r) → 0 as r →∞ (5.6)

V (r + 1) + V (r − 1) ≥ 2V (r) for all r > 1 (5.7)

The convexity condition is satisfied by the Coulomb potential and by V (∣i − j∣) = ∣i −

j∣−α, α > 0. Hubbard’s solutions are called generalized Wigner lattices or most uniform
configurations. They are independent of any further detail of the interaction potential.

Let’s extend the N -site chain into an infinite one with particle density ρ, and search
for ground states that are N -periodic, with ρN particles per period. We thus impose the
periodic boundary conditions (pbc)

ni+N =∶ ni i = 1, . . . ,N (5.8)
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and the bound
N+j
∑
i=j

ni =m ∀j (5.9)

The N -site chain is a loop, and it interacts with the rest of the lattice, i.e. with an infinite
number of self-copies. A complete rotation of the loop corresponds to a shift of one
period of the infinite chain.
Let’s label the particles round the loop as ν = 1, . . . ,m and define r(0)ν as the position of
particle ν, and r

(1)
ν as the interval between particles ν and ν + 1. Then r(1)ν =∶ r

(0)
ν+1 − r

(0)
ν .

Because of pbc, we can obtain the position of a generic particle in the infinite chain, i.e.
r
(0)
ν+m = r

(0)
ν +N . It follows that r(1)ν+m = r

(1)
ν .

The distance between particle ν and ν + µ is

r(µ)ν =∶ r
(0)
ν+µ − r

(0)
ν =

ν+µ−1

∑
τ=ν

r(1)τ =

µ−1

∑
τ=0

r
(1)
ν+τ (5.10)

From this we obtain the useful properties

r
(µ)
ν+m = r(µ)ν for all µ (5.11)

r(µ+m)
ν = r(µ)ν +N for all µ (5.12)

{ni} configuration {r
(1)
ν }

1111100000000 {1,1,1,1,9}
1001001001010 {3,3,3,2,2}
0000110100110 {1,2,3,1,6}

⋮ ⋮ ⋮

1010010100100 {2,3,2,3,3}

Table 5.1: Examples of microscopic configurations for a loop of N = 13 sites, ρ = 5/13

The energy only depends on relative positions, {r
(µ)
ν }. Therefore the vector r(1) =∶

{r
(1)
ν } defines a system’s configuration and satisfies ∑mν=1 r

(1)
ν = N . It defines a configu-

ration up to transformations like r(1)ν → r
(1)
ν+τ , and a configuration satisfies∑m+τ

ν=τ r
(1)
ν = N ,

that implies ∑m+τ
ν=τ r

(µ)
ν = µN .

How can we express energy (5.5) in term of r(1)? The interaction energy between
particle ν and particle ν+µ is V (r

(µ)
ν ). Therefore, the interaction energy between particle

ν and the rest is

∑
µ

V (r(µ)ν ) =
m

∑
µ=1

V (r(µ)ν ) + V (r(µ+m)
ν ) + V (r(µ+2m)

ν ) + . . . = ∑
k

m

∑
µ=1

V (r(µ+km)
ν )

that we can simplify using property (5.12)

∑
µ

V (r(µ)ν ) = ∑
k

m

∑
µ=1

V (r(µ)ν + kN) (5.13)



60 5.2 Explicit construction of the Hubbard ground states

The energy of the system

E(r(1)) =
1

2
∑
ν
∑
µ

V (r(µ)ν )

=
1

2

m

∑
ν=1
∑
k

m

∑
µ=1

V (r(µ)ν + kN) + V (r
(µ)
ν+m + kN) + . . .

can be simplified using property (5.11)

E(r(1)) = A∑
k

m

∑
ν=1

m

∑
µ=1

V (r(µ)ν + kN) = A∑
k

m

∑
µ=1

Uk(r(µ)) (5.14)

where A it is a factor that depends on lenght of the chain, r(µ) =∶ {r(µ)ν } and

Uk(r(µ)) =∶
m

∑
ν=1

V (r(µ)ν + kN) (5.15)

We now have the basic ingredients to solve the problem. The first task is to look for an
algorithm to minimize (5.14) with the condition

m

∑
ν=1

r(1)ν = N (5.16)

This problem is similar to m problems in which we separately minimize the inner sum
(5.15) with the condition

m

∑
ν=1

r(µ)ν = µN (5.17)

If such a solution exists, it also minimizes (5.14). To obtain the solution for inner prob-
lems we need the following theorem:

Theorem 5.2.1. If {ri} = r1, . . . , rm is a set of m integers such that

m

∑
i=1

ri ∶= R =mr + a, 0 ≤ a <m (5.18)

and if V ∶ N↦ Z is an integer function such that it is strictly convex, then

(m − a)V (r) + aV (r + 1) ≤
m

∑
i=1

V (ri) (5.19)

Proof. First we suppose that {ri} is a set such that ∣ri − rj ∣ ≤ 1 for all pairs i, j; such a set
will be called minimal. We define r̂ =∶ min(ri). For a minimal set we have r̂ ≤ ri ≤ r̂ + 1

for all i: ri can assume only values r̂ or r̂ + 1. Let n̂ be the number of ri that assume the
value r̂. Then m − n̂ is the number of ri that assume value r̂ + 1. Calculating

m

∑
i=1

ri = n̂r̂ + (m − n̂)(r̂ + 1) =mr̂ +m − n̂ (5.20)
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by the uniqueness of the modular decomposition, we obtain r̂ ≡ r and m − n̂ ≡ a. So it
follows at once that, for minimal sets, the equality in (5.19) is satisfied.

Now let C be a non minimal set {ri}; then, for some s ≠ t one has rs > rt + 1. We
construct the set C ′ by taking C and moving only rs and rt: r′i =∶ ri for all i ≠ s, t,
r′s =∶ rs−1, r′t =∶ rt+1. We see that C ′ satisfy the condition (5.18) and, by using the lemma
(5.2.2), we obtain

V (r′t) + V (r′s) ≤ V (rs) + V (rt) ⇒
m

∑
i=1

V (r′i) ≤
m

∑
i=1

V (ri) (5.21)

IfC ′ isn’t minimal we repeat the procedure to obtain aC ′′ with∑mi=1 V (r′′i ) ≤ ∑
m
i=1 V (r′i) ≤

∑
m
i=1 V (ri) and so on, until one arrives at a minimal set C0. Using inequalities between

C0, . . . ,C one proves the thesis

Lemma 5.2.2. Let V ∶ N ↦ Z an integer function such that it is strictly convex i.e. V (r + 1) +

V (r − 1) ≥ 2V (r) for all r > 1 then

V (s + 1) + V (t − 1) ≤ V (s) + V (t) for all s such that s < t (5.22)

%endalign*
If {r

(µ)
ν } is a minimal set, it minimizes the energy (5.15). We need to fabricate such

set. Starting from (5.17), we calculate integers r(µ) and a(µ), by decomposing the fraction
µ/ρ into the sum of a non-zero integer and a proper fraction:

m

∑
ν=1

r(µ)ν = µN =mr(µ) + a(µ) ⇒
µ

ρ
= r(µ) +

a(µ)

m
(5.23)

We obtain r(µ) = ⌊µ/ρ⌋ (⌊x⌋ means interger part of x). If r(µ)ν ∈ Sµ(ρ) ∶= [r(µ), r(µ) + 1] =

[⌊µ/ρ⌋, ⌊µ/ρ⌋ + 1] then {r
(µ)
ν } is a minimal set. There are m − a(µ) of r(µ)ν that take value

⌊µ/ρ⌋ and a(µ) of r(µ)ν that take value ⌊µ/ρ⌋+1. Therefore a set of solutions that minimize
(5.15) exists for each µ = 1, . . . ,m, and for all fixed ρ, the energy (5.14) is minimised when
r
(µ)
ν ∈ Sµ(ρ) for each µ = 1, . . . ,m.

Example 5.2.1. m = 5 and N = 13 (ρ = 5/13).
Calculating r(µ) and a(µ) we obtain minimal configuration for each µ. Results are in the table.

µ r(µ) m − a(µ) r(µ) + 1 a(µ) {r
(µ)
ν }

1 2 2 3 3 {2,2,3,3,3}
2 5 4 6 1 {5,5,5,5,6}
3 7 1 8 4 {7,8,8,8,8}
4 10 3 11 2 {10,10,10,11,11}
5 13 5 14 0 {13,13,13,13,13}

Table 5.2: Minimal sets for U , m = 5 and N = 13

Each set of r(µ)ν minimizes the energy (5.15) indipendently from the internal order of num-
bers. For example both {2,2,3,3,3} and {2,3,2,3,3} minimize U(r(1)). But from {r

(1)
ν } =
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{2,2,3,3,3} it descends that the {r
(2)
ν } configuration {4,5,6,6,5} is not a minimal set for

U(r(2)). Therefore, to minimize energy (5.14) we need to combine results in table and choose
only one {r

(1)
ν } configuration, i.e. to specify the r(1)ν ordering, up to rotations.

In the example we have only two inequivalent configurations. They generate the chain of config-
urations

{2,2,3,3,3} → {4,5,6,6,5} → {7,8,9,8,7} → {10,11,11,10,10} → {13,13,13,13,13}

{2,3,2,3,3} → {5,5,5,6,5} → {7,8,8,8,8} → {10,11,10,11,10} → {13,13,13,13,13}

The configuration that minimises the total energy is {r(1)ν } = {2,3,2,3,3}. It is the most uniform
configuration for ρ = 5/13. We can write this result in a compact notation: {2,3,2,3,3} =∶

(10100)2(100) = (23)2(3)

We proved that, for each µ there is a set of configurations that minimize U(r(µ))

and we know how to construct it. We don’t have yet a method to choose the one that
minimises the total energy (5.14), but we can fabricate it. We start using µ = 1, i.e. we
minimize the nearest-neightbor energy U(r(1)). We obtain the set of minimal configu-
rations by applying the algorithm of the theorem. We calculate r(1) and a(1) from the
decomposition

1

ρ
= r(1) +

a(1)

m
(5.24)

and then we have the set of configurations that minimises U(r(1)), i.e. {r
(1)
ν } such that

there are m − a(1) times r(1) and a(1) times r(1) + 1.
For example, if a(1) = 0, i.e. ρ = 1/r(1) (the simplest possibility), we have only one
configuration that satisfies the problem: particles are distributed uniformly, one every
r(1) sites. Indeed {r

(1)
ν }ρ=1/r(1) = {r(1), r(1), . . . , r(1)}. This microstate solves the general

problem, as we can verify by comparing the chain of configurations that the solution
generates with sets of configurations that minimize U(r(µ)):

{r(1), r(1), . . . , r(1)} → {r(2) = 2r(1), r(2), . . . , r(2)} → . . .

Let’s introduce a new notation to indicate the set of configurations that minimises
U(r(1)). An element r(1)ν can be r(1) or r(1) + 1. To identify only one system’s configu-
ration we have to know the pattern of r(1)ν in the vector {r

(1)
ν }, up to rotations. How-

ever, knowing that r(1)ν = r(1) means that after particle ν we must have r(1) − 1 holes.
In terms of occupation numbers, when we find r

(1)
ν we fix a part of the configuration,

that we indicate with round brackets. We have only two types of partial configurations:
(10(r(1)−1)) and (10(r(1))). If we assume that a particle is always at the beginning of the
string, we can compact the notation for partial configurations using (10(r(1)−1)) =∶ (r(1))

or (10(r(1))) =∶ (r(1) + 1). A choice of configuration means fixing the order of partial
configurations. A minimal configuration for U(r(1)) is part of

M1 ∶= {{ni} ∶
(r(1)) × [m − a(1)]

(r(1) + 1) × [a(1)]
} (5.25)

To understand the notation let us consider examples.
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Example 5.2.2. m = 5 and N = 13 (ρ = 5/13). We obtain r(1) = 2, so the partial configurations
are (10) and (100). Minimal configurations for U(r(1)) are

{2,3,2,3,3} = (10)(100)(10)(100)(100) = (23)2
(3) ,

{2,2,3,3,3} = (10)(10)(100)(100)(100) = (2)2
(3)3.

Example 5.2.3. ρ = 1/n (m = N/n). We obtain r(1) = n, so the partial configurations are
(10n−1) and (10n). Minimal configuration for U(r(1)) is {n, . . . , n} = (10n−1)m = (n)m.

Let us observe that the smallest possible partial configurations are (1) and (0) (that
we call 0-particles). Then, a generic configuration is part of:

M0 ∶= {{ni} ∶
(0) × [N −m]

(1) × [m]
} (5.26)

Knowing the minimal sets for U(r(1)) (i.e. ρ density decomposition) permits a first or-
dering of 0-particles in bigger partial configurations M1 ⊂M0:

{{ni} ∶
(0) × [N −m]

(1) × [m]
} Ð→ {{ni} ∶

(r(1)) × [m − a(1)]

(r(1) + 1) × [a(1)]
} (5.27)

How can we select the configuration that minimises (5.14) among those (5.25) that
minimise U(r(1))? If a(1) = 0 we know the solution: we have only one configuration in
the set (5.25) that is a GS. If a(1) ≠ 0 the second term a(1)/m in the continued fraction
decomposition represents the density of (r(1) + 1)-site intervals which can be regarded
as particles, within the (r(1))-site intervals, which can be regarded as holes. In this way
we define two types of 1-particles. Therefore we want to find Hubbard GS for a density
ρ = a(1)/m. We know which is the first step to solve this problem: we calculate s(1) and
b(1) from the decomposition

m

a(1)
= s(1) +

b(1)

m
(5.28)

If {s
(1)
ν } is the vector of distance between 1-particles, i.e. it indicates how many (r(1))

sites intervals there are between (r(1) +1) sites intervals, we have m− b(1) of s(1)ν that are
s(1) and b(1) of s(1)ν that are s(1) + 1. So we obtain two types of 2-particles

((r(1) + 1)(r(1))(s
(1)−1)

) ((r(1) + 1)(r(1))(s
(1))

) (5.29)

and a subset of M1 that minimises also U(r(2))

M2 ∶=

⎧⎪⎪
⎨
⎪⎪⎩

{ni} ∶
((r(1) + 1)(r(1))(s

(1)−1)) × [m − b(1)]

((r(1) + 1)(r(1))(s
(1))) × [b(1)]

⎫⎪⎪
⎬
⎪⎪⎭

(5.30)

If b(1) = 0 we have only one configuration that is a solution. If b(1) ≠ 0 the second
term b(1)/m in the a(1)/m density decomposition represents the density of (1) 2-particles
within the (0) 2-particles. We can repeat the algorithm used before for 1-particles. And
so on, as long as we find a null density fraction for k-particles. Indeed in such case we
have only one configuration in Mk, that is a GS.
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Example 5.2.4. m = 5 and N = 13 (ρ = 5/13). We start from the set of 0-particles

M0 ∶= {{ni} ∶
(0) × [8]

(1) × [5]
}

From 5/13 decomposition we obtain the set of 1-particles

13

5
= 2 +

3

5
Ð→M1 ∶= {{ni} ∶

(2) × [2]

(3) × [3]
}

From 3/5 decomposition we obtain the set of 2-particles

5

3
= 1 +

2

3
Ð→M2 ∶= {{ni} ∶

(3) × [1]

(32) × [2]
}

From 2/3 decomposition we obtain the set of 3-particles

3

2
= 1 +

1

2
Ð→M3 ∶= {{ni} ∶

(32) × [1]

(323) × [1]
}

Finally from 1/2 decomposition we obtain the set of 4-particles

2 = 2 +
0

1
Ð→M4 ∶= {{ni} ∶ (32332) × [1]}

Example 5.2.5. m = 11 and N = 47 (ρ = 11/47). We start from the set of 0-particles

M0 ∶= {{ni} ∶
(0) × [36]

(1) × [11]
}

From 11/47 decomposition we obtain the set of 1-particles

47

11
= 4 +

3

11
Ð→M1 ∶= {{ni} ∶

(4) × [8]

(5) × [3]
}

From 3/11 decomposition we obtain the set of 2-particles

11

3
= 3 +

2

3
Ð→M2 ∶= {{ni} ∶

(544) × [1]

(5444) × [2]
}

From 2/3 decomposition we obtain the set of 3-particles

3

2
= 1 +

1

2
Ð→M3 ∶= {{ni} ∶

(5444) × [1]

(5444544) × [1]
}

Finally from 1/2 decomposition we obtain the set of 4-particles

2 = 2 +
0

1
Ð→M4 ∶= {{ni} ∶ (54445445444) × [1]}
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Remarks:
1) The algorithm has an end. As we are representing the rational number ρ as a contin-
ued fraction, it is known that every finite continued fraction is a rational number, and a
rational number can be represented by a finite continued fraction in precisely two differ-
ent ways.
2) If ρ = (mp)/(Np) where m and N are coprime, and p > 1, the GS that is obtained by
the algorithm is the same one as ρ = p/N . Then it is sufficient to obtain GS for densities
in which numerator and denominator are coprime.
3) Particle-hole symmetry makes it sufficient to obtain the GS for ρ ≤ 1

2
.

Let us summarize Hubbard’s algorithm for a filling fraction ρ. First ρ is represented
as a continued fraction,

ρ =
1

u1 +
1

u2+...
=∶ [0;u1, . . . , uk] (5.31)

Then we define n-particle Yn and n-hole Xn recursively

Xn ∶= (Yn−1)(Xn−1)
un−1 (5.32)

Yn ∶= (Yn−1)(Xn−1)
un (5.33)

The initial conditions are 0-particle and 0-hole, X0 ∶= (0) and Y0 ∶= (1). Hubbard’s
ground state is Xk.

ρ Xk configuration

1
3

(3) ⋯

3
7

(322) ⋯

5
13

(32)2(3) ⋯

Table 5.3: Hubbard ground states for three different filling fractions: ρ = 1/3, ρ = 3/7 and ρ = 5/13.

5.3 The Burkov-Sinai formula: a formal proof of incompressibility

In the previous section we obtained the periodic ground states for the Hamiltonian (5.5):
fixing rational density (or filling fraction or particles number) corresponds to choose
one ground state (up to translations) with that density of particles. From now on we
want to study our system in the grandcanonical ensemble, i.e. we want to change the
particles number. Therefore we add the chemical potential µ in order to obtain the Bak
Hamiltonian 5.1, i.e. if we consider Hubbard model, we have an infinite chain (chain of
length N with periodic boundary conditions) and periodic configurations

E(r(1)) = A
⎛

⎝
−2µm +∑

k

m

∑
µ=1

Uk(r(µ))
⎞

⎠
. (5.34)
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For each value of µ we have only one stable (and incompressible) periodic ground state
(to be chosen from the set built up above). In order to understand if a given ground state
is incompressible, we analyze the energy cost of insert or extract one excitation from a
given configuration. If both operations increase the energy, the configuration is stable.
The solution was given by Bak in [12]. A mathematical proof of this result is due to
Burkov and Sinai [24].

Let us calculate the region of the parameter space µ in which Hubbard ground state
for ρ = m/N is stable. We suppose to inserting or extracting one excitation on pN sites,
obtaining an Hubbard configuration with filling fraction ρ′ = pm + 1/pN or ρ′′ = pm −

1/pN , where we have to find p such that we don’t disturb too much the order, i.e. we are
demanding that distances between particles change little. So, our hipothesis are

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

rµ (ρ′) = ⌊
µpN
pm+1

⌋ = ⌊
µN
m

⌋ = rµ (ρ) ∀µ (mod m) = 1, . . . ,m − 1

rµ (ρ′) = ⌊
µpN
pm+1

⌋ = ⌊
µN
m

⌋ − 1 = kN − 1 ∀µ = km

(5.35)
⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

rµ (ρ′′) = ⌊
µpN
pm−1

⌋ = ⌊
µN
m

⌋ = rµ (ρ) ∀µ (mod m) = 1, . . . ,m − 1

rµ (ρ′′) = ⌊
µpN
pm−1

⌋ = ⌊
µN
m

⌋ = kN ∀µ = km

(5.36)

where rµ (ρ) /rµ (ρ′) /rµ (ρ′′) is the minimal distance that we obtain with Hubbard algo-
rithm for ρ/ρ′/ρ′′.

Since we know that all states are of Hubbard kind, we know the configurations struc-
ture. We know that we have m−aµ (ρ) distances (rµ (ρ)) and aµ (ρ) distances (rµ (ρ)+1)
for ρ; we can suppose to have m + 1 − aµ (ρ′) distances (rµ (ρ′)) and aµ (ρ′) distances
(rµ (ρ′)+1) for ρ′ andm−1−aµ (ρ′′) distances (rµ (ρ′′)) and aµ (ρ′′) distances (rµ (ρ′′)+1)
for ρ′′. Our second hypothesis is that all states satisfy Hubbard bond (we don’t change
the lenght of chain, when we change density):

m(ρ)

∑
v=1

rµν (ρ) = µN , (5.37)

then
m

∑
v=1

rµν (ρ) = µN =mrµ (ρ) + aµ (ρ) , (5.38)

m+1

∑
v=1

rµν (ρ′) = µN = (m + 1 − aµ (ρ′))rµ (ρ′) + aµ (ρ′) (rµ (ρ′) + 1) =

=mrµ (ρ′) + rµ (ρ′) + aµ (ρ′) , (5.39)
m−1

∑
v=1

rµν (ρ′′) = µN = (m − 1 − aµ (ρ′′))rµ (ρ′′) + aµ (ρ′′) (rµ (ρ′′) + 1) =

=mrµ (ρ′′) − rµ (ρ′′) + aµ (ρ′′) , (5.40)
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from which we obtain two equations

mrµ (ρ′) + rµ (ρ′) + aµ (ρ′) =mrµ (ρ) + aµ (ρ) , (5.41)

mrµ (ρ′′) − rµ (ρ′′) + aµ (ρ′′) =mrµ (ρ) + aµ (ρ) . (5.42)

Replacing values of rµ (ρ′) /rµ (ρ′′) we evaluate aµ (ρ′) /aµ (ρ′′).

⎧⎪⎪
⎨
⎪⎪⎩

aµ (ρ′) = aµ (ρ) − rµ (ρ) ∀µ (mod m) = 1, . . . ,m − 1

aµ (ρ′) =m + 1 − kN ∀µ = km

(5.43)
⎧⎪⎪
⎨
⎪⎪⎩

aµ (ρ′′) = aµ (ρ) + rµ (ρ) ∀µ (mod m) = 1, . . . ,m − 1

aµ (ρ′′) = kN ∀µ = km

(5.44)

Throughout, rµ ∶= rµ (ρ) and aµ ∶= aµ (ρ). Therefore inserting one excitation matches to
transform Hubbard GS with m − aµ distances (rµ) and aµ distances (rµ + 1) in Hubbard
GS with m − aµ + 1 + rµ distances (rµ) and aµ − rµ distances (rµ + 1); we are replacing
rµ distances (rµ + 1) by rµ + 1 distances (rµ). With the same logic one understands that
extracting excitation from the system will replace rµ + 1 distances (rµ) by rµ distances
(rµ + 1). In a schematic way we can write:

µ (mod m) = 1, . . . ,m − 1 µ = km

ρ→
(rµ) ×m − aµ

(kN) ×m
(rµ + 1) × aµ

ρ′ →
(rµ) ×m − aµ + 1 + rµ (kN − 1) × kN

(rµ + 1) × aµ − rµ (kN) ×m + 1 − kN

ρ′′ →
(rµ) ×m − aµ − (1 + rµ) (kN) ×m − 1 − kN

(rµ + 1) × aµ + rµ (kN + 1) × kN

(5.45)

If we evalutate the energy on an Hubbard ground state we have

E(ρ) = −2µm +
∞
∑
k=1

m

∑
µ=1

(m − aµ)V (rµ + kN) + aµV (rµ + kN + 1) (5.46)

that directly depends on number of particles m.
Until now, starting from a given ρ configuration, we have constructed two Hubbard

phases ρ′ and ρ′′ to be compared with ρ. Now we have all the ingredients to obtain the
energy difference between ρ′ GS and ρ GS (inserting excitation):

∆E+ = E(ρ′) −E(ρ) =

= −2µ+ +
∞
∑
k=1

m−1

∑
µ=1

(rµ + kN + 1)V (rµ + kN) − (rµ + kN)V (rµ + kN + 1)+

+
∞
∑
k=1

(1 − kN)V (kN) + (kN)V (kN − 1) ,

(5.47)
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and similarly the energy difference between ρ′′ GS and ρ GS (extracting excitation):

∆E− = E(ρ′′) −E(ρ) =

= 2µ− −
∞
∑
k=1

m−1

∑
µ=1

(rµ + kN + 1)V (rµ + kN) − (rµ + kN)V (rµ + kN + 1)+

+
∞
∑
k=1

(kN)V (kN + 1) − (1 + kN)V (kN) .

(5.48)

The interval in µ, ∆µ(ρ) = µ+ −µ−, where the ground state is stable is determined simply
by setting (5.47) and (5.48) equal to zero, because we demand that ∆E+ ≥ 0 for all ρ′ and
∆E− ≥ 0 for all ρ′′; respectively

1

2
∆µ =

∞
∑
k=1

(kN) [V (kN + 1) + V (kN − 1) − 2V (kN)] . (5.49)

Note that ∆µ(ρ) is indipendent the numeratorm and non zero for every Hubbard ground
state, thus proving their incompressibility.

5.4 Devil’s staircase phase diagram at zero temperature

Using (5.49) we can plot the phase diagram for (5.34) for a strictly convex potential.
Operatively we set a minimum cut-off for the density. We assume there exists some
density ρ0 = 1/N that is stable for µ = 0, with high N . It is useful to choose N with a lot
of divisors.

Now we construct the phase diagram. We suppose µ−(ρ0) = 0. We calculate µ+(ρ0)

using (5.49) with a larger number of term. Now we flip one spin up, because over µ+(ρ0),
the phase ρ0 isn’t stable. So we consider ρ1 = 2/N and we fix µ−(ρ1) ∶= µ+(ρ0). We
calculate ρ1 = 2/N stability interval and so on. The algorithm to construct phase diagram
is recursive. Our initial conditions are:

{
ρ0 ∶=

1
N

µ−(ρ0) ∶= 0
(5.50)

then we have to apply recursively:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

µ+(ρi) ∶= µ−(ρi) +∆µ(ρi)

ρi+1 ∶= ρi +
1
N

µ−(ρi+1) ∶= µ+(ρi+1)

(5.51)

Results are in Figure (5.1).



One dimensional lattice gases with long range repulsive interactions 69

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

µ

D
en

si
ty

,ρ

V (r) = 1/r

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

µ

D
en

si
ty

,ρ
V (r) = 1/r2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

µ

D
en

si
ty

,ρ

V (r) = e−r

Figure 5.1: Phase diagram with the Devil’s staircase for different potentials. The density of particle
ρ is plotted against the chemical potential µ. The structure of the staircase is qualitatively similar
for the three potentials. However the length of the plateaux is not universal. In the case V (r) = 1/r
the result shown is misleading: increasing N the devil’s staircase is pushed toward infinity along
the orinzontal axes. This is a byproduct of the non-extensivity of the Coulomb problem. In order
to obtain sensible results we should regularize the potential.





CHAPTER 6

Quantum Hall problem in the lowest Landau level

In this chapter we introduce the fundamental background to understand correlated elec-
trons in two dimensions. The take-home messages are mainly two:

1. the quantum Hall Hamiltonian projected on the lowest Landau level [14] under-
goes a sort of dimensional reduction when written down in the second quantization
formalism. This fact is indipendent of the gauge choice and also of the geometry;

2. many fractional quantum Hall states, such as Laughlin [16], Moore-Read [109] or
Read-Rezayi [110] wavefunctions, are specific realizations of Jack polynomials [111].
This observation is recent [25] and allows to obtain recurrence relations for the coef-
ficients of the decomposition in Slater determinant of these states [112], previously
unknown.

Both observations are fundamental for our original work, that we will present in the last
Chapter.

6.1 Non-interacting electrons in 2D in a constant magnetic field: Lan-
dau levels

In this section we introduce the quantum description of an electron (more in general of
a charged particle) in an electromagnetic field in two-dimensions. Ignoring spin degrees
of freedom, the single particle Hamiltonian is

HEM =
(p − qeA)2

2me
+ qeV , (6.1)

where p is the canonical momentum operator that satisfies canonical commutation re-
lations [ra, pb] = ih̵δab and (V (r, t),A(r, t)) is the potential of the electromagnetic field:

E = −∇V −
∂A

∂t
, B = ∇ ×A . (6.2)

In absence of electromagnetic field, electrons are free particles on the (x, y) plane and
they are described by plane waves with energy Ek = h̵2k2

/2me and wave vector k =
2π
L
(nx, ny).

71
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We are interested in finding eigenstates and eigenvalues for the Hamiltonian HEM ,
setting V = 0 and A = A(r), such that the magnetic field B = (0,0,B) is homogeneous
and constant. If we define the gauge invariant momentum π, the covariant momentum,
that correspond to the classical generalized momentum is:

π ∶=mev = p − qeA (6.3)

and the Hamiltonian reads

HEM =
π2

2me
=

1

2me
(π2
x + π

2
y) . (6.4)

The components of π satisfy the following commutations relations

[πx, πy] = i
h̵

`2
, (6.5)

where the magnetic lenght ` =
√
h̵/qeB, is the fundamental length scale (B = 10T means

` ≃ 100A). We observe that in a magnetic field the operators of covariant momentum
components do not commute. Furthermore, using these operatos, we can define a cre-
ation and an annihilation operator, for which [a, a†] = 1,

a ∶=
`

√
2h̵

(πx − iπy), a†
∶=

`
√

2h̵
(πx + iπy) . (6.6)

The Hamiltonian has the same algebraic structure of an harmonic oscillator:

HEM = h̵ωc (aa
†
+

1

2
) , (6.7)

where ωc = qeB/me is the cyclotron frequency. The eigenstates of HEM are the same
of the number operator N = a†a, i.e. N ∣n⟩ = n ∣n⟩. Creator and annihilation operators
generate whole ladder of states as usual:

a ∣n⟩ =
√
n ∣n − 1⟩ , a†

∣n⟩ =
√
n + 1 ∣n⟩ , (6.8)

and ∣0⟩ is the ground state such that a ∣0⟩ = 0. Energy levels En = h̵ωc (n +
1
2
) are degen-

erate. They are called Landau levels.
To eliminate the degeneration we need to define the guiding center coordinate (center

of cyclotron motion) χ, that represents the barycentric coordinate

χx ∶= x +
1

qeB
πy, χy ∶= y −

1

qeB
πx , (6.9)

that satisfies
[χx, χy] = −i`

2 . (6.10)

We observe, since the operators of guiding center components do not commute, the par-
ticle position can not be determined more accurately than the area 2π`2. Furthermore

[χx, πx] = [χx, πy] = [χy, πx] = [χy, πy] = 0 , (6.11)
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so the guiding center χ and the covariant momentum π are entirely indipendent vari-
ables. We can construct one creation and one annihilation operator for which [b, b†] = 1,

b =
1

√
2`

(χx − iχy), b†
∶=

1
√

2`
(χx + iχy) . (6.12)

We observe that
[a, b] = [a†, b] = 0 , (6.13)

so we have another indipendent harmonic oscillator b†b ∣m⟩ = m ∣m⟩. The eigenstates of
HEM are the same of the number operator M = b†b, then the general eigenstate of the
Hamiltonian, with energy En = h̵ωc (n +

1
2
) is a linear superposition of the following

states, which we call the Landau sites

∣n,m⟩ =

√
1

n!m!
(a†

)
n
(b†

)
m

∣0,0⟩ (6.14)

where ∣0,0⟩ is the vacuum. Their orthonormal completeness condition reads

⟨n1,m1∣n2,m2⟩ = δn1,n2δm1,m2 , ∑
n,m

∣n,m⟩ ⟨n,m∣ = 1 (6.15)

The motion of an electron within one Landau level is specified by the guiding center χ.
Since the coordinates χx and χy do not commute, we can not diagonalize both of them
simultaneously.

6.1.1 Landau levels in the symmetric gauge

We now consider the same analysis in the symmetric gauge:

A(r) = (−
1

2
By,

1

2
Bx,0) . (6.16)

Since the system has a disk geometry, it is appropriate to diagonalize the symmetric
combination χ2

x + χ
2
y . This is equivalent to diagonalize the number operator b†b:

χ2
x + χ

2
y = (2b†b + 1)`2 . (6.17)

The Landau site ∣n,m⟩ is an eigenstate of the operator χ2
x + χ

2
y

(χ2
x + χ

2
y) ∣n,m⟩ = (2m + 1)`2 ∣n,m⟩ . (6.18)

The angular momentum operator is given by

L = xpy − ypx = (b†b − a†a)h̵ , (6.19)

so the state ∣n,m⟩ has the angular momentum (m − n)h̵ in a given Landau level n. b and
b† are the ladder operators increasing or decreasing angular momentum.

Using a complex number z ∶= 1
`
(x + iy) for electron position, the general solution for

the states in the lowest Landau level (LLL), i.e. states which satisfie a ∣0,m⟩ = 0, is

ψ0,m(r) = h(z) exp [−∣z∣2/4] , (6.20)
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where h(z) is an arbitrary analytic function. All these states are degenerate.
The state ∣0,0⟩ statisfies b ∣0,0⟩ = 0, which is solved as

ψ0,0(r) =
1

√
2π`2

exp(−
r2

4`2
) . (6.21)

The state ∣0,m⟩ is described by the wave function

ψ0,m(r) =

√
2m

2π`2m!
zme−∣z∣

2/4 . (6.22)

It represent an electron circularly localized. The probability of finding the electron at
r = 2`∣z∣ in the lowest Landau level is given by

∣ψ0,m(r)∣2 ∝ r2m exp(−
r2

2`2
) , (6.23)

which has a sharp peak at rm =
√

2m`. These states are represented by rings on a disk
geometry, where a ring is labeled by the angular momentum mh̵. The area of each ring
is

∆S = πr2
m+1 − πr

2
m = 2π`2 . (6.24)

The position of the electron cannot be localized within an area smaller than ∆S.

6.1.2 Landau levels in the Landau gauge

Now we consider the Landau Gauge. We suppose to have translational invariance in y
direction.

A(r) = (0,Bx,0) . (6.25)

Since we have py = (h̵/`2)χx conservation, we can diagonalize χx:

py ∣ky⟩ = h̵ky ∣ky⟩ , χx ∣ky⟩ = ky`
2
∣ky⟩ . (6.26)

Here ky is a wave number in y direction. To obtain the lowest Landau levels, we have to
apply LLL condition a ∣ky⟩ = 0. Solving that differential equation is a trivial problem so:

φ0,ky(r) =
1

π1/4`1/2
exp(ikyy) exp [−

1

2`2
(x − ky`

2
)
2
] . (6.27)

This is a plane wave in y direction with momentum h̵ky . The probability of finding
an electron at x has a sharp peak at x = ky`

2. These states are represented by strips
on a rectangular geometry, where a strip is labeled by the wave number ky , located at
x = ky`

2, and has width δx = `2δky . Here δky = 2π/Ly , because the wave number is
quantized as ky = 2π/Lysy , where sy is an integer and Ly is the y size of the sistem. The
area of each strip is equal to

∆S = Lx∆y = 2π`2 . (6.28)
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6.1.3 Flux quanta and filling factor

Due to the Pauli exclusion principle only one electron can occupy a single Landau site
(in the spinless theory). Each of them has area ∆S = 2π`2, so that each energy level has a
degenaracy per unit area ρΦ

ρΦ =
NΦ

S
=

1

2π`2
, (6.29)

where S is the area of the total system andNΦ is the number of states S/∆S. If we define
the Dirac flux quantum ΦD as the magnetic flux on the area ∆S,

ΦD ∶= 2π`2B =
2πh̵

qe
, (6.30)

the density of states is equal to the density of flux quanta

ρΦ =
NΦ

S
=

ΦTOT
SΦD

=
B

ΦD
. (6.31)

The filling fraction of the energy level is defined by the ratio

ν =
Number of particles

Number of states
=
Sρ0

SρΦ
= 2π`2ρ0 =

2πh̵ρ0

qeB
=
ρ0ΦD
B

. (6.32)

At ν = 1/q there are q flux quanta per electron, B/ρ0 = qΦD. The filling factor is called the
Landau level filling factor, or simply the filling factor. When ν = 1 the Landau level is full.

6.2 Integer and fractional quantum Hall effect

Edwin Hall discovered in 1879 [113], while he was working on his doctoral degree, that
in a conductor travelled by electric current and immersed in a magnetic field perpendic-
ular to the current, a voltage difference (the Hall voltage) appears across the electrical
conductor, transverse to the electric current.

Classically, electrons moving with velocity v in an xy plane (2D-system) in magnetic
fieldB, obey the equation of motion

mev̇ = −qe(E + v ×B) (6.33)

where me is the electron mass and qe is the electron charge. It implies that E = −v ×B,
for static current, i.e. v̇ = 0. The current density is J = −qeρ0v in a homogeneous electron
gas with areal density ρ0. It means that

Jx =
qeρ0

B⊥
Ey, Jy = −

qeρ0

B⊥
Ex (6.34)

with B⊥ ∶= −Bz > 0. The current J flows in a direction perpendicular to the electrical
field E.

We take the electric field along the y axis; then Ex = 0 and Ey ≠ 0. It follows that the
classical Hall resistivity ρxy is

ρxy = −ρyx =
Ey

Jx
=
B⊥
qeρ0

=
2πh̵

q2
e

1

ν
(6.35)
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Figure 6.1: Classic Hall effect: low temperature and moderately low B. The insert shows the mea-
surement geometry. The voltages Vx and Vy are respectively measured in the two perpendicular
directions on the sample. ρxx is the resistivity across the square. ρxy = Vy/I is the Hall resistivity.
Image taken from [114].

with

ν ∶=
2πh̵ρ0

qeB⊥
(6.36)

while the diagonal resistivity ρxx is

ρxx = ρyy =
Ex
Jx

= 0 (6.37)

The classical Hall resistivity is a linear function of the perpendicular magnetic field
B⊥ for fixed density ρ0. It is a common knowledge that the resistivity depends sensitively
on details of a sample such as its composition, geometry and impurities. Experimental
results are strikingly different, though they are obtained in dirty solid-state samples.
The resistivity is insensitive to details of samples at particular values of parameter ν,
where the Hall resistivity ρxy is quantized and develops a series of plateaux, and the
diagonal resistivity ρxx shows a series of dips. This is known as QH effect. The number
of observed Hall plateaux increases as the sample becomes purer.

The integer QH effect (IQHE), i.e. at ν ∈ N, was discovered by von Klitzing [115]
in 1980 in a 2D electron gas at low temperature, a century after the discovery of the
Hall effect. The discovery was preceded by a theoretical suggestion due to Ando and
an experimental indication due to Kawaji, but no one seems to have foreseen the exact
quantization of the Hall conductivity. The fractional QH effect (FQHE), i.e. at ν = p/q

with integer p and odd integer q, was discovered by Tsui, Stormer and Gossard [116]
in 1982. While the IQHE can be understood within an independent electron theory of a
disordered system, the FQHE is based on strong electron correlations. Both effects are
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Figure 6.2: The integer QH effect (IQHE). In a classical electron gas the Hall resistivity ρyx is
proportional to the magnetic field B⊥. However, the Hall resistivity ρxy shows a stair case in an
actual sample, with the plateau crossing the classical line at ν = 1,2,3, . . .. The diagonal resistivity
ρxx vanishing at these points. Image taken from [114].

found in GaAs/GexGa1−xAs heterostructures of silicon field-effect transistors when a
magnetic field B is applied perpendicularly to the two-dimensional electron liquid.

While the actual experimental data are affected by the thermal motion, theoretically
it is believed that in the zero temperature limit, the Hall resistivity is given by

ρyx =
1

ν
RK with RK ∶=

2πh̵

q2
e

= 25812.8074434(84)Ω (6.38)

Because its precise measurement is possible rather easily in QH systems, since 1990 this
has been used as the standard resistance with a definite choice of RK , called the von
Klitzing constant.

Figure 6.3: Experimental arrangement for measuring the quantum Hall effect.
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The Hall resistivity ρyx and the diagonal resistivity ρxx are determined in a rectangu-
lar sample by feeding a constant current Jtot = JxW along the x axis and measuring the
voltage Vy perpendicular to it (see Figure 6.3). It is arranged so that no current flows in
the y direction, Jy = 0. The electric field reads

Ex = −ρxxJx = −ρxx
Jtot
W

, Ey = −ρyxJx = ρxy
Jtot
W

(6.39)

where Ey = Vy/W and Ex = Vx/L. It follows that

ρxy =
Vy

Jtot
, ρxx = −

WVx
LJtot

(6.40)

The Hall resistivity ρxy depends only on the current Jtot and the voltage Vy . Hence, it
can be determined very accurately. They take peculiar values,

ρxy =
RK
ν
, ρxx = 0 (6.41)

in the QH state at ν. In weak magnetic field, the Hall resistivity is described well by the
classical theory, ρxy = B⊥/qeρ0, which is used experimentally to determine the electron
density ρ0 of a sample.

6.2.1 Qualitative explanation of the IQHE

To avoid unnecessary complications we ignore the dynamical degree of freedom asso-
caited with spin by assuming that all spins are polarized and frozen by the Zeeman
effect: it is a spin frozen system. The electron gas is described by the following Hamilto-
nian:

H = ∑
i

HEM(ri,pi) +HC , (6.42)

where HEM(ri,pi) is the electromagnetic Hamiltonian for the i-th electron and HC is
the Coulomb energy contribution. Our first attempt to symplify the problem is neglect-
ing the Coulomb energy, i.e. we use indipendent single-particle approximation. So we
consider an hamiltonian

H = ∑
i

HEM(ri,pi) . (6.43)

Each electron can occupy only one Landau site, and the total eigenstate is a Slater de-
terminant of single particle eigenstates. Working with this idealized system it can be
demonstrated that we obtain classical prediction about Hall resistivity, because ⟨vi⟩

(mean i-th electron’s speed value calculated on Landau sites) has the same behavior
of the classical speed.

To understand IQHE it is necessary to introduce the interaction of the system with
impurities, defects and inhomogeneity [117]. This theory was provided by Laughlin in
1981 [14]. We need strong magnetic fields so that Landau levels do not intersect. Essen-
tially the interaction wih impurities partially splits Landau sites and broadens Landau
levels. However new single-particle states of the system are not equivalent. States in the
tail of new Landau levels are Anderson localizated, thus they are ensnared in a specific
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microscopic region of the system. So disorder traps electrons wave functions. At the op-
posite, states near the center of new Landau levels are not localized, they are extended
on all the system.

Only extended wave functions contribute to the current flow. Let us analize the be-
haviour of a low temperature system by tuning the particle density. For low densities, all
particles occupy localized states and current flow is impossible. Adding particles, Fermi
energy reaches first possible Landau level, a region with extended states, and conductiv-
ity gains one quantum e2/h̵. Next density level cross the other tail of Landau level that is
a region with localized states. So conductivity remains constant and displays a plateau.
Increasing density means refreshing the sequence. At each Landau level conductivity
has a leap. Laughlin connects changes in magnetic field to density mutations through
flux quanta filling fraction [118].

6.3 Quantum Hall problem in the lowest Landau level

At the beginning of the fractional quantum Hall era, only a small number of plateaux
were observed, the first one being the ν = 1/3. Nowadays the picture is completely
different: more than fifty different plateaux are observed only in the lowest Landau level
[119].

Figure 6.4: The celebrated fractional QH landscape. Many fractional QH states are observed in
pure samples. It easy to identify them by searching for dips in the diagonal resistance ρxx rather
than plateaux in the Hall resistance ρxy . Image taken from [114].

The qualitative explanation of the previous section does not apply to plateaux at frac-
tional fillings. In order to understand fractional quantum Hall effect, Coulomb repulsion
between electrons can not be ignored and must be taken into account.
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A measure of the Coulomb interaction is roughly U = e2/4π`, which is proportional
to

√
B. The separation between the Landau levels is h̵ωc and thus it is proportional to

B. Therefore in the limit of strong magnetic field, the ciclotron frequency is much larger
than the Coulomb repulsion, h̵ωc ≫ U . This condition is barely satisfied in real sample at
B = 10T . It is widely accepted that the fractional quantum Hall effect in the lowest Lan-
dau level can be understood in this regime, where the mixing between different Landau
levels can be safely ignored. This observation leads to important simplifications when
we consider the interacting Hamiltonian, which is the sum of the kinetic energy plus the
Coulomb interaction:

H =HK.E. +∑
i<j
Vij . (6.44)

This Hamiltonian can be written down in the Fock space. We use the basis of the non-
interacting problem. The states in this basis, indipendently from the gauge and from the
geometry, are always labelled by two indices: an index L that labels different Landau
levels, and an index m for the degenerate Landau sites. For the disk geometry the latter
labels states with different angular momentum. In the second quantization formalism
we obtain:

HK.E. = h̵ωc
∞
∑
L=0

∑
m

(L +
1

2
)a†

L,maL,m , (6.45)

Hint = ∑
L1,m1

∑
L2,m2

∑
L3,m3

∑
L4,m4

⟨L1,m1;L2,m2∣V12 ∣L3,m3;L4,m4⟩×

× a†
L1,m1

a†
L2,m2

aL4,m4aL3,m3 . (6.46)

This is the general expression. In the limit of strong magnetic field we can restrict the
Hilbert space, under the assumption that the mixing between different Landau levels is
negligible, which means that the non-diagonal terms of the potential are small. When
we consider only the lowest Landau level, we obtain:

HK.E. = h̵ωc/2∑
m

a†
0,ma0,m , (6.47)

Hint = ∑
m1,m2,m3,m4

⟨0,m1; 0,m2∣V12 ∣0,m3; 0,m4⟩×

× a†
0,m1

a†
0,m2

a0,m4a0,m3 . (6.48)

This Hamiltonian is a quantum lattice gas, whose sites are the Landau sites of the lowest
LL. Moreover a dimensional reduction took place during the no-mixing approximation:
the geometry of this lattice is effectively one dimensional.

The first problem is to identify ground states of this Hamiltonian at fixed filling frac-
tion ν. Laughlin was the first able to overcome this problem [16].

In order to minimize the Coulomb repulsion of the electrons he proposed to find a
proper superposition of Slater determinants of single particle states in the lowest LL. The
general wavefunction (in the symmetric gauge) for a single particle in the lowest LL is

ψ0,m(r) = h(z) exp [−∣z∣/42] . (6.49)
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He assumed that this superposition of Slaters was a Jastrow function:

ψ(r1, . . . ,rN) =∏
i<j
f(zi − zj) exp [−∑

i

∣zi∣
2
/4] . (6.50)

Using symmetry assumptions (angular momentum conservation and Pauli principle)
the wavefunction is completely constrained:

ψ(r1, . . . ,rN) =∏
i<j

(zi − zj)
m exp [−∑

i

∣zi∣
2
/4] , m = 1,3,5, . . . . (6.51)

This correlated wavefunction exhibit remarkable properties [120]:

• it is an extremely accurate approximation of the exact ground state of the interact-
ing system for filling fractions ν = 1/(2m + 1). Its overlap with the exact GS (for
small system size) is larger than 0.995;

• it displays no solid nor superfluid order;

• it is the exact ground state of the so called Trugman-Kivelson Hamiltonian, the first
term in a short range expansion of the long range interaction.

After the incredible insight by Laughlin, a plethora of fractional quantum Hall states
were proposed to describe quantum Hall liquids at different filling fractions [120].

In the following we describe the modern characterization of these states through Jack
polynomials, which is due firstly to Haldane and Bernevig [25]. This representation al-
lows to discover a number of previously unknown properties of the fractional quantum
Hall states in their Fock space representation: among the others, a remarkable recurrence
relation for the coefficients of the Slater decomposition of Laughlin states [112]. We will
use this result in the last Chapter.

The presentation of the next section closely follows a recent pedagogical (eh eh..)
paper by Bernevig and coworkers [121].

6.4 The connection between fractional quantum Hall states and Jack
polynomials

As anticipated above, finding model wave functions for Fractional Quantum Hall (FQH)
states, has been one of the dominant lines of consideration in the field. Most prominently,
Laughlin’s trial wave function for the FQH state at ν = 1/3 filling initiated the founda-
tion of a new level of microscopic understanding of the FQH phases. Trial states, as one
of many insights, have been significantly contributing to the development of concepts
like fractional Abelian statistics as found in the ν = 1/m Laughlin states [122], composite
fermions [123], as well as non-Abelian statistics as in the Moore-Read (MR) [109] and
Read-Rezayi (RR) states [110], which promise realization of topological quantum com-
putation [124].

However, these trial states all share an ambiguous nature: While they are explicitly
available in terms of analytical polynomial wave function expressions, it has remained
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elusive to decompose them into a non-interacting basis of occupation number states be-
ing Slater determinants for fermionic states and monomials for bosonic states. As such,
neither stringent comparison to mean field theories nor use of large scale numerical
methods like Monte Carlo methods has proved practicable. This is why any quantita-
tive analysis of these states has centrally relied on exact diagonalization methods [120].
There, the general pursuit is as follows: One starts with a trial Hamiltonian and gener-
ates the lowest Landau Level Hilbert space. The computational effort of diagonalization
algebraically depends on the Hilbert space dimension which factorially grows with sys-
tem size setting the decisive size limit constraint. For the Laughlin 1/3 state there exist
previous attempts to identify zero weight coefficients of the free basis. However, since
these concepts only enabled to eraseO(1/N !) of the zero weight coefficients, the reduced
basis dimensions obtained this way in the non-interacting basis still by far exceeds the
basis reduction reachable by exact diagonalization subblock decomposition to interact-
ing basis sets [125, 126].

6.4.1 Bosonic states

FQH states are analytic functions (except for the exponential prefactor) of the positions
of electrons in a magnetic field. The single-particle orbitals in the lowest Landau Level
are given by

φm(z) = (2πm!2m)
−1/2zm exp(−∣z∣2/4) (6.52)

with angular momentum Lz = mh̵, although from now we will neglect the trivial Gaus-
sian multiplication factors. A non-interacting N-particle basis state can be indexed by a
partition λ - an ordered list of the Lz angular momentum of the occupied orbitals. The
corresponding occupation number configuration is [25]

n(λ) = {nm(λ),m = 0,1,2, . . .} , (6.53)

where m labels the individual single-particle orbitals and nm(λ) is the multiplicity of
orbital m in λ. We consider FQH states decomposed in this many-body basis, either of
bosons (permanents) or fermions (slaters) with expansion coefficients cλ.

We now define a two-body operation on the many-body basis: for a pair of particles
in the orbitals m1 and m2, with m1 <m2 − 1, the elementary squeezing operation consists
of the two particles shifted to different momentum orbitals as

nm1,2 → nm1,2 − 1 , (6.54)

nm1,2±1 → nm1,2±1 + 1 . (6.55)

This means that both particles in the m1,m2 orbitals are shifted ”inwards” the partition
(as shown in Fig. 6.5). The squeezing defines a partial ordering relation between two
partitions λ > µ when µ is generated by squeezing operations acting on λ [111]. This
ordering yields a tree hierarchy a complete example of which is shown in Fig. 6.6 for the
Laughlin state with N = 4 electrons and ν = 1/3. By contrast, when λ and µ do not relate
by squeezing, no ordering relation is set between these partitions.

The trial FQH states we consider are all squeezed polynomials. They possess a
unique partition, called the root partition, dominating all other partitions. This means



Quantum Hall problem in the lowest Landau level 83

[6,  3,  2,  1]  

1 0 1 0 1 0 1

1 0 0 1 1 1 0

[6,  4,  2,  0]

Figure 6.5: Pictorial example of the squeezing operation in occupation language (left) and partition
language (right). The squeezing operation takes the first row into the second.
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Figure 6.6: Monomial decomposition of N = 4 particle ν = 1/3 Laughlin state. The particle posi-
tions are denoted by 1. The coefficients of the Slater partitions are computed according to (6.70),
with α = −2. The arrows denote a squeezing relation from the upper to the lower partition. In
total, there are 4 squeezing levels till the maximally squeezed partition is reached.

that all partitions with possible (but not guaranteed) non-zero weight are generated by
subsequent squeezing operations acting on the root partition. In many cases, this already
allows us to omit a significant (more than half) part of the Hilbert space (see Table 6.1).

In this Section, we focus on the bosonic FQH states. The non-interacting basis is given
by monomials

Mλ(z1, . . . , zN) = Per(zλji )/∏
m

nm(λ)! , (6.56)

where λj is the momentum index of the j-th particle in the partition λ and Per is the
permanent. It was shown [25] that the N -particle bosonic Read-Rezayi k series of states
(which includes the Laughlin and MR state) are a special class of symmetric polynomi-
als. Specifically, this class is called the r = 2 single Jack polynomials Jαλ (z1, . . . , zN) of
parameter α = −k+1

r−1
and root partition λ = [k0r−1k . . . k0r−1k]. The Jack wave functions

can be related to conformal field theories with extended symmetry WAk−1.
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nbr particles full dim. squeezed dim.
4 18 16
5 73 59
6 338 247
7 1656 1111
8 8512 5302
9 45207 26376
10 246448 135670
11 1371535 716542
12 7764392 3868142
13 44585180 21265884
14 259140928 118741369
15 1521967986 671906876
16 9020077206 3846342253
17 53885028921 22243294360

Table 6.1: Size of the monomial basis for the bosonic Laughlin state ν = 1/2 up to N = 17 particles.
The second column is the complete size. The third column is the number of partitions allowed by
the squeezing operation from the root partition 1010101 . . .0101.

Jacks are eigenstates of the Laplace Beltrami (LB) operator [111]:

HLB = ∑
i

(zi
∂

∂zi
)

2

+
1

α
∑
i<j

zi + zj

zi − zj
(zi

∂

∂zi
− zj

∂

∂zj
) . (6.57)

In particular, as stated above, some of them are found to correspond to bosonic FQH
trial states for the ground state of the quantum Hall problem in the lowest LL.

We expand the Jacks into the monomial basis :

Jαλ = ∑
κ≤λ

cλκ(α)Mκ, (6.58)

where κ runs over all monomial partitions squeezed from the root partition λ. There is a
known recurrence relation for the expansion coefficients cλκ(α) [111]:

cλκ(α) =
2/α

ρλ(α) − ρκ(α)
∑

κ<µ≤λ
((li + t) − (lj − t)) cµκ(α), (6.59)

where κ = [l1, . . . , li, . . . , lj , . . . ] and µ = [l1, . . . , li + t, . . . , lj − t, . . . ] denote partitions. We
arrange the momentum orbitals denoted above in decreasing order from left to right, i.e.
l1 ≥ l2 ≥ li ≥ lj . . . in κ, and a possible rearrangement occurs in µ depending on t. All
partitions µ are understood to be reordered in this way. The sum in (6.59) extends over
all partitions µ strictly dominating κ but being dominated (squeezed from) or equal to λ
that can be generated by unsqueezing (i.e. the inverse operation to squeezing). The ρ’s
are defined as:

ρλ(α) = ∑
i

λi (λi − 1 −
2

α
(i − 1)) . (6.60)



Quantum Hall problem in the lowest Landau level 85

This recurrence relation is extremely useful numerically, because it allows for exact com-
putations of bosonic trial wavefunctions without the need of exact diagonalization meth-
ods. This recurrence relation was recently extended to polarized fermionic states by
Bernevig and Regnault [112]. This derivation is described in the next section.

6.4.2 Polarized fermionic states

Similar to the bosonic case in Sec. 6.4.1, we start with single particle orbitals of the lowest
Landau level in equation (6.52) . However, for the many-body state, we now assume that
the particles described by the first quantized wave functions obey fermionic statistics.
As a consequence, the non-interacting free fermion basis is given by Slater determinant
states:

slλ = Az(zλ1

1 zλ2

2 . . . zλNN ) = Det(zλji ) , (6.61)

where slλ is the unnormalized orthogonal Slater determinant and A denotes the anti-
symmetrization over all z coordinates. Different normalizations can be applied to put
the polynomial wave function on different manifolds such as the plane or the sphere. As
in the bosonic case, we describe the free many body states by partitions (or occupation
numbers). We again assume the partition λ = [λ1, . . . , λN ] to be ordered by decreasing
order in angular momentum λi of the ith particle. As before, the squeezing operation
shifts two particles inwards (towards each other) in the partition. For fermions, multiple
occupancy is forbidden due to the Pauli principle.

In first quantized notation, bosonic and fermionic trial states can be transformed into
each other by multiplication with a Vandermonde determinant. In terms of single parti-
cle coordinates, this polynomial is the Jastrow factor, which is the antisymmetric homo-
geneous polynomial of degree 1. Starting from a Jack polynomial Jαλ , the transformation
reads

Jαλ → Sαλ ∶= J
α
λ∏
i<j

(zi − zj) . (6.62)

The Sαλ polynomials are the exact fermionic analogue of the bosonic (Jack) trial state Jαλ .
For example, the ν = 1/2 bosonic Laughlin state (Jack of (k, r) = (1,2)) becomes the ν =

1/3 fermionic Laughlin state. The filling always changes from bosonic filling ν = p/q to
fermionic filling ν = p/(p+ q). However, in second quantized notation, multiplication by
the Vandermonde determinant does not transform a single monomial to a single Slater.
To obtain a one-to-one correspondence between a bosonic basis and fermionic Slaters,
one would first have to transform the monomials to Schur functions.

We define the decomposition of the Sαλ polynomials into Slaters:

Sαλ (z1, . . . , zN) = JαλB

N

∏
i<j

(zi − zj) = ∑
µ≤λ

bλµslµ. (6.63)

To avoid confusion, λB denotes the bosonic root partition and λ the associated fermionic
root partition. All partitions µ are squeezed from the fermionic partition λ that is related
to the bosonic partition by λi = λBi + (N − i). We now use that the Jack part of Sαλ is an
eigenstate of the LB operator, i.e. HLBJ

α
λB

= EλB(α)J
α
λB

. We then relate the derivatives
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acting on JαλB
to derivatives on Sαλ :

EλB(α)S
α
λ = ∏

k<l
(zk − zl)
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⎢
⎣
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zi
∂
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1
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∂zj
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Sαλ .

(6.64)

Simplifying several polynomial sums that yield constants, we can define a fermionic
Laplace Beltrami operator that diagonalizes Sαλ , i.e.

H
F
LB(α)S

α
λ (z1, . . . , zN) = Eλ(α)S

α
λ (z1, . . . , zN), (6.65)

with

Eλ(α) = ∑
i

λi (λi − 2(
1

α
− 1) i) + (

1

α
− 1)((N + 1)∑

i

λi −N (N − 1)) , (6.66)

H
F
LB(α) =HK +

1

2
(

1

α
− 1)HI = ∑

i

(zi
∂

∂zi
)

2

+

+
1

2
(

1

α
− 1)

⎡
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(zi
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∂zi
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∂

∂zj
) − 2

z2
i + z

2
j

(zi − zj)2

⎤
⎥
⎥
⎥
⎦
. (6.67)

We now diagonalize the above operator in the basis of Slater determinants. The action
of the kinetic part yields ∑iHKslµ = (∑i µ

2
i )slµ, where the µi denotes the polynomial

power of the ith particle in the partition. The action of the interaction part HI is non-
diagonal in Slater determinant basis and demands further calculation. First we realize
that, due to its two-body nature, the action of HI on any Slater determinant decomposes
into the sum of two-particle interaction terms. It is thus sufficient to look at the action
on the two-particle Slater determinant

slµ=(µ1,µ2) = z
µ1

1 zµ2

2 − zµ1

2 zµ2

1 . (6.68)
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Assume µ1 > µ2, and define p = µ1 − µ2:

HIsl(µ1,µ2)

zµ2

1 zµ2

2

= p
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2) − 2
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2
2
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=
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∑
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(zs−t1 zt−1
2 + zs−t2 zt−1

1 ) (6.69)

The two terms are already grouped to yield two-particle Slater determinants. Collecting
all prefactors, this gives:

HIsl(µ1,µ2) = (µ1 − µ2 − 2)sl(µ1,µ2) + 2
(µ1−µ2)/2

∑
s=1

(µ1 − µ2 − 2s)sl(µ1−s,µ2+s). (6.70)

Eq. (6.70) has a particular form: it only scatters ”inwards” the two-particle basis of Slater
determinants, i.e. towards decreasing relative momentum of the particles, and thus to a
squeezed partition. Let us now look at the total action of HF

LB on Sαλ expanded in Slaters.
The above scattering Hamiltonian and the linear independence of Slater determinants
provide a recurrence relation for the coefficients bλµ in (6.63). We collect all diagonal
terms and invert the sum over s in Eq. (6.70) to a sum over all dominating partitions:

bλµ =
2( 1

α
− 1)

ρF
λ(α) − ρ

F
µ(λ)

∑
θ; µ<θ≤λ

(µi − µj)bλθ(−1)NSW , (6.71)

where ρF
λ(α) = ∑i λi(λi+2i(1−1/α)). Similar to the bosonic recurrence formula in (6.59),

the sum in (6.71) extends over all partitions θ = [µ1, . . . , µi + s, . . . , µj − s, . . . , µN ] that
dominate the partition µ = [µ1, . . . , µN ] and are squeezed from the root partition λ. A
new factor (−1)NSW appears: a sign according to the even/oddness of the number of
transpositions (swaps) of particles from a given dominating partition θ back to µ. This
term appears since the reordering of the partition in Slater determinant language may
cause a minus sign due to the fermionic anticommutation relations. NSW starts from zero
for partition µ and advances by one unit every time the momentum of the unsqueezed
electron passes through the value of the momentum for another electron. As a further
difference from the bosonic Jack recurrence relation, the terms summed in Eq. 6.71 do
not explicitly depend on the partition θ. This is because the rescaling of the s in (6.70)
exactly cancels the term’s dependence on s. For α = −(k + 1), (6.71) gives the coefficients
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Figure 6.7: The recurrence relation (6.70) for the N = 4 particle ν = 1/3 Laughlin state. The parti-
tions are written in decreasing order of orbital angular momentum, which ranges from 9 to 0 in the
case considered. The coefficient of the partition µ = 0100110010 is computed with the knowledge
of the coefficient for the partitions dominating µ.

of the fermionic Read-Rezayi states (an example computation of the partition coefficient
for the ν = 1/3 Laughlin state is shown in Fig. 6.7).



CHAPTER 7

Devil’s staircase phase diagram of the fractional quantum
Hall effect in the thin-torus limit and beyond

In this Chapter we present our originial work. The first part is an adaptation of a draft
currently under review. The second part is a preliminary result that we obtained recently.

7.1 Devil’s staircase phase diagram of the fractional quantum Hall ef-
fect in the thin-torus limit

The Fractional Quantum Hall Effect (FQHE) [127] is among the most fascinating quan-
tum phenomena involving strongly correlated electrons. It attracts and fuels research in
many directions since its discovery [128]. Lately, much interest is directed to quantum
Hall states as experimentally accessible prototypes of topological states of matter, which
have promising applications for quantum computation [124, 129, 130].

The physics of the FQHE is well-understood phenomenologically thanks to the pio-
neering work by Laughlin and his celebrated ansatz (LA) for 1/m filling fractions [16].
The approach was generalized to more complicated fractions through the introduction
of composite fermions [120, 123] and a hierarchy of quasi-particles with fractional statis-
tics [122, 131, 132, 133], or by conformal invariance arguments [25, 109, 110, 134]. A huge
amount of results were obtained in the years, confirming the validity of the phenomeno-
logical approach [128, 135, 136, 137].

In contrast, a systematic microscopic theory of the FQHE is still lacking, despite the
considerable effort. An intrinsic difficulty is the absence of an evident perturbative pa-
rameter, a common hindrance in strongly-correlated systems [120]. In 1983 Tao and
Thouless (TT) observed [17] that electrons in a strong magnetic field could form a one-
dimensional Wigner crystal [138] in the lattice of degenerate states in the lowest Landau
level (LL), and suggested that this mechanism may explain the fractional quantization
of the Hall resistivity. However, the resulting many-body ground state displays long-
range spatial correlations, in conflict with Laughlin’s results. This route to a microscopic
theory of the FQHE was abandoned (by Thouless himself [139]), as the LA offers sev-
eral advantages, e.g. its high overlap with the exact low-density ground state, and the
fact that it constrains very naturally the filling fractions to have odd denominators. The
TT framework was recently reconsidered by Bergholtz and co-workers [15, 140, 141].

89



907.1 Devil’s staircase phase diagram of the fractional quantum Hall effect in the thin-torus limit

They found that TT states become the exact wavefunctions of the problem in the quasi
one-dimensional (thin-torus) limit (aggiungere anche citazione a bernevig).

Nowadays experiments in ultrahigh mobility 2D electron systems point toward a
Devil’s staircase scenario for the Hall resistivity as a function of the magnetic field: indeed
more than fifty filling fractions are observed only in the lowest LL, some of them out both
from Laughlin and Jain series.

In this Chapter, we study the thin-torus limit of the quantum Hall Hamiltonian in
the lowest LL, and show that it realises a repulsive gas on the reciprocal lattice of de-
generate Landau states, with the magnetic field acting as a chemical potential. The zero-
temperature statistical mechanics of this class of models was studied extensively [12,
24, 142, 143]. It is characterized by an infinite series of second-order phase transitions,
occurring at critical (non-universal) values of the chemical potential µ. The density of
particles ρ(µ) is the order parameter, and takes a different rational value in each phase,
thus producing a complete devil’s staircase (a self-similar function with plateaux at ratio-
nal values) when plotted against µ [12]. There is a revived interest in these models, for
potential applications to quantum simulators with ultracold Rydberg gases [11, 13, 144].

Our mapping allows to

1. explicitly write the ground states in the thin torus limit, which take the form of
generalized Wigner crystals on the reciprocal lattice;

2. derive a selection rule forbidding odd denominators, using a result derived re-
cently by Seidel [145];

3. interpret the dependence of transverse conductivity as a function of magnetic field
as a fractal diagram of phase transitions, peculiar to 1D repulsive lattice gases;

4. provide a theoretical justification of the relative widths of different Hall plateaux.

We consider the standard two-dimensional gas of Ne interacting electrons in a uni-
form positive background, providing electrical neutrality. We make the assumptions
that in strong magnetic fields the mixing between different Landau levels is suppressed,
i.e. we work in the regime e2/` ≪ ωc, where ` = 1/(eB)1/2 is the magnetic length and
ωc = eB/m is the cyclotron frequency (h̵ = c = 1) and spin degrees of freedom are frozen
in the lowest spin level. We take the system to have area LxLy and to be periodic in the
y direction, so that the single-particle wave functions may be written in the form

φs(x, y) = (π1/2`Ly)
−1/2e

− 2πisy
Ly

− 1
2 (

x
` −

2πs`
Ly

)
2

, (7.1)

with s = 1,2, . . . ,Ns =
LxLy
2π`2

. The filling fraction ν = Ne/Ns is less than one.
In second quantisation the Coulomb interaction between the electrons in the lowest

LL is

Hc =
Ns

∑
s1,s2,s3=1

Vs1−s3,s2−s3a
†
s1a

†
s2as1+s2−s3as3 , (7.2)

where a†
s, as are fermionic creation and annihilation operators, and momentum conser-

vation in the periodic direction is manifest. The Coulomb matrix element was parametrized
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in a useful form by TT [17]:

V (s1 − s3, s2 − s3) =
e2

Ly
∫

∞

−∞
dq

exp [− `
2

2
(q2 +

4π2(s1−s3)2
L2
y

) +
2πiq`2(s2−s3)

Ly
]

√

q2 +
4π2(s1−s3)2

L2
y

. (7.3)

A possible way to obtain it is to consider periodic boundary conditions in both directions
(torus geometry) [146, 147] and to take the continuum limit in the x direction.

The starting point of our analysis is the observation that this matrix element can be
evaluated exactly in the thin-torusl limit `/Lx ≫ 1, via the saddle-point approximation.
The calculation, detailed below, shows that the matrix element, when it is non zero, is
Vs1−s3,s2−s3 = e

2/`Ws1−s3 , for all s2 − s3 (with Ws1−s3 positive).

7.1.1 Coulomb matrix element and the thin torus limit

The earliest numerical calculations of the ground state for FQHE including Coulomb
interactions for various filling fractions were done by Yoshioka et al. [146, 147]. Here
we provide the details of their evaluation of eq.(7.6) The geometry is that of a periodic
array of rectangles with sides Lx and Ly and area LxLy = 2π`2Ns, where Ns is a natural
number; ω is the rectangle [0, Lx]×[0, Ly]. From theNs degenerate LLL eigenstates with
centers in ω

ψs(r) =
1

√
Ly

1

π
1
4

√
`

exp

⎡
⎢
⎢
⎢
⎢
⎣

−
1

2
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2

− i
2π
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⎤
⎥
⎥
⎥
⎥
⎦

, 0 ≤ s ≤ Ns − 1 (7.4)

one constructs a basis of orthonormal quasi-periodic eigenstates:

θs(r) = ∑
m∈Z

ψs+mNs(r) (7.5)

An electron in ω interacts with electrons in ω as well as with their copies. The Coulomb
interaction depends on r = r1 − r2 and is a periodic function of the lattice;

v(r) = ∑
m∈Z2

e2

√
(x +mxLx)2 + (y +myLy)2

It has Fourier expansion v(r) = 1
LxLy

∑q v(q)e
iq⋅r where qx = 2π

Lx
nx and qy = 2π

Ly
ny and

v(q) = ∫ω dr v(r)e
−iq⋅r = 2πe2

∣q∣ . In the Fourier representation the integrals for Coulomb
matrix elements factorise:

⟨s1, s2∣v∣s3, s4⟩ = ∬
ω2
dr1dr2 θs1(r1) θs2(r2)v(r1 − r2)θs3(r1) θs4(r2)

=
1

LxLy
∑
q

v(q)I1,3(q)I2,4(−q)

The integral I is independent of the potential, and is now evaluated:

Is,s′(q) = ∫
ω
drθs(r)θs′(r) exp(iq ⋅ r) = e

− 1
4 ∣q∣

2`2+iqx π`
2

Ly
(s+s′)

δ′s−s′+ny,0

where δ′ means equality modulo Ns.
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Proof. The integral in y is straightforward:

Is,s′(q) = ∑
mm′

δs−s′+(m−m′)Ns+ny,0 ∫
Lx

0

dx

`
√
π
e
− 1

2 [
x−mLx

` − 2π`
Ly

s]
2
− 1

2 [
x−m′Lx

` − 2π`
Ly

s′]
2

+iqxx

= e
− 1

4 ∣q∣
2`2+iqx π`

2

Ly
(s+s′)

∑
mm′

δs−s′+(m−m′)Ns+ny,0 ∫
Lx

0

dx

`
√
π
e
−[

x− 1
2
(m+m′)Lx
` − π`Ly (s+s′)− i2 qx`]

2

The double sum involves m +m′ = µ and m −m′ = ν, and ∑m,m′ f(m +m′,m −m′) =

∑µ,ν f(2µ,2ν) + f(2µ + 1,2ν + 1). Therefore:

Is,s′(q) =e
− 1

4 ∣q∣
2`2+iqx π`

2

Ly
(s+s′)

∑
µ,ν

[δs−s′+2νNs+ny,0 ∫
Lx

0

dx

`
√
π
e
−[ x−µLx` − π`Ly (s+s′)− i2 qx`]

2

+ δs−s′+(2ν+1)Ns+ny,0 ∫
Lx

0

dx

`
√
π
e
−[ x−µLx` −Lx2` −

π`
Ly

(s+s′)− i2 qx`]
2

]

The sum on ν produces a Gaussian integral on R. The two integrals have the same value.
The final result is obtained.

The matrix element is:

⟨s1, s2∣v∣s3, s4⟩ =
1

LxLy
∑
q

2πe2

∣q∣
e
− 1

2 ∣q∣
2`2+iqx π`

2

Ly
(s1+s3−s2−s4)δ′s1−s3+ny,0δ

′
s2−s4−ny,0

The two constraints imply momentum conservation: s1 + s2 = s3 + s4. Eq. (2.9) in Yosh-
ioka’s paper [147] is obtained:

⟨s1, s2∣v∣s3, s4⟩ =
δs1+s2,s3+s4
LxLy

∑
q

2πe2

∣q∣
e
− `

2

2 q
2+iqx 2π`2

Ly
(s3−s2)δ′s3−s1,qyLy/2π (7.6)

It is an exact formula.
From Yoshioka’s formula (7.6), the one by Tao-Thouless [17] is now obtained. First use
the constraint δ′ to sum on qy :

⟨s1, s2∣v∣s3, s4⟩

= 2πe2 δs1+s2,s3+s4
LxLy

∑
qx

e
− `

2

2 q
2
x+iqx 2π`2

Ly
(s3−s2)

∞
∑

m=−∞

e
− `

2

2
4π2

L2
y

(s3−s1+mNs)2

√

q2
x +

4π2

L2
y
(s3 − s1 +mNs)2

Approximate the sum on qx by an integral (∑qx ≈
Lx
2π ∫ dqx):

= e2 δs1+s2,s3+s4
Ly

∫

∞

−∞
dqe

− `
2

2 q
2+iq 2π`2

Ly
(s3−s2)

∞
∑

m=−∞

e
− 2π2`2

L2
y

(s3−s1+mNs)2

√

q2 + 4π2

L2
y
(s3 − s1 +mNs)2

Neglect terms m ≠ 0 because of the exp factor. Eq.(3) in Tao and Thouless, [17] is ob-
tained:

V = ⟨s1, s2∣v∣s3, s4⟩ =
e2

Ly
δs1+s2,s3+s4e

− 2π2`2

L2
y

(s3−s1)2

∫

∞

−∞
dq

e
− `

2

2 q
2+iq 2π`2

Ly
(s3−s2)

√

q2 + 4π2

L2
y
(s3 − s1)

2



Devil’s staircase phase diagram of the fractional quantum Hall effect in the thin-torus limit and
beyond 93

We notice that the Tao-Thouless formula is indipendent from s2−s3 in the thin torus limit
Lx/` ≪ 1. However, because of this special limit is safer to analyze the exact Yoshioka
formula (7.6).

⟨s1, s2∣v∣s3, s4⟩ =
e2

Ly
∑
m,nx

e
− `

2

2
4π2

L2
x
n2
x+i

2πnx
Lx

2π`2

Ly
s23 e

− `
2

2
4π2

L2
y

(s13+mNs)2

√

n2
x +

L2
x

L2
y
(s13 +mNs)2

=
2e2

Ly
∫

∞

0

du
√
π

∞
∑

m=−∞
e
−( 2π2`2

L2
y

+u2 L
2
x

L2
y
)(s13+mNs)2 ∞

∑
n=−∞

e
−(u2+ 2π`2

L2
x

)n2+i2πnb

=
2e2

Ly
∫

∞

0

du
√
π

∞
∑

m=−∞
e−(u

2+π
2

N )N
2

π2 (a+m)2ϑ3(πb, e
−u2−π

2

N ) ,

where N = L2
x/2`

2, a = s13/Ns and b = s23/Ns. Here we use eq. 20.13.4 of NIST:

∑
m

e−(m+ zπ )2πβ
=

1
√
β
ϑ3(z, e

−πβ )

⟨s1s2∣v∣s3s4⟩ =
2e2

LxNs
∫

∞

0

du
√

u2 + π2

N

ϑ3(πa, e
− π

4

N2
1

u2+π2
N )ϑ3(πb, e

−u2−π
2

N )

This is an exact expression of the Yoshioka integral, where:

ϑ3(z, q) =
∞
∑
n=−∞

qn
2

ei2nz = 1 + 2∑
n>1

qn
2

cos(2nz)

The change u = π√
N
t gives:

⟨s1s2∣v∣s3s4⟩ =
2e2

LxNs
∫

∞

0

dt
√
t2 + 1

ϑ3(πa, e
−π

2

N
1

t2+1 )ϑ3(πb, e
−π

2

N (t2+1)
) (7.7)

We change variable t2 + 1 → 1/t and introduce the notation q = exp(iπτ), ϑ3(z, q) =

ϑ3(z∣τ).

⟨s1s2∣v∣s3s4⟩ =
e2

Ly

π

N
∫

1

0

dt

t
√

1 − t
ϑ3(πa∣i

π

N
t)ϑ3(πb∣i

π

N

1

t
) (7.8)

1)One checks that if N ≪ 1 (our thin torus limit) then the matrix elements 0 < b < 1 col-
lapse to that with b = 0.
2) the matrix element is periodic in a ∈ [0,1] with minimum at a = 0.5.

The function with b = 0 is periodic in a ∈ [1/2,−1/2]:

⟨s′, s∣v∣s, s′⟩ = ∑
k∈Z

ei2πkaF (k)
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F (k) =
e2

Ly

π

N
∫

1

0
dt

1

t
√

1 − t
ϑ3 (0∣i

π

N

1

t
)∫

1/2

1/2
daϑ3 (πa∣i

π

N
t) cos(2πka)

=
e2

Ly

π

N
∫

1

0
dt

1

t
√

1 − t
ϑ3 (0, e−

π2

N
1
t ) e−

π2

N k2t

In the thin torus limit N ≪ 1 it is numerically checked that ϑ3(0, e
−π

2

N
1
t ) ≈

√
xπ/N . Then

F (k) ≈
e2

Ly

π3/2

N3/2 ∫
1

0
dt

1
√
t(1 − t)

e−(π
2/N)k2t

=
e2

Ly

π3/2

N3/2 2∫
π/2

0
dθ e−(π

2/N)k2 cos2 θ

=
e2

Ly

π3/2

N3/2 2∫
π/2

0
dθ e−

π2k2

2N (1+cos 2θ)
=
e2

Ly

π3/2

N3/2 e
−π

2k2

2N ∫

π

0
dθ e−

π2k2

2N cos θ

=
e2

Ly

π3/2

N3/2 e
−π

2k2

2N πI0 (
π2k2

2N
)

This function goes to zero as long as k → ∞ and moreover is convex. Thus fulfills the
requirements of the one dimensional repulsive lattice gas of the previous chapter.

7.1.2 Incompressibility of the ground states in the thin torus limit and phase diagram

By plugging this result into the Coulomb Hamiltonian we obtain

Hc =
e2

`
∑

s1,s2,s

Ws a
†
s1+sa

†
s2−sas2as1 . (7.9)

In the grand-canonical ensemble, the total Hamiltonian is the sum of the Coulomb term,
the constant kinetic term and a term with chemical potential µ̃:

HLLL = −µ(B)
Ns

∑
s=1

ns +
e2

`
∑

s1,s2,s

Wsa
†
s1+sa

†
s2−sas2as1 , (7.10)

where the definition µ(B) = (µ̃ − ωc) highlights the dependence of the effective chem-
ical potential on the magnetic field. Electrons in the lowest LL form a one dimen-
sional lattice (that in the following we will call target space). Importantly, they inter-
act through a translational invariant interaction (in the target space). The Hamilto-
nian is diagonalized in the Fourier basis, where the creation operator for the mode k is
c†
k = 1/

√
Ns∑

Ns
s=1 e

− 2πiks
Ns a†

s . We obtain the following diagonal Hamiltonian with periodic
boundary conditions:

HLLL = −µ(B)
Ns

∑
k=1

nk +
e2

`
∑
k1≠k2

W̃ (∣k1 − k2∣)nk1nk2 , (7.11)

with nk = c†
kck and W̃ (k) = ∑

Ns
s=1 e

2πiks
Ns W (s) a repulsive potential. The explicit form of

W̃ (k) is given in written in the previous section; it decays as Lx/(`k) for large k.
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This form of the Hamiltonian realises a mapping (in the thin torus limit Lx/`≪ 1) of
the FQHE on a one-dimensional lattice gas with repulsive interactions, whose degrees of
freedom are the Fourier modes of the target space. As noted above, in these models the
density as a function of the chemical potential exhibits a complete devil’s staircase struc-
ture. Inspection of the Hamiltonian (7.11) shows that the role of the density is played by
the filling fraction ν, whereas the chemical potential can be tuned by the magnetic field
B.

Schematically, the investigation of this class of models follows two steps: i) The
ground state of the system is sought at fixed ν = p/q (p and q coprime); this problem
was solved by Hubbard [23]. ii) The stability region ∆µ (under single particle/hole ex-
change) of each ground state is determined; this was done by Bak and Bruinsma [12],
and by Burkov and Sinai [24]. Both steps are subject to the technical condition that the
potential be convex; we make this hypothesis, and reproduce this two-step construction
in the following.

Intuitively, the ground state of a repulsive lattice gas at fixed filling fraction ν = p/q

is a configuration where particles are placed as far as possible from each other. The
underlying lattice structure introduces the possibility of frustration, exhibited by devi-
ations from the continuum equilibrium positions. The pattern of displacements can be
obtained through the continued-fraction expansion of ν = p/q:

p

q
=

1

n0 +
1

n1 +
1

⋱ +
1

nλ

(7.12)

Each level in the expansion realises a better approximation of ν; for rational ν the number
of levels λ + 1 is finite. At λ = 0 (i.e. p = 1), the ground state is a periodic crystal with
inter-particle distance n0 = q, corresponding to Laughlin-type states. At λ = 1 the inter-
particle distances can not be all equal, and a “defect” appears: the periodic ground state
is formed by (n1 − 1) Laughlin-type blocks of density 1/n0 and one block with density
1/(n0 + 1); these correspond to Jain-type states (a concise representation is (n0)

n1−1(n0 +

1)). This construction can be generalized iteratively to the level λ (see Fig. 7.1 for three
examples, and the SM): the general rule uses the ground states at one level as building
blocks to construct the ground states at the next level. The position of the j-th particle
in the ν = p/q ground state can be expressed compactly as ⌊q/pj⌋, where ⌊⋅⌋ denotes
the integer part. (We notice en passant the connection with the sequences of characters
known as Sturmian words.)

Due to the periodic boundary conditions, the ground state at filling factor ν = p/q has
a q-fold degeneracy, corresponding to the possible translations in the reciprocal target
space. This plays an important role when quantum effects are taken into account (see
below). Summing up the foregoing observations, a compact form of our wave functions
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ν Cν Configuration

1
3

(3) ⋯

3
7

(322) ⋯

5
13

(32)2(3) ⋯

Figure 7.1: Hubbard ground states for different filling fractions ν and their explicit periodic struc-
ture. The first two from the top belong respectively to Laughlin (ν = 1/3) and Jain (ν = 3/7) series.
Each periodic configuration may be expressed in a compact way through the sequence Cν of its
interparticle distances. (The general algorithm to construct Hubbard ground states is extensively
reviewed in Chapter 5.)

is the following:

∣ν = p/q⟩r =
⌊pNs/q⌋

∏
j=1

c†
⌊qj/p⌋+r ∣0⟩ r = 0,⋯, q − 1. (7.13)

Once the ground states at general ν have been determined, their stability under single
particle/hole exchange can be established. The stability interval in the effective chemical
potential is given by [24]

∆µ(p/q) = 2q
∞
∑
k=1

k (W̃ (qk + 1) + W̃ (qk − 1) − 2W̃ (qk)) . (7.14)

As ∆µ(ν) > 0 for all rational filling fractions, this construction yields a phase diagram
where each rational ν appears as the stable density for a finite interval of µ (hence of B),
thus realizing a complete devil’s staircase. It is worth remarking that the precise form
of the potential does not affect qualitatively this structure. However, filling fractions
with even denominators are not seen in the experiments. This important issue can be
elucidated in our microscopic framework by symmetry considerations. It is well known
that the quantum Hall system enjoys a peculiar symmetry: the magnetic translational
group [148]. Its explicit form in the Landau gauge is TM(X,Y ) = eiXy/`

2

eiXpx+iY py .
Seidel showed recently [145] that periodic one dimensional patterns are strongly con-
strained by this symmetry. In particular if the representation of the magnetic group is
fermionic, only gapped odd denominators survive. The argument depends on an as-
sumption about the modular invariance of the representation of the quantum group on
the ground states.

The results reported above allow to plot a snapshot of the relation between mag-
netic field and inverse filling fraction, by using the stability formula (7.14) and discard-
ing all even denominators (under the assumption that the admissible even-denominator
ground states are gapless). The potential W̃ has a non trivial dependence on the mag-
netic length `. As noted above, it decays algebraically as 1/(`k). To obtain a large dis-
tance `-independent behaviour, the chemical potential needs to be rescaled as µ → µ`2,
which is equivalent to a rescaling of the entire Hamiltonian, H → H`2. Operatively, we
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Figure 7.2: Inverse filling fraction 1/ν plotted against the magnetic fieldB (in arbitrary units). The
most visible plateaux are highlighted with their corresponding occupational periodic pattern in
the reciprocal target space. This snapshot shows a qualitative agreement with the experimental
measures of Hall resistivity, both for the relative widths of the plateaux and for the quasi linear
trend of the landscape as a function of B. In the inset, a portion of the staircase is magnified and
some experimentally-observed plateaux (some of them only in the longitudinal resistance [119])
are pointed out.

set a cutoff qmax on the possible denominators, we list (in increasing order) all filling
fractions p/q such that q is odd, q ≤ qmax, and p = 1, . . . , q, and we compute ∆µ for each
one of them. Doing this by increasing order allows to obtain iteratively the two stability
boundaries µ− and µ+ for each plateau; the corresponding values of the magnetic field
B− and B+ can then be calculated from the relation µ = −µ̃/(eB) − 1/m. The resulting
landscape, presented in Fig. 7.2, is qualitatively in accord with the well-known behavior
obtained in experiments. Notice that Eq. (7.14) implies that the width (in µ) of a plateau
only depends on the denominator. However, the non linear dependence of B on µ “de-
forms” the staircase; this has the effect of enhancing the stability of low density plateaux.
The most evident example can be recognized in the asymmetry between the filling frac-
tions ν = 1/3 and ν = 2/3. Moreover, our microscopic approach captures the quasi linear
trend of the FQHE landscape.

In statistical mechanics systems with slowly decaying potentials are rather patholog-
ical: their free energy is not extensive as a function of the particle number. In our map,
this has the effect to push the devil’s staircase toward infinity as the cutoff qmax is in-
creased. This issue may be overcome by regularizing the Coulomb potential. The thin
torus analysis is largely independent from the precise form of the potential.

The continued-fraction expansion that we employ to construct the ground states nat-
urally provides a definition of “fractality” of a given filling fraction, via its level λ. We
remark that this construction has a natural interpretation in terms of quasi particles [149],
that we do not further pursue here.

Inspired by these results in the thin torus limit, we investigate, in the following sec-
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tion, the connection between the Laughlin wavefunction and the Tao-Thouless states.
In order to understand this relationship, we need to know the coefficients of the Slater
decomposition of the Laughlin functions. Despite the numerous symmetries of this ex-
pansion, this was considered an intractable problem until a few years ago. However
recently, Bernevig and Regnault discovered a remarkable recurrence relation for these
coefficients, using known mathematical results for Jack polynomials (these results are
summarized in the previous chapter).

Inspired by this breakthrough, we propose a consistent second quantization picture
of the Laughlin state. We anticipate the result: Laughlin wavefunction is a squeezed Tao-
Thouless state. This statement will be more transparent at the end of the next section.

7.2 Second quantization picture of fractional quantum Hall states

Let us briefly summarize the important properties of the Jacks describing fractional
quantum Hall states:

1. the Jacks of N variables are labelled by a rational parameter α = −(k + 1)/(r − 1)

and by a partition λ = (λ1,⋯, λN);

2. the Jacks describing bosonic FQH states are labelled by the special partition n(λ) =
(k,0r−1, k,0r−1,⋯);

3. polarized fermionic states are Jacks times a Vandermonde determinant and their
reference partition is obtained from the bosonic one through the formula: λFi =

λBi +N − 1;

4. all the permanents (Slater determinants) in the expansion of bosonic (fermionic)
states are squeezed inward from the reference partition (see Figure (7.3));

5. a recurrence relation for the coefficients in the permanent (Slater) expansion exists
for bosonic (fermionic) states.

Our goal is the following: starting from these properties, we would like to find an ex-
plicit formula for FQH states in second quantization. We will consider fermionic wave-
functions, but our proof can be straightforwardly generalized to the bosonic ones.

Our strategy is the following:

1. we propose an ansatz for the generic FQH state in the Fock space and we verify
that the coefficients of the expansion in Slater determinants fulfill the recurrence
relations discovered by Bernevig and Regnault;

2. we prove that the Slaters in our trial state are the same produced by the repeated
single squeezing protocol described in the previous Chapter. This procedure ex-
austively find out all the possible contributions to a FQH state;

3. we check numerically for N = 3, 4, 5 that our state has the same coefficients of
Laughlin wavefunction with ν = 1/3.
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Figure 7.3: Pictorial representation of a squeezing operator. The first two on the top are allowed
in the expansion because they are inward squeezing and they conserve total angular momentum.
In particular the second one (if the state is fermionic) gets an overall minus sign because of the
particle swap. The last squeeze, although is inward, it does not conserve angular momentum, and
therefore it is not allowed in the Jacks expansion.

In the derivation we focus on Laughlin wavefunction, but our proof is valid in gen-
eral for all FQH states in the form Jack times a Vandermonde.

Our approach is based on the following idea (inspired by the properties of the Jacks):
we can obtain the Laughlin wavefunction in the Slater basis applying a particular op-
erator to the maximally uniform state (the reference state) in the lowest Landau level.
Such a state has the form ∣{1,0,0,1,0,0,1,⋯}⟩ for ν = 1/3 and more in general for the
general Laughlin at ν = 1/(2m+1) is the corresponding Tao-Thouless state. This is a free
particle state, namely it is a tensor product of eigenstates of the free Hamiltonian in the
symmetric gauge:

H =
1

2
[(−i

∂

∂x
−
y

2
)

2

+ (−i
∂

∂y
−
x

2
)

2

] . (7.15)

If we haveN non-interacting particles, each of them is in a state ∣mi⟩, so we can represent
the full system state as

∣m1,m2, . . . ,mN ⟩

i.e. writing the angular momentum of each particle (in decreasing order). Or we can
write (for instance)

∣0,0,1,0,0,1,0,1, . . .⟩

where each number is an angular momentum orbital (or, for brevity, a site), and it is 1 if
it is full, 0 otherwise (to fulfill Pauli principle).

Now, let us define the squeezing operator as follows:

U =
∞
∑
s=0

∞
∑
t=1

∞
∑
u=t

(u − t) a†
s+t a

†
s+u as+t+u as . (7.16)

where a†
x and ax are creator and destructor of a particle in the site x. Its name is imme-

diately justified: except for the weight u − t, the operatorial part destroy two particles in
sites s and s + t + u and create two particles in sites s + t and s + u, i.e. the destructed
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Figure 7.4: Fermionic graph for the Laughlin wavefunction for N = 4 and ν = 1/3 and explicit
action of our squeezing operator on the reference Tao-Thouless state. This graph should be com-
pared with the one obtained by Bernevig and coworkers (see Chapter 6). Differently from them,
we consider all the possible squeezing and not only the single ones. Therefore our graph contains
much more directed arrows. Also the definition of level is slightly different: for us the level of a
partition is the maximum number of squeezing in order to obtain that partition.

particles are re-created shifted toward each other of t sites (see also Figure (7.4)). An
example is:

U ∣1,0,0,0,0,1⟩ = 3∣0,1,0,0,1,0⟩ + ∣0,0,1,1,0,0⟩ .

There is an obvious but important property of the operator (7.16) that we stress: it pre-
serves the total angular momentum of the state on which it acts. Now, let us define the
state:

∣ψ⟩ = (I −QU)
−1

∣λ⟩ = (I +QU + (QU)
2
+⋯)∣λ⟩ , (7.17)

where ∣λ⟩ is a maximally uniform state and Q is an operator defined by

Q =
2(1/α − 1)

ρFλ − Q̃
, (7.18)

with

Q̃ = ∑
s

[s(s −∑
t<s

2(1/α − 1)a†
tat)]a

†
sas (7.19)

and ρFν is the eigenvalue of Q̃ relative to the eigenstate ∣{ν}⟩. So

Q∣{µ}⟩ =
k

ρFλ − ρ
F
µ

∣{µ}⟩ .
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Before proceeding it is useful to introduce a partial order relation (slightly different from
the one introduced in the previous chapter) between the states: let the state

∣1,

2m+1 times
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
0, . . . ,0 ,⋯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N−1 times

,1⟩ (7.20)

be the maximally uniform state atN fermions, with filling factor ν = 1/(2m+1). The level
of a state ∣s⟩ is the maximum number of squeeze we can do to obtain ∣s⟩ from the reference
(or root) state (7.20). The root partition is the only state at level zero and the bunch state,
in which all fermions are close to each other, is the only one at the maximum level.

Now we are finally ready to prove the recurrence relation between the coefficients of
the Laughlin state expansion in the Slater basis. We recall it from the previous chapter

bµ =
k

ρFλ − ρ
F
µ

∑
θ;µ>θ≥λ

(µi − µj)bθ(−1)Nsw . (7.21)

Here the sum is extended over each state ∣{θ}⟩ whose level is lower than the one of the
state ∣{µ}⟩. Moreover bλ = 1.

The generic state in Fock space can be written down as

∣ψ⟩ = ∑
µ

bµ∣{µ}⟩

and so, multiplying for ⟨{ν}∣ and using ⟨{ν}∣{µ}⟩ = δνµ, we find for our trial state:

bν = ⟨{ν}∣(I −QU)
−1

∣λ⟩ . (7.22)

Now there are two possibilities: if {ν} = {λ}, we obtain bλ = 1 . If {ν} ≠ {λ},
⟨{ν}∣{λ}⟩ = 0 and so:

bν = ⟨{ν}∣QU (I +QU + (QU)
2
+⋯)∣λ⟩ = ⟨{ν}∣QU ∣ψ⟩ (7.23)

We can calculate it applying the operator QU at the left hand side of the expression
in (7.23) and using that:

⟨{ν}∣QU = [(QU)
†
∣{ν}⟩]

†
= [q(ν)U †

∣{ν}⟩]†

where q(ν) is the eigenvalue of Q applied to the state ∣ν⟩.
Now we need to calculate U †∣{ν}⟩. U † is the inverse operator of U , namely the “un–

squeezing” operator:

U †
=

∞
∑
s

∞
∑
t=1

∞
∑
u=t

(t − u) a†
s+t+u a

†
s as+t as+u .

Applying that to ∣{ν}⟩ we obtain non-zero terms only when s + u = νj and s + t = νi,
with νi > νj and νi and νj any two filled sites of ∣ν⟩. We can then write the result as:

U †
∣{ν}⟩ = ∑

θ;ν>θ
(νi − νj)b

λ
θ (−1)Nsw ∣θ⟩ , (7.24)
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where the sum over the partition θ is another way to write the sum over index i and
j (namely, i and j are biunivocally linked to the partition θ that we get after the un–
squeezing process).

The factor (−1)Nsw is, in our formalism, perfectly justified. In fact, let us write the
generic N–particle state ∣{µ}⟩ as ∣µ1, µ2, . . . , µN ⟩, with µ1 < µ2 < ⋯ < µN . With this
notation, we can write the sums over the new indices µi = s + u and µj = s + t:

U †
∣µ1, µ2, . . . , µN ⟩ = ∑

u
∑
µi,µj

(−1)i+j(µi − µj)a
†
µi+ua

†
µj−u⋅

⋅ ∣µ1, . . . , µi−1, /µi, µi+1, . . . , /µj , . . . , µN ⟩ .

(7.25)

Now, when the creation operators act on the state, we have to put the created particles
with angular momenta µj −u and µi+u in their position to re–write this state in the form
∣µ̃⟩. So we get exactly Nsw + i + j − 2 times the factor −1 and then we obtain (−1)Nsw .1

Using now the adjoint of equation (7.24) in the equation (7.23), we obtain:

bν = q(ν) ∑
θ;ν>θ

(νi − νj)(−1)Nsw⟨θ∣ψ⟩

and then, noting that ⟨θ∣ψ⟩ = bθ, we get the recurrence relation (7.21).
At this stage, we have just shown that the recurrence relation between coefficients of

the decomposition into Slater basis are the same in our formalism and in the literature
[121]. Now we have to show that our candidate state includes all but only the admissible
squeezed states.

First of all, we note that if the state (7.17) has the correct terms, it also has the correct
coefficients, because they are univocally obtained from the recurrence relation (7.21) and
the fact that bλλ = 1.

There are two ways to proceed: we can prove that the operator (7.16) creates exactly
the same terms that Bernevig et al. have, or we can prove directly that our terms are all
the ones found in the Laughlin state expansion.

In the first case, the only thing we have to show is that each squeeze in which the
fermions are shifted toward each other of more than one unit in angular momentum can
be obtained composing more than one squeeze in which the fermions are shifted toward
each other of one unit in angular momentum. Indeed, Bernevig and coworkers consider
only the first type of squeeze to obtain all the terms in the expansion, then calculate the
coefficient considering also the second type of squeezing.

In the second case, we should prove that the Laughlin state has only terms with
subsequent squeezing of the maximally uniform state. We choose the first route.

A one-unit squeeze is obtained as the action of the operator:

As,u = a
†
s+1 a

†
s+u as+u+1 as .

A t-unit squeeze is, in contrast, the result of the action of the operator

Ats,u = a
†
s+t a

†
s+u as+u+t as ,

1 actually the system state can only be a complete antisymmetrization of ∣µ1, . . . , µN ⟩; however, this not
change in any way the argument used here, becauseA∣a, b⟩ = −A∣b, a⟩.
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with t > 1. We want to prove that we can always obtain Ats,u with subsequent action
of As,u. However, there is a better notation for a squeezing operator for our purpose.
Let Ala,b be the squeezing operator which squeezes the fermions in sites a and b, shifting
them of l steps toward each other. Let also

∣s⟩ = ∣µ1, . . . , µn, [⋯], ν1, . . . , νm⟩

be the (part of a) state we are considering, with N = n+m fermions of angular momenta
µ1, . . . , νm. We want to show that the action of operator Alµ1,νm can be achieved as sub-
sequent actions of operators Aa,b, with µ1 + l > µn and νm − l < ν1. Note that before µ1

and after νm, as between µ1 + l and νm − l, we can have anything: this can not change
in any way the proof we are going to give. Let us consider only the two more internal
fermions, i.e. the state ∣µn, [⋯], ν1⟩. Now, without any loss in generality, we suppose that
(µ1 − l) − µn < ν1 − (νm − l). So, if we apply the operator Aµn,ν1 , we get:

Aµn,ν1 ∣µn, [⋯], ν1⟩ = ∣µn + 1, [⋯], ν1 − 1⟩ .

We can now apply the operator Aµn+1,ν1−1 and continue doing so, until we reach the
state ∣µn + l

′, [⋯], ν1 − l
′⟩, with ν1 − l

′ = νm − l, and so l′ = ν1 − (νm − l). Doing this, we
have put the fermion that was in ν1, in the position where, applying Alµ1,νm to the state
∣s⟩ would have jumped the fermion that was in νm. So this is the trick: we want to shift
each fermion in the state ∣s⟩ to the position of the following, while µn and ν1 take the
position (respectively) µn + l and ν1 − l. Now we have to manage the state

∣s′⟩ = ∣µ1, . . . , µn + l
′, [⋯], ν2, . . . , νm⟩

exactly like the state ∣s⟩: we consider only the more internal part, ∣µn + l′, [⋯], ν2⟩, and
move the fermions with light squeezes, until one of them reaches his final position (i.e.,
in this case, µn+l and ν1). We can iterate this process until we get the state (again, we can
suppose that in the previous step we used µ1 and not νm, without any loss in generality):

∣s(n)⟩ = ∣µ1 + a, [⋯], νm⟩ .

Now we can do a one-unit squeeze until one of the two fermions reaches his final po-
sition: the other will always do the same, because of the angular momentum conser-
vation. In fact, the state Alµ1,νm ∣s⟩ and ∣s⟩ have the same total angular momentum, like
every state we can reach starting from ∣s⟩ and doing one-unit squeezes. So the final state
too must have the same angular momentum, and so if it has N − 1 fermions in the same
position as Al∣s⟩, the N–th is fixed by the angular momentum conservation law.

This concludes our proof. Moreover for Laughlin state with ν = 1/3 we also checked
numerically the coefficients of the Slater expansion of our state up to N = 5. We notice
that in our derivation the particular form of the reference state never enters explicitely.
Thus we proved the following theorem:

Theorem 7.2.1. Given the general fermionic FQH state in the form of a Jack polynomial times a
Vandermonde determinant:

Jαλ (z1,⋯, zN) ×∏
i<j

(zi − zj) ,
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its representation in the Fock space is given by the state:

∣ψαλ ⟩ = (I −QU)
−1

∣λ⟩ = (I +QU + (QU)
2
+⋯)∣λ⟩ ,

where ∣λ⟩ is the reference state state, U is an universal squezing operator given by:

U =
∞
∑
s=0

∞
∑
t=1

∞
∑
u=t

(u − t) a†
s+t a

†
s+u as+t+u as ,

and Q is an operator defined by

Q =
2(1/α − 1)

ρFλ − Q̃
,

with

Q̃ = ∑
s

[s(s −∑
t<s

2(1/α − 1)a†
tat)]a

†
sas ,

and ρFν is the eigenvalue of Q̃ relative to the eigenstate ∣{ν}⟩, so that

Q∣{µ}⟩ =
k

ρFλ − ρ
F
µ

∣{µ}⟩ .

An analogous theorem can be proved easily for bosonic FQH states:

Theorem 7.2.2. Given the general bosonic FQH state in the form of a Jack polynomial:

Jαλ (z1,⋯, zN) ,

its representation in the Fock space is given by the state:

∣ψαλ ⟩ = (I −QBUB)
−1

∣λ⟩ = (I +QBUB + (QBUB)
2
+⋯)∣λ⟩ ,

where ∣λ⟩ is the reference state, UB is an universal squezing operator given by:

UB =
∞
∑
s=0

∞
∑
t=1

∞
∑
u=t

(u + t) a†
s+t a

†
s+u as+t+u as ,

and QB is an operator defined by

QB =
2/α

ρBλ − Q̃B
,

with

Q̃B = ∑
s

[s(s − 1 + 2/α −∑
t<s

2/αa†
tat)]a

†
sas ,

and ρBν is the eigenvalue of Q̃B relative to the eigenstate ∣{ν}⟩, so that

QB ∣{µ}⟩ =
k

ρBλ − ρBµ
∣{µ}⟩ .
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7.3 Conclusions and future directions

In this chapter we considered, in the beginning, a thin torus limit of the FQHE. Our thin
torus is related to the one considered by Bergholtz and coworkers by an S-duality [145],
mapping the Hamiltonian on the original lattice on its dual (via Fourier transform) and
Lx → Ly . We estabilished on rigorous grounds the connection with repulsive lattice
gases showing explicitly the one to one correspondence between the chemical potential
(in Bak Hamiltonian) and the magnetic field in the quantum Hall problem. This map-
ping suggests a way to plot a devil’s staircase phase diagram for the FQHE in this limit.
The staircase is deformed because of a simple scaling deformation due to the magnetic
length.

In the second part of the chapter we focused on the connection between Laughlin
wavefunction and the Tao-Thouless state. By using the recurrence relation by Bernevig
and Regnault, we were able to show that the Laughlin state is a squeezed Tao-Thouless
state. More in general all Jack polynomials FQH states can be written as a quasi-universal
Jastrow operator acting on a reference state.

We suggest some possible future directions of this work:

• the Jastrow factor acting on the reference state is not universal: it depends both on
the reference state λ and on α, that label the Jack. We suspect that a more elegant
and universal form may exists for this operator, which is indipendent of the FQH
state.

• the Fock representation that we obtained may be of mathematical relevance. To
our knowledge, indeed, such a representation is not known by mathematicians
and could be useful to prove properties (perhaps new) of the Jacks.

• The Hall Hamiltonian in the lowest LL is a one dimensional quantum lattice gas
with long range repulsive interactions, built up from squeezing and un-squeezing
operators. Recently a proposal for observing FQH states in the thin torus limit in
alkaline-earth fermionic gases has been put forward [150]. In our opinion it would
be interesting to understand if it is possible to go beyond the thin torus limit and
proposing a quantum simulator for an Hall Hamiltonian whose ground state is,
for instance, the Laughlin state.
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[13] E. Levi, J. Minář, and I. Lesanovsky. arXiv preprint arXiv:1503.03268, 2015.
[14] D. Yoshioka. The Quantum Hall Effect. Springer Berlin Heidelberg, 2002.
[15] E. J. Bergholtz, T. H. Hansson, M. Hermanns, and A. Karlhede. Phys. Rev. Lett.,

99:256803, Dec 2007.
[16] R. B. Laughlin. Physical Review Letters, 50(18):1395, 1983.
[17] R. Tao and D. J. Thouless. Physical Review B, 28(2):1142, 1983.
[18] P. Rotondo, E. Tesio, and S. Caracciolo. Phys. Rev. B, 91:014415, Jan 2015.
[19] P. Rotondo, M. Cosentino Lagomarsino, and G. Viola. Physical review letters,

114(14):143601, 2015.
[20] D. J. Amit, H. Gutfreund, and H. Sompolinsky. Phys. Rev. Lett., 55:1530, 1985.
[21] S. Mertens. Phys. Rev. Lett., 81:4281–4284, 1998.
[22] K. Baumann, C. Guerlin, F. Brenneke, and T. Esslinger. Nature (London), 464:1301,

2010.

107



108 Bibliography

[23] J. Hubbard. Physical Review B, 17(2):494, 1978.
[24] S. E. Burkov and Y. G. Sinai. Russian Mathematical Surveys, 38(4):235–257, 1983.
[25] B. A. Bernevig and F. D. M. Haldane. Physical Review Letters, 100(24):246802, 2008.
[26] K. H. Fischer and J. A. Hertz. Spin glasses, volume 1. Cambridge university press,

1993.
[27] S. Cocco, S. Leibler, and R. Monasson. Proceedings of the National Academy of Sci-

ences, 106(33):14058–14062, 2009.
[28] S. Cocco and R. Monasson. Physical Review Letters, 83(24):5178, 1999.
[29] S. A. Kauffman. Journal of theoretical biology, 22(3):437–467, 1969.
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