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Chapter 1

Introduction

At present, the statistical mechanics of systems in thermal equilibrium is well established on firm
basis. A wealth of results concerning the macroscopic behavior of statistical systems have been
obtained by means of both analytical and numerical works, and in many cases very good agree-
ment with experiments has been found. The description of statistical systems in equilibrium relies
on the fact that, once the microscopic interactions are known, the macroscopic properties of the
system could be determined in terms of suitable statistical ensembles. In this approach there is
no reference at all to the specific dynamical processes by means of which the system reaches the
thermal equilibrium. Averages over time evolutions may be computed simply as ensemble averages.
Even non-trivial collective behaviors, emerging in some cases, may be accounted for in this frame-
work. In the case of second order phase transitions further progresses have been made thank to
the observed universality which characterizes them. In most of these cases the powerful methods
of renormalization group (RG) have been applied with striking successes.

For non-equilibrium system such a complete framework is lacking. Very useful and basic concepts
in equilibrium, as the entropy and thermodynamic potentials, can not be defined in a clear way,
resulting in many difficulties also when attempting a very crude description of non-equilibrium
behavior!. Despite some recent and very interesting progresses [26], there are still many things to
be understood.

Of course, in nature, equilibrium is the exception rather than the rule. For this reason it is
worthwhile devoting many efforts to study non-equilibrium systems. There are many reasons for
which a system, although in contact with an environment (acting as a reservoir of energy, particles,
etc.), does not manage to equilibrate with it. Basically we can distinguish between those cases
(a) in which some external sources (of energy, particles, etc.) prevent the system from achieving
equilibrium with the environment (thermal bath, particle reservoir, etc.), and those (b) in which
this fact is due to dynamical reasons and no external perturbations act on the system. The former
class is well represented in many physical realizations, for example the heat (current) conduction in
conducting materials, liquids under shear, growing interfaces and crystals, etc., and it is studied by
means of simplified models of, say, driven diffusion on a lattice. Usually all these systems eventually
settle in a non-equilibrium steady state (NESS), characterized by stationary properties and time-
translational invariant dynamics of fluctuations. The class (b) mentioned above is realized in all
those systems with slow dynamics. With this expression we simply mean that the system evolves
according to a dynamics which is so slow that the relaxation towards equilibrium does not take
place even after very long time has elapsed since the last external perturbation on the system. At

11n some cases non-equilibrium systems may display very counterintuitive properties. For a pedagogical introduc-
tion see Ref. [25].



2 Introduction

variance with case (a), dynamical properties do not become stationary as time goes by. There are
many possible examples of systems that, in our schematic classification, belong to this class: Super-
cooled fluids, spin glasses, non-disordered magnets developing order through domain coarsening,
etc. We note that there are also very interesting cases in which the presence of a slow dynamics
is due to the action of external fields. This is, for example, the case of granular material. In the
absence of driving forces they are blocked in metastable states but when energy is injected in the
system (by means of shearing forces or vibrations) a slow relaxation towards configurations with
higher density takes place, with non-stationary properties.

1.1 Time-reversal Symmetry and Detailed Balance

It should be clear from the examples mentioned above that dynamics plays a very different role
in equilibrium and non-equilibrium systems. In the former it describes only the way in which the
system thermalizes and which equilibrium evolution should be expected for small fluctuations. In
the latter it does determine in an a priori unknown way which stationary state will be reached by
the system.

How does this difference emerge from the microscopic point of view? A possible way to distin-
guish between equilibrium and non-equilibrium is to look at the condition of microscopic reversibil-
ity. Tt is intimately related to the idea of time-reversal symmetry? of dynamical quantities when
the system has reached the stationary state, even if some attention should be paid when estab-
lishing such a connection rigorously®. Indeed the very difference between a NESS (case (a)) and an
equilibrium state, both characterized by time-translational invariance of observables, is that in the
latter time-reversal is a symmetry of the dynamics, while in the former it is not. When the system
relaxes with slow dynamics and for this reason the equilibrium state is not reached (case (b)), both
time homogeneity and time-reversal symmetry are broken. These ideas can be very simply illus-
trated in the case of Markov chains. We do not want to treat this issue in full generality, but make
very simple observation to illustrate the ideas mentioned above. For this reason we will restrict to
the case of (continuous time) Markov chains on a finite space, without any attempt to discuss the
problem of thermodynamic limit (we note that when considering a finite space, whatever the initial
configuration is, the convergence to equilibrium is exponentially fast, and thus we can not discuss
the problem of slow dynamics). Consider a finite state space C (for example the space of config-
urations of a lattice gas on finite lattice, see Sect. 2.1) and a set of non-negative transition rates
W : C x C — R*, where W[C" — (] specifies the rate of the transition from the configuration C’
to the configuration C. The Markov process can now be defined by means of the Master Equation
(or Fokker-Planck equation)

0. P(C,t|Co, to) = Z {W[C" = C|P(C",t|Cy, to) — W[C + C'|P(C,t|Co,t0)} , (1.1)
creC

where P(C,t|Co,to) is the conditional probability that the configuration of the system is C' at time
t, starting from an initial configuration Cy € C at time to. If the chain is aperiodic and irreducible
(see, e.g., Ref. [78] for details) then there is a unique stationary solution P*(C') of Eq. (1.1) towards
which the system evolves independently of the initial configuration chosen. In which sense is the
time-reversal symmetry represented in this framework? Of course a very natural definition is as
follows. Consider a trajectory in the configuration space {C;}:, t € [t1,t2], then it has a given

2In the following, whenever dealing with time-reversal symmetry, we assume that there are no external fields
breaking it. An extension to these cases may be done.

3Recently it has been pointed out that in some cases microscopic irreversibility may be lost when considering
macroscopic averages [28].



1.1 Time-reversal Symmetry and Detailed Balance 3

probability to be realized during the stochastic evolution in the stationary state (we assume that
the system has already relaxed towards it). If time-reversal symmetry holds we expect that the
time-reversed trajectory {C;}¢ = {C_t4+,+1, }+ has the same probability to be realized. This, in
turn, implies that (it is sufficient to consider a trajectory visiting only two configurations),

W[C' — C]P*(C") = W[C ~ C'|P*(C), VC,C'eC, (1.2)

which is the so called detailed balance condition for the stationary measure P?. If this condition is
satisfied, then each single term of the sum in Eq. (1.1) vanishes (of course not all the stationary
solutions satisfy the detailed balance). While Eq. (1.2) requires the explicit knowledge of P* in order
to verify the detailed balance condition, we can use an equivalent condition (see, e.g, Ref. [78]) based
only on the transition rates. Indeed if, for any set of configurations {C1,Cs,... ,Cr} CC,

then there exists a (stationary) probability distribution P*(C) satisfying the detailed balance con-
dition. It is possible, by virtue of the irreducibility of the chain, to determine the function P*(C).
Indeed, once its value is given in some point of the parameter space, using the condition of de-
tailed balance, it can be defined on all C (and it is also well defined in the sense that the value
assigned to a configuration is unique). Summing up, the time-reversal symmetry implies detailed
balance for the stationary measure, which, by virtue of this symmetry, has to be regarded as an
equilibrium distribution. We remark that in the case of physical systems of interacting particles, the
equilibrium distribution is a priori known once the interaction Hamiltonian has been specified. In
these cases the detailed balance condition give a (quite loose) constraint on the choice of transition
rates, in order to be sure that the system will eventually reach the correct stationary (equilibrium)
distribution, whatever the initial one is (this idea is behind all dynamic Monte Carlo simulations
of statistical systems).

From the discussion above it should be clear that any violation of detailed balance condition
would produce very unexpected results, given one is entering the realm of non-equilibrium systems.
Lots of models have been introduced in order to capture some of the features of more complex real
out-of-equilibrium systems and among them we quote percolation, directed or not, reaction-diffusion
processes (with or without absorbing states), lattice gases, cellular automata, etc.

Even more intriguing is, in the context of systems reaching a NESS, the problem of phase transi-
tions, and the effect of the violation of detailed balance on critical dynamics (see the recent overview
in Ref. [23]). On the one hand it is numerically evident that non-equilibrium systems may undergo
phase transitions. On the other many aspects concerning the interpretation of numerical data are
still unclear, despite many efforts to analyze them. Well-established concepts applied when deal-
ing with critical phenomena, as, for example, universality, are controversial in NESS. Therefore, it
seems worthwhile to study even very simple models which are out of thermal equilibrium. Among
them, one of the simples but non-trivial, was introduced at the beginning of the eighties by Katz,
Lebowitz, and Spohn [36], who studied the stationary state of a lattice gas under the action of
an external drive. The model, hereafter called driven lattice gas (DLG), may be considered as the
“Ising model” for non-equilibrium critical phenomena, given its simplicity and richness. Indeed
although not in thermal equilibrium, the DLG has a stationary state and shows a finite-temperature
phase transition, which is however different in nature from its equilibrium counterpart*. In Chap. 2
we recall the definition and the properties of the DLG, which we will deal with in the first part of
this work (Chapters 2-6). We review also, in Section 2.3, some general features of critical phe-
nomena, occurring in NESS, in order to show the novelties (and the difficulties) with respect to the

4For an extensive presentation of the DLG and of many generalizations, see Refs. [21,35].
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usual equilibrium critical behavior. Despite its simplicity, the DLG has not been solved exactly®.
Nonetheless, many results have been obtained by means of Monte Carlo (MC) simulations and by
using field-theoretical methods. This latter approach is reviewed in Chap. 3. Several computer
simulations studied the critical behavior of the DLG in two and three dimensions. These simulations
provided good support to the field-theoretical predictions, once it was understood that the highly
anisotropic character of the transition required some kind of anisotropic finite-size scaling (FSs,
discussed in Chapter 4).

Recently some doubts have been casted on the field theory that should be used to describe the
critical properties of the DLG. The resulting debate is still open and we review it in Sect. 3.3. In
spite of the extensive numerical work, there are no direct studies of the correlation length so far,
essentially because it is not easy to define it. Thus, our first concern will be the definition of a
finite-volume transverse correlation length (see Section 2.4.2). Once this have been done, we can
use the FsS method discussed in Section 4.3 to determine critical exponents. Our aim is to provide
evidences that could contribute to settle the debate about the universality class of the DLG, and
account for some of the disappointing numerical results that heat it. In Chapter 5 we discuss the
informations we can derive from our MC simulations and present also some preliminary results. In
Chapter 6 we summarize the work, concerning the DLG, that we have done so far and its main
perspectives.

1.2 The Fluctuation-Dissipation Theorem

It has been known since long that the time-reversal symmetry of an equilibrium state has the
remarkable consequence that there is a precise relation between the correlations of spontaneous
fluctuations and those externally induced in the linear response regime (Green-Kubo relations, see
Ref. [8] for a classical introduction). This is essentially the content of the fluctuation-dissipation
theorem (FDT). Before going on in the discussion of this subject we mention that recently much
attention has been paid to the so called “fluctuation theorems” [27]. They concern the distribution
of entropy production (suitably defined) in the long-time dynamics of driven out-of-equilibrium
systems and reduce to the FDT in the limit of vanishing drive (i.e. when the system recover
equilibrium). Our aim is here to introduce the FDT in its simplest form, which will be considered
in the following, i.e. for classical statistical systems (we are not interested in the effects of quantum
fluctuations, see, e.g. Ref. [113]). The very first examples of the (static) FDT are the well-known
relations between fluctuations of a thermodynamic observable of an equilibrium system at a given
temperature 3! and its linear susceptibility with respect to changes in the conjugated field. Indeed
consider a system characterized by the Hamiltonian g, in equilibrium with a thermal bath. Let
us consider an observable O whose conjugated field is h, then

_ 5O
Xo = o

= B((0%) - (0)*), (1.4)

h=0

where the average (-);, is computed by using the Gibbs measure in the presence of the small external
field h, i.e. with Hamiltonian H = Ho — hO. Of course, in the case of NESS, this relation no more
generally holds, given that the form of the stationary measure is not known.

The more interesting case of the FDT is when one considers the dynamical properties. We do
not want to be rigorous in our discussion, aiming at giving only an introduction to the subject
(see Ref. [8] for details and references). For illustration purposes let us consider a system whose
properties can be described in term of a set of variables, hereafter denoted by ¢;, labeled with index

5The DLG is solvable for infinite drive in the limit in which the ratio of jump rates parallel and perpendicular to
the field direction becomes infinite [37].
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i, such that they vanishes in the equilibrium state (these variables represent the fluctuations of the
physical quantities with respect to their equilibrium values). The Hamiltonian of the system will
be denoted by H[¢]. To study the evolution of small fluctuations around the equilibrium (linear
regime) it is usually assumed that the relaxation process can be described by means of the Langevin
equation (see, e.g., Ref. [9])

oH[4]
at¢z (t) Dz] 6¢] (t)
The D;; are relaxation rates (diffusion constant in the case of density relaxation, conductivity for
charge relaxation and so on), while ¢;(¢) is a Gaussian random noise with covariance ((;(¢)¢; (') =
2N;;6(t —t') (where (-) stands for the mean over the possible realizations of the noise). We observe
that Eq. (1.5) consists of a deterministic and a stochastic part, the former taking into account the
tendency of the system to recover equilibrium, the latter summing up the effects of the microscopic
fluctuations. From the Langevin equation it is possible to write down a Fokker-Planck partial
differential equation for the probability distribution function P[{¢;},t] of ¢; at a given time ¢,
starting from a specified initial condition (see, e.g., Ref. [4])

+ Gi(t) - (1.5)

0 oP 0H
OP[{¢i};t] = — [N— +D—| . 1.6
Ploha= 5o [N + D (19
The stationary measure (9;P[{¢;},t] = 0) is P*[{¢;}] oc e #"9I[6] if and only if
D = SN (Einstein’s relation) . (1.7)

Moreover, if ergodicity holds, whatever the initial condition for the Eq. (1.6) was, the long-time
limit of P[{¢;},t] is P*[{¢;}]. Thus if Eq. (1.5) should describe a dynamical process leading to
the expected canonical distribution (proper to the specified Hamiltonian), Eq. (1.7) has to be
satisfied. We remark that Eq. (1.7) is sometimes called fluctuation-dissipation theorem (FDT), see
e.g. Ref. [35] (and also the discussion in Ref. [32]), although, in most cases, this name is used for the
relation (1.12) we are going to derive. We observe that one generically expects, as we will discuss
in more detail in Sect. 8.1, that for NESs No¢ D (see Ref. [35] for details). It is not difficult to see
by algebraic manipulations [4] that, given an arbitrary function of the noise, F'(()

6F(C)> ’ (1.8)
6¢;(t)
where summation over repeated indices is understood. With this equation in mind we can give a
heuristic argument to deduce the FDT’. First of all let us define the dynamical correlation function
between fluctuations Cj;(t,s) = (¢i(t)¢;(s)) (again, (-) stands for the mean over the stochastic
dynamics) and the response function to an external field h; coupled to ¢; in the Hamiltonian # (as
discussed previously), given by

(F(C)Gi(1)) = 2N;5(

0i(t

(5h]’ (S) h=0

We note that the presence of the external field h in Eq. (1.5) is equivalent to a shift in the noise
0¢;(t) = Dy; hj(t), so that Eq. (1.9) may be written as

f??(“b - %DN}J (i (t)Ck(s)) = §<¢i<t)<j<s» (1.10)

Ri;(t,s) = (

Rij (ta 3) = ]D)j <

6We are assuming that, for the given #, e #*[¢] makes sense as a probability distribution, see, e.g., Ref. [4] for
further details.

"The argument in this form may be found in Ref. [118].
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where we have used both the algebraic identity (1.8) and the condition (1.7). Let us remark that,
due to the causality in the dynamics of physical systems, we expect that ¢;(¢) does not depend on
any of (;(s) (or, equivalently on h;(s)) whenever ¢ < s. As a consequence R;;(t,s) x 6(t —s). In
the following we consider ¢ > s, so (¢;(s)x(t)) = 0. Now it is easy to compute (0; — 95)C;;(t,s) =
(Bu6i()63 () — (01 (£)95(s)), and, by using the Fa. (1.5), we get

(0 — 5)Ci (t,8) = —(Di ;%[((i])qﬁj(s)) + 60D §¢Hk[(i])

At equilibrium, the time-reversal symmetry implies that for two generic observables Oy (t) and O»(t),
(O1(t)O2(s)y = (O1(s)O2(t)). Moreover equilibrium is also characterized by time homogeneity and
thus general correlation functions are invariant under time translations, i.e. the generic two-time
correlation function C satisfies C'(t, s) = C(t—s, 0) (this is true also in the case of NESS) and therefore
(0 — 05)Cij(t,s) = —20,Cj(t,s). Keeping into account all these observation and Eq. (1.10), we
conclude that

) = (9i(t)¢;(s)) - (1.11)

6Cij(t, 8)

Rij(t, S) = e(t - 8) B (98 s

(1.12)
which is a possible form of the FDT (we explicit write down the causality constraint). Of course there
are many possible ways to deduce this result, more or less rigorous (for example, a diagrammatic
derivation in the perturbative expansion suited to study dynamic critical phenomena is given in
S. K. Ma, Ref. [5], while a standard reference on the subject is Ref. [8]). In Section 8.1 the
formalism of dynamical functional will be briefly discussed in order to study Langevin equations
as Eq. (1.5), by the introduction of response fields. Extending further this formalism it is possible
to group together both kind of fields into the so called superfield (it is necessary to introduce also
Grassmann coordinates) and then derive the FDT as the Ward identity of the supersymmetry (SUSY)
of the resulting theory [29]. Explicit breaking of the SUSY occurs in the case of NESS [30] while in
the case of slow dynamics SUSY is spontaneously broken [31]. See Ref. [4] for details.

Whenever the system does not reach thermal equilibrium, we can not expect that a relation as
Eq. (1.12) holds, and in this sense its validity may be considered as a signal of equilibrium dynamics
of fluctuation. However we must pay attention when making such a statement given it may occur
that the validity of FDT and detailed balance is recovered at macroscopic level even if they do not
hold at the microscopic one. This may occurs both generically, as pointed out in Ref. [28], and
just when the system is at its critical point [45]. In the latter case we can say that the terms
in the Langevin equation breaking the detailed balance (and thus leading to a violation of FDT)
are irrelevant in the renormalization-group sense. Keeping in mind this remark, we expect that
for systems settling into a NESS, the FDT will be violated generically. More interesting is, instead,
the case in which it is possible to study the onset of slow-dynamical behavior by looking at the
violation of FDT (spontaneous breaking in the thermodynamic limit). In Sect. 7.2 and Chap. 8 we
will consider the case of the relaxation process in ferromagnetic systems after a quench from a given
initial state. As long as the quench is towards the high-temperature region, equilibration time is
finite and equilibrium is recovered after a while, so FDT applies and no breaking occurs. When the
system is quenched right at criticality, the relaxation time is infinite (at least when thermodynamic
limit is considered) and the system evolves according a slow dynamic, characterized by an aging
regime. This is the subject reviewed in Sect. 7. In these cases it is possible to introduce a quantity,
called fluctuation-dissipation ratio (FDR, see Sect. 7.2.3) that has been proved to be universal (as
critical exponents). For this reason we can use field-theoretical methods to compute it at criticality
for various models of dynamics (see Chap. 9), finding, in some cases, a satisfactory agreement with
numerical simulations. The main results of the investigation we have carried out are summed up in
Sect. 9.5. By using the same methods it is also possible to compute universal scaling functions for
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the response and correlation functions, and this allows us to check some predictions recently made
assuming Local Scale Invariance (Ls1, briefly introduced in Sect. 8.4).






Chapter 2

The Driven Lattice GGas

In this Chapter we provide the basic definitions and describe the relevant features of the
DLG. In particular §2.1 gives a brief overview of the Lattice Gas in order to make clear
the framework into which the DLG is introduced. In §2.2 we give the very definition
of the DLG in its basic form and we stress that the main difference with the undriven
case is the lack of detailed balance. The consequences of this fact are described in §2.3
where the peculiar characteristic of the NESS into which the DLG eventually settles, are
reviewed. Moreover they cause some difficulties when trying to analyze correlation func-
tions and define correlation length. In §2./ we introduce the observables we measured
in MC simulations. In spite of the difficulties mentioned above, we succeeded in defining
the transverse finite-volume correlation length that allows us to perform the FSS analysis
described in Chapter 5.

2.1 Lattice Gases

As a prelude to the DLG let us consider a simple lattice gas of interacting particles. A lattice
gas' is a model of indistinguishable classical particles moving on a d-dimensional hypercubic lattice
A C Z%. A configuration C of the system is completely described by the occupation numbers n; of
each site i € A. We will consider only models in which at most one particle may occupy a given
site, then n; € {0,1} and the space of states is C(A) = {0, 1}*[?]. In some sense the lattice gas may
be considered as a model for physical systems of particles interacting via a short-range potential
with repulsive hard-core. The distance between i,j € A will be denoted by |i —j| and [i—j| =1
when i and j are nearest neighbors (NN). Given a configuration C' € C (C(i) = n;) we will denote
with Cj; the configuration

cG), ifk=i
C(i), ifk =j,
C(k), otherwise,

C;k) =

i.e. Cj; is obtained from C by exchanging site i with site j. When A is finite (in the following we
call |A| the number of sites in A) we can define a Markov process on the state space C by means of

Tts simplest form was used as a model in seminal works on phase transitions [2,3].

2Dynamics may restricts configuration to a subset of {0,1}4.
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the Master Equation (1.1), discussed in Sect. 1.1

atP(C,ﬂC(),to) = Z {W[Cl — C]P(C',t|Co,t0) - W[C = CI]P(C,t|CO,t0)} s (21)
c'eC

where P(C,t|Co, to) is the conditional probability that the configuration of the system is C' at time
t, starting from an initial configuration Cy € C at time to. The function W[C — C'] is the transition
rate from a generic state C' to another state C', both in C.

In the following we will be interested in dynamics allowing only for NN exchanges (Kawasaki
dynamics [79]), i.e. we assume that W[C' — C'] = 0 if C' is not derived from C by making an
exchange between NN sites. It is a conservative dynamics given that the total number of particles
is conserved by construction, i.e. the density

Pr(0) = 1 o (2.2)

does not change in time. The configuration space may be splitted into invariant subspaces with
different densities, i.e. C = U,C,, where C, = {C € C|pa(C) = p}. The dynamics is now
irreducible [78] in every C,, i.e. from any state it is possible to get to each other state by a finite
number of allowed transitions. This is sufficient to ensure that there exists a unique invariant
probability (i.e. a stationary solution of Eq. (2.1)) P;(C) in each C, and that it is independent of
the initial configuration chosen.

As already said in Sect. 1.1, among stationary solutions a special role is played by those satisfying
the detailed-balance condition, given in Eq. (1.2). As discussed there, we can prove that, under some
general assumptions, among which the time-reversal invariance of the dynamics, the stationary
solutions of Eq. (2.1) for a classical or quantum isolated and close physical system satisfy Eq. (1.2)
[9].

The dynamics of the system is then completely specified by the transition rates W[C — C']. If
the lattice gas has to be a model of a system in thermodynamic equilibrium then transition rates
cannot be arbitrary. Indeed general principles of statistical mechanics tell us that for a system in
thermal equilibrium with an heat bath of a given temperature T', the equilibrium ensemble is the
canonical one (or grancanonical if the system is also coupled to a particle reservoir), proper to the
Hamiltonian HA[C] of the system, and detailed balance holds.

That is, we must require

Wi c _RUC) =5 HAIC]
= h PO =S —
Wwicts o] - Py O =

where Z,(8) is the partition function of the system defined on A and at a given temperature
T = B~'. This relation implies that transition rates must satisfy

W[C — C'l =w(BAH), where AH = H\[C'] — H)[C] (2.3)

is the difference in energy between the new (C') and the old (C) configuration. In Eq. (2.3) w is a
real and positive function such that

w(—z) = " w(x) .

Different dynamics correspond to different choices for w. The equilibrium state of the resulting
Markov process is, nevertheless, the same, irrespective of the specific choice?.

30ne popular choice for w is the Metropolis rate w(z) = min{1;e~*}.
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In the following we will consider only the simplest case, namely that of NN interaction energy

HA[C)=—4T ) min;, (2.4)
(L.j)eA

where the sum runs over all the lattice nearest-neighbor pairs and the coupling J may be positive
(ferromagnetic interaction, in spin language) or negative (antiferromagnetic one). It’s easy to realize
that the system has the same stationary measure as the Ising model with fixed magnetization
m = 2p — 1, given a trivial mapping between the corresponding Hamiltonians. Then in dimensions
d > 2, for m = 0 and |A| = oo we expect a second-order phase transition occurring at a given
finite temperature T.(J,d)[!] (for d = 2, relevant in what follows, the critical temperature is the
Onsager one Jf3. = 1In(v/2 + 1)). This transition is of course well understood both from the
thermodynamical point of view [4], and for what concerns dynamical effects [1].

It is possible to modify this very simple and well-known model of equilibrium dynamics to obtain
models which mimic real systems driven out of equilibrium.

2.2 Driven Lattice Gas: Standard Model

Let us consider a lattice gas with a nearest-neighbor attractive (ferromagnetic, in spin language)
Hamiltonian (2.4) where, without loss of generality, we assume J = 1. We consider, as before,
discrete-time Kawasaki-type dynamics [79], which preserves the total number of particles N or,
equivalently, the density (2.2). At each step, we choose randomly a lattice link (i,j). If n; = n;,
nothing happens. Otherwise, we propose a swap, i.e. a particle jump, which is accepted with
probability given by Eq. (2.3) where C’ is the configuration after the swap and C' is the initial one.

The DLG is a generalization of the lattice gas previously described in which one introduces a
uniform (in space and time) force field pointing along one of the axes of the lattice, say %, i.e.
E = Ex. It favors (respectively unfavors) the particle jumps along (resp. opposite) to the X-
direction while those transverse to it are not affected. If A is bounded by rigid walls, then E
is a conservative field and it can be accounted for by adding a linear potential term to HA[C].
Therefore, the system remains in thermal equilibrium: The net effect of E is simply to induce a
particle concentration gradient in the equilibrium state.

Here, we will consider instead periodic boundary conditions®. In this case, the field E does not
have a global potential and the system eventually reaches a stationary state which, however, is not
in thermal equilibrium (NESS).

In the DLG, transition probabilities take into account the work done by the field during the
particle jump from one site to one of its nearest neighbors. In this case, instead of (2.3), one
accepts a proposed particle swap with probability

w(B AH + BEC) (2.5)

with £ = (1,0, —1) for jumps (along, transverse, opposite) to X.

For E # 0 and py = 1/2, the system shows a continuous phase transition (numerical evidences
in d =2 and d = 3, can be found in a lot of papers, see Refs. [21,35] for comprehensive reviews) at
a temperature T.(E). Interestingly enough, T.(E) increases with E (somehow the opposite of what
one could have expected, see footnote 1 of Chap. 1) and saturates to a finite T,.(c0) for diverging

4Given the equivalence, in the thermodynamic limit, of canonical and grancanonical ensemble, conservative (dif-
fusive) and non-conservative dynamics lead to the same equilibrium properties.

51n principle, it is enough to consider periodic boundary conditions in the field direction. The boundary conditions
in the transverse directions are largely irrelevant for the problems discussed here.
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Figure 2.1: Configurations for a two dimensional lattice gas as showed up in numerical simulations,
on square lattice 64 x 64. Pictures are ordered from left to right with decreasing temperature:
(a,b,e,f) T > T.(E); (c,d,gh) T < T.(E). (a,b,c,d) refer to ordinary lattice gas E = 0. (e,f,g,h)
refer to DLG with a saturating electric field E = oo, along the vertical direction (from Ref. [50]).

E. In two dimensions, T.(c0) ~ 1.4T.(0), where T,(0) is the Onsager critical temperature. For
T > T.(E) (high-temperature phase) particles are homogeneously distributed in the lattice, while
for T < T.(E) (low-temperature phase) the gas segregates in two regions, one almost full and the
other almost empty, with interfaces parallel to E, as shown in Figure 2.1

As stressed in Chap. 1, the key difference between non-equilibrium models as the DLG and the
equilibrium ones is that the dynamics plays a different role in them. For the latter dynamics may
either model or not physical processes, being used only to generate an equilibrium ensemble, a priori
known (this is the case of standard dynamic Monte Carlo techniques). Dynamics is usually chosen
to minimize the computational cost of simulations. For the former dynamics is crucial, given that
the stationary solutions of the Master Equation are not a priori known, and one wishes to realize
them by means of simulations. Changing dynamics may change the stationary distribution of the
system and then physical properties [61].

Symmetries

Before going on with the description of the model, let us review briefly its symmetry properties,
which will play a role when discussing the different field-theoretical approach proposed in the past
(see Sect. 3.3). Let us define the following transformations for the DLG:

C: S 1-mn, VieA,
R: ES -E, (2:6)
P: x5 %

It’s easy to realize that transition rates (and so the model) are invariant for lattice translations of
both initial and final configurations and for all possible pairings of the transformations (2.6), i.e
CR, CP and PR. Moreover any orthogonal transformation in the transverse space is a symmetry.
These symmetries are of fundamental importance when trying to set up a mesoscopic description
of the observed phase transition, as emerges from the discussion in Sections 3.1 and 3.3.
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2.3 The DLG Steady State

To illustrate the novelties of the DLG let us briefly summarize the peculiar behavior of the system
in its steady state (more generally some of the features we are going to describe are common to a
wide class of non-equilibrium systems [21, 22, 24, 35]).

2.3.1 Generic Long-Range Correlations

Let us consider the two-point function (see also Section 2.4), i.e.
G(x—y) = (nxny),

where (-) denote the average in the steady state. This two point function has been studied by McC
simulations and approximate analytic methods [21,35,51], shows a generic (i.e. not only at the
critical point) power-law behavior

G(x) oc |x|7¢, (2.7)

and is not positive-definite (as a consequence of Eq. (2.7) and of the conservation law), as we can
see from Fig. 2.2.

1
10 b

2

Figure 2.2: G(x) for the DLG on a 2d 128 x 128 lattice in the high-temperature region (8 < 1)
and for E = co. (M) is G(x) for x||E; (A) —G(x) for x LE. Note that transverse correlations are
negative. The dotted line has a slope of —2. From Ref. [50].

The algebraic, generic power-law decay of correlations, as expressed by Eq. (2.7) is related to
the discontinuity of the static structure factor, defined as

G(k) = z e**G(x) ,

xcA
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for k = 0. This discontinuity is quite evident in Fig. 2.3, where the numerical data for G(k) of the
two-dimensional 128x128 DLG are plotted in momentum space. Note that the conservation law and
the initial condition pp = 1/2 imply that G(0) = 0. The discontinuity is made even stronger by
another striking characteristic of the DLG steady state (of particular relevance when approaching
the critical point), i.e. the strong anisotropy that we are going to describe in Sect. 2.3.2. Without
entering into details, for which we refer to Ref. [35], it is possible to see that the discontinuity of
the structure factor in the origin (leading to the generic long-range correlations) is a consequence
of the conservative dynamics and of the violation of the condition N ox I (sometimes called fluctu-
ation-dissipation theorem, see the remark at the end of Section 2 of Ref. [35] and Sect. 1.2 here).

Figure 2.3: G(k) for the DLG in d = 2, Lyx L, = 128x128 lattice. n|,n. are wave-numbers:
Ky, . = 2mn), /L), where ||, L denote directions parallel and transverse to E.

From this peculiar behavior one problem arises: How can we define a correlation length for this
system? Generally, in equilibrium systems, correlations decay exponentially with distance, at least
in the high-temperature phase, so that a natural length scale emerges in that context. But here
correlations generically decay following a power law and there is no evident emerging length scale.
Nevertheless it is possible to show that if one considers the mean correlation of two points on the
solid angle, an exponential decay is recovered (see Ref. [35] for details). In Section 2.4.2 we will
define a transverse correlation length, suitable for our FSS analysis of the transition (see Sect. 5.2).

2.3.2 Strong Anisotropy

Another striking property of the DLG steady state in the critical region (i.e. when critical point
is approached) is its strong anisotropy, emerging in a clear way from numerical simulations. In
Fig. 2.4 we report some numerical data for the transverse and longitudinal susceptibility x defined,
as we will discuss below and in Sect. 2.4, by looking at the two-point correlation function for
vanishing transverse and longitudinal momenta, respectively. We can easily see that, while x|
seems to diverge when approaching the critical 3, on the right of the figure, x| does not display any
anomalous behavior. Of course these are only qualitative considerations, given that also finite-size
effects should be properly considered (see Chap. 4).

There are many examples of anisotropic systems also in equilibrium, as in the case of uniaxial
one with long-range dipolar interactions [4], Lifshitz points [166], the Kasteleyn model of dimers
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Figure 2.4: Comparison between x| (o) and x| () for various § on a 32x128 two-dimensional DLG.

on the brick lattice [88], etc. There are basically two different degrees of anisotropy. One is related
to the fact that in scaling functions, different space directions scales with different amplitudes but
with the same scaling exponent (this is usually the case of the simplest lattice spin systems with
different coupling constants along different axes). The other, usually termed as strong, is realized
when these exponents depend on the specific direction in space, as it is the case, e.g. for systems
with strong (long-range) dipolar forces, for (short-range) anisotropic spin models (as the axial-next-
nearest-neighbor Ising model — ANNNI) displaying a Lifshitz point (see Ref. [166] for a brief review),
etc. We would discuss here, from a phenomenological point of view, the consequences of a strongly
anisotropic scaling, in view also of the fact that it implies a doubling of the whole set of critical
exponents. In the framework of scaling theory (see, e.g., Ref. [5]), the basic assumption is that
when critical point is approached, the only physically relevant length scale is the correlation one
&~ 717" where 7 x T — T¢, T, being the critical temperature. All the microscopic lengths do not
influence the behavior in the critical limit, and thus the singular part of thermodynamic functions
and observables will be homogeneous functions of . Let us consider, thus, the dynamic structure
factor S(k,t;7) (where t is the time), defined as the Fourier transform of the two-point correlation
function. Introducing a momentum scale p, the homogeneity of S may be expressed as

Sy, ko, t;m) = p 2 S(ky /2 k[ p,t s T/t (2.8)

where the usual critical exponents have been introduced (see, e.g. Ref. [5]). To describe the strong
anisotropy we have to introduce one more exponent, called anisotropy exponent, denoted by A in
this scaling form. For isotropic or weakly anisotropic systems A = 0 and both spatial directions
scales with the same power of the momentum scale. A scaling form as Eq. (2.8) will emerge naturally
from the field-theoretical models we discuss in Section 3.2 (once the requirement of anisotropy has
been implemented in the theory). Here we would simply analyze its implications.
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As a consequence of the scaling form (2.8), assuming p = 7, it is possible to obtain
ki ~7", and kj~r/0+8) (2.9)
so that two different critical exponents v naturally emerge as
vi=v, and vy =v(l1+A4A). (2.10)

In a sense, the previous relation may be interpreted as the emergence of two different correlation
lengths (long-range correlations may cause, as in the case of DLG, difficulties when trying to define
them),

§L~17", and g ~TVI (2.11)

Considering long-time properties we can define two different dynamic critical exponents. Indeed,
by setting p = t~/* we get

ki ~t Y%, and ky~t /7 (2.12)
thus
zp =2z, and z;=2z/(1+4). (2.13)

Let us look at the exponent 1. It is usually defined, from the scaling point of view (see Ref. [5]),
from the momentum dependence of the critical scaling form (i.e. that with 7 = 0) of the static
structure factor (for ¢t = 0), as

Sy kr) = k28 (y /KE2) = kTS (kR OY) (2.14)

Thus, from Eq. (2.8), we get

n+2A

m - (2.15)

nL=mn, and n =
We note, however, that 7 may also be defined by looking at the space dependence of the static
two-point correlation function. At variance with isotropic case, the n-like exponents so obtained
differ from the previous ones. This is essentially due to the fact that when the Fourier transform
of S is computed, to determine the two-point function G(x|,x1,#;7), the integration measure

d?k = d? 'k, dk scales as u®*2. Thus we expect
Gz, x1,t,7) = pt 2720 G T2y, px o tp® m/pt ) (2.16)

For t = 0, 7 = 0, we can recognize the exponent 7 from the following scaling forms

—d+2—p' —d+2—n)| A
G(:L'”,XL,t,T) =T +2 nJ‘gL(.’E”/JL’T—A) = .’E” ""g” (Z‘L/.’L’ﬁ/(l-‘r )) (2.17)

resulting in two more 7-like exponents, given by ', = n+A =7, +A and 77’| = (n—A(d-3))/(1+A),
different from 7, and 7). Attention should be paid whenever dealing witL these exponents.

As far as the susceptibility x is concerned, we can determine four different 7-like exponents,
depending on how this quantity is defined. In equilibrium systems it is usually measured, by virtue
of the fluctuation-dissipation theorem, as the low momentum behavior of the two-point correlation
function. For general non-equilibrium systems, as remarked in Sect. 1.2, such a connection no more
holds, but it is still useful to define the susceptibility as in equilibrium. Without relying on the
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fluctuation-dissipation theorem this quantity should be defined in terms of the response function
(according to the very definition of susceptibility), leading to two possible v exponents, but it is
usually quite difficult to measure it in numerical simulations.

So, according to the former definition, we have

xL(r) =Sk =0,k;. = 0,0;7), x)(r) =Sk — 0,k =0,0;7), (2.18)
and thus we can generically introduce two -like exponents:
X)|(T) ~ |7 and xu(T) ~ [T (2.19)
Using Eq. (2.8) we find
NW=yL=v2-n)=7. (2.20)

Let us remark that Fisher’s scaling relation® is fulfilled also in the presence of anisotropy. Indeed,
given the previous definitions

+2A
m@-m)=m@+) (2- EEE2 )~ -, (2.21)
and thus
N=y2=-mn) and v =vi(2—nL). (2.22)

Using standard arguments it is also possible to see that a generalized hyperscaling relation holds.
We refer to Ref. [35] for a detailed illustration. We should stress here that the discussion above
is based on very simple scaling arguments. These, of course, may fail to describe correctly the
critical singularities whenever the amplitudes of the terms that would be generically the leading
ones, vanish (scaling violations). In this sense the conclusion that x1 and x| diverge with the same
exponent could not be true, as it seems to be in the DLG (see Fig. 2.4).

2.4 Observables

In this Section we define those observables we are interested in, which can be measured in numerical
simulations and by means of which it is possible to describe the phase transition of the DLG [69].
Our principal concern is with two-dimensional (d = 2) model so we will refer to this case even
though the definitions given can be readily generalized to generic d.

2.4.1 Order Parameter and Susceptibility

We consider a finite square lattice of size Lj x L with periodic boundary conditions. We define a
“spin” variable s; = 2n; — 1 and its Fourier transform

p(k) = > es; (2.23)
JeA
where the allowed momenta are
2t 2mm
k = —,— .
= (20 (229

61t states that v = v(2 — 1), see, e.g. Ref. [5].
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with (n,m) € Zr, x Zy, .
We consider the model at half filling, i.e. for pp = 1/2. Then

D s=0, ie. P(koo) =0. (2.25)

jeA

In the ordered phase |¢(k)| takes its maximum for k = kg 1, and the expectation value on the steady
state of its module

m(Ly, L) = (oo, )]} (2.26)

A
is a good order parameter. We remark that, given the ordered phase consists of a strip aligned with
the field and placed somewhere in the finite system, ¢(ko 1) has a phase that changes randomly
from sample to sample. To obtain a non-vanishing value we can get rid of this phase by considering
the module of ¢(ko,1).
In momentum space the static structure factor

G Iy, L) = ﬁ(|¢(k)l2) , (2.27)

vanishes at koo because of Eq. (2.25) and is maximal at k¢ 1, so that it is natural to define the
susceptibility as”

X(Ly, Li) = G(kou; Ly, L) - (2.28)
Another interesting observable is the transverse Binder’s cumulant g(L, L) defined as

(I6(ko,1)[")

9L, L) = 2= 4 e e -

(2.29)
Next, we would like to define a correlation length.

2.4.2 Finite-volume Correlation Length

Before discussing the problem of the definition of a finite-volume correlation length in the DLG let
us briefly review, following Ref. [109], how this is usually done in (lattice) equilibrium systems. In
infinite volume there are (at least) two possible definitions of the correlation length. In particular
for systems with short-range interactions a long-distance exponential decay of correlations (and
thus of the two-point correlation function G(x)) is expected generically. Equivalently this means
that G(k), the Fourier transform of G(x), is an analytic function of k| in a neighborhood of the
origin. Thus one can define the exponential correlation length as
x|

(exp) = _ fjy 2.
boo |x|1£>noo log G(x) ’ (2:30)

which is generally independent of the particular direction along which the limit is computed (at
least as long as the hypercubic symmetry holds). The other natural definition is the second moment

"Let us remark again that the susceptibility defined by using the linear response theory does not coincide in
non-equilibrium systems with that defined in terms of the Fourier transform of the two-point correlation function.
Indeed these two definitions are connected by the fluctuation-dissipation theorem (see Sect. 1.2) which does not hold
out of equilibrium.
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correlation length (for a system on a d-dimensional hypercubic lattice)

1/2
» _ (12 xR\ 1 dG(a)
@= (0 ew ) | mww ~ (231

0

which extracts from G~'(q) for small ¢, the coefficient of the quadratic term in q. Whenever G'(k)
is dominated by a single pole (which then determines the exponential fall-off at large distances),
§£§) and gé‘g“’) are strictly related, usually differing, when approaching the critical point, only by a
multiplicative constant.

In finite volume there is no a priori natural definition of the correlation length. Of course, as
it has been defined, géf;‘p) cannot be generalized. In some cases one can resort to definitions based
on spatial crossover between different behaviors of correlations, in such a way to identify a length
scale (see, e.g., the discussion in Ref. [89]). The definition of 5&?) can, instead, be easily extended
to confined systems, but there is a great deal of arbitrariness in doing that. Indeed, for example,
equally valid definitions are (with G, we mean the finite-volume two-point correlation function)

F A ~ 1/2
fga) _ GLA(20) - G'1(Qmin) ’ 2.3
qminGL (qmin)
" G0(0) — Cio () 1/2
_ | GL(0) — Gr.(Amin
(L2b) = . 7 (2.33)
qminGL(O)
 G0(0) — G () 1/2
¢ - Qmin
e e T ; (2.34)
_qmin (ZGL (qmin) - GL (0))
where quin = (27/L,0,...,0) (or one of the equivalent 2d definitions) is the minimum allowed non-

vanishing momentum, and §2 = Zzzl 4sin® (g, /2) is the lattice momentum. From these definitions
it is quite evident that, in the limit L — oo and t = (T — T¢) /T fixed,

51(:2,1) ~ E221;) ~ €é2c) = 6((3)) ’ (2.35)

so that all of them are sensible finite-volume approximations of 5&23). The question is, now, whether
all of them have the correct FSS properties.

In Ref. [109] we deal with this problem by studying the large-N limit of the N-vector model. We
show the existence of several constraints on the definitions of the finite-volume correlation length
in order to have regular Fss functions and the correct anomalous behavior above the upper critical
dimension. For example, in that model it is easy to realize that, even for finite L, 5220) is defined
only in a restricted range of temperatures, so that we can not expect regular Fss functions. Thus
the first natural requirement is that the finite-volume correlation length has to be defined, for
fixed L, for all temperatures. The other important point is that the correlation length should have
the scaling behavior which is generally expected, on the basis of simple scaling arguments, above
the upper critical dimension. This provides another constraint on the possible definitions and in
Ref. [109] we explicitly show, for the model mentioned above, that some of those do not fulfill this
requirement. Moreover these constraints also ensure the correct behavior taking into account the
logarithmic corrections at the upper critical dimension [110].

Then, we study in detail the N-vector model (N — o0) in which the zero mode in prohibited,
as for the lattice gas. In this case the definitions given in Egs. (2.32), (2.33), and (2.34), can not



20 The Driven Lattice Gas

be used as they stand, given the constraint imposed by the conservation law. A sensible definition
could be

(2) — [éL(Qmin) _GL(qQ)]l/z ) (2.36)

L Gr(a)(a} — a2,

where q;, i = 1,2 are two arbitrary non-vanishing momenta. One property of f(Lze) in the case
without zero mode is that, at least for the model considered in Ref. [109], it has the same universal
scaling function as that of §(LQG) in the case with zero mode. Other generalizations of the definitions
previously given can not be defined in all the temperature range (see Ref. [109] for details). Also
in the case of prohibited zero-mode, we find that the finite-volume correlation length must satisfy
appropriate constraints in order to fulfill the requirements discussed above. What emerges from
this analysis is that to have a sensible definition of correlation length there are additional conditions
that are not, generally, obvious. Moreover good definitions for a model with zero mode can not be
such when this mode is not allowed, see Ref. [109].

Having in mind the discussion above, let us face the problem of the definition of the finite-volume
correlation length in the DLG.

First of all we note that, also in the thermodynamic limit, both the definitions (2.30) and (2.31)
do not work for the DLG given that, as discussed in Section 2.3, the two-point function (sxse)
always decays algebraically with the distance, it is not positive-definite and in the infinite-volume
limit (at fixed temperature) its Fourier transform (i.e. the static structure factor) G/(k) has a finite
discontinuity at k = 0.

Therefore, a different definition of the correlation length is necessary.

We observed, in Sect. 2.3.1, that the algebraic decay of correlations in the high-temperature
phase of the DLG is described by Eq. (2.7) (see the numerical evidences in Ref. [51] for the two-
and three-dimensional DLG, and Fig. 2.2). On the other hand we expect that approching the
critical point, critical fluctuations will modify the exponent in Eq. (2.7) (as in Eq. (2.17) when
considering transverse or longitudinal displacements). Then it should be possible to identify a
lenght scale corresponding to which the crossover between this two different power-law behaviors
occurs. By definition this length diverges (in the thermodynamic limit) when approaching the
critical point, and for this reason it could be considered as a measure of the spatial extension of
correlations. In Refs. [51,60] a parallel correlation length & is defined on this footing, by studying
the crossover in the finite-volume correlation functions considered for displacements along the field,
i.e. Gi(z) = G(z),xL = 0). Then ¢ is obtained by fitting G; " (z) with 1+ a:ﬁ/gﬁ However, this
definition is not able to capture the crossover to the critical power law and thus can be regarded
only as a phenomenological one (see the discussion in Ref. [35]), leading also to results for the
exponent v, which are not in agreement with the standard® theory [51].

Even more difficult appears the definition of a transverse correlation length because of the
presence of negative correlations at large distances [35,51].

To overcome the difficulties of the real-space strategy we will define the correlation length by
using the two-point function for small momenta. We follow closely Ref. [109], where we discussed
the possible definitions of correlation length in the absence of the zero mode, as it is the case here.

To take into account the absence of the zero mode also in the DLG we follow the analogy with the
studied model, heuristically extending our findings. The basic observation is that, in the DLG, the
infinite-volume transverse wall-wall’ correlation function decays exponentially, so that a transverse

8We term “standard” the theory described in Sect. 3.2.

9We do not consider the standard point-point correlation but the mean correlation between two walls, i.e. between
two parallel lines along the direction of the external field.
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correlation length can be naturally defined in the thermodynamic limit. Differently stated, we can
say that, restricting to n = 0 and outside the origin (where G(0) = 0 as a consequence of the
conservation law), the plot of G(k) in Fig. 2.3 has the usual Ornstein-Zernike form (and thus its
Fourier transform has an exponential decay at large distances from which we can extract a sensible
correlation length).

We consider, thus, the structure factor (2.27) in finite volume at zero longitudinal momenta

Gi(g; Ly, L) = G((0,9); Ly, LL) , (2.37)

(note that the conservation law implies G, (0; Ly, L.) = 0) and introduce a finite-volume (trans-
verse) correlation length (which is the analogous of 5226) in Eq. (2.36) with Qmin — q1) as

€L L) = | = 1 (GJ.(Q@'?LH;LJ_) _ 1), (2.38)

@ — 4 \GL(g; Ly, L)

where ¢, = 2sin (mn/L) is the lattice momentum.
Some comments are in order:

(i) If we consider an equilibrium system or a steady state in which correlations decay exponen-
tially, then we have for ¢ — 0 that

G Yg; Ly, Ly) = x(Ly, L) " L+ &5(Ly, L) ¢ + O(¢*, L72)] , (2.39)

where x(Lj,L.) is the susceptibility. Thus, ffj(oo,oo) is a good definition of correlation
length which has an infinite-volume limit independently of i and j.

(ii) Since G (0; Lj,L1) =0, ¢; and g; must not vanish. Moreover, as discussed in Ref. [109], the
definition should be valid for all T" in finite volume. Since the system orders in an even number
of stripes, for i even G (¢;; Lj,L1)=0is zero as T — 0. Therefore, if our definition should
capture the nature of the phase transition, we must require 4 and j to be odd. Although
any choice of 4, j is conceptually good, finite-size corrections increase with 7, j, a phenomenon
which should be expected since the critical modes correspond to ¢ — 0. Thus, we will choose

(i,5) = (1,3).

Another quantity which is considered in the analysis is the amplitude A;3 defined by

2
A13(L||,LJ_) = % . (240)






Chapter 3

Non-equilibrium Critical
Phenomena

This Chapter is devoted to a review of the field-theoretical approach to the DLG phase
transition. The main ideas underlying such a description of (non-)equilibrium critical
phenomena is briefly recalled in §3.1. In §3.2 we sum up the results of Refs. [89,40] in
which critical exponents for the DLG phase transition have been obtained by means of
the renormalization-group (RG) analysis for a suitable Langevin equation. Recently these
results have been questioned, also on the basis of some discrepancies observed between
theoretical predictions and numerical simulations. In §3.8 we make a critical review of
this open debate, giving a survey of the relevant literature and analyzing the alternative
theories that have been proposed.

3.1 Field-theoretical Approach

There are many examples of non-equilibrium systems in which, by adjusting the value of some
parameter, a phase transition can occur. See, for some examples, Refs. [21,35] and references therein.
Among lattice models we want to recall percolation, reaction-diffusion processes, low dimensional
models as one dimensional non-equilibrium systems (for recent reviews see Refs. [18-20,24]), and
many generalizations of the standard DLG as the randomly driven lattice gas [35,44,45], the two-
temperatures lattice gas [35,41-43], the DLG with tilted or open boundary conditions [46,47] and
the DLG with quenched disorder [48], to cite only some of them.

All these models are defined on a lattice. However, in a neighborhood of the critical point
(critical region) we can limit ourselves to consider slowly-varying (in space and time) observables.
At criticality (corresponding to the onset of long-range order) the lattice spacing a is negligible
compared to the length and time scales at which long-range order is established so that a can be
removed from the problem by taking the formal limit @ — 0. In this way, it is possible to formulate
a description of the system in terms of mesoscopic variables defined on a continuum space. In
principle, the dynamics of such variables can be obtained by coarse graining the microscopic system.
However, given the difficulty of performing a rigorous coarse-graining procedure, one postulates® a
continuum field theory, in the form of a stochastic Langevin equation (as that given in Eq. (1.5)) for

11n some simple cases it is possible to derive, at least heuristically and in a mean-field approximation (factorization
of joint probabilities in the Master Equation), the mesoscopic equation from the microscopic model [68].
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the order parameter, that has all the symmetries of the microscopic lattice model. We will discuss
this point again in Section 3.3, giving an overview of a recent and still ongoing debate.

By universality [5] the continuum model should have the same critical behavior of the microscopic
(lattice) one. This statement has quite rigorous foundations in the theory of equilibrium critical
phenomena, from both static and dynamical point of view, and may be explained by means of the
RG approach to the problem. As far as equilibrium dynamical aspects are concerned we would point
out that dynamics is expected to play a role in the problem only in determining conservation laws
to which the system is subjected during time evolution. We expect no dependence of the system
behavior on the exact realization of the lattice dynamics employed to generate the equilibrium state.

On the other hand this fact is not evident at all in the case of non-equilibrium critical phenomena
which depend strongly on dynamical realization of the system. To what extent universality applies
to this case is not clear (see the overview in Ref. [73]). We discuss this issue in Section 3.3.

3.2 Field Theory for the DLG

Assuming universality, a field theory (see discussion in Sect. 3.3) has been proposed [39,40] (see
also Ref. [35]) and analyzed, giving exact predictions for critical exponents in space dimension d
with 2 < d < 5[%].

Using standard methods it is possible to analyze the continuum theory in terms of a dynamical
functional [12-14] (see Sect. 8.1 for a brief introduction) which reads (neglecting terms irrelevant
by power counting) [39]

J[s, 3] = /ddxdt A {5’[/\1(% +AL(AL—7) = pAyls + %U0V||§S2 + EALE} , (3.1)

where s(x,t) is the local “density” field (actually, the coarse-grained version of s; = 2n; — 1), § is
the Martin-Siggia-Rose response field [12]. The subscripts || and L mean spatial directions parallel
and perpendicular to the external field. 7 is the effective distance from the critical point, p is a
parameter and ug the coupling constant of the theory, which is proportional to the coarse-grained
microscopic force field, and takes into account its leading effects. The upper critical dimension for
this theory turns out to be d. = 5. Power counting leads to the conclusion that only the parameter
p is renormalized by interactions. A dangerous irrelevant operator is also present. Renormalization-
group analysis gives the following scaling form for T';, (one-particle irreducible vertex functions
with 7 fields § and n fields s) in momentum space [39]

_ b PL W T & *
Fﬁn({p“?pJ_;w}; T,U,V,p, ,U/) = lQn’nFﬁn({lz%n’ T? l_4}7 l_zau ,ln v, p, ,LL) ) (32)

where u ,u_ep_%ug, € = 5—d, p is a momentum scale, [ < 1 in the scaling limit, u* = O(e) is
the non-trivial infrared (IR) fixed-point value of the coupling u, v is the coupling of the dangerous
irrelevant operator. n = (5 — d)/3 exactly, k* = 2(d — 2),
n+n 1 d+3 d-1
An = —2 —=)+d — 7 — .
Qr, n( ] 2) +d+5—n 5 n 5

From Eq. (3.2) we see that when considering time-independent observables at vanishing p) the
scaling form obtained is that of a mean-field theory for 2 < d < 5 (with a dangerous irrelevant
operator). The strongly anisotropic scaling is explicit in Eq. (3.2), and the exponent A (defined in
Sect. 2.3.2) is readily found: A =2+ = (8 —d)/3.

2A field theory for the DLG was also derived in Ref. [38], starting from the standard Model B dynamics. The
external drive partially breaks the supersymmetry (Susy) of Model B, giving rise to a crossover towards a new fixed
point in d = 5, with a residual symmetry (2susy of Ref. [38]).
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3.3 DLG: Which Universality Class?

We said in Sect. 3.1 that the mapping between lattice models and the corresponding continuum
field theories is rather difficult and seldom rigorously obtained (this problem is even harder when
dynamics is involved). Then, in principle, every postulated field theory may be questioned. In
recent, years the field theory given in Eq. (3.1) and proposed to describe the physics of the DLG has
been criticized by some authors. We want here to take a quick survey of this open debate (see also
Ref. [73]), to which we wish to contribute with our findings [69, 70].

Episode I: 1986

Shortly after the introduction of the DLG a field-theoretical approach to the problem was attempted.
The theory proposed in Refs. [38-40], from various perspectives, is based on a Langevin equation
for the order parameter, and it is derived from the heuristic arguments that we would describe
briefly.

First of all we expect that the description of the DLG from a mesoscopic point of view could
be formulated in terms of the order parameter which is readily identified with the scalar field of
particle density. We will be interested in its fluctuations around the mean spatial value (fixed by
some initial condition), i.e. in the fluctuating field s(x,t). The DLG dynamics is conservative: This
means that s(x,t) satisfies the continuity equation

Os+V-J=0. (3.3)

In the theory of dynamic critical phenomena [1,4,5] we assume that J, the particle current, is given
by Model B [1]:

oH
J=-AV—+1J 34
5s +Jr ) ( )
where A plays the role of a diffusion constant and H is assumed to be a Landau-Ginzburg Hamil-

tonian:
1 T f
— [qd 12 2 , T2, J 4

H—/d x{2(Vs) MR } , (3.5)

where 7 is the deviation from a reference temperature Tp, i.e. 7 & T — Ty and f is the coupling
constant of the theory. The choice of Eq. (3.5) is due to the fact that it includes all those operators
(according to the RG classification) that are relevant at the Gaussian fixed point. Jy, is a stochas-
tic current that takes into account microscopic fluctuations around the deterministic part of the
evolution equation for s (with (---) we mean an average over possible noise realizations),

(JL,i(r,t)) =0,
(Jp,i(r, ) J (', ) = 206D (r — £')8(t — t')d;5

we assume J to have a Gaussian distribution.

(3.6)

Remark: These are standard definitions in the context of weak perturbation around a thermodynamical
equilibrium state. For example Eq. (3.4) is usually assumed when dealing with the linear
response theory [8].

By means of standard manipulations one gets

Os = )\A% +vr, where v =-V-Jr and
(vi(r,t)) =0, (3.7)
(i, (') = —2XA6D (@ — ')t — '),
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which is exactly the Model B. If one now introduces the external field E we expect (a) an additional
contribution to J in Eq. (3.3), due to the mesoscopic version of enhanced transitions in the direction
of the field (a sort of “conduction”), of the form J®) = ¢(s)E (linear approximation is assumed)
and (b) anisotropy of diffusion coefficients. The latter means that the breaking of space isotropy
may give rise to mesoscopic anisotropic coefficients, as it has been showed in Ref. [38]. Moreover we
also expect anisotropic expression for the Landau-Ginzburg Hamiltonian. In RG language we can
say that the anisotropy introduced by the field E could drive the RG isotropic fixed point towards
an anisotropic one (this means that even the field propagators show anisotropic scaling).
Taking into account all these factors one ends up with the Langevin equation [35]

05 = /\[A_]_(TL — K:_LAJ_) + pA”(T” — Ii”A”) — Ii)AHAJ_]S —E- VU(S) +vr, (3.8)
with the noise
(v (e, v (r', 1) = —2A(YA L + 68D (x —1')o(t — 1), (3.9)

where we assumed a constant E. As in Sect. 3.2, || and L subscripts mean spatial directions parallel
and perpendicular to E, respectively. All the parameters in this equation have been introduced to
account for the anisotropy. Let us note that we now have two temperature parameters, namely 7,
and 7, on which the onset of transverse or longitudinal order depends. We have, in general

o(s) =00+ 015+ 028>+, (3.10)

but, by means of symmetry arguments, it is easily shown that only oy matters as the leading non-
linearity [39]. Now it is possible to discuss the dynamical functional associated with the Langevin
equation (3.8) and determine the critical dimensions of its possible fixed points. To this end we
take advantage of the classification of operators according their scaling dimensions and behavior
under RG flow into relevant, irrelevant and marginal ones [5]. It’s not difficult to realize that the
case corresponding to the ordered state numerically observed (see Fig. 2.1) is the one giving rise to
the dynamic functional written in Eq. (3.1).

Now the question is whether the field-theoretical results obtained from the standard RG analysis
of Eq. (3.1) agree with numerical data or not.

As we can see from Tab. 3.2, early numerical simulations [60] seemed to find agreement with
theoretical predictions apart from a quite different value of the critical exponent 8 (we want to
remark that the theoretical result 8 = 1/2 may be affected by logarithmic corrections in d = 2,
given the presence of a marginal operator). A better understanding of FSS in anisotropic systems
(we discuss this issue in Chapter 4), led to a reconciliation between numerics and theory (see
Refs. [52,53]). Indeed in Ref. [52] (whose expanded version is Ref. [53]) it was shown (in a quite
clear way) that an effective exponents Ser & 1/3 may be a consequence of an incorrect FSs, in which
one tries to collect on a single scaling plot, data coming from systems with different and small shape
factors S (see Sect. 4.2). In a sense, B describes the crossover to the case S = 0. Nevertheless,
some doubts remained, and numerical analysis was debated [57,62].

To have a flavor of such a debate let us give a look at literature. In Ref. [55] the main concern
is the two-layers DLG? but, as a byproduct of the authors’ numerical analysis, it is claimed that
Leung’s results in Refs. [52,53] are incorrect, and that the correct scaling plots ruled out the value
B = 1/2. A reply to these criticism appear in Ref. [56]: There it has been shown (using as an
example the well-known 2D Ising model) that the results presented in Ref. [55] are due to the

31t is defined as the union of a pair of parallel copies of the DLG, so that each site in one of them has a corresponding
one into the other. Inter-copy jumps are allowed only between corresponding sites, according to Metropolis rate,
without any interaction Hamiltonian between copies.
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inclusion, in scaling plots, of data well outside what we expect to be a reasonable critical region.
Subsequent papers bear evidence supporting the standard picture [54] even if discrepancies are still
numerically observed as in the case of Ref. [57] (dealing with two-layer DLG).

Episode II: May 1997

Following a proposed criticism [61] (also supported by some numerical observations [57]) to the
widely accepted naively determined mesoscopic equation, the authors of Ref. [62] introduced a new
Langevin equation for driven diffusive systems, in which the effects of the microscopic dynamics
were carefully taken into account. They claimed that the above-mentioned discrepancy between
field-theoretical results and MC simulations was due to the fact that the microscopic DLG Master
Equation and the mesoscopic equation used to analyze the DLG critical behavior were not describing
the same physics. In particular the mesoscopic equation derived in Ref. [62], has coefficients that
depend in a quite precise way on the microscopic parameters defining the dynamics of the underlying
lattice model (especially the microscopic driving field E), while in the standard case [39,40] it is
not possible to work out this dependence. For finite value of E the equation introduced in Ref. [62]
is the same as that of Refs. [39,40]*, that is written in the form

Ops = @ [—AJ_(AJ_ —T)s+ %ALSB] — T (E)Ais — EN(E)Vs* + e(0)VL (L, (3.11)

where ( is a d-correlated Gaussian noise, h'(E) is a function of the microscopic field strength E,
and all others are given parameters. The current term is —E h'(E)V)s?, as in Eq. (3.8).

But for |[E| = oo[?](this case is sometimes called infinitely fast driven lattice gas — IDLG), i.e.
when jumps against the field are not allowed on the lattice, a non-trivial result is obtained only in
the isotropic case (the same scaling for all directions at least naively, i.e. A = 0 at tree level, see
Tab. 3.1), with an upper critical dimension d. = 4 instead of 5. The resulting equation turns out
to be quite different from the previous one:

Bys = @ [~ALAL=m)s+ SALS] - @ALAHS + eV ¢+ \/@V” G (312)
Indeed the term proportional to the current disappears, showing that the particle current is not a
relevant feature of the dynamics. As a consequence of Eq. (3.12) we expect a different set of critical
exponents (although, at variance with the standard case, not exactly computable), resulting also in
a different universality class.

The observed discrepancy between simulations and theory is then traced back to the fact that
the former may be affected by strong crossover effects between the two possible theories, depending
on the value of E used in simulations.

Comment: Even though the statements made by the authors of Ref. [62] are all reasonable, we should
notice that the arguments leading to their conclusions are quite questionable. Their “deriva-
tion” of the newly proposed Langevin equation has, to our concern, less rigor than claimed
and, moreover, it fails to reproduce some well-established properties of the microscopic model
(see Ref. [67]).

In a subsequent paper by the same authors [63] the details of the new derivation were given in a
more extensive way, but again with some quite heuristic assumptions.

4In some papers, including Ref. [62], mesoscopic equations describing a diffusion mechanism coupled to an external
drive, as it is the case of the DLG equation of Refs. [39,40], are termed driven diffusive systems — DDs.

5We want to point out that even if microscopic driving field is infinite, the coarse-grained one may be finite.
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Then a paper devoted to the one-loop RG analysis of the model of Ref. [62] for the IDLG ap-
peared [64]. We checked the calculations reported therein and found a combinatoric error [65].
Even more severe were the generic infrared (IR) problems of this theory [65]. Meanwhile a paper
by other authors appeared bearing strong evidences against the theory and pointing also out these
problems [67]. In particular it is easy to realize that equation (3.12) obeys a spurious conservation
law [65-67], given that if one defines a “row density”, i.e.

pr(r),t) = /dd_lm_ s(r,t) ,

then, after averaging on the noise, it is a conserved quantity Vr) for the dynamics given by Eq. (3.11).
This is an additional conservation law which is not present in the original model and it causes the 1r
problems of the theory (as one easily realize putting the theory on a finite volume) and an ill-defined
static structure factor (with a line of singularities in momentum space instead of only one point of
discontinuity).

Moreover in Ref. [67] it was pointed out that the Langevin equation of Ref. [62] has a symmetry
not observed in MC simulations. Indeed the absence of a coupling to the external field results in
a theory with Ising up-down symmetry (particle-hole symmetry s — —s, i.e. the C-symmetry of
Eq. (2.6) for the density field), leading to a vanishing three-point correlation function for all T > T,
in disagreement with existing numerical data. Thus, in a sense, mesoscopic theory has an higher
degree of symmetry than the microscopic one. This may be justified only showing explicitly that
the corresponding fixed point is stable against perturbations by symmetry-breaking operators [67].

Episode III: January 2000

A new paper by the same author of Ref. [62] (hereafter called “Granada Group”) appeared [66] in
order to correct the previously proposed Langevin equation, following suggestions and observations
of Refs. [65,67]. By means of heuristic arguments they introduce a new term pV)s(r,t) in the
Langevin equation (3.11), suitable for healing IR divergences, and due, in their opinion, to a correct
evaluation of the “entropic term” that was overlooked in the previous derivation (we are still waiting
for an analytic proof of the new term, see Ref. [18] in Ref. [66]). This term changes a lot of features
of the theory previously proposed in Ref. [62]. The naive (tree level) anisotropic scaling is recovered
and, by power-counting analysis, the critical theory (there called anisotropic diffusive system —
ADS) turns out to be a well-known Langevin equation, i.e. that of the randomly driven lattice gas
(RDLG). This model was introduced in Ref. [44] (and discussed in a detailed way in Ref. [45]),
to describe, from a mesoscopic point of view, a lattice gas with annealed randomness given by
a fluctuating Gaussian random driving field (instead of a fixed one, as in the case of standard
DLG). The naive Langevin equation associated with this model has no current term, for obvious
symmetry reason: The random field causes anisotropy but not an overall mesoscopic current. The
relevant non-linearity is due to a cubic term in s, instead of the usual quadratic coupling to the
mesoscopic external field, given by the non-linear dependence of the “conductivity” o(s) on the
density (see Eq. (3.10)). Then the conclusion drawn in Ref. [66] was, again, that at least for the
infinite-driving-field case, the particle current is not the relevant features of the DLG. This is due, in
the authors’ opinion, to a saturation of microscopic transition rates in the Master Equation, that,
in a sense, wipes out any dependence on the precise value of the field and so on the current coupled
to it [66]. For the ADS the upper critical dimension is d. = 3 (compared to 5 of the standard case,
see Tab. 3.1). At variance with the microscopic DLG model, the ADS (i.e. the RDLG) shows again an
up-down symmetry (s — —s) resulting in a vanishing three point correlation function [66,67], which
might be irrelevant at the critical point. Indeed the closely related triangular anisotropies (observed
during phase ordering) seem to disappear in the limit of large (compared to typical energy scale)
external driving field [74,75].
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A brief summary of the theoretical predictions on these models is reported in Tab. 3.1.

A contribution to this debate appeared in Ref. [68], where a heuristic and approximate scheme is
presented to derive the mesoscopic kinetic equations from the microscopic dynamics of the system.
The method consists of two steps:

e A mean-field type factorization of joint probabilities, appearing into the Master Equation,
into single variable ones (i.e. correlations are neglected),

e A naive continuum expansion, in which probabilities are replaced by the corresponding meso-
scopic density fields. In this way a deterministic (i.e. without any noise term) kinetic equation
for these field is obtained.

By applying this method, it is possible to determine the dependence of the mesoscopic parameters
on the microscopic ones. In Ref. [68] 1D, 2D and 3D Ising model with Glauber (i.e. spin flip)
dynamics are considered, and quite good estimates for critical temperatures are obtained in the last
two cases. The kinetic equation derived is, of course, a (deterministic) time-dependent Landau-
Ginzburg model. The case of 1D (with only hard-core interaction) and 2D (with heat-bath rates)
DLG is also considered, the latter leading to a deterministic kinetic equation in agreement with
standard theory [38-40] (barring its noise term). Even the explicit temperature dependence of the
mesoscopic transverse and parallel mass parameters (71, 7)), is in qualitative agreement with what
was found heuristically in Refs. [39,40]. Moreover for |E| = co (being E the microscopic field), the
relevant non-linearity still come from the coupling of the current to the external field, at variance
with the claims of Ref. [66].

DLG IDLG RDLG

[39,40] [64] [44,45,66]
Current Yes No No
Symmetries* || CP, CR, PR | C, P C,P
d. 5 4 3
nt* 0 O(€?) 56 + O(e*)

2
Ve L L4540 | S+ 5+ 5 [ +In %] +0()
z=1z 4 44 0(€?) 4— 52+ 0()=4—n
« 2
8 L L-£4+0@) | $-t+5[-H+mZ]+06)
A 1+ 3 O(€?) 1 22—3e3+0(e4) =1-1
Table 3.1: Theoretical predictions for the (transverse) critical exponents, obtained from the

Langevin equations proposed to describe the DLG phase transition. € = d, — d where d, is re-
ported in the table. * We define these transformations: s S -s, E Kid -E, x £ —%. We do not
indicate the obvious O(d — 1) symmetry in transverse space, common to all these models. T Ex-
ponents ezactly known for 2 < d < 5. ¥ This theory has severe IR problems [65,67]. ** Exponent
inferred from the scaling form in momentum space (for strongly anisotropic systems it differs from
that emerging from real space scaling forms, see Sect. 2.3.2).

Episode IV: June 2001

We concluded our Fss analysis of the DLG, reported in Ref. [69], finding good agreement between
numerical results and theoretical predictions of Refs. [39,40]. Recently, we have revised these results
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| a=2 |
DLG IDLG | RDLG MC
[39,40] | [64] | [66]" || [60] (52 [ 57 | 4] [169,70] | [72]
AMT2 0 1 0 2 [0 | 1.98(4)F |2 ~1
n 0 0 0
vy 1/2 2/3 | 0.626 || 0.62(12)2 | 0.5 | 0.7 0.4605(32)% | 0.625
B 1/2 1/6 | 0.334 | 0.23(2) | 0.5 | 0.3 | 1.00(2)v. | 0.461(35)c | 0.33
5 1 4/3 | 1.25 2.03(3)v. | 0.921(48)7 | 1.22

Table 3.2: Theoretical predictions for the (transverse) critical exponents of the two-dimensional DLG
(these results come from e-expansion series listed in Tab. 3.1, up to O(€?), and naively extended
to the proper value of €, without any summation attempt and neglecting possible logarithmic
corrections due to marginal operators in d = 2), compared to MC results. Remember that v =
v1(2—m1). * See also Refs. [44,45]. T To perform an anisotropic Fss of MC data, the value of A
has to be assumed. ¥ Assuming results from Ref. [59] it is possible to determine A (by using Fss
crossover). Indeed it was found vy /v = 2.98(4) = 1+ A. * This result is quoted in Ref. [60] as
0.55%0:23. * See Eq. (5.6). © Value obtained taking into account the rough estimate 8/v, = 1.00(7)
(see Sect. 5.2.2) and the v, reported here in the table. ¢ Value obtained from a first rough estimate
v/vi = 2.00(9) (see Sect. 5.2.2).

(finding a better agreement and clarifying some point not well understood in the first analysis),
by means of simulations on bigger lattices (see Ref. [70]). In both cases we have used a different
approach to Fss, described in Sect. 4.3.2, based on a suitably defined correlation length which has
been introduced and discussed in Section 2.4.

Before entering into the details of our work, we have to say that shortly after our paper, a
new one by the Granada group appeared [72], supporting their previous conclusions in a surprising
way. By means of MC simulations and a suitable anisotropic Fss, they conclude that (quoting from
Ref. [72]):

..., MC results support strongly that both the IDLG and the RDLG belong in the same
universality class, and share not only critical exponents and scaling functions, but also
the scaling amplitudes.

Summing up, they carried out MC simulations of both RDLG and IDLG, on lattices from 20 x 20,
up to 125 x 50. By using Binder’s cumulant crossing method (see Section 4.3) they determined the
critical temperatures for both models and then performed an anisotropic Fss analysis (see Chap. 4)
for the finite-volume magnetization, susceptibility and Binder’s cumulant. In order to have a good
data collapse (where the goodness is judged by eye inspection) one has to adjust some parameters,
whose values are related to critical exponents, as explained in Chapter 4. Estimated values (though
authors do not make any error analysis, judged to be “ ... inessential in this contert.”—quotation
from Ref. [72]) of critical exponents are in agreement with theoretical ones (even though computed
within e-expansion) for RDLG, as easily seen from Tab. 3.1. Moreover, unexpectedly, Fss functions
turns out to be exactly the same for the two models, without having to adjust any non-universal
amplitude [72].

Episode V: April 2002

Very recently Ref. [77] has appeared in the literature, announcing unexpected numerical results
and making the statement of Ref. [72], about universality classes, even stronger. At variance with
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previous studies, the numerical investigation of the DLG and some related models, is there carried
out by means of short-time dynamic MC method. This numerical technique has been extensively
used to investigate dynamical and static properties of several well-known equilibrium models (see
Ref. [150] for early works and reviews), giving exponents in good agreement with those obtained
by standard McC simulations. We would not discuss here the details of the method. The general
underlying ideas are related to the short-time universal scaling behavior observed in the relaxation
processes starting from a prepared initial condition (fully ordered and completely disordered ones
are considered in Ref. [77]). This subject is described briefly in Section 8.2. Remarkably enough,
short-time MC simulations do not suffer the problem of critical slowing down [150] and even finite-
size effects do not have the same relevance (at least in the very early stages of relaxation) as they
have in standard McC simulations. In Ref. [77] the DLG with finite and infinite driving field (there
called FKLS and IKLS, respectively), the RDLG with infinite random field (called IRDLG) and the
driven lattice gas with an oscillatory field® (introduced in Ref. [49]) in the limit of infinite field
(10KLS) are studied to clarify the long-standing controversy about the universality class of the DLG.
At variance with previous works, the analysis of the numerical results should not be influenced by
the problem of the strongly anisotropic FsS (see Section 4.2), and this should make the results more
reliable and unbiased by theoretical expectations (no value of the anisotropy exponent A is required
and, indeed, it is possible to measure it). The main results of Ref. [77] are that

e As a consequence of the short-time scaling forms assumed in the paper, the critical exponents”
of all the models studied are the same as those predicted by the field theory of the RDLG [44,45],
while there is a quantitative disagreement with the prediction of Refs. [39,40]. Short-time
scaling forms differ only for non-universal amplitudes.

e The models IKLS, FKLS, with a macroscopic current and IRKLS and IOKLS, without any cur-
rent, have the same critical exponents, and thus belong to the same universality class. This
observation support the conclusion of Ref. [72], that the relevant feature of the DLG is the
anisotropy and not the current (which does not play any role neither to determine the uni-
versality class nor to give rise to the strong anisotropy).

First of all we note that these results go well beyond the statements originally done in Refs. [64,72],
where it was argued that the IKLS, i.e. the DLG driven with an infinite field, should be in the
same universality class as the RDLG, while for finite driving (FKLS) the field theory of Refs. [39,40]
should be the correct one to describe critical properties. In a sense the limit of infinite driving was
previously regarded as a singular one. Here the stronger statement is made that in all the cases
discussed the critical behavior is that of the RDLG.

We remark that the conclusions of Ref. [77] depend crucially on some assumptions made in
the paper on the short-time scaling forms. These generalize in a non-trivial way standard scaling
arguments usually applied when dealing with short-time scaling forms in finite systems. For example
the authors implicitly assume that there is only one exponent z = 2|, instead of the two standard
21, 2| and that, depending on the chosen initial condition, t ~ 7717, or t ~ 7 ¥+* (t is the typical
time scale of the dynamics and T measures the distance from the critical point). This is not usually
the case. In Ref. [77] there is no attempt to justify these unnatural assumptions. Moreover, if
one tries to analyze the results of this paper following a more reasonable extension of short-time
scaling forms®, one finds these results in quantitative disagreement with both the field-theoretical

6The field acts along a given lattice axis exactly as in the standard definition of the DLG but its sign is reversed
once every n MC sweeps (n = 10 in the specific case studied in Ref. [49]).

7At variance with previous MC studies, the dynamical exponent z|| is measured (actually it is called z by the
authors of Ref. [77]).

8For example keeping in mind that, at least in principle z| # 2|, as also predicted by field-theoretical approach
of both Refs. [39,40] and Ref. [72].
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descriptions proposed. We refer to Ref. [77] for the numerical results of that paper, not reported in
Table 3.2.

We believe that these unclear aspects of the work presented in Ref. [77] should be clarified before
making any statement based on it.



Chapter 4
Finite-Size Scaling

To compare numerical results (about a finite system) with theoretical predictions for
the critical behavior (observed only in the thermodynamic limit), obtained from a field-
theoretical approach, it is of fundamental importance to exploit finite-size scaling prop-
erties. In §4.1 we discuss this problem for isotropic systems, within a phenomenological
approach. Then we describe how it is possible to generalize it to the case of strongly
anisotropic systems, as the DLG. In §4.3 we discuss how this phenomenological approach
can be used to get, from MC simulations, estimates of critical exponents (and, more gen-
erally, critical properties). In particular we compare the standard method (§4.3.1) with
that introduced in Ref. [90] (§4.3.2), which heavily relies on the definition of a finite-
volume correlation length. We also stress the fact that the latter method does not require
any parameter tuning, at variance with the former. In §4.4 we exploit the predictions
that can be obtained for FSS function from the field theory described in §3.2.

Phase transitions are characterized by a non-analytic behavior of the partition function, and
thus of some observables, at the critical point [2,3,5]. These non-analyticities can be observed
only in the infinite-volume limit performed keeping constant the density of degrees of freedom in
the system (thermodynamic limit [3] — TD) and, generally, temperature. If the system is finite, all
thermodynamic functions are analytic in the thermodynamic parameters as the temperature, the
applied magnetic field, and so on: There cannot be any phase transition. However, even in a finite
sample, observables show an anomalous behavior as a function of temperature, from which it is
possible to obtain many informations on the critical behavior. Indeed, large but finite systems!
show a universal behavior called finite-size scaling (FsS). The FSs hypothesis, formulated for the
first time by Fisher [6,82-84] and justified theoretically by using renormalized continuum field
theory [81,85] (a collection of relevant articles on the subject appears in Ref. [87] and a recent
monograph is Ref. [89]), is a very powerful method to extrapolate to the thermodynamic limit
the results obtained from a finite sample, both in experiments and in numerical simulations. In
particular, the most recent Monte Carlo studies rely heavily on Fss for the determination of critical
properties (see, e.g., Refs. [90,91,93,98,100-105] for recent applications in two and three dimensions;
the list is of course far from being exhaustive).

1A confined system generally also exhibits surface effects, due to the presence of boundaries. They can be easily
avoided (at least in numerical simulations and analytic calculations) assuming periodic boundary conditions [84]. The
presence of surfaces in critical system makes the phenomenology more complicated (see Ref. [17] for a filed-theoretical
approach).
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4.1 Isotropic FSsS

The most commonly studied systems are those showing a second-order phase transition at a critical
temperature T, (for the Fss effects on first-order phase transitions see Ref. [107]). In this case the
distance from the critical point may be measured in terms of an infinite-volume correlation length
¢ (in units of some microscopic scale, as the lattice spacing a), diverging for T — T, (£ is the
inverse renormalized mass in quantum field theory). For a finite system of typical size L (expressed
with respect to a) we can consider two different limits:

TD: L — 00, o = 00, oo/ L — 0;
FSS: L — 00, oo — 00, €50/ L =constant;

In these limits the lattice spacing becomes negligible with respect to the length scales relevant for
collective phenomena, i.e. L and . For this reason the system may be effectively described at
an arbitrary intermediate scale (i.e. from a mesoscopic point of view) in terms of a suitable field
theory on the continuum, renormalized at that scale. Physics must be independent of this arbitrary
scale. This reason leads to the Callan-Symanzik equation from which one can determine scaling
forms (in the scaling limit) and critical exponents [4].

Now we want to give a brief description of a phenomenological approach to the FSs problem [82,
84] (see also Ref. [89]). In the case we are interested in, i.e. that of the second-order phase
transitions, there are quantities O which, in infinite volume, behave as

Ooo(t)

(O)o ~ [t|™%  for t—0, (4.1)

where t = (T'—T.) /T, is the reduced temperature and (-)o, denote averaging in the infinite-volume
system. In a finite sample of length L in all directions, the finite-volume mean values O (t) = (O)L
are analytic functions of t. However, for large L, the FSs theory predicts a scaling behavior of the
form

OL(t) = Go(t,L) ~ L*°/" By o (t /L) , (4.2)

where v = z¢ is the critical exponent which, according to Eq. (4.2), controls the divergence of the
bulk correlation length £[?]. The function F o(z) is finite and non-vanishing in zero®, and should
satisfy*

Fy 0(z) ~ |z|7%° for z—o00. (4.3)

Equation (4.2) can be conveniently rewritten in terms of the bulk correlation length, in order
to avoid the knowledge of the critical temperature, otherwise required,

OL(t) » L™/ F3 0 (#) : (4.4)
where F3 () is finite for z — oo and
F3.0(2) ~ |2|*/" for z-—-0. (4.5)

2We expect corrections to Eq. (4.2) of order L~=%gq (t~* /L) with a > 0.

3If it is not the case we have wviolations of FSS and hyperscaling relations fail, generally because of dangerously
irrelevant operators [7].

4Note that the behavior of |z|*© Fy (z) for z — oo is not directly related to the finite-size corrections to Or (t)
for L — oo at t fixed in the limit of small ¢. See the detailed discussion in Refs. [106,108].
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Eq. (4.4) clarifies the physical meaning of Eq. (4.2): There are many length scales in a statistical
system, some of them being of microscopic nature (as the lattice spacing) others macroscopic (as
the physical size), but when approaching a critical point only one relevant length scale emerges, i.e.
€. The statement that critical behavior is controlled only by this length is the so called scaling
hypothesis [5], nowadays justified in the RG perspective. So it is natural to expect that in a finite
system of size L only the ratio { /L is relevant.

Let us note that Eq. (4.4) involves both finite- and infinite-volume observables (i.e. the finite-
volume value of O and &), but in numerical simulations one determines only the finite-volume
ones. So it is convenient to recast the previous relations in a different form, following Ref. [90].
Indeed from Eq. (4.4) we can derive a general relation for the ratio of O at two different sizes L
and aL,

Oar(B) _ €u(B)
o = (%) o)

(B is the inverse temperature) where we have traded { /L for {1, /L by inverting &1, ~ LF3¢(§0/L).

If we define z = £ /L, then, varying § in a fixed geometry, z varies between 0 (we expect
negligible correlations in the high-temperature phase, so £y, very small) and z*, where z* is defined
by

2t = F3,§(OO) . (47)

The value z* is directly related to the behavior of the finite-size correlation length at the critical
point, since £1,(8.) ~ z*L. For ordinary phase transitions z* is finite. At the critical point it also
holds

Or(B.) x L*o/v, (4.8)
Then
Fo(z") = 7%“;(%) ="/, (4.9)

and therefore

v loga '

From this relation it is easy to determine ratios between critical exponents (see Section 4.3).
To get the set of critical exponents we have to determine v from the scaling functions obtained.
To this end let us observe that, calling zr, = €1 /L,

2L = 2% + G(0)(tLY") + O((tL'")?) (4.11)
where G¢(u) = Foe(u™") (see Eq. (4.2)) and z* is defined in Eq. (4.7). As a consequence

14 S i yan) v ogan) (112)

z*

ZaL
2L

Eq. (4.12) together with Eq. (4.11), implies that

/v _ 1
4 o) _oo1 (4.13)
dzr, 2L |, _ z*
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and thus, using the fact that F¢(2*) = a,

z% log F¢(2) =o'V —1. (4.14)

z=z*

The value of v can be obtained by means of the function F¢ only.

The function Fp(z) is universal and directly accessible, e.g., to MC simulations. It depends on
a and on global features of the considered geometry, such as shape, boundary conditions, etc. If
one considers, for example, a two-dimensional finite lattice of dimension L x L, then we expect
that Fo(z) depends on the ratio L /L. The appropriate FsS limit is then achieved by taking the
limit L, Ly, & — oo with LL/L” and &, /L fixed.

4.2 Anisotropic FSsS

The results presented above are valid for an isotropic or weakly anisotropic systems (see Sect. 2.3.2
for a phenomenological discussion of strong anisotropy).

On the other hand, there are phase transitions strongly anisotropic in nature, as in the case of
the DLG we are interested in (numerical evidences) and of some equilibrium system with anisotropic
interactions, mentioned in Sect. 2.3.2 to which we refer. In the specific case of the DLG, the
continuum field theories introduced (see Sect. 3.3) to describe its critical singularities predict a non-
trivial anisotropy exponent A (see Tab. 3.1). This facts calls for an extension of the FsS arguments
presented in the case of isotropic systems (A = 0). For example we should make clear how to
manage the two (or even more!) correlation length ¢, £, that generally emerge as a consequence of
the strong anisotropy (see Sect. 2.3.2 for details), when doing Fss. Although what follows is quite
general, we restrict ourself to the case of the DLG. A phenomenological approach to the Fss for
this model has been developed in Ref. [60], keeping into account the strong anisotropy observed in
the transition (for d = 2 see Refs. [53,54,59], for d = 3 see Ref. [58]). Following this approach, we
will assume for our numerical investigations that all observables have a finite FSS limit obtained by
taking the longitudinal size L and the transverse one L, to infinity keeping constant
Lﬁ/(1+A)/LL'

o the anisotropic aspect ratio S = Sa = ;

e the Fss parameter £, (8)/L1 (or equivalently its longitudinal counterpart).

Then, Eq. (4.4) still holds by using the correct FSS parameter. In terms of transverse quantities we
may rewrite

OL(B) ~ L*°/"* By o(t "+ JL1) ~ L*/"* Fy 0(£1 00/ L) (4.15)

Analogously, Eq. (4.6) is recast in the form

OaLL (,B,S) _ gJ—,LL (,B)
01.3,5 o (T’“’S> ! (4.16)

where we have shown explicitly the dependence on a and on the aspect ratio S. Equation (4.16)
will be the basis for our analysis of the phase transition in the DLG. For the finite-volume transverse
correlation length we will use &3 as defined in Sect. 2.4.2, Eq. (2.38). Moreover, as much of our
efforts are aimed at testing accurately the theoretical predictions of Refs. [39,40], we assume that
A = 2 for d = 2 as described in Chap. 5.
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4.3 FSS and Numerical Simulations.

Without entering too much into details (to which several papers and books are devoted) we would
outline here the basic methods usually employed to apply the general FSS argument to the numerical
simulations. We will give only a pedagogical introduction without discussing such relevant problems
as statistical errors, corrections to Fss forms and so on.

4.3.1 Standard Method

To take advantage of the scaling forms (4.4), one usually follows these steps.

e Determination of the critical temperature: One easy way to do that is to consider an observable
as the Binder’s cumulant g, (T), for which 2o = 0. The scaling form (4.2) tells us that if
one collects data taken from lattices with different sizes L1, Ls,... , L,, and plots them as a
function of the temperature T', then there will be a point where all the curves, no matter the
L which they refer to, cross each other. This point correspond to ¢t = 0, i.e. T' = T,.. The
same procedure can be applied to the finite-volume correlation length, for which z¢ = v, so,
instead of gr.(T"), one can consider &,(T")/L.

e Determination of v: For all the lattice sizes L from which data have been collected, we plot
gr(T) vs. a suitably rescaled T, given by (T'—T.)L*, where z is an arbitrarily fixed parameter
(generally x ~ 2). Then we change z and replot the data, looking for the value x; of = that
ensures the best data collapse, i.e. a superposition of curves referring to different L. This
value gives the estimate for the critical exponent v = 1/x.

e Determination of the critical exponents: Once T. and v have been determined, it is quite
obvious how to get all the other exponents. Again by using Eq. (4.4), one can determine the
value ry, of r such that plots of L="Or(T) vs. (I'—T.)L** for different L collapse onto the same
curve. The estimate is then zo = ry/xp. By analyzing data referring to different observables
(as susceptibility, magnetization, etc.) one can determine all the critical exponents.

Several cross-checks are possible, given that usually the number of independent critical exponents
is smaller than the number of observables.

4.3.2 Improved Method

We can take advantage of Eq. (4.6) to determine critical exponents. To this end we need row MC
data, at given temperatures, from pairs of lattices with sizes L and al where a > 1 is a fixed
number (if, as it is usually the case, a is not an integer, an interpolation procedure is required).
Then we can follow these steps.

o Determination of F¢: Once we have measured the finite-volume correlation length &7, (T') for
several values of the temperature T, we can determine F¢ by means of (see Eq. (4.6))

1l — Feu)/D). (4.17)

plotting the Lh.s. ratio as a function of £1,(T)/L. A fit to the data can be performed to get
our estimate for F¢.

e Determination of z*: To compute critical exponents by using Eq. (4.10), we have to know z*
as defined in Eq. (4.7). By using Eqgs. (4.6) and (4.4) we have

a = Fg(z"), (4.18)



38 Finite-Size Scaling

so that 2* can be easily determined from the fitted Fg.

o Determination of the critical exponents: Knowing the value of z* all the critical exponents
may be computed by means of Egs. (4.14) and (4.10). To determine F» one has to apply the
same method used for Fy.

An alternative method to that now discussed, uses the infinite-volume extrapolation of the observ-
ables. Indeed once F; and Fp are determined (the latter for each observable we are interested in),
we can construct the following sequence, for fixed temperature T', by using Eqgs. (4.17) and (4.6)

(L,&0(T),01(T)) = (aL,&ar(T), Oar(T)) = (@”L,€a2r(T), Oa2r(T)

s e r (00 o (T), Omn(T)) (4.19)

that leads to the infinite-volume extrapolations. In principle these are independent of the starting
value of L, but corrections to the FSS may give such a dependence. If it is not the case, we can
estimate T, and the critical exponents, in a very direct way, by analyzing the singular behavior of the
extrapolated observables. This method is particularly efficient and it has been applied successfully
to many different equilibrium models [93-99]. For a discussion of the error sources in this procedure
see Refs. [90,93].

4.4 Field Theory for the DLG and FSS

In Section 3.2 we explained why a lattice model as the DLG may be described, in the critical region,
with suitable field theories, outlining its derivation in Section 3.3. Here we want to draw further
conclusions from the theory represented by the dynamic functional (3.1).

For the structure factor the renormalization-group analysis gives the scaling form (see Eq. (3.2))

Gk, ky;m) = p 2 Gllyp™ =2 kop™ 7 /"), (4.20)

where, in d dimensions (see Tab. 3.1),

(4.21)

v =

A =

—~
oo
|
S
~

(4.22)

Wl =N =

and 7 «x T —T.. In two dimensions, for the transverse structure factor (see Eq. (2.37)), this implies
the simple scaling form

C:U_(k; ) =1 f(k? /7). (4.23)
Thus, in infinite volume we have, by using the definition (2.38),
&ij~1 7, x~T1 7, (4.24)
where v is given in Eq. (4.21) and
y=1. (4.25)

The function f(z) defined in Eq. (4.23) is trivial. Indeed, keeping into account the causality and
the form of the interaction vertex one can see that for k = 0 there are no loop contributions to
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the two-point function (and also to the response one (¢s,)). Thus, for all 2 < d < 5, G (k, ) is
simply given by its tree-level expression

~ 1
Two observations are here in order. First it is usually assumed that 7 is an analytic function of
t(= (T — T,)/T.) such that 7 = 0 at criticality and 7 = bt for ¢ — 0 with b positive constant.
Second, the function that appears in Eq. (4.26) refers to the coarse-grained fields, which, in the
critical limit, differ by a finite renormalization from the lattice ones. Thus, for the lattice function
we are interested in, in the scaling limit t — 0, k — 0, with k2/t fixed, we have

G art(kst) = Z (4.27)

1 latt\ vy - k2 +bt ’ -
where Z and b are positive constants.

On the same footing, we can conclude that all correlation functions with vanishing longitudinal
momenta behave as in a free theory. In particular, the Binder’s cumulant defined in Eq. (2.29)
vanishes (although some attention should be paid, due to the presence of a dangerous irrelevant
operator, see below). It is also important to notice that Eq. (4.27) implies the exponential decay of

G1at(zist) = /dd_lkeikh G 1 (k3 t) (4.28)

which fully justifies our definition of transverse correlation length.

In Section 5.2, we study the FSS behavior of the model. Here, we want to analyze the corre-
sponding continuum field theory in a finite geometry following the method applied in equilibrium
spin systems (see, e.g., Refs. [4,89] and references therein). The idea is quite simple. Consider the
system in a finite box with periodic boundary conditions. The finite geometry has the only effect of
quantizing the momenta. Thus, the perturbative finite-volume correlation functions are obtained
by replacing momentum integrals by sums over the allowed momenta. Ultraviolet divergences are
not affected by the presence of the box [81] and thus one can use the infinite-volume renormal-
ization constants [85,86] to render the theory finite when the regularization is removed. Once the
renormalization is carried out, one obtains the geometry-dependent finite-size correlation functions
(see, for some examples, Ref. [89]).

Following this idea, if we consider a finite box of size Ly x L, Eq. (4.20) becomes

Gk, ki Ly, L) = p Gl =2 kop S5 > Lyp 2, L™, (4.29)
which shows that at T =T,
&;(T)~L, and  x(T.)~L7" ~L%. (4.30)

Moreover, Eq. (4.26) holds in finite volume. Keeping again into account the relation between coarse-
grained and lattice quantities, we obtain for the lattice correlation function in a finite volume in
the continuum limit (i.e. in the FSs limit with k¥ — 0 keeping k?/t fixed)

Z(t; Ly, L)

GJ_,latt(kst;Ln,LJ_) = TG Ly (4.31)

where Z and 7 are analytic functions of their arguments. In the Fss limit, we expect

Z(t; Ly, L) = Z(tL%,Sa), (4.32)
T(t;Ly,L1) = L7*7F(tL%,Sa) . (4.33)
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Using these expressions, in the Fss limit we find

% ((27]_)2 +7~—(tLﬁ_,SA))_1/27 (434)
1
— 5%3(75;L||;LL)_ ~ -1
A = SGpes = [20ds0)] (4.35)

valid for ¢t — 0, L), L1 — oo with S3 and tL? fixed. Therefore, from the scaling of the correlation
length and of the amplitude A;3 we can derive the scaling functions Z and 7.

Tf we make, as usually done, the simplest approximations Z(tL2 , Sa) = const and 7(tL2 , Sa) =
const x tL?, we obtain for the scaling functions defined in Eq. (4.16) the forms

Fe(z) = [1-(1-a72)@n)22] 2, (4.36)

F(z) = Fz)=[1-(1-a?)(n)?22]". (4.37)
As we shall see, numerical data are in very good agreement with these expressions (see Chap. 5).
In the previous discussion we have neglected the possible presence of a dangerously irrelevant
operator that becomes marginal at d = 2. Its presence may modify the scaling relations (4.20),
(4.23), and (4.29). Considering G (k) (defined in Eq. (2.37)) we have

Gi(k;mi Ly, Losu) = p= Gy (kp™ s rp™ > Lyp™ =2, Lo~ up®) (4.38)

where, 0 = (d—2)/3 in d dimensions, and u is the irrelevant coupling. If the scaling function vanishes
for u — 0, one obtains an anomalous scaling behavior. In two dimensions, since the operator is
marginal (¢ = 0), we expect logarithmic corrections to the formulae previously computed. It is also
possible that logarithmic terms modify Eq. (4.16). In the absence of any prediction, we will neglect
these logarithmic violations. As it has been observed in previous numerical studies, if present, they
are small [53]. As we will discuss, this is confirmed by our numerical results.

Finally, we want to notice that the Gaussian nature of the fields at zero longitudinal momenta
allow us to write down the probability distribution of ¢(kg ). Indeed, the previous results give

P(g(kon) = & |~ 9(Kan)O Ll (o)) (439

where N is a normalization factor. From this expression we can derive the probability distribution
of M? = |¢(ko,1)|2/LﬁLﬁ_. Of course, (M) = m, (M?) = x/(L;LL) (see Eqs. (2.26), (2.27), and
(2.28)). We obtain
1
P(M?)dM? = e M/7"dM?, (4.40)
o

where

~ 1
o’=—G 21/L1) = ——x(Ly,L1). 4.41
7o G /L) = (B L) (441)



Chapter 5

Numerical Simulations

In the previous Chapters we introduced the definition of a finite-volume correlation length
(overcoming the difficulties described in §2.3), to be used when dealing with the FSs of
the DLG phase transition. Moreover we exploited the predictions for scaling functions
coming from the field theory described in §3.2. In this Chapter we would take advantage
of these achievements in order to drawn, from our MC simulations, some conclusions
about the universality class of the DLG and thus contribute also to the debate discussed
in §3.8. In §5.1 we give some detail on the setup of our numerical simulations. In §5.2
we discuss the FSS of data. In particular we take care to verify the good behavior (in
the sense described §5.2.1) of the correlation length in the thermodynamic limit. Then
we perform the FSS analysis of our data, finding very good agreement with theoretical
predictions. Qur findings seem to confirm the standard picture and then rule out the
alternative field theories discussed in §3.3. In §5.3 we present the preliminary results
that one can obtain when performing the ¥SS analysis without keeping correctly into
account the anisotropy. This kind of investigation should be relevant, as discussed in
85.3.1, to understand some numerical results which have been interpreted as evidences
against the validity of the standard field theory for the DLG phase transition. In §5.4 we
sum up our results. For further details we refer to Refs. [69,70].

5.1 Setup

We studied the phase transition of the DLG in two dimensions by Monte Carlo simulations. Our aim
was to check the validity of the FSS assumptions and eventually use the FSS to compute the critical
exponents. The observables we consider are those described in Section 2.4. We use the dynamics
discussed in Sect. 2.1, with Metropolis rates, i.e. we set

w(z) = min (1,e77). (5.1)

Simulations were performed at infinite driving field E: Forward (backward) jumps in the direction
of the field are always accepted (rejected).

The dynamics of the DLG is diffusive and the dynamic critical exponent is expected to be
z; = 4 [39]. Thus, it is important to have an efficient implementation of the Monte Carlo sam-
pling algorithm in order to cope with the severe critical slowing down. Details of the algorithmic
implementation used can be found in Ref. [69]. A multi-spin coding technique is used to evolve
simultaneously 128 independent spin configurations (this number has been chosen to optimize the
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number of single-spin sweeps per second, see Ref. [69] for details) with a speed of 2.7-10® spin-flip /sec
on a Pentium processor.

First of all our aim has been the test of the theoretical predictions of the standard field theory
for the DLG, see Sect. 3.2 and Sect. 4.4. Thus we assume that the “correct” Fss limit has to be
done with Sy = Ly /L% kept constant, i.e. A =2['].

The sizes of the lattices we have considered are (L,L1): (21,14), (32,16), (46,18), (64,20),
(88,22), (110,24), (168,28), (216, 30), (262,32), (373,36), (512,40), (592,42), (681,44), (778,46),
(884,48), for which Sy ~ 0.2. The temperatures at which we have simulated the DLG are §: 0.28,
0.29, 0.3, 0.305, 0.3075, 0.31, 0.3105, 0.311, 0.31125, 0.3115, 0.31175, 0.312, which all lie in the
high-temperature disordered phase (albeit very near to the critical point).

It is very important to be sure that the system has reached the steady-state distribution before
sampling. Metastable configurations in which the Markov chain could be trapped for times much
longer than the typical relaxation times in the steady state are a dangerous source of bias. In the
DLG, configurations in which multiple stripes aligned with the external field are present are very
long-lived and it is possible that they persist for times comparable to those of typical simulation
runs (an analysis of the dynamics of DLG below the critical temperature and thus of metastabilities
in domain growth, can be found in Ref. [76]), thus effectively inducing a spurious geometry on
the system. To avoid the formation of stripes, we took care to initialize the larger systems by
rescaling suitably the thermalized configurations of the smaller ones (where the metastable states
decay faster) with the same temperature and value of S,.

We computed the autocorrelation time 7, for the susceptibility x. Such an observable is expected
to have a good overlap with the slowest modes of the system, so that 7, should give a good indication
of the number of sweeps required to generate independent configurations. We found that, for one of
the lowest temperature we considered (8 = 0.311), 7, & 900, 1400, 2700 sweeps, for L = 20, 24,28
respectively, where a MC sweep is conventionally defined as the number of moves equal to the
volume of the lattice. For this reason, in order to have approximately independent configurations,
we measured once every 1500 sweeps for every value of 3.

For each geometry and 8 we collected approximately 3-10° measures. We would not report here
the raw MC data, as they can be found in Ref. [69].

The statistical variance of the observables is estimated by using the jackknife method [80]. To
take into account the possible residual correlations of the samples, we used a blocking technique
in the jackknife analysis. In the standard jackknife method the variance estimator is obtained
discarding single data points. In the blocking technique, several variance estimators are considered,
discarding blocks of data of increasing length and monitoring the estimated variance until it reaches
a maximum.

5.2 FsS Analysis of Numerical Data

Here we discuss some of our numerical results concerning the FSS analysis of the DLG, done following
the general strategy described in Section. 4.3.2, which heavily relies on the correlation length, see
Sect. 2.4.2.

5.2.1 Thermodynamic Limit for &,

In Sect. 2.4.2 we introduced a definition for the finite-volume correlation length. We would test,
first of all, that it has a well-defined thermodynamic limit, independently of the particular geometry
chosen. Indeed for fixed temperature T' # T, (T. being the critical one), we expect an infinite-volume

I This value is obtained by a naive extrapolation of the exact result Eq. (4.22) down to d = 2.
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limit independent of how this limit has been taken, given that whenever both sizes (we have in mind
the two-dimensional DLG) exceed the typical length through which correlations are established, the
observables should not change with the actual geometry of the system. This statement is nothing
but the very requirement of the existence of a thermodynamic limit. Of course there are systems
(for examples those with long-range interactions, see the discussion and references in Ref. [33]) for
which this is not true. Given the generic long-range correlations in the DLG, it is not obvious a
priori what the behavior of the introduced correlation length could be. So we test numerically that
&13 (which in the following will be called £1), introduced in Sect. 2.4.2, has a good thermodynamic
limit independently of the chosen geometry, that is, in particular, of the specific Sa kept constant.
To this end we considered not only the lattices mentioned above with S, constant, but also a
sequence of systems for which S; is constant and with L, ranging from 14 to 48 as above. With
the aim to test the theoretical prediction on the finite-size corrections to the correlation length:

2

2(8) = £2(B) + 17; + corrections , (5.2)
we introduce the following quantity
_ e
(8) = §L2(/3) 72 (5.3)

where, hereafter, L = L, . A good behavior of {1, as L. — oo is reflected in a good behavior of 71, and
vice-versa. Moreover we expect from Eq. (5.2) that 7p will be constant (apart from corrections) for
large L when the shape factor Ss is kept constant, but not otherwise. Indeed, as Fig. 5.1 shows, a
good thermodynamic limit seems to exist for every value of 8. As expected, when the temperature
approaches the critical value, it is necessary to use larger and larger lattices to see the convergence
to the infinite-volume limit (as a consequence of the fact that correlations are established on a
much bigger scale). At 8 fixed we expect the convergence to become eventually exponential in L.
However, for lattices with S, fixed we observe an intermediate region of values of L in which 7,
is apparently constant. Such a region widens as  approaches the critical point and is therefore
consistent with the relation (5.2), that is

-2 2 4r®

E2(8) () = &5°(B) - T (54)

in the FSS limit L — oo, T' — T.. But this happens only for the geometries with S» constant. Of
course we are neglecting, in the previous equation, the subleading corrections that will depend in
general on the specific value chosen for S, and are particularly small for our choice Sz ~ 0.200.
Note also that when S is kept constant, the corrections to the infinite-volume limit are larger. This
has to be expected since the geometries with S; constant tend to be smaller than those with S
constant when comparing system with the same transverse size, as we do here.

5.2.2 Fss for the Observables

The good behavior of 71 hints that it should be possible to extract the infinite-volume limit 7
directly by fitting 71, for large enough L, with the constant value 7o, = 1/£2.

Table 5.1 shows the results of fitting 71, (8) as a function of L within the linear approximation
Too(B) + a(B)L~2 discarding the observations with I < Lg;, where L, has been chosen to have
a reasonable value of the sum of squared residuals R2. In the table the critical values of R? at
the 95% confidence level based on the x2 statistics are also reported and show that almost all the
fits are consistent (only two of them have R? > R? and this is statistically compatible with the
95% confidence level). The value of the parameter Too ﬂ) gives then our preferred estimate for the
infinite-volume correlation length £ (8) = 1/1/7e0 (8



44 Numerical Simulations

0.09 0.05 [
| = F p=0.3075
00ss |- B=0.3 o o o 0045 F B
L o £ o @) @)
o 0.04 — @]
008 [~ 06 0© o o o O
o 3 Qg0 o ~ 0035 fole
@ E °
0.075 (IS ° F
| e o ° 003 | °
[ £ oo [
0.07 0025 oo © o
0065 11111111111111111111111111111111111111 0'02k11111111111111111111111111111111111111
0 005 01 015 02 025 03 035 04, 0 005 01 015 02 025 03 035 04,
L2 x10 L2 x10
003 [ 003 [
0.025 } B:0311 o o 0.025 } B:0312
E o O E
. O .
0.02 O 0.02 e}
E 00 © E 5 © o) o
= 0015 @@po ° 0015 0©
£ ° £ d:)oo
001 F 001 F (@Q )
[ oo © e o ° F °
0.005 ? 0.005 ? e ® © o °
0 llllllllllllllllllllllllllllllllllllll \\\\‘\\\\‘\\\\‘\\\\‘lllllllllllllllllll
0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04
L2 x 10 L2 x10

Figure 5.1: 7, for different geometries as a function of the inverse temperature . Filled (respectively
empty) points refer to geometries with Sy (respectively S;) fixed. Here Sy = 0.200, S; ~ 0.106.
Errors are smaller than the sizes of the points.

The same kind of analysis on the data referring to geometries with S; constant is not reliable.
Indeed they are clearly affected by larger corrections and thus any extrapolation could not be
reliable without the knowledge of their analytic forms.

A simple argument shows that Eq. (5.2) implies v = 1/2. Then, given the values of 7o (8) we
can both check the expected value of v and take advantage of it to estimate the critical value of .

We fitted
2v
-1

Teo(B) = A ‘ , (5.5)

B
Be
for B > Bmin choosing for Bmin the lowest value for which R? < R? (here and in the following we

will use always critical values at the 95% confidence level) and we obtained B, = 0.31, N = 4,
R%? =42 (p=0.38[?], R2 = 9.48), A = 1.09(31), 8. = 0.312557(93),

v = 0.4605(32) . (5.6)

Adding analytic corrections to scaling does not give better results.

A better estimate of 3. is obtained by fixing v = 1/2. In this case Bmin = 0.31, N = 5, R? = 5.56
(p = 0.35, R? = 11.07), A = 1.540(24), 8. = 0.312670(26). Adding the first analytic correction to
scaling, i.e. fitting with

Too(B) = A|B/B. = 17" (1 + B|B/B. — 1]) , (5.7)

2With p we indicate the probability for R to be bigger than the value found in the fit, assuming a x?v distribution.
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B Imn |N | RZ | R Too a
0.28 22 4 [312 | 949 |0.2397(13) | -5.44(37)
0.29 22 4 | 276 |9.49 |0.15309(87) | -4.19(56)
0.3 22 4 509 |949 |0.07607(35) | -2.02(24)
0.3025 | 22 4 519 |9.49 |0.05864(36) | -1.30(25)
0.305 | 24 8 | 14.63 | 15.50 | 0.04382(26) | -1.91(26)
0.3075 | 26 2 1070 |6.00 |0.02961(52) | -3.33(67)
0.31 22 4 1829 |9.49 |0.01309(11) | 0.310(74)
0.3105 | 22 4 | 757 |9.49 |0.01069(18) | 0.09(13)
0311 |24 7 | 14.78 | 14.08 | 0.00852(21) | -0.17(18)
0.31125 | 22 4 265 |9.49 |0.00703(11) | -0.012(72)
0.3115 | 22 4 | 856 |9.49 |0.00586(14) | 0.01(13)
0.31175 | 24 3 1921 |7.82 |0.00421(20) | 0.49(19)
0312 |28 6 | 11.46 | 12.59 | 0.00348(16) | 0.01(20)

Table 5.1: Fit of 77, (8) with 7o, +aL~2 (for Sy constant): Ly, is the minimum value of L allowed
in the fit, N are the degrees of freedom, R? is the sum of square residuals and RZ is the critical
value for R? at the 95% confidence level based on a x? distribution with N degrees of freedom.

gives (with the same value of Byin = 0.31) N =4, R? = 4.02 (p = 0.40, R? = 11.07), A = 1.70(13),
B. = 0.312603(54) and B = —15(12).
Then we consider as our best estimate of the critical temperature:

B. =0.312603(54). (5.8)
This result should be compared with the existing determinations:

0.3108(11)  Ref. [52];

[52]
0.3125(13)  Ref. [54];
[72]
[77]

Be = (5.9)

0.3155(9)  Ref. [72];
0.31250(97) Ref. [77].

Our estimate Eq. (5.8) is in fairly good agreement with all of them (the agreement not so good in
the case of Ref. [72]), although more precise.

The good Fss behavior of the correlation length is witnessed by the plot of &ar, /&L vs. &/L in
Fig. 5.2. The solid line is the theoretical prediction Eq. (4.36) with o = 2. It is clear that as the
size of the system increases the points converge towards the theoretical curve. Let us emphasize
that in this plot there are no tunable parameters involved, at variance with the case of usual Fss
plots, as discussed in Sect. 4.3. So the observed collapse is very remarkable. To get rid of the quite
small corrections to Fss still present, in Fig. 5.3 we plotted &ar /€L vs. &ir/2L. In this way, the
values on the abscissa, should have smaller corrections given they refer to bigger lattices, improving
the quality of the plot.

Next we checked the Fss behavior of various observables, plotting Oar,/Op, vs. &1, /(2L). The
plot of the susceptibility is reported in Fig. 5.5 and it has the same features already discussed for
the plot of £. In Fig. 5.4 we report the amplitude A, defined in Eq. (2.40), which the theory predicts
a dimensionless quantity in the RG sense (no anomalous dimension). The error-bars seem quite
large, due to the very small range in the vertical axis. We note that the points show the right trend
towards the theoretical prediction, shown as a dotted line.

The plot for the magnetization, in Fig. 5.7, shows a reasonably good collapse of data points.
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As we described in Sect. 4.3.2, it is possible to determine the ratio between critical exponents
by looking at the curve Oar/Or vs. €ar/(2L), as those presented here. To this end we have to
determine, first of all, the value of &, /2L at criticality, which is nothing but the value corresponding
to &ar, /€ = 21in Fig. 5.3. Given the good agreement between numerical data and analytic prediction
Eq. (4.36), we assume for critical &»1, /2L the theoretical value 1/27 ~ 0.159. We look at the value
of the ratio mar/my at the critical point, i.e. corresponding, in Fig. 5.7 to the abscissa 0.159,
which turns out around 0.5 (without any precise determination or fitting procedure we can say
that a reasonable range of values is 0.500(25)) By using Eq. (4.10) we can conclude that /v ~ 1
(1.00(7) using the previous estimate) in agreement with the theoretical prediction, see Tab. 3.1,
and definitely different from 8 ~ 1/3 (v = 0.4605(32)), found by some authors (see Tab. 3.2). As
far as v is concerned, it may be computed from the FSS plot of the susceptibility. Assuming as a
rough estimate of xar,/x 1, at criticality the value 4.00(25), we find /v = 2.00(9). We sum up these
(rough) estimates in Tab. 3.2.

Following the general strategy outlined in Sect. 4.3.2 it is possible to give much more precise
estimates of critical exponents. We have reported here only the results of a preliminary analysis
(details can be found in the revised version of Ref. [69], to appear), giving rough, but already
satisfactory, estimates of critical exponents. Also the extrapolation to the thermodynamic limit of
the considered observable should give, as above, results consistent with the theoretical predictions
reviewed in Sect. 4.4. Indeed, give data points collapse quite well onto the theoretical predictions
for the scaling functions, we expect that the extrapolations based on suitable fits of data will give
the expected results. Of course a careful analysis of statistical uncertainties has to be done.

The behavior of the Binder’s parameter, reported in Fig. 5.6, seems to lead to a good data
collapse. A rough estimate of the anomalous dimensions of g would give in this case z,/v ~ —0.4
meaning that g = 0 at the critical point and g(L) ~ L~°2 for L — oo. This is in agreement with
the idea that transverse fluctuations are Gaussian (nevertheless some attention has to be paid when
making statements about the behavior of the finite-size Binder’s cumulant, see Ref. [71] for details).

The plot in Fig. 5.8 shows some preliminary results about the parallel correlation length &,
defined analogously to the transverse one by looking at the structure factor for small parallel
momenta (and vanishing transverse ones). The correlation length plotted in Fig. 5.8 is obtained,
in particular, by using the first and the second non-zero parallel momenta (it is the analogous of
&12). This plot is not very illuminating given the presence of very strong corrections to scaling. We
remark only the fact that increasing the lattice sizes, points move downwards and leftwards. To
get some useful information we plotted in Fig. 5.9, &1 /Ly vs. £z /L. The huge corrections to Fss
are still evident, but the general trend is now clear. With a given marker we indicate a specific
temperature, and points corresponding to increasing lattice sizes move from right to left. We can
see that at least for sufficiently large sizes, points collapse onto a well-defined FSs curve. This fact
allows us to conclude that §,1(8;) o< L = L3, and thus v = 3v. The same conclusion could be
drawn from Fig. 5.8, having now in mind that there is an underlying scaling plot, although hidden
by huge corrections in the smallest lattices. Looking only at the biggest ones (L = 22(¢), 24(%))
we can say that &) o1 /€),0(8.) ~ 8 and thus, again, v /v ~ 3 (of course a more careful analysis is
required).

5.3 Fss with S fixed

The results reviewed in Sect. 5.2 make us fairly confident that Sy is the right shape factor to be
kept constant when doing a FSS analysis for the two-dimensional DLG. Nevertheless we will explore
in this Section the possibility of having a good Fss behavior (with somehow “effective” exponents)
also for Sy not constant. In particular the striking results of Ref. [72] which we would compare
with, are obtained, as discussed in Sect. 3.3 with a FSS analysis done keeping constant S, that
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implies a vanishing S» as the size increases.

5.3.1 Aim

It has been shown, in Refs. [52,53], that crossover effects could play a crucial role when discussing
FSs of strongly anisotropic systems. Generally speaking, it is a well-known fact, supported also by
exact solutions (see, e.g. the work on the Kasteleyn model of dimers on the brick lattice [88]), that
keeping constant the “wrong” shape factor (i.e. changing the correct one with the size) may lead to a
crossover between finite geometries and striped ones. The exponents appearing in the Fss functions
are exactly those expected for the limit geometry, keeping into account the strong anisotropy, and
do not depend on the specific way with which the correct shape factor is changed with the geometry.
In some cases, however, it seem possible to have a non-trivial ¥ss limit of observables in which the
exponents appearing in the Fss functions have such a dependence. This leads to effective exponents
depending on the particular way in which the FSs limit is performed (see Ref. [71] for details and
for an analysis of the behavior of the Spherical Model, in which such a strange behavior can be
traced back to the presence of Goldstone bosons in the low-temperature phase). In the specific case
of the DLG the situation is even less clear given the additional presence of the dangerous irrelevant
operator (see Eq. (4.38)), leading to a violation of hyperscaling relations, whose effects on the
scaling behavior are not well-understood at least with respect to FsS. In particular the presence
of such an operator is expected to give rise, as in equilibrium, to an “effective” length scale which
should appear somewhere in scaling functions. In Refs. [52,53] a scaling theory has been developed,
following closely the analogy with the case of the dangerous irrelevant coupling of ¢* theory above
the upper critical dimension, to take into account both the presence of this operator and the possible
singular behavior arising when the correct shape factor is not kept fixed. This problem has been
also discussed in Ref. [59], following again a phenomenological approach for finite-size observables
right at the critical point.

It seems to us worthwhile to study this problem by using the approach to FsS described in
Sect. 4.3.2. We expect that Fss plots done in that way (with no tunable parameters and thus more
robust) could give some useful hints, also in view of the debate on the universality class of the DLG.
Some of the claims done in the literature (see Sect. 3.3) could be accounted for once the possible
crossover towards a non-trivial scaling function has emerged also in the case of “wrong” Fss.

5.3.2 Preliminary Results

Here we report the preliminary results of simulations done in lattices with a fixed value of S; =
Ly/L?.

” We considered the following geometries with S; = 0.106 constant: (20,14), (27,16), (34,18),
(42,20), (51,22), (61,24), (72, 26), (83,28), (96, 30), (109, 132), (123, 34), (138, 36), (154, 38), (170, 40),
(188,42), (206,44), (225,46), (245,48). And the following values of 5: 0.27, 0.28, 0.29, 0.3, 0.305,
0.3075, 0.31, 0.3105, 0.311, 0.312. We do not report here the raw data, which can be found in
Ref. [71].

In Fig. 5.10 we reported the plot for &ar /&L vs. &r/L in the case of fixed S;. It shows larger
corrections (i.e. the scaling looks worser) compared to that obtained with S2 constant (see Fig. 5.3).
This fact is somewhat natural given that the geometries considered here are smaller compared to
the those with S» constant and the same L. In any case (whatever the scaling holds or not), the
most relevant feature of the plot is that & /& < 1.85, in the range of values assumed by &1, /L.
We expect, on the other hand, that at criticality &1, /€L = 2. This could mean that the values of
B considered here are still too far from the critical point. But this does not seem the case given
that the temperatures reported in Fig. 5.10 are the same as those used when studying FSs with
Sy constant and we have data up to S = 0.312, quite near to the determined 8. ~ 0.3126 (we
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remark that the critical temperature, being referred to the thermodynamic limit, should be well-
defined whenever the latter exists). Thus even if we assume that the spread of data in Fig. (5.10)
is simply a consequence of important corrections and that when they are vanishing a well-defined
FSS curve is recovered, something peculiar is happening. This point of view is consistent with the
idea that an “effective” scaling could be obtained, albeit with stronger corrections, also when the
Fss is performed keeping constant the “wrong” shape factor.

To understand the scaling behavior of £, at 5. we took the data with g = 0.312 and, assuming
€r(Be) o L%, we tried to estimate ag. To do this we proceeded as follows: Given that L, is an
increasing sequence of values of L at our disposal we computed the ratios

_ 1og(ér,,.(8)) —log(ér. (8))
" log(Ln+1) - log(Ln) ’

(5.10)

with the corresponding statistical errors. Note that if £, L} we have r, = as. We estimated
a¢ fitting the r, with a constant. The best fit is obtained considering data with L > Ly, = 24
and gives ag = 0.847(13) with R? = 3.765 and N = 10. The same procedure may be applied for
the susceptibility x, whose plot is given in Fig. 5.11. Assuming the same value of L, we get,
ay, = 1.676(16) with R? = 6.210 and N = 10. For m (with the same Lin): am = —0.6787(91) with
R? = 8.260 and N = 10.

Note that the determinations of a¢, a, and a,, are consistent with the equations a, = 2a,
A = Gy /2 — 3/2 obtained from the relations

2 XL

: 11
xwodh, md o (5.11)
valid for the mean-field theory.
These findings suggest that the appropriate Fss form in this case could be
€n/Le = F(bco/Lewr),  X1/Let = F}(€oo/ Len), (5.12)

where Leg = L%¢ is an effective length scale entering the Fss functions (related to the dangerous
irrelevant operator?). Note that a similar result was found (in the same limit Sy — 0) by Leung [52,
53]. Fig. 5.13 show the good data collapse obtained by plotting &»1, /&L against &1 /(2Les), as it
should be if Eq. (5.12) is correct.

We would not discuss this point further given, that our investigation is still in a preliminary stage
(see Ref. [71] for more details and conjectures). We are confident, however, that partial explanation
of some of the numerical controversies originate from peculiarities in the Fss of anisotropic system.
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Figure 5.2: Fss plot for ¢ with @ = 2. Marks are as follows : L = 16(0), 18(0), 20(A), 22(9),
24(%). On the right &1 /&L is plotted against &r,/(2L) to reduce the effects of corrections to Fss.
The lines are the theoretical prediction.

5.4 Summary

Summing up, in Refs. [69,70] we have performed a thorough check of the theoretical predictions for
the DLG.

First of all we checked the existence (in the sense specified in Sect. 5.2.1) of the thermodynamic
limit for the correlation length defined in Sect. 2.4.2, and on which our FSS analysis is based.
We remark that, at least to our knowledge, we determine for the first time a sensible correlation
length, measurable in MC simulations, with a good behavior in finite volume. Assuming A =2, we
checked that the transverse susceptibility x and the transverse correlation length &;3 have the correct
behavior in the sense that, apart quite small corrections, data point collapse onto some curves and
the resulting FSS plots agree with theoretical predictions. Moreover we have been able to probe the
FSS regime of the DLG in much deeper detail than done in previous works in the literature, first of
all avoiding the quite questionable technique of data collapse to determine the critical exponents.
Indeed, the goodness of the observed collapse, is usually judged by eyes inspection: In doubtful
situations like ours, a more quantitative and constrained approach is required to make strong checks
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prediction of Fss with Sy fixed, for comparison.
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on the Fss behavior. We want to stress again that the Fss functions obtained from numerical data
referring to lattices with Sy kept constant agree fairly well with the theory without any parameter
tuning. This give strong evidences that the correct scaling limit is that obtained in this way. The
prediction of v, v and § are consistent with the mean-field behavior of the transverse correlations
as predicted by the standard field-theoretical approach described in Chap. 3.

It is important to notice that in all these analyses we have not found any evidence of the presence
of logarithmic corrections. As it has been observed in previous studies [53], if they are really there,
they are quite small.

Our result for the Binder’s parameter g seems to be not in agreement with that of Refs. [52,53]
where it was found g # 0 at criticality, but confirms the results of Wang [54] that could not find a
satisfactory collapse for the Binder’s parameter. He traced back this fact to possible correction to
Fss and effects due to the interfaces [54]. Our result g = 0 is compatible with the idea that in the
scaling limit transverse correlations (both in infinite volume and in the finite-size scaling regime)
are Gaussian, so that g = 0 at criticality.

We mention that it is also possible that g decreases as a power of log L because of the marginal
operator, but that, in our range of values of L, the complicated logarithmic dependence is mimicked
by a single power. Note that, if go(8:) = 0, the Binder’s parameter cannot be used to compute
Bc: The crossing method should not work. We refer for further comments and discussions on this
point, to Ref. [71].

An analysis of the data taken from geometries with S; constant is under consideration in order
to understand the nature of the discrepancy between the recent claims made in the literature [72]
and our results [71].






Chapter 6

DLG: Conclusions

In this Chapter we summarize our results and the main perspectives of the work described
in the previous Chapters.

6.1 Results

Following the ongoing discussion on the field-theoretical approach to the DLG phase transition
(briefly reviewed in Section 3.3), we pointed out some troubles in the field theory proposed in
Ref. [62], particularly evident when trying to study the theory in finite volume (in order to determine
analytically the Fss functions).

To clarify some aspects of the FSs in the DLG we studied a simple exactly solvable equilibrium
model. We investigate possible definitions of finite-volume correlation length, taking into account
peculiarities due to the absence of the zero mode (as it is the case of the Lattice Gas) [109].

Then, by a heuristic extension of these findings, we defined a suitable correlation length also for
the DLG.

By using it, it was possible to apply the Fss analysis of Ref. [90] to the numerical data from the
MC simulations of the DLG, for the first time in non-equilibrium phase transition.

Results of the anisotropic FsS analysis seem to confirm the standard picture of this phase tran-
sition, even though some aspects require further investigations, see Section 5.4.

6.2 Perspectives

As we said, a new challenge is issued by Refs. [72,77]. There are several things to understand:

e Are scaling plots in Ref. [72] affected by a shape crossover as pointed out in Refs. [52, 53] for
data in Ref. [60]7 If this is the case, why there is such a surprising overlap with Fss functions
for RDLG?

o If numerical result of Ref. [72] are not affected by such an effect and their claims are correct,
why our results do not agree with theirs? Are they affected by correction to Fss? We have
to say, to this respect, that lattice sizes employed in Ref. [72] (from 20 x 20 to 125 x 50) are
comparable with ours (from 32 x 16 to 512 x 40).

e If, eventually, the standard picture of DLG is not right, what we can say about the field
theoretical approach to the DLG phase transition? And if the criticisms in Refs. [61,64,66,72]
are correct, why does their proposed alternative field theory work?
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e Are standard methods to detect Fss sufficiently robust also in the case of non-equilibrium
phase transitions?

e The dangerous irrelevant operator neglected so far is really negligible in two dimensions?
e What is going on in the striking short-time dynamic Mc results of Ref. [77]?

Answers to these questions in the simplest case of the DLG may be quite relevant to the whole field
of non-equilibrium phase transitions, and to their theoretical understanding.

DLG Generalizations

Studying some of the many generalizations of the DLG (for a description see Ref. [35]) would allow
us to collect evidences either against or supporting the various arguments proposed. We have
to analyze (applying Fss technique described in Section 4.3.2) already collected McC data on the
two-temperature model! and on the DLG in d = 3. The latter case may be especially relevant to
determine the influence of the irrelevant coupling onto the two dimensional DLG. We would also
get insight into this problem by studying simplified one dimensional models, where it is possible to
check some conjectures on general properties of non-equilibrium phase transitions.

1t is defined as a lattice gas with Kawasaki dynamics in which Metropolis rates are determined according to
the Hamiltonian (2.4), with J > 0, but different temperatures 7', 7}, according to the direction of the proposed
particle-hole exchange, see Refs. [21,35,41-43].



Chapter 7
Aging

In this Chapter we briefly introduce the phenomenology of aging phenomena as observed
in the dynamics of various physical systems, in particular spin glasses and other dis-
ordered models (systems with slow dynamics). Then, in §7.2 we focus our attention
on aging in the case of unfrustrated, non-disordered systems, reviewing some results on
the (low-temperature) coarsening dynamics, in §7.2.1, and on the (high-temperature)
relazation from an initial state in §7.2.2. Then, in §7.2.3, we introduce the fluctua-
tion-dissipation ratio which will be our main concern in Chapters 8-9. We discuss, in
§7.2.4 some general properties of non-equilibrium critical dynamics, reviewing also some
analytical results available on the Spherical Model. The importance of a field-theoretical
approach to determine the universal aspects of aging behavior is also stressed in §7.2.5.

7.1 Aging Phenomena

Complex systems such as glasses, spin glasses and, more generally, disordered systems with quenched
disorder show very interesting dynamical behaviors depending on temperature and time-scale ranges.
After some successes in describing the putative equilibrium state of such systems, much more at-
tention has been paid to their dynamics. Recent reviews of progresses in this direction are listed
in Ref. [111]. One of the most striking dynamical behavior is that of aging (observed for the first
time in amorphous polymers, see the early account in Ref. [112]), characterized by the fact that
physical properties of the system depend on its thermal history. Many different aging systems have
been studied both numerically and experimentally, and these evidences have called for a theoretical
investigation of the phenomenon.

Aging is mainly due to the fact that the system, say, for example, a spin glass at low temperature,
does not reach thermal equilibrium even after a “macroscopic” time has elapsed since the last
perturbation on the system. In real experiments (see, e.g. Ref. [117]) and numerical simulations
(references can be found in Ref. [111]) it is possible to observe this kind of behavior by looking
at the slow time dependence of the properties of the system under study. For example consider a
spin-glass sample at high temperature and quench it rapidly to a temperature 7' below the glassy
transition, so that 7' is reached at time ¢ = 0. Then apply a weak oscillating external field of a
given frequency w, and measure the susceptibility x of the sample. As a consequence of aging, we
observe a slow continuous decrease of the amplitude of x as a function of the time ¢ elapsed since
the sample has reached the final temperature T'. Thus x = x(w,t), i.e. the response of the system
to a perturbation depends on its thermal history. For many spin glasses the shape of x(w,t) may
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be well approximated as (see Ref. [111] and references therein)

X(w,t) = A(wt) " + xs7(W) , (7.1)
at least when wt > 1. A is a temperature-dependent amplitude and b takes usually value in the
range 0.1 — —0.4. The parameterization (7.1) shows that there are two distinct contributions: One

is the stationary part of the response xs7(w) which is independent of the waiting time ¢. The other
is not stationary, and indeed it depends on ¢, the age of the system. Moreover it is a function of
the scaling variable wt. Generally, in a system with a finite relaxation time tg, the susceptibility
X is expected to be a function of wtg. Thus, for an aging systems, we can say that the “effective”
relaxation time is given by the age of the system itself.

Many quantities and various methods have been introduced to characterize aging behavior, as
well as suitable theories to account for it (see, e.g. Ref. [113]), but we would not further discuss
this point in the case of disordered systems (we refer to Ref. [111]).

7.2 Aging in Non-disordered Systems

Although firstly studied in glassy and disordered systems [112], aging phenomena may be observed
also in non-disordered ones [118,137].

7.2.1 Coarsening Dynamics

Consider a ferromagnetic model in its high-temperature (disordered) phase, at the initial time ¢ = 0,
and quench it to a given temperature T'. We first discuss briefly the case T < T,, in which the
relevant feature of the dynamics is the growth of order through domain coarsening (see Ref. [137]
for a comprehensive review). Calling ¢ the order-parameter field, we can study the dynamics of
its fluctuations by looking at the two-point correlation function Cx(t,s) = (¢x(t)do(s)), where ()
stands for the mean over the stochastic dynamics. Of course, the presence of an initial condition for
the dynamics causes a breaking of the time-translational invariance of the systems, i.e. we expect
that Cx(s + 7,s) (with 7 = ¢t — s, assumed to be > 0 in the following) differs from Cx(7,0). This
translates into the fact that the Fourier transform of this function depends on both w and s, as
observed in typical experiments (see the discussion at the end of Sect. 7.1).

Consider, now, the simpler case of an Ising ferromagnet!. In that case we expect that after the
quench, domains of positive and negative magnetization start coarsening. The typical domain size
£(s) at time s after the quench, is expected to grow as a power law (or even slower when impurities
are present). Equilibrium? is reached after a relaxation time tg such that £(tg) ~ L, where L is the
typical size of the sample. As a consequence, for a macroscopic sample (or in the thermodynamic
limit), the non-equilibrium behavior will persist long enough to be observed on macroscopic time
scales. We expect that, in this regime, some aspects of dynamics should be universal, in the sense
that they do not depend on the microscopic features of the system, provided they refer to time scales
much longer than the typical microscopic ones. In the large N limit, the problem of coarsening
dynamics for a non-conserved N-component vector field may be solved exactly [121,137]. The
model displays an aging behavior, as we can see from the form of the correlation function

Co(T + 8,8) = Csr(7) + Cac(£(s)/b(T + 35)) . (7.2)

'In the case of more complicated order parameters the coarsening dynamics involves the formation of topological
defects as vortex, strings, monopoles, etc. See Sect. 3 of Ref. [137] for a discussion.

2We mean, here, equilibrium (and ergodicity) within one ergodic component, in the sense that time averages and
ensemble ones may be exchanged only if tg < t < tgrqg, where tgrae is the typical time required to reverse the
magnetization of the sample, see, e.g. Ref. [113].
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The first term describes the spin correlations inside a domain and it is equal to that in equilibrium,
when only one infinite domain is present. The second term, responsible for the aging behavior, is
related to the motion of domain walls (see Ref. [111]). We note that the system behavior for s — oo
may be different depending on whether 7 is finite or not. In the former case a stationary non-
equilibrium regime is reached, while in the latter, characterized by £(s)/¢(T + s) < 1, the systems
is in the aging or coarsening regime. Moreover we expect

lim lim Co(7 +s,8) = M?, (7.3)

T—00 §—00

where M is the spontaneous magnetization.

7.2.2 High-temperature Relaxation

Our main concern, in the following, will be the case of a quench to a temperature T' > T,.. During
the relaxation a small external field h is applied at x = 0 after a waiting time s. At time ¢ the
order parameter response to h is given by the response function Rx(t, s) = (¢« (t))/dh(s), which is
nothing but the susceptibility x measured in experiments. The time evolution of the system may be
characterized by two different regimes: A transient behavior with off-equilibrium evolution, for ¢ <
tgr, and a stationary equilibrium evolution for ¢ > tg, where ty is the relaxation time. In the former
a dependence of the behavior of the system on initial conditions is expected, while in the latter time
homogeneity and time-reversal symmetry (at least in the absence of external fields) are recovered;
as a consequence we expect that for tg < s,t, Rx(t,s) = R&(t—s), Cx(t,s) = C29(t—s) where R
and C*? are determined by the “equilibrium” dynamics of the system, with a characteristic time
scale diverging at the critical point (critical slowing down). Moreover the fluctuation-dissipation
theorem (discussed in some detail in Sect. 1.2) implies that

1dC(n)

R (r) = T dr

(7.4)
When the system is not in thermal equilibrium all the previous functions will depend both on s (the
“age” of the system) and t.

7.2.3 The Fluctuation-Dissipation Ratio

To characterize the distance from equilibrium of an aging system, evolving at a fixed temperature
T, the fluctuation-dissipation ratio (FDR) is usually introduced [116]:

T Ry (t,s)
Xx(t,s) = ———————= . 7.5
x( ’ ) 65Cx(t,5) ( )
This ratio is equal to 1 whenever the fluctuation-dissipation theorem applies. On the other hand,
if aging takes place, Xx(t, s) is expected to be a non-trivial function of both the time arguments.
For a wide class of systems in their low-temperature phase, ranging from glassy one to ferro-
magnetic models, it has been found that X can be expressed as a function of Co(t, s), i.e.

XO (t7 S) = X(CO (t7 S)) ’ (76)

for 1 € s ~ t. Many attention has been recently paid to the function X defined above, given it has
been proved to provide very useful links between static equilibrium properties and non-equilibrium
dynamics [34]. Moreover, by using X, one can distinguishes three main types of low-temperature
behaviors (see Ref. [115] for a summary). When domain growth takes place, X (C) is discontinuous
in C, taking a first value equals to 1, in the non-equilibrium stationary regime discussed above, and
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a second one equals to 0. For spin glass models with p-spin interactions X (C) is discontinuous as
in the previous case, but the second value it takes is different from 0. For continuous spin glass
model, instead, X (C) is non-trivial.

In recent years, several works [34,111,114,118-120,123] have been devoted to the study of the
FDR for systems exhibiting domain growth (see Sect. 7.2.1), and for aging systems, showing, as
expected, that in the low-temperature phase X (t,s) turns out to be a non-trivial function of its
two arguments. In particular analytical and numerical studies indicate that the limit

Xx:O - Sliglo tlingo XX:O(tJ 8), (77)
vanishes throughout the low-temperature phase both for glasses and simple ferromagnetic sys-
tems [114,119].

Only recently [118,122,124-127] attention has been paid to the FDR, for non-equilibrium, non-
disordered, and unfrustrated systems at criticality. It has been argued that the FDR (7.7) is a novel
universal quantity of non-equilibrium critical dynamics (see Sect. 9.1).

The value of X2 has been determined for the models reported in Tab. 7.1. In all cases it has
values ranging between 0 and 1 while for some urn models a different range has been found [131].

| Model |T<T.|] T=T. |T>T.|
Random Walk® [118] — 1/2 —
Free Gaussian Field* [118] — 1/2 1
d-dim. Spherical Model®  [125] 0 (d—2)/df 1
Ising-Glauber Chain® [122] — 1/2 1
2-dim. Ising Model® [125] 0.26(1)
3-dim. Ising Model® [125] 0.40

Table 7.1: X for some models. ¢ Exact solution, ® Monte Carlo simulations. T 2 < d < 4.

7.2.4 Non-equilibrium Critical Dynamics and the FDR

Let us consider, in more detail, non-equilibrium critical dynamics of a spin system in d dimensions
(see Ref. [127] for a recent summary), quenched from 7" = oo down to T, at time ¢ = 0[*]. Soon
after the quench, correlations start growing in the system, just as in equilibrium critical state, but
they develop only over a length scale £, growing in time as

Le(t) ~ 17 (7.8)

where z is the dynamic critical exponent. On length scales smaller than £, the system is effectively
critical, while for length scales much bigger than /. it is still disordered. This behavior is encoded
in the scaling form for the equal-time correlation function [127]

Cx(t, ) ~ [x| 227 f ([l /(1)) (7.9)

where f(v) is a constant for v = 0 and rapidly decreases for v — c0. 8 and v are the usual static
critical exponents. Given that 28/v = d — 2 + 5, in the limit ¢ — oo and x fixed, we recover
the standard behavior of correlations in the critical state. As far as the two-time autocorrelation

3 A rigorous discussion of aging behavior of one-dimensional g-state Potts model, quenched from T = oo down to
T = 0 has been done in Ref. [128].
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function Co(s + 7,5) (we assume 7 > 0) is concerned we should distinguish various regimes, as
already discussed in the case of the low-temperature phase (see Sect. 7.2.3). For s > 7 > 1 the
system reaches the stationary equilibrium state, and thus fluctuation-dissipation theorem applies.
The scaling regime, instead, is reached when 7 ~ s > 1, and correlations scale according to

Col(t,s) ~ s fc(t]s), (7.10)
where b= 28/vz. When z =t/s — 0o, fo(z) is expected to behave as
fo(z) ~ Agz™/7 (7.11)

where )\, is the autocorrelation exponent [139]. It is related to the initial-slip exponent 8’ of the
magnetization (see Chapter 8) by the relation

Ae=d— 26" . (7.12)
In the same regime, the response function behaves as
Ro(t,s) ~s b fr(t/s), (7.13)

with fr(z) ~ Agx*</#, for & > 1. All the scaling behaviors presented above may be deduce
from a renormalization-group analysis, as discussed in Sect. 8.3. So far we can consider them as
phenomenological scalings. From Eq. (7.10) we deduce the scaling function for 9;Co(t, s), i.e.

05Co(t,s) ~ s 1 b fau(t/s), (7.14)

where fo: may be easily derived from fo, Eq. (7.10). In particular we expect fo:(z) ~ (A\e/z —
b)Acx_kc/ %, We can compute the fluctuation-dissipation ratio

fr(t/s)
Xo(t,s) =To+——+, 7.15
0( ) C fC” (t/S) ( )
which is, as expected in the aging regime, a function of ¢/s only. Its long-time limit is
o . fr(z) AR
oo __ j— f— e
X® = sh_glo th—{go Xo(t,s) = wlgréo chc’ @ - T. Oofz—DAG (7.16)

To give a concrete example of the scaling relations introduced so far, let us consider in more
detail the results for the Spherical Model (see Ref. [125]). Consider a d-dimensional lattice A with
N sites, labeled by x € Ay. A continuous variable oy is assigned to each site in such a way that
the constraint

Y oi=N, (7.17)

xEAN

is fulfilled. In the configuration space SV~!, the Hamiltonian of the model in the presence of an
external field Hy is given by

H{o}i{H} =~ D oxoy— Y Hyox, (7.18)

(x,y)EAN xEAN

where the first sum is extended only to nearest-neighbor sites. A possible dynamics for this model
is given by the following Langevin equation for the time evolution of configurations

dox = 0H
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where A(t) is a Lagrange multiplier used to enforce the constraint, while 7y (t) is a Gaussian noise
with correlations

(nx(t)ny (t')) = Oxyo(t — t') . (7.20)

Equation (7.19) is used to compute exactly [125], in the large-N limit, the evolution of the field
ox(t) starting from a completely disordered and homogeneous initial state with

CX(an) = 0x,0, (721)

i.e. characterized by the absence of correlations.
The two-time correlation function reads [125]

C()(t, S) ~ si(d/271)fc’(t/s) ) (722)
where [125]
4(47T)_d/2 .’L‘l_d/4(.'L' _ 1)1—d/2

) 2<d<4,
fol(@) d—2 z+1 <es (7.23)
c(x) = .23
—d/2
62(42771 5 [(.73 _ 1)1—d/2 _ (IL' + 1)1—d/2] d>1,

given that for this model z = 2, we can determine from the expected asymptotic behavior Eq. (7.11)
above, the value of the exponent A,

_ [ 3d/2-2 2<d<4,
’\C—{ d d>4. (7.24)
For the response function, instead,
Ro(t,s) ~ s~ 2 fr(t/s), (7.25)
where
_ (47r)7d/2$17d/4($ _ 1)7d/2 2<d< 4,
Tr(z) = { (4m)=4/%(x — 1)~9/2 d>4, (7.26)

in agreement with the expected scaling form of fr(z) for > 1 and the value of \; in Eq. (7.24).
The computation of X for this model is straightforward, leading to
Xooz{l—z/d 2<d<4,

1/2 d>4. (7.27)

Scaling laws introduced in Egs. (7.10) and (7.13) may be also numerically tested by means of
Monte Carlo simulations. As an example, we report in Fig. 7.1 the results presented in Ref. [125]
for the critical autocorrelation function Co(t,s) of the two-dimensional Ising model, quenched at
criticality from a completely disordered initial state. The very good collapse of data taken at fixed
s by varying ¢, rescaled with s2#/¥* and plotted against t/s, is a clear indication that the scaling
form Eq. (7.10) holds.

A similar plot may be done for the integrated response (which is easier to be measured in
numerical simulations than the response function), defined as the system response, at time ¢, to a
constant and homogeneous field applied during the time interval [0, s] with s < ¢, i.e.

po(t,s) = Tc/ ds'Ro(t,s') . (7.28)
0
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Figure 7.1: Plot of the critical autocorrelation function Cq(t, s) for the two-dimensional Ising model.
Data are multiplied by s2%/*#, in order to check the collapse into the scaling function fc(t/s),
according to Eq. (7.10). The straight line has a slope ~ —0.73 and gives a numerical estimate for
the exponent of the fall-off of fo(t/s) for large t/s, i.e. —A/z. From Ref. [125].

From the scaling functions Egs. (7.10), (7.13) and the expression Eq. (7.16) for X°, it is easy to
see that

po(t,s) ~ X*®Co(t,s) for 1KsKt, (7.29)

and thus X can be determined once the scaling plots for Cy(¢, s) and pg(t, s) have been measured.
For an example of this way of measuring X we refer to Ref. [125].

7.2.5 FDR from Field-theoretical Models

It is easy to see, by looking at the contents of the works whose results are listed in Tab. 7.1, and by
an inspection of the available literature, that only exact solutions have been analytically determined,
so far, for the FDR.

Exactly solvable models are very useful because they can be analyzed without relying on any
approximation scheme that, in some cases, could hide physical (e.g. non-perturbative) phenomena.
On the other hand they constitute a small subset of the whole set of physically relevant models, and
the specific solution method is generally not extendible to systems which, in some sense, are “close”
to the exactly solvable one. For example, as far as the FDR is concerned, it is not a priori obvious to
what extent we can trust the value found for the Spherical Model in d = 3 as an estimate for FDR
of the three dimensional Ising model. Or it is very difficult to understand, from exact solutions,
which would be the effect of small changes in the model as, e.g., the coupling to another field or
the introduction of conservation laws in the dynamics.
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As we discussed in Sect. 7.2, there should be some universal aspect in the non-equilibrium
dynamics. In particular we expect, as we will discuss in more detail in Section 9.1, that X (¢, s) is a
universal function associated with a given non-equilibrium dynamics. As such it should be possible,
at least in principle, to compute it for those mesoscopic models of dynamics which have the same
critical behavior of the lattice models that have been considered, so far, in the literature. For
example X *°, being universal, should attract the same interest as the critical exponents do. Once a
suitable mesoscopic model of dynamics (usually in the form of a Langevin equation) has been singled
out, it is possible to deal with the problem of the critical relaxation from an initial disordered state,
by using field-theoretical methods. This allows also the use of well-known techniques to compute
universal quantities and give estimates for them.



Chapter 8

Time Homogeneity Breaking

In this Chapter we discuss the field-theoretical approach to the critical non-equilibrium
dynamics following a quench or, in general, to a relazation from a given initial state.
In both cases there is a breaking of time homogeneity which has remarkable effects on
the critical dynamics, such as the emergence of aging behavior. The approach discussed
here plays a central role in the perturbative determination of the scaling functions in
the aging regime and of the fluctuation-dissipation ratio (which will be the subject of
Section 9). We summarize briefly the contents of the seminal work by Janssen, Schaub,
and Schmittmann [140], following Ref. [141]. In particular, in §8.1 we describe the basic
step that allows one to analyze the Langevin equations (describing the dynamics of the
system) within a field-theoretical approach. From this point of view we discuss briefly in
§8.2 how to deal with critical dynamics and relaxation processes. In §8.3 we review the
renormalization-group (RG) analysis of the field theory introduced to describe dynam-
ics. Finally we introduce briefly the ideas underlying the recently proposed local scale
invariance (LS1). It amounts to a requirement of covariance under a suitably constructed
group of transformations, and allows one to obtain analytic informations on dynamical
scaling forms in the aging regime, which go, in some cases, beyond those provided by RG
analysis.

8.1 Path-Integral Representation of Dynamics

In Section 3.1 we described briefly the ideas underlying a field-theoretical approach to (non-
equilibrium) critical phenomena. We would spend here some more words on this problem. A
statistical model is usually defined on a lattice with spacing a, which in some sense is related to
“real” lattices of, say, a condensed-matter system. If the model undergoes a second-order phase
transition (when its parameters are suitably tuned), then the physically relevant length scales are
essentially two (we are considering an infinite system). One, a, is of microscopic nature, while the
other, ¢ is a consequence of the emerging collective behavior and diverges at criticality. If we are
interested in the long-time, large-distance behaviors we expect that only the length £ matters. Thus
when =1, the typical length scale of interest, is p~! > a and £ > a, we expect that an effective
“mesoscopic” description of the lattice model could be given on the continuum in terms of fields.
These ones are usually associated with the order parameter and conserved densities, and generally
with “slow” variables of the system. Moreover, we expect that “microscopic” quantities, defining
the system on the lattice, should not affect the long-time, large-distance behavior in a crucial way
and thus do not significantly change the “mesoscopic” description. The resulting field-theoretical
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model is plagued by divergences in the limit pa — 0, but they can be removed by a suitable
renormalization of the bare parameters. The existence of this limit in well-specified cases is itself
a central result of the renormalization theory and important consequences follow. For example the
renormalization-group equations may be viewed as the statement of the independence of the bare
theory from the length scale p~!, characterizing the effective description.

The field-theoretical approach to dynamical critical phenomena relies on a path-integral descrip-
tion of stochastic processes. The microscopic dynamics of the model is specified, as discussed in
Section 2.1 for the lattice gas, in terms of a Master Equation with assigned transition probabilities.
Approaching a critical point the typical time scale of dynamics diverges as ~ £*, and thus also
dynamics could be described at “mesoscopic” level. This description is usually done in term of
a first-order (in the time variable) stochastic differential equation of the Langevin type, for the
slow variables. The effects of the microscopic dynamics is summed up in the functional form of
the equation and in the stochastic noise (usually assumed Gaussian), playing the role of a random
force acting on the system and summing to the deterministic force. We briefly recall the basic steps
which allow a construction of a path-integral representation for a dynamical process. All details
can be found in the literature [4,14,141]. Consider, for example, the following equation for the field

14
6t90(x; t) = .7:[(,0()(, t)] + C(XJ t) ) (81)

where Flp(x,t)] is a local functional of p(x,t), {(x,1) is a zero-mean Gaussian noise with correlation

(C(x, )¢, 1) = N(op(x,1))6(t — t)d(x — x') (8.2)

and N a local functional depending on the field. This equation may be viewed as the continuum
limit of a Markov process defined on the fields ¢ (x) = @(x,t;), at given discretized times iy,
k =0,1,..., with Gaussian transition probabilities (see Ref. [141] for details). We remark that
different discretizations of Eq. (8.1) are possible and they give rise to an ambiguity in the path
integral we are going to derive (see Refs. [16,141] for details and the footnote 2 below). Given an
initial condition ¢(x,tg), we would compute the mean of a generic observable O over all possible
realizations of the noise (. Of course this mean may be written as

©) = [0 { fagste - voril} | 3)
where P[(] is the functional Gaussian probability distribution function for the noise and ¢ is

the solution of Eq. (8.1) for a given realization of the noise, with the specified p(x,to) as initial
condition. Taking into account that

56 — ) = 8(dhp — Flig] - ©) det [(% - ‘Z—ﬂ , (8.4)

it is possible to express the functional §-function as an exponential by introducing a complex
auxiliary field ¢. Then the average over the Gaussian noise is straightforward and leads to

() = / [dpd] O e~ Fialo:d] (8.5)

where

Fulod) = [t [tz {Gtoio - 71gl - 530157} (86)

t
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The functional J;,[¢, @] is termed dynamic functional and it is the starting point for the field-
theoretical approach to dynamics. We remark that in Eq. (8.6) the term corresponding to the
determinant in Eq. (8.4) is missing. This does not change the perturbative expansion, provided that
one assumes 6(0) = 0['], where 6(t) is the Heaviside step function?. In Chap. 1 we introduced the
ideas of detailed balance and fluctuation-dissipation theorem for equilibrium systems. In particular
we saw that to get a stationary state with the expected probability measure (proper to the specified
Hamiltonian) from the dynamics described by a Langevin equation as Eq. (1.5) the condition
N o D (see the definitions in Chap. 1) has to be satisfied. How does this translate for the dynamical
functional (8.6)? First of all we note that for the Langevin equation (8.1) to represent the continuum
version of a Markov process, the functional F should be local in time (so that the evolution at time
t does not depend on the preceding evolution). Let us assume that we can write F as

Flo(x,t)] = D(p(x, t))% (8.7)

where D is a local functional depending on ¢ and M is another functional. In a sense we are
assuming that F is obtained from some kind of Hamiltonian M, with a diffusion operator given
by D. To have time-reversal symmetry and thus a convergence towards an equilibrium measure,
it is possible to see that the condition D o N has to be fulfilled (see Refs. [4,14,15]) which is the
analogous of the condition mentioned above. Causality is another crucial issue when dealing with
Langevin equations. In fact they could have also non-causal solutions, which should be discarded
when discussing physical processes. From the field-theoretical point of view the most remarkable
result is that, once causality has been imposed (by suitable initial condition on the field @, see
Sect. 8.3) at the tree level, it is preserved when the effects of fluctuations are taken into account
[4,14,15].

The functional J;,[¢, $] may now be analyzed by field-theoretical methods [4,14,141]. Once
the renormalizability by power counting has been verified, the renormalizations may be computed
by standard methods. Moreover, as said in the previous Section, the existence of a well-defined
renormalized theory allows one to derive the RG equations. Their scaling solutions show a universal
behavior at the infrared (IR) stable fixed point and the universal quantities may be computed by
means of the renormalized perturbation theory (see, e.g., Ref. [4]).

8.2 Critical Dynamics and Relaxation Processes

As we said in the previous Section, the renormalizability allows the computation, by means of the
renormalized field theory, of the universal scaling functions. Their validity is, of course, restricted
to the range of long times and large distances compared to the microscopic ones. We would briefly
describe the relaxation process from a prepared initial condition. Shortly after the relaxation
process has started, dynamics is governed by microscopic parameters and thus, it has no universal
character. This microscopic initial-slip dynamics may be described only in terms of a microscopic
theory (and thus a mesoscopic description of the phenomenon can not be done). It has been pointed
out [140,141], however, that a new universal behavior may be identified in the intermediate stage
of relaxation, which eventually crosses to the expected long-time behavior. This early stage of

1 From the diagrammatic point of view this means that self-loops of the response propagator have to be neglected
in the perturbative expansion [15].

2This correspond to the ito prescription in the stochastic calculus. This arbitrariness is related to the possible
different discretizations of the same stochastic differential equation, as discussed in details in Ref. [141]. The intro-
duction of Grassmann field to take into account the determinant is also possible, and this makes explicit the BRS
symmetry of the resulting functional [4].
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universal relaxation has been termed “critical initial slip” and has an analogous in the field of
surface phase transitions (see the review in Ref. [17]). From a field-theoretical point of view we
know that the universal behaviors emerge as a consequence of the RG equations, and thus they
are related to the presence of divergences in perturbation theory. Thus we expect that the new
critical initial-slip behavior is somehow related to “new” divergences, due to the presence of the
“time surface”, i.e. the initial condition, in the dynamics. In this sense there is a strong link with
the critical behavior of a semi-infinite system near an uncritical surface (for a comprehensive review
see Ref. [17]), even though causality plays, here, a central role3.

For illustration purposes we focus on the behavior of the one-point function, i.e. the mean
value of the order parameter (which we will refer to as the magnetization M (t), having in mind
ferromagnetic systems). A very simple scaling argument may be used to determine the long-time
limit of the relaxation process at criticality (see, e.g., Ref. [138]), leading to

M(t) ~tP/v= (8.8)

Let us consider in more detail the process in the Ising model, starting from a configuration with
T > T.. Being in the high-temperature phase, all correlations are short-ranged. We assume
that a small initial magnetization Mj is prepared in this uncorrelated state. When the system is
quenched rapidly at its critical point, the correlations start growing, as discussed in Sect. 7.2. We
remark that the critical temperature of the corresponding mean-field model 7™/ is higher than the
real one, so that, as long as the correlations are small (and thus the mean-field theory applies),
the magnetization grows given that the system is in an “effective” low-temperature phase. Once
correlations are established on a larger length scale, mean-field theory fails and the magnetization
starts decreasing towards a vanishing value, as expected in the long-time limit. For times ¢ larger
than the typical microscopic scale the evolution of the magnetization may be written in the following
scaling form

M(t) = Mot? M(Mot? +8/v) | (8.9)

where #' is a new exponent, called “initial-slip exponent” of the magnetization [140,141]. The
universal scaling function M(z) is defined so that M(0) ~ 1 and M(z) ~ 1/z, for x — oo. It is
useful to introduce also the exponent
0:0—3—5—3, (8.10)
which is related the magnetization one by means of well-known critical exponents. We remark that
the emerging of an initial-slip behavior is essentially due to the “mismatch” between the uncritical
initial state and the critical dynamics according to which it evolves. When the initial state is also
critical we do not expect any crossover. The exponent € appears also in the scaling form of the
autocorrelation function A(t) = (ox(t)oo(t)) [141] (where o is the spin variable of the ferromagnetic
system we have in mind) that, at criticality, behaves as A(t) ~ t? 4/, The universal character
of the relaxation process in its early stage (on a time scale much bigger than the microscopic one)
may be used to determine the critical exponents, without facing critical slowing down, as shown in
many (recent) numerical works [150]. We mention also that the effects on the initial-slip behavior
of a finite volume have been investigated in Ref. [151], while those of a (spatial) surface have been
discussed in Ref. [152].
To study aging dynamics we will focus, in Chapter 9, on two-time quantities whose scaling
behaviors depend on 6 as well. In Sect. 8.3 we briefly recall how the renormalization of the field

3 At variance with surface phase transitions [17] there can not be any influence of the bulk on the surface behavior
(because of causality).
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theory, suitable to describe the relaxation processes, has to be done, establishing also the scaling
forms (useful for the discussion in Chapter 9).

8.3 Renormalization and Scaling Forms for Model A

We recall here the basic steps required to determine, in the context of renormalized field theory, the
exponent 6 introduced in Sect. 8.2. All details may be found in Refs. [140,141]. The simplest model
of dynamics displaying the initial-slip behavior is the purely relaxational dynamics (Model A in the
classification of Halperin, Hohenberg and Ma, see Ref. [1]) of an N-component field p(x,t), with a
Landau-Ginzburg Hamiltonian H[p]. Its static (i.e. time-independent) critical properties describe
the behavior of a wide class of lattice spin systems near their critical points [4,10]. The dynamics
is specified in terms of the stochastic Langevin equation (of the same form as Eq. (8.1) discussed
in Sect. 8.1)

SH[p]
dp(x,t)

where (2 is the kinetic coefficient, £(x,t) a zero-mean stochastic Gaussian noise with correlations

8t(P(X, t) = -0 + f(X,t) 5 (811)

(& (x,1)& (x', 1)) = 2Q05(x — x')o(t — ')y , (8.12)

and H[p] is the static Hamiltonian. Near the critical point, the leading IR behavior of the system
is described by the Landau-Ginzburg Hamiltonian

1 1
/dd [ (V) + 5ro¢’® +4,9090] , (8.13)

where 9 oc T — T, (T, being the critical temperature of the model*).
All dynamical properties may be worked out by representing the Langevin equation (8.11) by
a dynamical functional, following the method outlined in Sect. 8.1. The resulting field-theoretical

action is [4,14,141]
/ dt / diz [ +Q~67;<EO] @ng] . (8.14)

Here @(x,t) is the auxiliary field. We notice that it has also a physical meaning. Indeed, given an
external field h, coupled to the order parameter, we have H[p, h] = H[p] — [d?x h. This implies,
following Eq. (8.14), that ¢ is conjugated, in S[p, @], to the external field h. As a consequence, the
linear response to the field h of a generic observable O is given by

5(0)
oh(x, s)

= Up(x,8)0) , (8.15)

for this reason @(x,t) is termed response field.

To completely specify the dynamics we should give the initial condition for the field ¢(x,1t),
i.e., assuming as the initial time t; = 0, po(x) = @(x,t = 0). More generally we could give
the probability distribution function for the initial condition, and thus average on the initial field
@o(x) with a weight e~ *olvol, If the system is already in thermal equilibrium at time ¢ = 0, then

4In the following calculations we always use the dimensional regularization and so no additive renormalizations
of o are expected.



78 Time Homogeneity Breaking

Hol[po] = H[po] and we can equivalently extend the time integration in S|y, @], from —oo to 0.
This is possible given that, assuming ergodicity, whatever the initial condition in the far past was,
the same stationary order-parameter distribution is reached at time ¢ = 0. The resulting theory
is translational invariant both in space and time, and given that the condition in Eq. (1.7) (see
Sect. 1.2 for the discussion) is fulfilled, equal-time correlation functions could be computed directly
using the functional distribution e~*[%l. In this case there is no “surface” effect and divergences
appearing in the theory are related, as usual, to the singular behavior of correlators and propagators
at small distances and times. In momentum space this amount to ultraviolet (Uv) divergences
in Feynman diagrams, due to the bad large-momentum large-frequency behavior of integrands.
Standard regularization methods could be applied to give meaning to the perturbative expansion,
and in the following we will adopt dimensional regularization. By means of a suitable redefinition of
bare parameters (renormalization), it is possible (at least for renormalizable theories) to render finite
all the correlation functions of fields even in the limit in which, formally, the regulator disappears.
This is the standard way to deal with the dynamics in critical phenomena [4,14,141].

Let us consider the case in which the initial condition is a non-equilibrium one. As long as Hg
has the same form as H with different bare couplings, the usual renormalizations are enough to
render the theory finite, i.e. no new UV singularities are expected [140,141]. This is no more true
if, for example, the initial state is an uncritical one, for example an high-temperature state with
short-range correlations and a small initially prepared magnetization, {yq(x)) = a(x) and

([po(x) = a(®)]lpo(x') = a(x)]) = 75 'd(x —x') . (8.16)

The corresponding Ho[po] is a Gaussian one

Halpo] = [ 42 2 (g0(x) - a(x)? 5.17)

Any addition of anharmonic terms in Hy[po] is not expected to be relevant as long as the harmonic
term is there (as it is the case when the initial state is in the high-temperature phase). Instead, an
initial condition with long-range correlations may lead to a different universality class, as recently
shown for the d-dimensional Spherical Model with non-conservative dynamics [129]. Following
standard methods [4,14], the response and correlation functions may be obtained by a perturbative
expansion of the functional weight e~(Sl#:@l+Holol) in terms of the coupling constant go (appearing
in the vertex gop3@/3!). The propagators (Gaussian two-point functions of the fields ¢ and @) of
the resulting theory can be found by looking at the quadratic part of S|y, ¢] + Ho[po] [140], which
we call S,sz [, ®,%0]- A convenient way to determine the inverse of the operator appearing in Stfz
is to compute the Gaussian integral with sources for both ¢ and @, called ¥ and v respectively, i.e.

Z[, 9] = / [dipd@dg]e Siotle:Prwol— [d adt(wep+3) (8.18)

To this end we determine the fields ¢, and ¢,, which minimizes the quadratic form, i.e. solve the
equations (transformed in momentum space)

[0: + Q¢ + 0)]pm — 2QPm + 9 =0,
(8.19)
[_6t + Q(q2 + TO)]‘Z)m - (Z)m‘s(t) + 70 ((pm - a)5(t) +¢=0,

where the second term in the second equation comes from the boundary term in ¢ = 0 when
integration by parts is performed. The terms on the second line with a é(¢) could be written in the
form of an initial condition,

?&m(9,0) = 10(pm(q,0) —a(q)) , (8.20)
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for the system

[8: + Q(q? + 70))pm — 29Pm + 9 =0,
(8.21)
[—0; + Qg +70)|Pm + 9 =0.

The second initial condition required to solve this system of first-order differential equations is
Pm(q,00) = 0, which enforce the causality of the solution selected. Once this has been determined,
the functional integral in Eq. (8.18) can be computed

. _ e aq 1 -
Z[y, §) = Z[0,0) o W Gra 2lemvteny) (8.22)

and the part of the exponential which is quadratic in the fields 1, 9 (remember that ¢, and @,
depend on them) may be written as

(0, 9) B3 )b~ 1) + 5 (e $)C (0, (a1 ) (5.23)

Thus, computing the functional derivatives of Z[¢, 1Z] with respect to its arguments one finds [140,
141]

{ (pila, 8)pj(=a,t))o = 5@'132(757 8)= 0;0(t—s)G(t—s), (8.24)
(pi(a, s)pj(—a,t))o = 6;;C(2,s) ,
with
CO(t, ) = T [G(|t —s|) + (% - 1) Gt + s)] : (8.25)
where
G(t) = e~ Aa*+ro)t, (8.26)

The response function in Eq. (8.24) is the same as in equilibrium. Eq. (8.25), instead, reduces to
the equilibrium form when both times ¢ and s go to infinity and 7 =t — s is kept fixed. By power
counting it is easy to see that 7, 1'is an irrelevant variable, so that to study the leading scaling
behavior it is possible to assume 7, 1 =0, and thus use the Dirichlet correlator

CP(t,s) = (Gl —s) — Gt +9)] . (8.27)

q> + 1o
This is characterized by the properties CP(t,s) = CP(s,t), and CP(¢,0) = 0. The second term
in CP(t,s) (“image” term) gives rise to new divergences in perturbation theory whenever both ¢
and s approach the “time surface” located at 0. As it has been shown in Ref. [17] for the case of
surface critical phenomena, it is possible to remove these singularities by counterterms “located”
at that time surface. Moreover, naive power counting gives t ~ (Qu?)~! (where u is the external
momentum scale) and thus the degree of divergence of a generic Green function should decrease by
2 for each vanishing time argument. As a consequence the new renormalizations are required only
in the case of two-point functions®. A detailed analysis shows that only one new renormalization

5We remark that if the dynamics is conservative (Model B [1]), then ¢ ~ (Qu?)~2, thus no new divergences are
expected.
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constant is sufficient to renormalize both the correlation and the response functions. Thus, if in the
case of Model A dynamics without any time surface, the following renormalizations are required,
o 220 o 2120, Qs (Z)2)V2Q, go = G u*=1Z72Z,g (where G4 = T'(3—d/2)/(4m)%/?),
ro — Z~'Z,r, now we have also to renormalize the field @y(x) = $(x,t = 0) according to

Go(x) = (Zo2)'*@o(x), (8.28)

where Zj is the new renormalization constant.

From the technical point of view, the breaking of time homogeneity makes the renormalization
procedure in terms of one-particle irreducible (1p1) correlation functions less straightforward than
in standard cases (see Refs. [17,140,141]). Thus, usually, the computations are done in terms of
connected functions.

We remark that it is easy to realize, by giving a look at the diagrammatic contributions, that
the correlation functions with at least one external -leg at the time surface, vanish. This is
essentially related to the choice of Dirichlet correlators, and a non-vanishing result is found only
taking into account 7, ' [140,141]. In terms of the constants above it is possible to renormalize also
the initial magnetization a(x) and 7;'. As one can naively expect, the renormalization constants
are the same as those of Model A, given that the image term in the Dirichlet correlator, being
exponentially convergent for large momenta, can not change divergences related to the “time bulk”.

The computation of Zj is straightforward, and it has been done up to two-loop order by deter-
mining the response function [140,141]. The result is

N+2 N In4—-1
Zo=14+ 229 (45 o
3 € 3e 2

) g] +0(g*), (8.29)

and all the other renormalizations may be found in the literature [4,14].
The scaling properties of the connected Green functions

G = ([@]"[@]" (@] ™) (8.30)

may be exploited by using the RG equations. To renormalize GZ?ﬁ we use the previously introduced
Z-factors, obtaining

]
Groy PG = Z? I (7 Zg) ™02 G (8.31)
where on the r.h.s. everything is expressed in terms of renormalized quantities. The RG equations
may be derived by exploiting the fact that the bare correlation functions are independent of the
momentum scale g introduced to define the renormalized theory, i.e.

o, G| =0, (8.32)
0

at fixed bare quantities. As usual, Eq. (8.32) may be rewritten introducing the Wilson’s functions
v = pduInZlo, ¥ = pdyInZlo, o = pduIn Zolo, B = pduglo, K = pdyInrlo, ¢ = pd,InQ =
(% —7)/2. This last equality is a consequence of the fluctuation-dissipation theorem, which does
not apply to the non-equilibrium dynamics we are discussing, but it still holds for the “bulk”
renormalizations required to make the theory finite (as noted before, the “image” term in C(t, s)
does not affect bulk divergences). Thus, apart from 7y, all the others are the well-known functions
for Model A dynamics with equilibrium initial conditions. The long-time large-distance behavior of
the model may be derived by determining the scaling solutions of Eq. (8.32) at the stable IR fixed
point g* (8(¢9*) = 0). Taking advantage of the dimensional analysis and solving Eq. (8.32) with the
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standard methods of characteristic functions (see, e.g., Ref. [4]), the leading scaling behavior of the
correlation functions is easily obtained

G ({x, t};7) = PRI Gl ({Ix, 17t 11 vr) (8.33)

with

d—2 d+2+17 d+2+7
o(n,n,Tg) =n 2+n+7~t +2+n+fl0 + ';77"‘7]0‘

(8.34)
In terms of the RG functions, the exponents are given by n = v(¢*), 7 = 5(9%), z =2+ (i1 — n)/2,
v~! = 2 - k(g*), and My = Y(g*). The only new one is 79, in term of which #' (introduced in
Eq. (8.9)) is given by®

g = 2=FZ=n=m/2 _ _n+i+1m
z 2z

: (8.35)

whereas 6 = —19/(2z). It has been computed up to two-loop order in Refs. [140,141] (see footnote 6),
for the model we are dealing with

_N+2[ 6 (N+3
~ N+8 N+8\N+38

0 +1n 2) e] 7 +0E). (8.36)
Following the same lines as those we have summarized, the analysis has been extended to other
models. In particular Model C dynamics has been analyzed in Ref. [142] (see also Sect. 9.3),
while the dynamics of an order parameter reversibly coupled to conserved densities, i.e. Models E
(usually used to describe planar (anti-)ferromagnets) and G (isotropic antiferromagnets) is studied
in Ref. [143]. Model A dynamics at a tricritical point has been investigated in Ref. [144]. The initial-
slip behavior of systems belonging to the important class of reaction-diffusion processes (as directed
percolation, see Ref. [19]) is analyzed in Ref. [145], while that of growing interfaces is discussed in
Ref. [146]. Also models with quench disorder have been studied in this respect. In particular
in Refs. [147,148,175] the Ising model with uncorrelated quenched disorder (i.e. the random-
temperature Landau-Ginzburg model, see also Sect. 9.4) is considered in the case of uncorrelated
initial conditions and short-range interactions. This analysis has been extended to the case of
the Landau-Ginzburg model with long-range interaction, and quenched disorder with long-range
correlations, in Ref. [149].

We observe that (see Egs. (8.33) and (8.34)) whenever 7ig = 0 the exponent 6 does not appear
explicitly in the scaling forms. On the other hand it is easy to see that when the relaxation of an
initial condition is studied, Eq. (8.9) is found (see details in Refs. [140,141]).

Let us look more closely at the scaling form for the two-point critical (i.e. with r = 0) correlation
function Cy(t, s) and for the response one Ry(t,s), with both times in the “bulk”. From Eq. (8.33)
and Eq. (8.34) we have

{Cq(t,s) = 1172011, (1Pt 17s) (8.37)

Ry(t,s) = 1" 2R, (I7t,1%s) .

These scaling forms, expected also for equilibrium initial conditions, may be rewritten, considering
I=(t—s)"'% (t > s)

{ Colt,s) = (t—s8)@M/2Fo(qt —s)/7,5/t), (8.38)

R,(t,s) = (t— s)(2’"*2)/z}~'3(q(t — s)l/z, s/t) .

6We are following the notations of Ref. [140]. In Ref. [141] only the exponent © = @' is introduced.
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We observe that the introduced scaling functions Fo and Fg are not expected regular when s
approaches the time surface, i.e. when s — 0. We should make the small-s behavior more explicit,
since in both functions it is related to the large-t behavior (and fixed s with ¢ = 0) that we would
investigate to study aging effects. So far we have exploited the scaling forms by studying the RG
equations. It is also possible to determine the functional forms of the correlation and response
functions when some of their arguments approach exceptional points, by using the short-distance
expansion (SDE, see for general reference Ref. [4], Cardy in Ref. [5], and Ref. [17] for applications
to surface critical phenomena). The starting point is a formal expansion of the fields ¢(x, s) and
@(x,s) around s = 0. First of all we note that, when inserted into correlation functions with bulk
fields, the following relations hold [140,141] (we are considering the relaxation after a quench from
high temperature, so that a(x) = 0, and 7; ' = 0 to get only the leading behavior)

V(x,0) = po(x) =0 and Os0(X,s)|s—0 = Po(x) = 2QPo (%) . (8.39)

As a consequence, for small s, we can formally expand the fields as
{ p(x,8) ~ ¢(s)@o(x) +hoct., (8.40)

P(x,8) ~ #(s)Po(x) +hocft.,

where h.o.c.f stands for higher-order composite fields which could be neglected if one is interested
only in the leading contributions. Inserting relations (8.40) into correlation functions and taking
into account the scaling behavior Eq. (8.33), one deduces that, at criticality [140,141],

¢(s) = acs'?,
150 2 (841
where a¢ and ag are two (non-vanishing) constants. Thus, for small s, we have
Ry(t,s) = ¢(s){e(a,t)@o(—q)) - '

From Eq. (8.33) the scaling form of (p(q,t)@o(—q)) = G1iy({q,t};7) can be determined, and at
criticality one finds

Gio{a,1};0) =172 G 1Gh ({1 1q,I71};0) . (8.43)
Taking into account the previous three relations, the following conclusion may be drawn
Cq (t7 S) = act(?*ﬂ)/z (t/s)oilf(qtl/z) 7 (8 44)
Ry(t,s) = agt®=/3(t/s)" f(qt'/?) . '

Comparing these forms with Eq. (8.38) we can conclude that

Folay) ~ acy ™'f(@),
{fR(UU,y) ~ ary f(x), for y—0. (8.45)

It is possible to rewrite Eq. (8.38) in terms of scaling functions F¢(z,y) and Fr(z,y) with a good
behavior (i.e. non-vanishing and non-singular) for y — 0, i.e.

{Cq(t,s) = (t— ) /3(t)s)" " Fu(q(t — 8)'/%,5/t) (8.46)
Ry(t,s) = (t—8)® 172/ %(t/s)" Fr(q(t —s)'/7,5/t) . '

Summing up we combined the general critical scaling forms as given by the RG analysis, with their
short-time expansion, in such a way to obtain scaling forms suited for investigating the aging effects
also in the long-time limit. Indeed Eq. (8.46) tell us, e.g., that for ¢ = 0, in the long time limit
t > 5, Ry—o(t,s) ~ t=172)/%(t/s)?. We will discuss the consequences of these scaling forms in
Chap. 9.
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8.4 Local Scale Invariance

Let us remark that the equilibrium dynamics enjoys some remarkable invariances, i.e. time and
space translations and time reversal (some care has to be taken when there are external fields) as
already discussed in Sect. 1.1. Although the dynamics in the aging regime does not enjoy these
symmetries any more, it is not the most general non-equilibrium one, given it still has properties
of “covariance”. This amounts to the statement that the evolution of a system of age s is the
same as that of a younger one of age, say, s/2, up to a suitable rescaling of time. This property
is evident from scaling relations Egs. (7.10), (7.13) and from the explicit results for the Spherical
Model Egs. (7.22), (7.25). Moreover, it clearly emerges in the RG context, as shown by the resulting
scaling forms Eq. (8.46), which are covariant under a simultaneous rescaling of the age s of the
system, of the time ¢ and momentum g, i.e. under

s = bs,
t — bt, (8.47)
g = b'q,

as it is expected at criticality.

Recently much emphasis has been put on this covariance and on its generalization to the case of
a space-time dependent rescaling factor [160,164]. The main question is whether it is possible or not
to construct a theory of local scale invariance (LSI) pretty in the same way as conformal invariance
extends critical isotropic scale invariance. Indeed we know that in local field theories scale and
rotational covariances imply covariance under the larger group of conformal transformations. To
be concrete let us recall briefly the main line along which conformal invariance develops in critical
phenomena. Many properties of equilibrium critical phenomena are understood in the context of the
RG theory. In particular, exactly at critical point, we expect that the n-point correlation function of

scaling operators ¥;, G (x1,... ,X,) = (¥1(X1) - - - ¥n(Xy,)) are covariant under a global, isotropic,
scaling transformation of space, given by x; — bx;, i = 1,... ,n. Thus
G (bxy,... ,bx,) =b~ Wt (x, .. x,), (8.48)

where y; is the scaling dimension of the operator ¢;. Formally, covariance (8.48), may be expressed
as ¥;(bx) = b~ ¥%;(x). Usually 1); are composite operators of the order parameter of the system.
It is a well-known fact that, at least for systems with sufficiently short-range interactions, the
correlation functions G™) are covariant under a larger group of transformations, i.e. under the
conformal group. It is given by the group of all those coordinate transformations which leave the
metric invariant up to a space-dependent scale (see, e.g., Ref. [11]). They are locally equivalent to
a rotation and a dilatation (i.e. we can say, roughly, that they amounts to x — b(x)x), and have
the property that the angle formed by two arbitrary curves meeting at some point is unchanged
after the transformation. Covariance under this group gives constraint on the functional forms of
equilibrium critical correlation functions, in any space dimension. Moreover, in two dimensions the
Lie algebra of the conformal group is the infinite-dimensional Virasoro algebra and this fact gives
strong restrictions on the scaling dimensions and operators allowed in the theory. Furthermore
conformal invariance allows also a classification of the universality classes and of the values of the
associated critical exponents.

There are many critical systems which are covariant under an anisotropic scale transformation,
in the sense that

G™ (b9, bx1, ... , b9y, bxp) = b~ W+ GO (4 %y Lt X)) (8.49)

with © # 1, where with ¢; we mean either the time variable in the case of dynamic critical phenomena
(and thus © = z, z being the dynamic critical exponent), or the spatial coordinate in some direction
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(and thus ©® =1+ A, where A is the anisotropy exponent introduced in Sect. 2.3.2). Examples of
such scalings range from equilibrium systems with strong anisotropy due to strong uniaxial dipolar
forces (see, e.g., Ref. [4]), Lifshitz points (see, for a recent review, Ref. [166] and references therein),
to the general class of dynamical and quantum critical phenomena. In Sect. 2.2 we have encountered
the case of the DLG, whose scaling is characterized by a “two-fold” anisotropic scaling in the sense
that both space and time coordinates scale with different exponents. Scaling form as Eq. (8.49) are
quite common, as discussed in Sect. 2.3.2, in the field of non-equilibrium steady states, from driven
diffusive systems to directed percolation and surface growth phenomena.

It is natural to address the problem of local scale invariance, i.e. the extension of the anisotropic
scaling Eq. (8.49) towards a space-time-dependent rescaling factor b = b(¢,x) in such a way that
n-point functions are still covariant under these transformations. For a comprehensive introduction
to this kind of question as well as to the technical developments we refer to Ref. [160]. For © = 2
the analogous of conformal group (known as Schrédinger group) is known and it provides useful
dynamical informations on the systems whose correlation functions covariantly transform under it
(see Ref. [159]). The approach to the problem, for generic O, is the following: First of all one
should determine a “reasonable” set of transformations under which one wants to preserve the
covariance of (some) correlation functions. Then one exploits the consequences of this covariance
to give predictions for, say, the response functions in dynamical critical phenomena or correlation
function for static ones. Possibly a constraint on the critical exponents could emerge. To test the
physical relevance of the whole construction it is crucial to compare its predictions with the results
obtained by independent methods which do not rely on the LsI (as MC simulations, exact solutions,
field-theoretical computations).

Two-point correlation functions at criticality were predicted by using LSI, and they have been
found in good agreement with the analytic results for some Spherical Models [161]. Recent MC
results for equilibrium system (ANNNI, i.e. axial next-nearest-neighbor Ising model, which has a
uniaxial Lifshitz point) agree with those predictions [163]. Moreover, LSI has been also applied in
order to predict the scaling form for the response function in the aging regime at criticality and
in the low-temperature phase, after a quench from a disordered initial state. This is, basically,
a prediction for the critical function Fr, Eq. (8.46), in real space. Numerical simulation for the
two- and three-dimensional Ising model with Glauber (non-conserved) dynamics have been done
and a very good agreement has been found [164]. On the other hand, when attempting an explicit
construction of the LSI transformations suitable to describe Lifshitz points, as in Ref. [162], the
crucial assumption that © € {2/N, N € N} is required to ensure that a subalgebra of the generators
of these transformations closes. This seems not to be the case, even though in Ref. [163] a very
good agreement was found between numerical simulations for the ANNNI model and the prediction
of the scaling function for spin-spin correlations as computed from LSI with N = 4. Indeed recent
analytical computations [167] show that © for the ANNNT model differs from 1/2 at order €2[’] and
in the case of the uniaxial Lifshitz point in d = 3 (as that studied in Ref. [163]), © ~ 0.487, pretty
equal to 1/2, and thus it could be difficult to distinguish them numerically.

Let us give a closer look at the prediction of (assumed) LSI for scaling functions in the aging
regime (following a quench at or below the critical point). The key point is that, because of the
presence of the time surface, the time homogeneity is broken. As a consequence, the response
functions should be covariant under a subalgebra of the algebra of the (Type II — following the
classification of Ref. [160]) LSI generators which leaves invariant the time surface at ¢ = 0. This
covariance may be expressed in terms of differential equations for the scaling functions (pretty in the
same way as in conformal invariance) which can be solved to determine them. For the autoresponse

"Where € = 4 + m/2 — d, and m stands for the number of dimensions scaling with © # 1. In the case of uniaxial
Lifshitz point, m = 1.
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function Rx—o(t, s) it has been found [160,164] (with the notations of Sect. 8.3) that

+ (z1—x2)/2
) , (8.50)

Rx—o(t,8) = po(t — s)~(mF72)/= (g

where pg is a constant, z; and z, are the scaling dimensions of the order parameter and response
field, respectively.

The agreement of this prediction with the result for Spherical Model, Egs. (7.25) and (7.26) is
striking [161].

For Ry(t,s), LsI implies the following form

Rx(t,s) = Rx=o(t, s)®(|x|(t — 5)7'/%) , (8.51)

where the function @ is given in Ref. [160] in terms of its convergent power series expansion.

We would remark that Egs. (8.50) and (8.51) give a stronger constraint on response function
than that given by RG equations (8.46). Indeed, from the latter one should expect, in Eq. (8.51), an
explicit dependence of ® on the ratio s/t, that the LSI seems to rule out. Moreover the predictions
Egs. (8.50) and (8.51) make reference to the physical system under investigation only through the
indices z, x1, x2 and the constant pg. As a consequence, if LSI holds, the space dependence of
R« (t,s), encoded in the function ®, should be observed in the relaxation after a quench of a variety
of different systems. For future reference let us note that Eq. (8.51), implies, in momentum space®

t

(z1—z2)/2
Rq=0(t, 5) = po(t — 8)(d7w17w2)/z (;) , (8.52)

where d is the dimensionality of the system.
We will further discuss the problem of the test of LSI predictions in Section 9.5.

8We assume, here, that Eq. (8.51) is Fourier-transformable and that the limit ¢ — 0 can be taken. See Sect. 9.2.5
and 9.5 for further discussion.






Chapter 9

Aging in Field-Theoretical Models

In this Chapter we present the analytic determination of the universal scaling functions
and the fluctuation-dissipation ratio in the aging regime, for some field-theoretical models
of dynamics. We take advantage of the approach described in Chap. 8. This kind of
analysis provide useful informations also on the aging dynamics of classical spin models,
given it concerns only universal quantities which are, thus, completely independent, at
criticality, of the specific realization of the system. In particular, in §9.1 we introduce a
useful definition of the fluctuation-dissipation ratio (already discussed in §7.2.3) and we
argue about its universality. In§89.2, 9.3, 9.4 we present in some details the computation
that we have done on some relevant models of dynamics which share their universal
properties (and thus the fluctuation-dissipation ratio and universal scaling forms) with
some well-known classical spin models, also briefly described. Finally, in §9.5, we give
a summary of the results obtained, of the comparison with the existing numerical data
and we stress the relevance of our findings for the issue of applicability of the local scale
inwariance to the models analyzed. In particular we can check some of its predictions,
summed up in Sect. 8.4.

9.1 Fluctuation-Dissipation Ratio and its Universality

As discussed at the end of Sect. 7.2, the fact that X * is a universal quantity of the critical dynamics
allows us to compute it for an arbitrary system belonging to the same (dynamical) universality class
as that of the system we are interested in. Following this line, the fluctuation-dissipation ratio for the
Ising, XY, Heisenberg ferromagnets with a non-conservative dynamics (e.g. a Glauber dynamics
on the lattice), could be computed in terms of the Model A dynamics of an N-component field
(introduced in Sect. 8.3), using a field-theoretical approach. On the same footing, conservative
dynamics (e.g. Kawasaki dynamics on the lattice) of these models could be analyzed in terms of
Model B [1] for the same field. The effect of a dynamic coupling to a conserved density (e.g. the
energy) in the above mentioned spin models (with non-conservative dynamics) may be studied by
means of Model C, whose fluctuation-dissipation ratio and scaling forms can be computed as well.
In this sense, field-theoretical approach to the problem of aging is more flexible with respect to the
exact solutions discussed so far in the literature (partially reviewed in Sect. 7.2, see also Tab. 7.1).

The only drawback of this approach is that, in order to have reliable estimates of the quantities
one is interested in (for example X *°) it is important to perform high-order perturbative expansions.
We will see, however, that quite good agreement is found also at low orders.

Within the field-theoretical approach to critical dynamics, computations are simpler if done



88 Aging in Field-Theoretical Models

in momentum space, thus we are interested in momentum-dependent response and correlation
functions.

To work in momentum space it is worthwhile to introduce a quantity that, just as Xx(t,s)
(Eq. (7.5)), “measures” the distance from equilibrium. It is given by [132]

_ TRy(t,s)
~ 05C4(t,8)

where T is the temperature of the thermal bath in contact with the system. We note that for
field-theoretical models, this ratio (or, equivalently, X) has to be normalized in such a way that
it is equals to 1 when the system is in equilibrium, and fluctuation-dissipation theorem applies.
Thus T in Eq. (9.1) should be replaced with some suitable parameter (appearing in the dynamical
functional) to get the correct normalization.
To compare our results with X2° , considered in the literature [118,125], defined as in Eq. (7.7),
we have to relate Xq(t,s) to Xx(t,s). We note that, in the limit we are interested in,
X2 0 =4&2,= lim tlim Xg=0(t,s) . (9.2)

a 500 t—>00

Kalt,s) (9.1)

Indeed, we may rewrite the FDR in real x space as a mean value of that in momentum space with
a weight given by Rgq:

9sCq(t,s
Y-l = fddqaqu(t,s) _ fddqRq(t,s) TRq((t,s)) _ (X_l) (9 3)
*=0 7 T [diqRq(t,s) Jd4q Ry(t, s) S TRa T '

Now, since we expect Rq o e_q2(t_s), in the limit ¢ — oo and fixed s (exactly the order used
to compute X, Eq. (7.7)) X2, will take contributions only from the ¢ = 0 mode, i.e. apart a
normalization, the weight function Rq is a §%(q).

At this point of the discussion we can make clear the sense in which the FDR (either given by
Eq. (7.5) or Eq. (9.1)) is a universal quantity. We consider here the case of Model A dynamics,
discussed in Sect. 8.3, but the same general arguments apply also for other dynamical models. It
is clear from the RG scaling forms Eqs. (8.37), (8.38) and (8.44) that R,4(t,s) and Q0,C,(t, s) (or,
in real space, Rx(t, s) and Q9;Cx(t, s)) scales in the same way, that is, they have the same scaling
dimensions (both at criticality and not). As a consequence their ratio is a dimensionless quantity
in the RG sense, and thus, as the fixed point is approached, it should converge to a function of, say,
q(t — 5)'/#, and s/t (at least at criticality). This, in turn, is universal in the sense that (possibly
apart some scaling amplitudes) it is independent of the bare parameters appearing in the dynamical
functional, and thus of the particular realization of the microscopic model. At leading order the
result is also independent of the perturbations introduced by operators which are irrelevant in the
RG sense. Moreover, in the case of vanishing momenta ¢ = 0, and in the long-time limit with s fixed
and t — oo, we are left with a universal number. It is worthwhile noting that, as long as the initial
state is a disordered non-critical one with short-range interactions, the result is also independent of
the particular form of the initial Hamiltonian Hg[po], Eq. (8.17).

9.2 Model A

In this Section we present the results of our calculations for Model A dynamics. In particular we
focus on the FDR and scaling forms for both response and correlation functions. Following the
discussion in Section 8.3 we report here the expected scaling forms Eq. (8.46) in an equivalent way,
convenient for the following discussions. We expect, in momentum space,

{ Cy(t,s) = (t— s)“*l(t/szo’lpc(ﬂqz(t —5),s/t), 9.4)
Ry(t,s) = (t—s5)(t/s)"Fr(Qq*(t - 5),5/t) , '
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where a = (2 —n — 2)/z. We report also the expected scaling forms for 9;Cy=o(¢,s) and Ry—o (¢, ),
ie.

{ Bquzo(t, S) = Aac(t — S)a(t/s)aFac(S/t) R (9 5)
Ry=o(t,s) = Ag(t—s)%(t/s)Fr(s/t), :

derived directly from Eq. (9.4), and where Agc, Ar are non-universal amplitudes. The universal
functions Fsc(v) and Fr(v) are defined in such a way that Fyc(0) = 1, Fr(0) = 1.

9.2.1 Gaussian Model

The effects of a quench on this model were firstly worked out in Ref. [140] where the main formulas
can be found. However, a detailed analysis, in the perspective of studying the long-time behavior of
the correlation and response functions and of the deviations from equilibrium theorems, was done
only in Ref. [118]. For the Gaussian model we know exactly the response and correlations functions,
so we can evaluate the FDR Xq(¢,s) (in Ref. [118] the related quantity X has been considered, see
Sect. 9.1). From Eqgs. (8.24), (8.25) and definition (9.1) we have

-1
8,C9 -1
X0(t,5) = (nRé’ ) = (14 7200 4 gg2ry o2 o) (9.6)
q

If the theory is off-critical (ro # 0) the limit of this ratio for s — oo is 1 for all values of ¢, in
agreement with the idea that in the high-temperature phase all modes have a finite equilibration
time, so that equilibrium is recovered and as a consequence the fluctuation-dissipation theorem
holds. For the critical theory, i.e. rg x T — T, = 0, if ¢ # 0 the limit ratio is again equal to one,
whereas for ¢ = 0 we have X;_,(t,s) = 1/2. This analysis clearly shows that, as expected, the only
mode characterized by aging, i.e. that “does not relax” to the equilibrium, is the zero mode in the
critical limit.

9.2.2 One-loop Results

In Ref. [132] a detailed analysis of the one-loop critical FDR and of the scaling forms for both
correlation and response functions is done. We report here the results there obtained, deferring
some details of the computation to the Appendix 10.1.

To do analytic computations we use the method of renormalized field theory in the minimal
subtraction scheme, as in Sect. 8.3. As already said, the breaking of time homogeneity makes less
straightforward the renormalization procedure in terms of 1PI correlation functions (see Refs. [17,
140]), so our computations are done in terms of connected functions.

At one-loop order we have to evaluate, taking into account causality [14] (see also footnote 1 in
Chapter 8), the three Feynman diagrams in Figure 9.1, one for the response function and two for
the correlation one. In terms of them we have

N +2
Rq(t7s) = Rg(tas)_
N +2

g0(a) + O(g5) ,

90l(0) + ()] + O(gg) - (9.7)

Cy(t,s) = C,?(t,s)

In order to evaluate the FDR at criticality we have to set in this perturbative expansion ro =
0 (massless theory). We also set 7, " = 0, since it is an irrelevant variable [140,141] (and thus it
affects only the corrections to the leading scaling behavior), and @ = 1 to lighten the notations.
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Figure 9.1: Feynman diagrams contributing to the one-loop response (a) and correlation func-
tion ((b)+(c)). Response functions are drawn as wavy-normal lines, whereas correlators are normal
lines. A wavy line is attached to the response field and a normal one to the order parameter.

The first step in the calculation of the diagrams is the evaluations of the critical “bubble” B.(t),
i.e. their common 1PI part. We have, in generic dimension d,

d 1-d/2 —
O e L

2
(4m)4/2T(d/2)
Let us consider ¢ > s in the following. We may write, for generic rq > 0

where Ny = . Note that the equilibrium contribution to B.(t) is zero for d > 2.

(a) = / ae ROt ¢)BUYRO(E )
0

(b) = / a4t R(t,¢)B(t)CO( ) 9.9)
0

(c) = /Ooodt’ R (s,t")B(t')Cq (', 1) ,

where we set, now, rg = 0 in Rg and Cg, and the bubble B(t) is replaced with its critical expression
B.(t).
Integrating and expanding in powers of € = 4 — d we find for the response function

N +2
24

Ry(t,5) = Gt - 5) (1 Fa 2, ’*) 10, @), (9.10)
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and for the correlation one

91
_ G(t—s)—G(t+5s) _N+2_ ¢t _ N+2G(t+s) 9 9 .9
Cq(tas)_ e 1+ go 24 ln; — 90 24 Th@q 5) +O(e 790)7
(9.11)
where

forv>1

h(v) =2 [/ d¢ ln565+(1—e“)lnv] , (9.12)
0
and go = Nggo- Note that h(0) = 0, h'(0) = —2 and h(v) has the following asymptotic expansion,
e’ 1 2 k!
=2—(1+—-+=+...+—F+...
h(v) v(+v+v2+ tor Tt )

fixed point value. At first order in € [4]

(9.13)
In order to obtain the critical functions we have to set the renormalized coupling equal to its

2
N s + O(€%).
Thus we get (called Py = N+2)

+8

(9.14)
Py 9
Rq(t,s) :G(t—s) 1+€T lng +0(€ ) ) (915)
Cy(t,s) = Glt—s) —Glt+s) 1+ e& lnE - eP—NMh(Z 25) 4+ O(€?) (9.16)
a\" - q2 4 s 4 q2 q ’ .
that are fully compatible with the scaling form given in Eq. (9.5), with
Fp(z,y) = e+ 0() (9.17)
and
_ e T
1%3(3% y) = Ty - [

1ty

Py 2xy e Ty 9
1 —h . 1
+e4 (1_y>] p” + O(€%) (9.18)

In particular we recognize the exponent 6 = Pye/4+0(€?) in agreement with Ref. [140], z = 2 4+ O(€?),
n = O(€?) as expected, and that Fr(x,y) is not affected by O(e) corrections.

Computing the derivative with respect to s of the two-time correlation function and taking its
ratio with the response one we have

2q23
14 e 2% _ %6—21128 le

-1
4

q’s

— h(2¢%s) + 2h'(2¢%s)

+0(é?) . (9.19)
Note that, at least at this order, the result is independent of the observation time ¢. Using the large

v behavior of h(v), cf. Eq. (9.13), we find that the limit of the FDR for s — oo is equal to 1 for all
g # 0. Instead for ¢ = 0 we get (using the expression Eq. (9.12))

1 Py
X;’io = 5 (1 —€—

1 ) +0(é?) .

(9.20)
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Figure 9.2: Two-loop Feynman diagrams contributing to the response function. Response propaga-
tors are drawn as wavy-normal lines, whereas correlators are normal lines. A wavy line is attached
to the response field and a normal one to the order parameter.

Taking into account the effect of the mass ro (deviation from the critical temperature) in the
previous computations, one obtains for the non-critical bubble (contributing to the mass renormal-
ization)

™

B(t) = Na 2sindr/2

%F(d/Z)F(l —d)2,2r0t) | 102 9.21)

where I'(z,y) is the incomplete I function [177]. Using this expression it is possible to determine,
as previously done, the correlation and response functions. We report the basic formulas in the
Appendix 10.1. The final result is obtained computing the ratio X; in terms of the renormalized
parameters of the theory. It is then trivial, but algebraically cumbersome, to show that X is equal
to 1, in the high-temperature phase, for all g.

9.2.3 Two-loop Response Function

Up to the second order in perturbation theory there are four connected Feynman diagrams (without
self-loops of the response propagator) that contribute to the response function. They are depicted
in Figure 9.2. In terms of these diagrams and as a function of the bare couplings and fields (denoted
in the following with ¢p, @¢B), the zero-momentum bare response function Rp(t,s) is given by

N +2

Rp(t,s) = R)_,(t,s) — go 5 R" (9.22)
N +2\’ N +2)2 N+2
+ gg (T) R2’1 + %RZQ + TR2’3 + 0(9(3)) .

In the following we assume ¢ > s for simplicity. Using the results reported in the Appendix 10.2,
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we get
. N+2 t t
Rp(t;s) =1+ go—5 {log;+5[(7E+10g2+10gt)10g———10g2 ]}
L (N+2)% (1 t 1 1. ,t
+g§u —lgz + - +log2+ g +logt 10g—+—10g2—
144 8 € s

2N +271 1 4+1 +1 ¢ 1+1 t+ 1 "’t
Jo—=— o1 | ¢ \log 3 Hlog og |5 Tlogt+e 0g

+(log(t — 5) + ) log % - f(z/t)] +0(95, 93¢, 90€°) , (9.23)

where, as in Sect. 9.2.2, o = Nygo, Ng = 2/((47)¥/?T'(d/2)) and f(v) is a regular function defined
in Eq. (10.40). To lighten the notations we set 2 = 1 in the previous equations. The dependence
on (2 of the final formulas may be simply obtained by ¢ — Qt, where ¢ is the generic time variable.

In order to cancel out the dimensional poles (i.e. singularities for ¢ — 0) appearing in this
function, we have to renormalize the coupling constant according to [4]

- N+38 N
go = (1 +—— g) §+0(), (9.24)
and the fields ¢ and ¢ via the relations [14] pp = Zw/ $, PB =2 1/2 @, so that
N +2 49
R(t,s) = (2,2) " Rat,9) = [1+ %1 2L 0@ Ratts). 0)

After this renormalization, R(t,s) is a regular function of the dimensionality also for € — 0. The
critical response function is now obtained by fixing § at its fixed point value [4]

S S
leading to
R(t,s) = 1+ e%logé + ; [((SZ(VN++8§2) (x iz +log2> logg
et
e (1651 - g3 ) | + 0 (9-27)

Note that the non-scaling terms, like logtlogt/s (appearing, for example, in R*3, see Eq. (10.39)),
cancel each other out when the coupling constant is set equal to its fixed point value. Eq. (9.27)
agrees with the expected scaling form in momentum space, Eq. (9.5),

R(t,s) = Ag(t — 5)"(t/s)’ Fr(s/t), (9-28)
with the well-known exponents [4,140,141]
N+2¢ 6e
0 = — |1 log 2 .2
N+84[ +N+8<N+8+Og )] (9:29)
2—n— N+2 4
o = 2zn=2_ 3W+D 4 o, (9.30)

z 2(N +8)2 ©3°
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Figure 9.3: Plot of the two-loop contribution to the universal functions Fr(v) (see Eq. (9.32)) and
Fyc(v) (see Eq. (9.42)).

and the non-universal amplitude

Ap =1+ 52% (f(O) — 4yglog %) +0(€) . (9.31)
For the new universal function Fr(v) we find
N

Frv) =1+ 62H(ﬂv) — £(0)) + O(€?) . (9.32)

A plot of the quantity f(v) — f(0) (defined in the Appendix 10.2, Eq. (10.40)), that completely
characterizes the out-of-equilibrium corrections to the mean-field behavior up to the second order
in the e-expansion, is reported in Fig. 9.3. Due to the small prefactor (e2/72 for the Ising model,
N = 1), it might be very hard to detect this correction in numerical and experimental works,
as it happens for the corrections to the mean-field behavior of the static [10] and equilibrium
dynamics [178] two-point functions.

9.2.4 Two-loop Fluctuation-Dissipation Ratio

In this Section we evaluate the FDR up to the order €2. We do not compute the full two-point

correlation function C(t, s), since only 95C(t, s) is required to determine the FDR. This derivative
may be computed by using the following diagrammatic identity.

Each amputated diagram D;(t,s) (with label i) contributing to the response function, also
contributes to the correlation one in two diagrams, as graphically illustrated in Fig. 9.4. Taking
into account the explicit form of the propagators (see Egs. (8.24) and (8.25)) for ¢> = 0 and causality
(which also implies that D;(t,s) o< 8(t — s) apart from contact terms) it is easy to find that

0,Cit, ) = 2R (t, 5) + 2 / dt' ¢/ Dyt 5), 9.33)
0

where C;(t, s) is the contribution of this diagram to the correlation function, R;(t, s) the contribution
to the response one, and D;(t',s) the common amputated part (the second term in the r.h.s. of
Eq. (9.33) will be denoted by (8C;).).
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Dt = <)
S t

s = 5ﬁ< %t " s% >t’—t

Figure 9.4: Diagrammatic trick.

] t " t
02,4

S ' " t
02,5

Figure 9.5: Diagrams contributing only to the correlation function.

Relation (9.33) is nothing but a particular case of a relation following an algebraic identity for
the functional integral, i.e.

. )
0= / [dSOdSOdwo]m

{p(x, yestoA=Holal} (9.34)
with ¢ > s > 0. At criticality (i.e. ro = 0, using dimensional regularization) we get, in momentum
space,

(8 — @*)(p(—a, t)p(q, s)) = 2(p(—q,1)@(q, s)) — %(w(—q, )’ (q,s)) , (9.35)

which, in the limit g2 — 0, is diagrammatically expressed by Eq. (9.33) as far as the amputated
contributions common to the response and the correlation functions are concerned.

Diagrams contributing to the correlation function, but not to the response one do exist. They
have to be computed without taking advantage of this identity. At two-loop order there are two of
them, depicted in Fig. 9.5.
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Summing the six contributions to the correlation function, we finally get

9,Cx(t, N +2 N +2\? N +2)2
2Cull ) ) — g0 <80)1’1+g§{(T+) oy + TP oo
2
+ o0z + g | M ecr + () o }+o<93>'

(9.36)

Considering the explicit expression for the diagrams given in the Appendix 10.3 one obtains the
derivative of the bare correlation function. This quantity is renormalized using Eqs. (9.24), (9.25)
and

7 \1/2
Op = ZoN) with Zq = (_go) , (937)
Z3
so that, taking into account the {2 we set equal to 1 in the previous relations,
8;C(t,s) = ZaZ;" 0,Crl(t,s) = (Z,25)/* 0,Ch(t,s) . (9.38)

The expression of 9;C(t,s) in terms of the renormalized coupling has a multiplicative redefinition
of its amplitude at the first order in §. Considering the fixed point value for g (cf. Eq. (9.26)) one
finally obtains

9sC(t, s)
2

[1+€ N+2 23(N+2)(3N+14)]

AN+8) T AN +8)3
N+2 t €e[6(N+2) (N+3
{1+64(N+8)10 s Z[(N+8)2 (N+8
(N+2? .t 6(N+2)
TSN 82 %% 5T (N ree lgﬁlog(t_s)”

Wlipe N t2 13 g i 2102
CINT8)2 |43 s By %3

t
+ log 2) log A

+B(s/t) + f( /1) + NT+ + ] } +0(e), (9.39)

where the function f(v) and ®(v) are defined in Egs. (10.40) and (10.53) respectively, Lis is the
dilogarithmic function (its standard definition is recalled in Eq. (10.27)) and

4 3 4 3. ,4 3
1-log=|log2—-{1+1log= —log” - + - Liy(1/4) . 9.40
(1-1085 ) tog2- 3 (1+108 5 ) + S1og* 3 + STt/ (9.40)
Note that also for 9,C(t,s) all the non-scaling terms cancel out when the coupling constant is
set equal to its fixed point value. This result agrees with the scaling form in momentum space,
Eq. (9.5),

8,C(t,8) = Asc(t — 5)(t/5)? Fac(s/1), (9.41)

with the same a and 6 as those given in Egs. (9.29), (9.30) and a new universal scaling function
Fs¢(v) given by

L |poe g0 12 + S@(0) ~ 2(0) + /) ~ 1O)| +0(). (0.4

Foo(v) =1+ 22 T2
bo(t) =1+ €N 9) 3%T+0 " 3
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% appearing

also in Fr(v)) is shown in Fig. 9.3. As already noticed for Fr(v), effective corrections to mean-field
behavior are quantitatively very small for Fpc(v).

Taking the long-time limit (according to Eq. (9.2)) of both the correlation and response functions
one obtains the limit of the critical fluctuation-dissipation ratio we are interested in:

A plot of the loop corrections in the above expression (apart from the factor

(Xg2) N+2 , N+2 [N+2 3(3N +14)
L | O 9.43
2 tivre e ez 3 T avrs T TOE) (943)
with
2
c = —%+glog2(2+lllog2—3log3)—glogQS-{-gLiz(lM)
21 _. 21 _ . 1_.
— 7 Li2(1/3) + T Liz(3/4) — g Liz(8/9) = ~0.0415.... . (9.44)

We note that the contribution of ¢ to the FDR is quite small. For example, with N = 1 the sum of
the first two terms in brackets is ~ 1, which is about 45 times larger than c.

9.2.5 Results and Discussions

In Section 9.2 we studied the off-equilibrium properties of the purely dissipative relaxational dy-
namics of the N-vector model in the framework of the field-theoretical e-expansion [132,133]. The
scaling forms for the zero-momentum response function and for the derivative with respect to the
waiting time of the two-time correlation function reads

R(t,s) = Ag(t—s)"(t/s)"Fr(s/t), (9.45)
9,C(t,s) = Aac(t—s)*(t/s)?Fac(s/t). (9.46)

The universal functions Fr(s/t) and Fsc(s/t) are given in Eqs. (9.32) and (9.42) respectively. In
both cases the corrections to the Gaussian value 1 is of order €2. In principle these corrections should
be detectable in computer and experimental works, but being quantitatively very small, it could
be very difficult to observe them. We would remark that this fact does not mean that aging effects
in this model are weak compared to the analogous phenomena in glassy systems. In fact aging
manifests itself in the full scaling forms (e.g. 6 # 0) and in the violation of fluctuation-dissipation
theorem, i.e. in X*° # 1 in a quantitative way.

We note that the R(t,s) we found agrees with the general RG form (9.5), but at first sight it
is not compatible with Eq. (8.52). This naive comparison should be done very carefully because
it involves the Fourier integral of Eq. (8.51) which could be divergent. The analysis of the full ¢-
dependence of Rq(t, s) may give some insight into this problem. This dependence has been already
worked out up to O(e€) [132], but it is very hard to determine it up to two loops. In other dynamical
universality classes (see, e.g., Section 9.3) this discrepancy already arises at O(e). The computation
of the full g-dependence in these cases seems to be simpler and may provide some useful hints [136].

We computed the FDR Xq—¢ for general N, cf. Eq. (9.43). As shown in Sect. 9.1 [132] this
quantity for zero momentum has the same long-time limit as the standard FDR X*°. Using this
fact we may compare our result with those presented in the literature (see Table 7.1).

In the limit N — oo, Eq. (9.43) reduces to X = 1/2 — ¢/8 — €2/32 + O(€?), in agreement with
the exact result for the Spherical Model X>° =1 — 2/d [125].

The formula for general N (cf. Eq. (9.43)) allows us to make quantitative predictions for a large
class of systems. In Fig. 9.6 we report the dependence of X*° on the dimensionality at fixed N,
while in Fig. 9.7 we show the dependence on N at fixed d = 4 — €. For each model we report two
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Figure 9.6: X as a function of the dimensionality d = 4 — € for several N. For each N the upper
curve is the [2,0] Padé approximant and the lower one the [0,2]. The exact result for N = oo is
reported as a solid line. The numerical Monte Carlo values for the Ising Model in two and three
dimensions are also indicated (for the latter, there is no indication about the error).

values: One is obtained by direct summation (Padé approximant [2,0]) and the other by “inverse”
summation (Padé approximant [0,2]). We do not show the [1,1] approximant, since it has a pole
in the range of € we are interested in. From these figures some general trends may be understood:

e Decreasing the dimensionality, X always decreases, at least up to € = 2 (for the one-
dimensional Ising model the value X*° = 1/2 is expected [125]);

e Increasing NV, X*° decreases, approaching in a quite fast way the exact result for the Spherical
Model;

e For N = oo the curve of the [0,2] approximant reproduces better than the [2,0] approximant
the exact result in any dimension.

The last point suggests us to use the [0,2] value as an estimate of X, also for physical N.
We quote as indicative error the difference between the two approximants. Using this procedure,
we obtain X = 0.429(6) for the three-dimensional N = 1 model, compared to ~ 0.46 found
at one-loop [132], in very good agreement with the Monte Carlo simulation value X ~ (.40
for the three-dimensional Ising Model [125] with non-conservative (heat-bath Glauber) dynamics.
Considering € = 2 one obtains X* = 0.30(5) for N = 1, improving the one loop estimate ~ 0.42
in the right direction towards the Monte Carlo result X*° = 0.26(1) for the two-dimensional Ising
Model with Glauber dynamics [125].

Using our results we can give predictions of X for systems that have not yet been analyzed
by numerical simulations. We estimate X = 0.416(8) for the three-dimensional XY model and
X =0.405(10) for the three-dimensional Heisenberg model. These predictions may be tested by
numerical simulations extending the results reported in Ref. [125].

9.3 Model C

In the previous Sections we have discussed the purely dissipative dynamics of the Landau-Ginzburg
Hamiltonian. With “purely dissipative” we mean that during the evoultion (relaxation) there
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Figure 9.7: N-dependence of X for d = 2, 3. The upper curve is the [2,0] Padé approximant and
the lower one the [0, 2]. The dotted line is the exact result for N = oo in d =3 (X =1/3)

are no conserved quantities. In some cases, however, it turns out that the dynamics of physical
systems is such that some quantities are conserved, and thus a suitable field-theoretical description
should account for this fact. One example is provided by the lattice Ising model with Kawasaki
dynamics (lattice gas, see Sect. 2.1): Each elementary dynamical step amounts to a spin exchange
between two chosen neighboring sites (see also the DLG in Sect. 2.2). Of course, in this case, the
total magnetization of the system (well defined in finite volume) is conserved by the dynamics.
To describe the critical properties of the model (which exhibits, as discussed in Section 2.1, a
second-order phase transition when the density is 1/2), the Langevin equation for the corresponding
field theory should be such that the integral over the whole space of the order parameter (which
corresponds, in a mesoscopic description, to the spin field) does not change with time. This leads
to Model B dynamics, discussed in Sect. 3.3 when dealing with DLG. Here, instead, we consider a
different model, characterized by the fact that it is not the order parameter to be conserved, but a
non-critical quantity, which is dynamically coupled to it. This quantity may describe, for example,
the energy or the concentration of mobile impurities. The suitable field-theoretical description of
this dynamics is given by Model C in the terminology of Ref. [1] (see also Ref. [4]), whose definition
is briefly recalled in Section 9.3.1. It well describes, for example, the behavior of a phonon system
close to the structural (displacive) phase transition [1]. Other physical realizations of this model are
intermetallic alloys [153], adsorbed layers on solid substrates [154] and supercooled liquids [155]. In
these last three systems the physically relevant processes are those of decomposition and ordering.
In the case of the intermetallic alloys the system can be described as a lattice gas with two different
species of atoms, A and B. The formation of structures in which an A atom is surrounded by B
atoms is energetically favoured. As a consequence we expect that in the low-temperature region the
ordered phase amounts to a segregation of A and B components into two different sublattices. The
decomposition process is described by the conserved order parameter, corresponding to the local
concentration of A atoms in the A-B alloy. The non-conserved order parameter, describing the
ordering process, is essentially related to the local difference between the A concentration in each
sublattice (somehow the analogous of the staggered magnetization in antiferromagnets). The phase
diagram of this system is highly non-trivial and there are still unanswered questions (see Ref. [156]
for recent discussions).
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9.3.1 The Model

In this section we recall briefly the very definition of Model C dynamics. Let us consider an
N-component field ¢(x,t) (the order parameter) dynamically coupled to a non-critical conserved
density £(x,t). The joint dynamics of these two fields is given by the following stochastic Langevin
equations

ooixt) = —a5 e, (9.47)
Oe(x,t) = va2%+g(x,t), (9.48)

where H[p, ] is the Landau-Ginzburg Hamiltonian for the field ¢ and ¢ with a coupling term ~
between them

1 . 1 . 1 1. 1
= [ qdz |2 2 L 9 4, 1o 1 o 4
/ x[Q(V@) +2T0<p +4!gocp +2€ +2’76(p , (9.49)
Q is the kinetic coefficient, £(x,t) and ((x,t) zero-mean stochastic Gaussian noises with

(&i(x, ) (x', 1) = 2Q6(x —x")d(t —1')d, (9.50)
(C(x,OCK, ) = —2p0V28(x —x')d(t—t') . (9.51)

We note that as a consequence of Eq. (9.48), [ d%z die(x,t) =0, i.e. [d?we(x,t) is constant during
the dynamical evolution. Introducing a source e(x) for e(x) in Eq. (9.49), i.e. adding to it a term
—e(x)e(x), it is easy to see that in the stationary regime (whose probability distribution is given by
e~ Ml#el due to the fact that the relation Eq. (1.7) between noise covariance and diffusion coefficient
is satisfied), e-field static correlation functions are related to ¢2-field correlation functions. Indeed
the Gaussian integral over the field € can be computed, finding an effective Hamiltonian for the ¢
field, given by

1 1 1 1
Hesr[p; € /dd [ (Vo)? + 2T0<P + 4,(90—37 )t + 2w e— 562 . (9.52)

From this expression is easy to find that

2
(e(-q)e(q) =1+ 7Z(<p2(—01)<,02(q)) , (9.53)

which establishes the relation with two-point energy-energy (¢? — ¢?) correlation function. More-
over, from Heg we see that the coupling of £(x,t) to ¢(x,t) does not change the static properties
(i.e. the correlation functions), resulting only in a shift of the bare coupling-constant value (see
Ref. [4] for details).

The dynamical correlation functions, generated by the Langevin equations (9.47) and (9.48),
may be obtained by means of the field-theoretical action [4], derived as described in Sect. 8.1,

Slp, @,¢,8] = /dt/dd [90(9 +Q<p‘m[90’6] F0G

(9.54)
)

+ 84 — pQéVQ% +EpQV2E

where @(x,t) and &(x,t) are the response field associated with ¢(x,t) and £(x,t), respectively. It

is easy to read from Eq. (9.54) and (8.13) the interaction vertices, given by —Qgopp® /3!, as in the
case of Model A, —Qye@yp and pQy p?V2E/2.
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In Sect. 8.3, we described in detail how it is possible to deal with the effects of a macroscopically
prepared initial state on the dynamics of Model A. In Ref. [142] the same formalism was applied
to Model C. Following the same line as that explained in Sect. 8.3 one has to average also over
the possible initial configuration of both order parameter ¢g(x) = ¢(x,t = 0) (as in Model A) and
conserved density £o(x) = £(x,t = 0) with a probability distribution e~Holvo:%0l given by [142]

Holio] = [a% | 2 (en(x) - u)? + 5 (eal) = o) (9.55)

This specifies an initial state u(x) for ¢(x,t) and v(x) with correlations proportional to 7, ' and
o, respectively. To deal with a quench from high temperature we set u = v = 0. The response and
correlation functions may be obtained as in Sect. 8.3 by a perturbative expansion of the functional
Welght e—(S[W,(ﬁ,E,E]-‘f-Ho[SDO,EO])_

The propagators of the resulting theory are [142]

(Pi(a,8)pj(—a,t))o = &Ry (t,s) = 8;;0(t — 5)G(t — s), (9-56)
(pi(a, 8)pi(—a,t))o = 6;C)(t, )
_ 6,-,- _ o + q2 _
= [th s|) + (770 1> G(t + s)] ,
(9.57)
where G(t) is given by Eq. (8.26),
G(t) = e U +ro)t, (9.58)
and
E(@s)e(=at))o = R2,(ts)=0(t—5)G:(t - s), (9.59)
(e(q,8)e(—q,t)0 = C2,(t,8) = G:(t —s|) + (co — DG:(t +5), (9-60)
where
G.(t) = e PUT +ro)t (9.61)

As in the case of Model A, it has been shown that 7, ' is irrelevant (in the renormalization-group
sense) so that, as previously done, we will set 7, =9 [140,142].

9.3.2 (Gaussian FDR

The Gaussian part of Model C dynamics is the same as that of Model A as far as ¢ and @ are
concerned and of Model B (with some straightforward changes due to the non-critical behavior of
the conserved field) for ¢ and & From Eq. (9.57) and definition (9.1) we can straightforwardly
compute the FDR associated with the order parameter relaxation', and it is exactly the same as
that of Model A (we refer to Sect. 9.2.1 for the discussion).

1Of course we could compute the FDR also for the conserved density €. Being a non-critical field, we expect it to
assume the trivial value 1.



102 Aging in Field-Theoretical Models

9.3.3 One-loop Computations

In this Section we compute the non-equilibrium response and correlation functions for the Model C,
defined in Sect. 9.3.1, up to one loop in an e-expansion. As for Model A, time homogeneity breaking
leads to some technical difficulties when making use of 1PI correlation functions. So, as in Sect. 9.2,
we analyze only the connected ones. At one-loop order we have to evaluate, taking into account
causality [14], the ten Feynman diagrams in Figure 9.8, three for the response function ((R1), (R2)
and (Rs3)) and seven for the correlation one ((Ciq,5), (C24,5), (Csa,p) and (Cs)). Let us note that
all of them may be computed in terms of only four 1p1 contributions which are common to all the
diagrams depicted on the same line in Figure 9.8.
Grouping these contributions we have

R,(t,s) = Ry(t,s)— N2 00(Re) + 0292 (Ro) + p2242(Rs) + (62, g07%,7") »
Cutrs) = C9(t,9) = 2 go(Caa) + ()] + 017[(Cau) + (Co)]

+p2%7?[(C3q) + (Csp)] + p2°72(C4) + O(g8, 907>, ") - (9.62)

In order to evaluate the FDR at criticality we have to set in this perturbative expansion ry =
0 (massless theory). We set Q =1 to lighten the notations. The first step in the calculation of the
diagrams is the evaluations of the critical “bubbles” Bj.(t), Ba(t',t"), Bsc(t',t") and By (t',t") i.e.
the 1pP1 parts common to diagrams depicted on the first, second, third and fourth line of Figure 9.8,
respectively. We have, in generic dimension d,

d 1-d/2 —

where, as usual, Ny = 2/[(47)%/?T'(d/2)]. Note that the equilibrium contribution to B,(t) is zero for

d > 2. Given we are interested in the value of the FDR (9.1) for q = 0, in the following we evaluate
the diagrams for vanishing external momenta. Then for B, (t, s), Bs.(t,s) and By.(t,s) we have

d%q o 0
Bo.(t,s) = =g By (t,8) Cg ,(t,8) =

(2m)¢
= 0t — 5)[4nQ(1 + p)] =¥/ [(t— 8) 42 4 (co — 1)(t—/~cs)_d/2] . (9.64)
d
Buotn) = [ 4 B, (t:5) C3lt,0) =
= 0t — 5)[4rQ(1 + p)] /2 [(t — )72 _ (¢ + ns)*dﬂ] : (9.65)
Bu(t>ss) = [ (S;; O, (t,5) 021, ) = SE(d/2 ~ 1(1 + p)] >

A=) =t 5 )2 4 (o = Dt —rs) Y2 = (b4 5) 2

(9.66)

where k = (1—p)/(14p) < 1 (given that for Model C to make sense, p > 0). Expression (9.66) for
By.(t,s) is valid only for ¢ > s, while that for s > t is easily found, given the property By.(t,s) =
By.(s,t). Once the critical bubbles have been determined, it is easy to compute each diagram in
Figure 9.8.
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Figure 9.8: Feynman diagrams contributing to the one-loop order-parameter response ((R1), (Ra),
(R3)) and correlation function ((Cig,), (C24,); (Csap), (C4)). Response functions are drawn as
wavy-normal lines, whereas correlators are normal lines. A wavy plain (wavy dotted) line is attached
to the response field ¢ (&) and a normal plain (normal dotted) one to the order parameter ¢ (to
the conserved density €).
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Performing the required integrations and expanding in powers of € = 4 —d we find for the critical
response function

292 1 _N+2 L, 14+p2—c]. ¢t
Ry—o(t,s) = — ~+1 SMLERPL L b
a=o(t,5) 1+pe Tt 24 o 2p(1 + p) s +
~ 2
7o o 1 1—kv _,
— In[Q(t — s)] — | R(s/t;
1+, n[Q(t — )] — 7o Col—pznl—;@-l_% (s/t;p) +
+0(627§§76907’747’?29076’72) ’ (967)
where
P 1+ kv 1 1— kv 1
R(v;p) = — | 1 - , 9.68
(v; p) T ey yanl s (9.68)

and for the correlation function

49°Qs 1 _N+2 [_.N+2 _,14+p°—c], t
_ = _ 2 42051 - In -
Cy=o(t, s) 1+, ¢ + 3{ tho—5— [90 2 Yo 3L T p) n-—+

-2
Yo 9 s In[1 + p] 1,1

~ 0 10[08] + 5 |—coCr (5 p) = eoCa(p) — =Pl 4 ey (p) + 2Ca(=
Dm0+ 4o” [~ Gi) = oCal) - S sk cale) + Saa)

S S ~ ~ 4 ~9~ ~
+C1(33p) - Cl(‘;?ﬂ)]} + O0(€, 55, €90, 7*, 7290, €7°) (9-69)

where we assumed ¢ > s and we introduced go = Nggo, Yo = Na7o and the functions

1+v 1-kv
Cl (’U, p) = m ln[l -+ ’U] - W ln[l - I‘&U] ) (970)
Cop) = —mi=d 1 (9.71)

(1=p2 (@A=pp

The first one is defined for —1 < v < 1/k and p # 1 (we are interested only in the case p > 0). We
note that the contributions of C; to Eq. (9.69) are regular in the limit p — 1.

The previous expressions for the correlation and response functions have simple poles in €, so
renormalization of bare parameters is required. We use the minimal subtraction scheme in order to
render the renormalized quantities finite for ¢ — 0. Up to one-loop order it is sufficient to perform
the following renormalizations [4,157],

@ = Z7\?g . 5 _ 1 4’721 4 225 -2
{Q D Gy vith Z=1- 210G (0.72)

to have finite two-point functions.

In order to obtain the critical functions we have to set the renormalized couplings equal to their
fixed point values. We recall the scenario of fixed points for Model C with initial condition [142]:
As far as the coupling § is concerned, there is only one stable fixed point value §* for € > 0,
g* = g% + 67", where g% = 6¢/(N +8) + O(€?) is the coupling-constant fixed-point value for Model
A. In the (72, p, ¢)-space, instead, we have

(I) @ <0,ie. N >4+ 0(e) [?)): The stable fixed point for 4 is * = 0, so the dynamics of the
conserved density decouples from that of the order parameter and we get back to Model A
(at least asymptotically).

2We recall that the specific-heat critical exponent for Model A is a = %6 + O(€?) (see, e.g., Ref. [4]).
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(II) a>0,ie. N <4+ O(e) (see footnote 2): A non-trivial stable fixed point for ¥ emerges,

~2% 4-N 2
= 7N(N+8)€+O(€ ).

As far as p is concerned we have two possible stable fixed points

(a) N >2+0(e) : p* =0, but this is a peculiar limit [4],
(b) N<240(e) : p*=2/N -1+ O(e).

It has been shown that whenever a > 0 the fixed point value for ¢ is ¢* = 0 [142].

We focus our attention on the only relevant stable fixed point of the model, i.e. (IIb), for which

g = ﬁe + O(€). (9.73)

9.3.4 Scaling Forms and Results

In Ref. [142] the scaling properties of the model and the effects of initial conditions are analyzed
within the RG approach, along the same lines as those reviewed for Model A in Sect. 8.3. We do
not give, here, any detail of the analysis but briefly sum up the results of Ref. [142]. The scaling
forms predicted by the RG for the critical two-point response and correlation functions are the same
as those for Model A, Eq. (8.46), with different critical exponent 7, z, 8 and scaling functions. We
can write them as in Eq. (9.5)3,

{ Co=o(t;s) = Acs(t—s)"(t/s)"Fo(s/t),

Ryo(t,s) = Ag(t—s)*(t/s)’Fr(s/t), (9.74)

where a = (2—n—2)/z while Ac and Ag, as in the case of Model A (see Sect. 9.2), are non-universal
amplitudes defined in such a way that Fgr(0) = Fc(0) = 1. Given this normalization, Fr and F¢
are universal. In Ref. [142] the expression for § was determined up to two-loop order, at the fixed
point with ¢* = 0. Up to one loop, it reads

*N+2_~2* 1+p*2

2 7 4 ) O(e%) . (9.75)

0=39

The exponent a in Eq. (9.74) is given by well-known dynamical exponent for Model C (both 1 and
z were computed up to two-loop order in Ref. [157], but recently it has been pointed out that the
two-loop contribution to z is not correct, see Ref. [158]),

2%

:2—’)7—23_ ’7 (62)

a + 0

L T (9.76)

Taking into account Eqs. (9.74), (9.75) and (9.76), the scaling functions Fg and F¢ are easily
identified in Eqs. (9.67) and (9.69). We find (¢* = 0) for the non-universal amplitudes

Ap =1+ 75R(0;p*) + O(€%) , (9.77)
Ac . N+2 | In(l+p) W11 )
7—1‘*'9 T"‘ W+62(p)+p—*c2(p_*) +0(€ )a (978)

3We point out that the scaling form for Cy=o(t, s) is written here in a slightly different form, compared to Eq. (9.5).
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while, for the universal scaling functions,

Fa(v) = 1+ 52[R(v; ") — R(0; )] + O(€2) (9.7
Fo(w) = 149" 2 47 | BEZ D ewip) - i) + 0. (050)

At variance with Model A [133], there is an O(e) correction to Fg (cf. Eq. (9.32)). Moreover it
is well-known that for the relevant fixed point of Model C, the coupling to a conserved density
leads to a O(e) contribution to z [157]. Computing the derivative with respect to s of the two-time
correlation function and taking its ratio with the response one we have

1. N+2 1 1—s/t 1,1
SXTL(ts) = 14§ s Ca(p*) + —Ca(—
st =145 e [ m T e + S
s s s 14 p*2
Ci(Z;p%) —C(=Z;p") = R(Z,p") + —— (9.81)

24 S s s
£ 5 [06 G ) + B (5.7 +0() -
Note that, at variance with Model A, the result depends on the ratio s/t already at one loop..

In the limit ¢ — o0, s fixed, we find an s-independent result, thus

1
2

L N+2

2* 1 *\2 1 *
xest =145t P pd+p)° 1+4p

(L+p*)(1 = p*)? 4p* 2p*
Taking into account the fixed-point values of couplings we get
1 4-N N(N -1) N2(2—-N)
XPo==11
=0 = 3 { TN +8)° [(4 “NE2-N) A =1

s [ ] +0@).  (9.82)

In[N(2 - N)]] } +0(%) .  (9.83)

For N = 1, which is the physically relevant case into which Model C is non-trivial, we find the
following non-universal amplitudes

Ap=1- ln?Ze +0(?) , Ac=2 (1 — 1+172211126> +0(€?), (9.84)
and, for scaling functions,
Fr(v)=1— %e +0(&), (9.85)
Fo(v) =1+ §€ [(1;U + i) In(1 —v) + l;tvln(1+v) —v] + O(€?).

(9.86)

The FDR turns out to be exactly the same as in Model A, X2, = 1/2(1 — €/12) 4+ O(¢?), i.e. the
presence of a coupling to a conserved density does not affect the value of A72,, at least up to one-
loop order. Higher-loop calculations may clarify whether this fact is only a coincidence at one-loop

or it is a deeper property. See Sect. 9.5 for further discussions.

9.4 Diluted Ising Model

In Sections 9.2 and 9.3 we have computed the scaling forms for the response and correlation functions
in the aging regime (at least up to one-loop) and the FDR, basically for different dynamics of the
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same Landau-Ginzburg Hamiltonian of an N-component order-parameter field. In this Section we
extend these computations to Model A dynamics of a system with quench disorder. The extension
of this kind of investigation to disordered systems is very interesting because, besides giving a check
of the expected scaling laws, it predicts a new universal dynamical quantity (the long-time limit of
the FDR) which could be measured in MC simulations and could be used to identify a universality
class, as in the case of other universal quantities (see Sections 7.2 and 9.1).

As remarked in Sections 8.1 and 9.1, universality hypothesis implies that critical phenomena can
be described in terms of quantities that do not depend on the microscopic details of the systems, but
only on their global properties such as symmetries, dimensionality, etc. A question of theoretical and
experimental interest is whether and how the critical behavior of a system is altered by introducing
in it a small amount of uncorrelated impurities, considered as a quenched disorder.

Changes in the static critical behavior may be expected or not depending on the specific-heat
exponent of the pure model, at least as long as the disorder is weak (in the sense that it is reasonable
to treat it perturbatively). Indeed the Harris criterion [168] states that the addition of a small
amount of quenched impurities to a system which undergoes a second-order phase transition does
not change its critical behavior if the specific-heat critical exponent a;, of the pure system is negative.
If o, is positive, the transition is altered and its properties could change.

For the very important class of the three-dimensional O(M)-vector models it is known that
ap < 0 for M > 2 [10], and the critical behavior is unchanged by weak quenched disorder. Instead,
the specific-heat exponent of the three-dimensional Ising model is positive [10], thus the existence
of a new Random Ising Model (RIM) universality class is expected, as confirmed by RG analyses, MC
simulations, and experimental works (see Refs. [10,171] for a comprehensive review on the subject,
and for an updated list of references).

The purely relaxational equilibrium dynamics (Model A of Ref. [1]) of this new universality class
is under intensive investigation [172-176]. The dynamic critical exponent z differs from the mean-
field value already at one-loop [172], at variance with the pure model. This exponent is known up to
the three-loop order in a y/e-expansion [175] and in the fixed-dimension (d = 2,3) expansion [174],
and has a value in good agreement with several MC simulations [176].

The out-of-equilibrium dynamics is, instead, less studied. The same field-theoretical methods de-
scribed in Sect. 8.3 may be applied to study Model A dynamics of the suitable Hamiltonian #,, (see
Eq. (9.89) below) for the diluted model (resulting in a different dynamical functional, Eq. (9.97)).
In particular we are interested in the relaxation after a quench to the critical point, starting from an
high-temperature disordered state. The initial-slip exponent € has been determined up to two-loop
order in Ref. [148] and the response function only at one-loop, both for conservative (Model B) and
non-conservative (Model A) dynamics in Ref. [147]. Also the case with long-range interactions and
quenched disorder with long-range correlations has been studied in detail in Ref. [149].

9.4.1 The Model

Before describing the field-theoretical model used to determine the critical properties of the Random
Ising Model universality class, we present one possible lattice system belonging to it (see, e.g.,
Ref. [10]). Let us consider a ferromagnetic material described in terms of one-component spins on
a lattice A. When non-magnetic impurities are introduced in the system they occupy lattice sites,
causing a dilution of the spins. This fact can be described by introducing a set of uncorrelated
random variables p; € {0,1}, i € A, such that p; = 1 when the i-th site is occupied by a spin,
0 otherwise. The probabilities of these two occurrences are chosen equal to ¢ and 1 — ¢, so that
the average spin concentration is q. The ferromagnetic Hamiltonian of this system is, assuming
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nearest-neighbor interaction,

Hol{sidi{od] = = 3 piny sis; - (9.87)
(i,5)

From a dynamical point of view, impurities (and thus the variables p;) are assumed to be quenched,
i.e. fixed on the typical time scale for the dynamics of the spins. As long as the concentration
q is above the percolation threshold, the system undergoes a second-order phase transition at a
temperature depending on ¢. The static properties of this model can be described (at least in the
limit of small dilution ¢ ~ 1) by a suitable field-theoretical Hamiltonian, Eq. (9.89) [169]. In the
case of microscopic non-conservative dynamics (e.g. Glauber dynamics), the corresponding one for

the field-theoretical model is specified in term of the stochastic Langevin equation (as in Sections 8.3
and 9.3),

SHylyp]
dip(x, t)
where Q is the kinetic coefficient, £(x,t) a zero-mean stochastic Gaussian noise with correlations

given in Eq. (8.12), and H[y] the static Landau-Ginzburg Hamiltonian with “random temperature”
[10]

6t<P(X;t) =-0 + f(x, t) ) (988)

1

Holyl = [a%a [ 3707 + Sra + 5067 + ] (9.89)

Here 1(x) is a quenched (time-independent) spatially uncorrelated random field with Gaussian
distribution and covariance x w, i.e.

P(y) = \/;_w exp [_g] . (9.90)

The dynamic correlation functions, generated by the Langevin equation (9.88) and averaged
over the noise £, are obtained (as described in Sect. 8.1 and Sect. 8.3) by means of the following
dynamical functional

N .0 _O0H e~
Sylp, @l = /dt d%z {goa—f + Q@#M — chgo] . (9.91)

To take into account the presence of an initial condition for the dynamics the same method as that
described in Sect. 8.3, can be applied [148]. Thus we average over the initial configuration ¢y with
a weight e~ Holol where

Holpo] = [d 2 (po(x) — a(x)). (9.92)

In this way all statistical means, for a given realization of 1(x), may be obtained as expectation
value with the functional weight exp{—(Sy[p, @] + Ho[po])} = e ». For a generic observable O,
calling ¢ the set of all the fields involved in the calculation, we have

[[dg]Oe=5+17]
O =" Fagesr

Then, the average over all possible realizations of the noise can be computed,

(9.93)

@) = [1aPwiO), (9.94)
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In the analysis of static critical behavior, the mean value over the quenched disorder % is usually
computed by using the replica trick [10] which allows to transform the quenched average into an
annealed one (whose computation is straightforward). If we are interested in dynamical processes
the computation of the former, Eq. (9.94), is very simple. We remark that, for a generic dynamical
functional J g, @],

/ [dpd@leIle?l =1 (9.95)
as a consequence of the fact that self-loops of the response propagator are vanishing and that all
terms appearing in J[g, @] have at least one ¢ (this is clear form Eq. (8.6) and from the fact that
this structure is preserved by renormalization, see, e.g., Ref. [4]). Thus, Eq. (9.94) reduces to an

annealed average [170], because of the denominator in Eq. (9.93) is equal to 1, whatever ¢ is. The
resulting effective dynamical action is given by

e Seledl = / [dy]P(p)e5v17+8) = e=5104], (9.96)

with the 1-independent action [148]

Sle, 3] = / ddx{ / "t Blorp + Qro — A)p — Q]

\ R (9.97)
Q > Q >
+ﬂ/ dt g — 2 / dtgp ) o,
where vg oc w. In terms of it, the quenched average Eq. (9.94) is given by
(- )y = /[dgpd@] ..o Sle.d] (9.98)

The action S[p, @] is similar to the standard one for Model A dynamics of the pure system Eq. (9.54)
(H is given in Eq. (8.13)), with an extra-interaction term which is non-local in time.

The perturbative expansion is performed in terms of the two fourth-order couplings go and vy
and using the propagators of the free theory with an initial condition at ¢t = 0, ($;(q, s)¢; (—q,t))o =
8i; RI(t, s) and (pi(q, s)p;(—q,t))o = 6;;CL(t, s), given in Eqs. (8.24),(8.25) and (8.26) [140]. We
observe that power counting, determined by the quadratic part of S[p, @], is the same as that of
the pure model and thus 75 * is, again, irrelevant for large times behavior [140,141,148]. Thus, as
far as the Gaussian model (tree-level quadratic action) is concerned, the theory is exactly the same
as the pure Model A, discussed in Sect. 9.2. The Gaussian FDR is that reported in Eq. (9.6), and
thus the remarks made in Sect. 9.2.1 applies also in this case.

9.4.2 Response and Correlation Functions

To compute the response function at one-loop order, we have to evaluate the two Feynman diagrams
depicted in Fig. 9.9. In terms of them we may write

1
Rq(ta S) = Rg(ta 8) - 590(@) —+ UO(b) + 0(9(2)7U(2)590U0) ) (999)

where we are considering the case N = 1 (RIM universality class), and we set 2 = 1 to lighten the
notation.
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Figure 9.9: Feynman diagrams contributing to the one-loop response function. Response functions
are drawn as wavy-normal lines, whereas correlators are normal lines. A wavy line is attached to
the response field and a normal one to the order parameter. The dotted line is a non-local v-like
vertex.

In the following we report the expressions of the Feynman diagrams at criticality (ro = 0 in
dimensional regularization) for vanishing external momentum, since we are only interested in that
limit, and since expressions for non-zero q are long and not very illuminating.

The diagram (a) in Fig. 9.9 contributes also the the response function of non-disordered models,
and it has already been computed in Sect. 9.2.2 [132], obtaining (for ¢ > s):

(a) = —Ndi log g +0). (9.100)

where Ny = 2/[T'(d/2)(4w)%?]. For the diagram (b) we find

oo dd

(b) = /0 dt’ dat” / ( 27:)’ ZRo_o(t,t)Rp (', t")R)_ (", 5)
1 1 1 (

T (Am)/21-dj22-d/2

t—s)2 42, (9.101)

Inserting the expression for (a) and (b) in Eq. (9.99) and expanding (b) at first order in € = 4—d,
one obtains

2
Rp(t,s) =1+ §o=In POt b log(t — ) + vE | + O(€%, €do, €0, G2, Ty, Joio) , (9.102)

where §o = Nggo and 9y = Ngvp.

There are five diagrams contributing to the correlation function. Four of them are obtained by
the ones of Fig. 9.9 changing one of the two external response propagators with a correlation line
(see Ref. [133] and Section 9.2.4 for a detailed explanation of this correspondence). We call these
four diagrams (ai1), (az2), (b1), and (b2). The sum (a;) + (a2) was computed in Sect. 9.2.2 [132]
leading to

(a1) + (a2) = —%s (logé + 2) + O(e) . (9.103)

The sum (by) + (b2) is, instead,

(b1) + (bo) = —NaI(d/2 — 3)[t3~ 42 + $3~ /2 _ (1 — 5)34/2], (9.104)
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The octopus diagram in Fig 9.10 does not have a corresponding one contributing to the response
function. It has the value

N.T(d/2 _ ¢)3—d/2 3—d/2
(C) — d (d/ ) (t S) + (t + 8) _ t3_d/2 _ 53_d/2 (9105)
(1-4d/2)(2-d/2)(3—4d/2) 2
Collecting together these contributions and expanding in powers of €, we find
Ca(t,s) =2s — %0[((11) + (a2)] +vo[(b1) + (b2) + ()] + O(g5, v3, govo)
gg t - 23
=25+ s (logg + 2) + ¥ [ -~ (ve —1)s (9.106)
t—s)log(t—s t+s)log(t+s U T R
+ ( ) Qg( ) - ( ) 2g( )] ‘|‘0(627690757)0,9(2);U(Q)ygovo)-

The dimensional poles in Egs. (9.102) and (9.106) can be canceled by a multiplicative renormal-
ization of the fields ¢, ¢ and of the parameter  [148,173,175].

1/2 o
c glj;p ’ h Z = 1+ 0(9(2)793,90710) ) (9 107)
o @, wit ~ o D _
Q = (Z/2)'%Q Z = 1+2?0+0(0579(2)790110) :

For the response and correlation functions, these renormalizations imply
R(t,s) = Z7'2Z712Rp(t,s) and C(t,s)=Z"%Cg(t,s). (9.108)

We remark that as far as the two point functions are concerned, bare (go, 7o) and renormalized (g,
¥) coupling constants are the same at this order in perturbation theory, i.e. go = § + O(§?) and
Do = © + O(?). The critical response and correlation functions in e-expansion are then obtained
by setting the renormalized couplings at their fixed-point values. We remind that the stable fixed
point of the RIM is of order /€ and not € (see, e.g., Ref. [10]), due to the degeneracy of the one-loop
B functions. The non-trivial fixed point values at the first non-vanishing order (i.e. two loops) are
(see, e.g., Ref. [148])

6e 6e
0g=ag* = 4 —_— 0 =70F = —_— . 1
g=9 =3 +0(), =17 £3 + O(e) (9.109)
Thus, we obtain
1 /6e t

C(t,s) 1 [6e t t+s. t—s
= 1+ =4/ — |log - — —1 — I . 111
5 s { + 5\ 53 og - +3—vE —log(t —s) + 55 108 7 p + O(e) 9 )

(©)

Figure 9.10: Feynman diagram contributing to the one-loop correlation function that does not have
analogous in the response.
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9.4.3 Scaling Forms and Results

In Refs. [147,148] the effects of initial conditions on the scaling properties of Model A with random
impurities was studied within the RG approach. This analysis is done in Ref. [147] by applying the
older standard method to deal with dynamical critical phenomena (see, e.g., S. K. Ma in Ref. [5])
while in Ref. [148] the analysis is carried out along the same lines as those reviewed for Model A
in Sect. 8.3. We do not give, here, any detail of this analysis (discussed in some detail for Model
A) but briefly sum up the results. The scaling forms predicted by RG for the critical two-point
response and correlation functions are the same as those for Model A (Eq. (8.46)), with different
critical exponent 7, z, 6 and scaling functions. We can write them as in Eq. (9.74),

Co=o(tis) = Acs(t—s)(t/s) Fo(s/t)
{RQ—Z(taz) = Ath—sfa(t/sngchsjt), (9112)

where a = (2—n—2)/z while A and Ap are, as in the case of Model A (see Sect. 9.2), non-universal
amplitudes defined in such a way that Fr(0) = Fc(0) = 1. Given this normalization Fr and F¢
are universal. In Ref. [147] § was computed up to one-loop order and in Ref. [148] the computation
was extended up to two loops (i.e. up to O(e)). At the order we are interested in its value is (at
the fixed point Eq. (9.109))

1 /6e
= /= . 11
0 5\ 53 + O(e) (9.113)
The exponent a in Eq. (9.112) is given in terms of exponents known in y/e-expansion up to three-
loop [175]* in the case of static ones (1, required here, and v) and up to two-loop for the dynamic
exponent z [147,175]. At O(y/e) it is
2—n—=2 1 /6e
=—— = ——1/—=+4+0(e) . 9.114
2 2\ 53700 (0.114)
Taking into account Egs. (9.112), (9.113) and (9.114), the scaling functions Fr and F¢ are easily
identified in Eqs. (9.110) and (9.111). We find the results Fr(z) = 1 + O(e) and

1 /[6e

which are consistent, in the limit ¢ — 0, with the result of Ref. [147] about the g-dependent scaling
form of the two-time response function (see Eq. (20) therein). For the two-time correlation function
(in Ref. [147] only the structure factor Cy(¢,t) was considered), instead, the non-universal amplitude
is given by

a

AC 1 6e
.—1+_1/_2_ +0 11

while the universal regular scaling function is

1 /6e 1 1 11—z
F, =14+ -4/—=|1+=-(1+—-])1 +0 A1
o(z) 2V 53 [ 2 ( a:) 0g1+a:] () (9.117)

which agrees with the result in Eq. (25) of Ref. [147], with ¢ = 0, in the limit ¢ — s. Note that
at variance with the pure model [132,133], the function F (x) has a correction already at one-loop
order which should be observable in MC simulations.

4Three-loop expansions have been determined in fixed dimension d = 3. See Ref. [174].
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Using the definition (9.1) we compute the FDR for finite times,

Yamolt:s) _ 1 [6e
2 2V 53

w _ 1 1 [6e
Xgoo = 5 4\/ =3 + O(e) , (9.119)

that, for € = 1 leads to X2, ~ 0.416, and ~ 0.381 for € = 2. It would be interesting to see if this
one-loop result is in as good agreement with MC simulations as in the case of the pure model (cf.
Refs. [132,133]). To this order it is not even clear whether randomness really changes in a sensible
way the limit of the FDR or not. Two-loop computations and MC simulations could clarify this
point.

1 t—s
1+ =1 . 11
+3 Ogt+s] + O(e) (9.118)

In the limit

9.5 Summary and Conclusions

In this Section we summarize the results obtained for the models of dynamics previously described.

We have applied well-known field-theoretical methods in order to determine the new universal
quantity X (see Sect. 7.2 and 9.1) associated with the relaxational dynamics of a critical system
after a quench from high temperature®. Qur results extend previous studies of this quantity, summed
up in Table 7.1, mainly based on exact solutions of simple models and on Monte Carlo simulations.
The main virtue of the method applied here is that it allows to deal with systems that could be
very difficultly solved exactly. On the other hand, only perturbative expressions can be found for
X and as a consequence to obtain reliable numerical estimates an higher-order loop expansion is
required. We can note, however, that in some cases the one-loop result reproduces quite well the
numerical value determined by Monte Carlo simulations (see Sect. 9.2.5).

We report in Table 9.1 the results obtained in the previous Sections for X *°, in the form of an

e-expansion around the upper critical dimension which is 4 for all the models considered.
We refer to Sect. 9.2.5 for a comparison between the numerical estimates derived from our series

for Model A and those obtained by Monte Carlo simulations of the Ising Model (with Glauber
dynamics).
Some observations on our results are in order:

o We observe that in all the cases analyzed, the critical fluctuation-dissipation ratio in the aging
regime turns out to be a number less than 1/2 (which is the value obtained for the free-field
theory). To our knowledge there is neither a general proof or an argument showing that this
result should be expected, nor any evidence against it.

e For Model C the result up to one-loop is the same as that for Model A with N = 1 (see
Tab. 9.1). A two-loop computation would be very useful to determine whether this is simply
a coincidence or a deeper property of the model. A comparison with Monte Carlo results (not
yet available in the literature) could be useful as well.

e For the RIM the one-loop fluctuation-dissipation ratio is numerically very close to that for the
pure model (Model A with N = 1). It is not clear whether the randomness present in the
system really changes the fluctuation-dissipation ratio or not. Higher-loop computation and
Monte Carlo simulations could be very useful to clarify this point.

5Very recently, the related problem of the long-time behavior of a Spherical Model in contact with a thermal bath
having a time-dependent temperature, has been considered [130]. This correspond to the non-ideal case of a “slow”
quench.
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| Model | (2X )T
N+2 N+2 [N+2 3(3N+14)
Model A, O(N) ¢ [132,1 1 2 # 8
odel A, O(N) [132,133] | 1+ 4(N+8)6 +e N 182 3 + AN +3) +c™ | +0(€)
1
Model C b1 [134] | 1+ ¢ +0(€%)
RIM® [135] | 1+ 1\ / E\/E +0(e)
2V 53

Table 9.1: (2X>°)"! for the field-theoretical models considered in @ Sect. 9.2, ® Sect 9.3 and
¢ Sect. 9.4.% For the expression of this constant see Eq. (9.44). T We report only the result in
the physically relevant case N = 1. ¥ With Model A dynamics.

We would stress here the relevance of our results for the problem of the validity of Ls1, briefly
introduced in Section 8.4. We recall that, assuming the covariance of the response function under
a group of local anisotropic scale transformations, it is possible to determine its general form. In
the cases we are interested in, i.e. those in which the time homogeneity is broken, the predictions
of LsI are given in Egs. (8.50), (8.51) and (8.52). As a consequence, we should expect that Fg(v)
in Eq. (9.45) for Model A, in Eq. (9.74) form Model C and in Eq. (9.112) for the RiM, are equal
to 1, independently of v. This is not the case at least for Model A and Model C, in which a
non-trivial dependence on v is explicitly found at two- and one-loop, respectively (cf. Eq. (9.32)
for Model A and Eq. (9.85) for Model C). In the case of the RIM, instead, we do not find any
correction to the value 1 at one-loop order, and thus LsI could hold. One possible objection [165]
to these conclusions is that to compare our results in momentum space with the prediction coming
from LsI as given in Egs. (8.50) and (8.51), we have to Fourier-transform these scaling forms and
take the limit ¢ — 0. This operation could not be safe if the starting formulas are singular. To
reply to this criticism one should work out the full g-dependence of the response function and show
explicitly that, at least at the perturbative order considered, it is Fourier-transformable. In the
case of Model A the computation of this dependence up to two-loop is very difficult and the same
is true for Model C up to one-loop. It is possible, however, to show that in simpler models the
g-dependent response function does not agree with the LSI prediction already at one-loop and it
is Fourier transformable [136]. Moreover we believe that also in the general case the generic large
momentum behavior of the correlation function is exponentially decreasing (for generic times), so
that its Fourier transform can be always computed. Thus, if the comparison is safe as we think, we
have to account for the good agreement between the LsSI predictions and the M simulations for the
two- and three-dimensional Ising model (with Glauber dynamics) in the aging regime, reported in
Ref. [164] (see also Ref. [160]). In terms of the field-theoretical models analyzed, it corresponds to
Model A dynamics of the O(NN) model with N = 1, whose scaling function is given in Eq. (9.32).
We observe that, as remarked in Sect. 9.2.3, Fg, the scaling function of the response one, differs
from 1 at O(e?). Furthermore, the correction bears a very small prefactor that makes it at most
~ €2/35. Although not quantitative, from this result we can conclude that the dependence of Fg(v)
on v is expected quite small and thus difficult to be observed in Monte Carlo simulations. So the
observed agreement with LSI could be more apparent than real. Note that in the case of Model C
the correction to Fr are bigger by a factor ~ 6 in three dimensions and ~ 3 in two dimensions. A
Monte Carlo simulation of this model could be helpful to detect deviations from LSI predictions.
The nature of the above mentioned disagreement between perturbative results and LSI could be
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probably found in the limits of applicability of the latter® which have not yet been investigated in
the literature.

8A criticism of LSI, based on the disagreement between its prediction for critical exponents of Lifshitz points and
field-theoretical calculation can be found in Ref. [166], see also Sect. 8.4.






Chapter 10

Model A: Two-loop Integrals

10.1 Some One-loop Results

We summarize here the main analytical results useful for the computation of the correlation and
response functions for rg > 0 (i.e. at criticality or in the high-temperature phase) at one-loop order.
Again one has to perform all the needed integrations over the times, as in Eq. (9.9) with the free
field correlator and response functions given in Egs. (8.24) and (8.25). At variance with the critical
theory a renormalization of the parameter rg is now required to cancel the dimensional poles both
in R, and C,.

Let us introduce the function

Y@EAMB@, (10.1)
and
W@EA&G&%W&L (10.2)

where G(t) and B(t) are given in Eq. (8.26) and (9.21), respectively. In terms of ¥ and W we
obtain (for ¢ > s and 70_1 =0, Q = 1), making reference to Fig. 9.1 in Sect. 9.2.2,

(@) =Gt -s)[Y(t)-Y(s)], (10.3)

1

@+

In the following with Y and W we mean also their analytic continuation in d.
An explicit computation leads to

(®) + () (Gt —8)[Y(t) — Y (s)] — Gt + $)[Y () + Y (s)] + 2G(t + 8)W(s)} . (10.4)

d/2—2
,
Y(t) = W {(2r0t +d/2—-1)[[(1—-d/2)—T(1—d/2,2ret)] + (zmt)l—d/?e—%t} , (10.5)
and
1 rg/2_1

W) =5

Wm{(}(—%)[m —d/2) —T(1 — d/2,2rot)]

—(@*[ro)" /> 1AL - d/2,2¢*0) } (10.6)
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where we have introduced
w
Afv,w) = / dr 7917 (10.7)
0

(for v <0 its analytic continuation has to be considered).
Expanding Eqgs. (10.5) and (10.6) in € = 4 — d, we obtain

—27rot

2(4m) 1Y (1) = _§(2r0t +1) = @rot + Dlyrod) ~ Inra] + 1+ 5 +0(0) (10.8)
and
2(4m) "% (¢ + ro)W (1) =
= —%[TOG(—%) + %+ ¢PIng® — 5(2¢°t)] — roG(=2t)[y(2rot) — Inrg] + O(e) ,
(10.9)
where
yw)=14+e " (lnv+ ) / déIng¢e ¢, (10.10)
and
1 v
S(v)=1+e° (hw - ;) —/0 dé In€et . (10.11)
It is easy to find that h(v) in Eq. (9.12) is related to §(v) b
h(v) =2 [1 +lnv—-9(v) — %] . (10.12)

Plugging Eqs. (10.8) and (10.9) into Egs. (10.3) and (10.4) and then into Eq. (9.7) it is easy to
realize that to cancel the dimensional poles both in Ry(t,s) and Cy(t,s) a renormalization of the
bare mass ¢ is sufficient (at least in the case 7, 1= 0 we are considering)

N +2 9o
3 (4 )d/z
in agreement with what one would expect from the corresponding static field theory (see, for

instance, Ref. [4]). All the previously stated results easily follow from the explicit expressions given
above.

ro =2, with Z,=1+"—"—— + 0(gd), (10.13)

10.2 Connected Diagrams for the Response Function

The four diagrams contributing to the response function up to the two-loop order are reported in
Fig. 9.2. The one-loop diagram was already discussed in Ref. [132] and Sect. 9.2.2. The expression
of the critical bubble (i.e. for the 1pI part of the diagram) is given in Eq. (9.8). Thus the full
connected one-loop diagram for the response function is given by Eq. (9.9), (b), i.e.

1,1 _ D(d/2=1) o a2 2-as
RU(,s) = /dtB Nosirss—aris §2-1/2)
= —Nd4 [log + - 2 ((’YE +log2 + logt) log— - —log2 t)] +0(€) .

(10.14)
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From these one-loop expressions, it is quite simple to compute the two-loop integrals R*! and
R??2 of Fig. 9.2. Indeed the two-loop critical bubble (the 1PI part of R*!) can be computed in
terms of B.(t) as

Bt / d'q: / dt' B.(t"Ry (t,t)Cp (t,t') = N§4b(_d)dt3*d, (10.15)
where
bd) = = (‘;/fl_ D [1 _u _554(_2 ;)d/Q)] - —é [1+elog2+7E) +OE).  (10.16)

By means of this expression, we compute B! taking into account the external legs with ¢ = 0

t4fd _ 847(1

¢
21 = 'Bac(t') = N3b(d)———5— 10.1
R¥(s,0) = [ a0 Bac(t) = N3O = (10.17)
that near four dimensions has the following series expansion
N? t (1 1 t
R>(s,t) = ?’i [— log; (; +logt +log2 + 7E> +3 log? E] + O(e). (10.18)

The computation of R?? is simple once the expressions for B! and B.(t) are known. Indeed,
from Eq. (10.14), we obtain

2

t r2(d/2 -1 t2—d/2 _ S2—d/2
R*?(s,t) = / dt' RV (t,t)B.(t') = N3 (2{#1 ) { T4 ] , (10.19)
that is, expanding in e,
R*?(s,t) = Nd—lo - + O(e) . (10.20)

32

The last diagram R23 is more difficult to be worked out and it requires a long calculation whose
main steps are described in what follows. First of all we evaluate its 1P1 contribution called O (¢, s)

d d
0r(t9) = [ G55 [ GOt 908t )RS (09)

d ql d qz ]_ 20 _ 2 20 2 o 201
— (t — (e 9i(t=8) _ o—ai(t+s) 0 (t—s) _ =03 (t+5)),—(q1+42)" (i—5)
( @/@ﬂ<%)%%“ e e ¢ e

=0(t — s) [(t —8)2747,(1,1) + (t + 5)27 4y, (1, t_—s> —2(t—1s)2"1J, (t J_r Z 1)] ,

t+s t
(10.21)
where
_ dqs d’gs —qi—aq3—b(q1+q2)® _ 4
Tua,) = [ G2 [ e et e - N1+ a4 B (w+)m+w?’:
10.22
and

Fuz) = d/2 / dss?/2—2 sa:/41-w(0 s) = (d/2zd(ii/22)—1) S (g_l’g_l’g’%) . (10.23)
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In particular, for our calculations, we are interested in the limits

Fy(w) = —M, (10.24)
Fy (1) = logg +e [(715 - l) logg ~ 1 log? g + %Liz (%)] + 0(é?), (10.25)
Fy(0) = W. (10.26)

Here Liy(2) is the standard dilogarithm, defined as

oo
le Z

k=1

(10.27)

E: Bl %

The final expression for O (¢, s), in generic dimension, is

2004 _ — s\ 2 —
Oute) = NI 1) - o1 4 2R, ((t t ) ) bt — )2y (tT)] .
(10.28)
The full connected diagram R%3(s,t) is thus given by the following expression
¢ t
R23(s,¢) = / dt" [ a0y, #7) = N2(Ay(s,1) + As(s,t) — 245(s, 1)), (10.29)
s tll
where
t— 8)4711
t) =2>"1F,(1 (7 10.30
An(s. 1) = 2= [ gyysd / dz 21 Fy((1 = 2)?) = 2= 91, (s /1) , (10.31)
/t

Ag(s. 1) = 2 [ gyypd / dz244(1— 2) 1P (1 — 2) = 22441, (s/t) . (10.32)
s/t

The evaluation of the two functions I (v) and I5(v) is rather cumbersome but algebraically trivial.
After some calculations one gets

L(v) = W[logv@ log2 — 6log3) + fi(v) + O(e)], (10.33)

T2(d/2 - 1)

I2 (’U) = 4

2
[_E logv —log®v — (1 — 6log2 + 3log3)logw + fo(v) + O(e)] ,  (10.34)

where f;(v) are given by

Fu(0)/4 = logv/v dz Fy((1 = 2)?) +/ dz log 2 Fy((1 — 2)2), (10.35)

— 1
f2(v) /4—10gv/ dF% /d logz[m—z —11+/ it ), (10.36)
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and in particular these are regular functions in the limit v — 0

£1(0) = log? 2 + log? g + 3Lia(1/4) — 4Lis(2/3), (10.37)
71'2
£2(0) == + %logz % Lip(1/4). (10.38)

Inserting all these contributions in Eq. (10.29), we get

4R2:3 ,t 1 4 t 4
% == (log 3 + log —) —log g(lOg(t —5) +78)
1 LR e ACTA0)
(2 +7E+10gt)10g8 + 2log s T 4 +0(e),
with
4
F(0) = fi(0) = 2£5(0) ~10g 3 (2 + log 12) — 2Lin(1/4), (10:40)
2 4 A
1(0) = 5 —2log 5 +310g” 2 — log? g + 3Lix(1/4) — 414,(2/3) = 0.663707.....  (1041)

10.3 Connected Diagrams for the FDR

In this Appendix we evaluate the rest of the diagrams required for the computation of the FDR. We
do not evaluate the full integral for the correlation function, since we make use of the trick explained
in details in Section 9.2.4. For this reason we consider first those diagrams contributing also to the
response function and we evaluate only their extra-contributions (given by fooo dt"t"D;(t", s) in
Eq. (9.33) and denoted with the subscript “e¢” in what follows) to the derivative of the correlation
function. For the first three diagrams these contributions are very simple:

(0C)y" = 5B.(s) = Na [—i - g(log s+ e +1og2)| + O(€?), (10.42)
s ,02(d/2-1) , , N2
2,1 _ "t 7 4—d _ *'d
(00); —/0 dt"t" B.(t")Be(s) = Ndizd(3 72 =16 4 1 0O(e), (10.43)
A 1
(0C)2? = 5B.s(s) = —N? 8( + g +1og2 + log s) + O(e) . (10.44)

The fourth contribution is less simple

00)2° = / dt"t" 01 (", 5) = Nj2*~ %s* ¢
0

A—dB-d d /dzde (1-2)?

(10.45)
- 2/ dzz(1 - 2)' "2 F;(1 - z)] i
0

Using now the explicit form for Fy(z) given in Eq. (10.24), one obtains

4(9C)2* 1 1Y (10 4 3 (Lt
(N2)e _ ( +logs + v + ) (log 3 +1) + Lin(1/4) + log 5 (Zlogg —log2> +0(e).
d

(10.46)
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The diagrams whose amputated part do not contribute also to the response function are shown
in Fig. 9.5. The sunset-type diagram (0C)>* is quite difficult, thus we first compute its 1PI part

O(t, s). Introducing g3 = g1 + g2, this contribution is given by (for ¢ > s)

d d
Oa(t, 5) = / (C;Wq)ld / (d27rq)2d031(t,s)022(t,s)Cgs(t,s)

ddQl dsz 1, 2y — 2 (t+s
= | e | G ggte 7 e

= N3 [A%* K 4(1) + 30® “K4(A)o) — 3A% Y K4(o/A) — 0 “K4(1)],

with A=t—s,0=1t+s, and
d d
Ka(z) = i2/ A% / e
NgJ @2m)?) (2m)q ¢ (@ + ¢2)?

_Id/2-1)I@/2) [ du ! /22 o 112
- 4 /z A+a)l? /0 dov? [1 - m] .

In the following we are interested in the particular cases

1. 2142 1 142z
K =1
1(2) 2% 12 4z 8 (1+z)2’

3. 4 4 /1 1 Li(8/9
Ky (1) = Zlogg +§ [3log§ (5 +’YE) + Zlog23+ #] +O0(€%) .

Introducing these results in the expression for the connected diagram

t s t
(60)2’4 = / dthQ (tl, 8) = / OQ(S,tI) + / Oz(tl,s),
0 0 s

one finds

(0C)*" _Ka4(1)
NZ 4-d

S _tl S+tl
' n3—d s (e 4\3—d
-i—3/0 dt [(s+t) K, Py (s—t')°""Kq4 pa—”

¢ t —s s+t
' n3—d i _ \3—d
+3/S dt [(s+t) Ky (t,+s> (t' —8)° K4 (t’—s)]
Kq4(1)

=Tq (28" + (t — 8)*7% — (t + 5)*7%)

1
1 3(2s)* [ [ v+ 0 ST - v a1 )]

(28" 4+ (t =) = (t+5) %)

+/0t+s dy(1 —y)* °[Kaly) — y3de(1/y)]]

2102 (L flogs+ 1o
T3\ TOBST 508

z;z +7E) +®(s/t) + O(e) ,

(10.47)

(10.48)

(10.49)

(10.50)

(10.51)

(10.52)
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where

3 4
D(v) =2K4(1) — 9 E log 3

) 1-w (10.53)
dy 1 /1+v dy ( 1 )
+3 — (K ——K4(1 + K ——K4(1 .
[ (k- Sram) + [T (i) - SR
In particular we are interested in the limit v — 0, given by
1
dy 1 1 3 4
®(0) =2K,(1 K ——K4({—)| —=vel
O =250 +6 [ 12 Ka) - 2K (3 )| - Soetos g
3. 4 39 9 13. 21_.
— 2—-log2+1 — —log®3 — —Lix(1
4log3 + 1 log? 1108 +1log3 1 3 1 i2(1/3)
+ §L12(3/4) - gLi2(8/9) = —0.24889... (10.54)

Now the only diagram left is C?:® of Fig. 9.5. It is given by
C25 (1, 5) = / At RO (¢, ") Bo(#") COo (£ ) Bo(t') RO (s,

_ r2(d/2-1) L g2d/2] ,
=Nigisig— a)@ - a2) [t2 - m] $72 (10.55)

Its derivative with respect to s, near four dimensions, is

(0C)25 = 0,025 (t, 5) = % [Iog + 1] +0() . (10.56)
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