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Chapter 1

Introduction

1.1 Historical Background

Statistical Physics deals with the collective behaviour of many interact-
ing particles. The systems which have been more widely studied are
homogeneous systems: systems where the particles are identical. How-
ever there are a lot of systems where particles are different one from the
other, for example because they interact differently with their neigh-
boring particles. In order to understand this kind of systems, a lot
of efforts have been concentrated on the study of disordered systems
like spin glasses, structural glasses and polymer networks. The interest
towards these models started to grow in the seventies.

The physics of these systems resulted to be very rich and, moreover,
spin glasses showed to be very useful to describe a huge variety of sys-
tems (both from physics and other disciplines). Among the systems that
can be described and analyzed with the language of disordered systems,
there are the problems of combinatorial optimization.

It has been observed that some algorithms used to solve problems of
combinatorial optimization display an easy-hard transition. The pres-
ence of such a transition suggested to study it with the typical tools of
phase transitions in statistical mechanics.

There has been an upsurge of interest in studying combinatorial
optimization problems from a statistical physics point of view, both for
theoretical analysis and for algorithmic developments. Conversely, some
very clever optimization algorithms are adopted by physicists in their
studies of ground states of disordered systems.

1



CHAPTER 1. INTRODUCTION

1.2 Motivations

Several optimization problems can be stated as disordered systems prob-
lems. This fact encouraged a fruitful exchange of knowledge and tech-
nical tools from one field to the other. For example the informations
obtained by investigations about the structure of the phases space of
disordered systems gave a deep insight in the nature of combinatorial
optimization problems. This insight made possible to design new algo-
rithms based on some physical ideas.

In both the disciplines there are several open problems. Probably
the most known questions in the study of algorithm complexity is about
the comprehension of the intrinsic complexity of problems: in the Non
Deterministic Polynomial set of problems there is a subset of problems
that look to be intrinsicly more difficult to solve than the rest. The root
of the complexity of this set of problems is not well understood.

One of the problem pepoles would like to approach with the physics
tools is the study of approximated algorithms: algorithms that respond
to the every day life need to find good solutions, not necessarily the best
one for optimization problems.

Cavity fields have been introduced in the context of disordered sys-
tems physics. The cavity fields are some effective fields that give in-
formations about the variables of a given system, they can be easily
generalized so to give informations about the variables of optimization
problems.

In this thesis some approximated algorithms which use cavity fields
are analyzed.

1.3 Outline of the Thesis

The first part of this thesis is devoted to an introduction to the physics of
disordered systems, with a specific attention to its relation with combi-
natorial optimization. In chapter 2 we introduce only the basic concepts
of statistical mechanics that will be used in the rest; then in chapter 3 we
show how disordered systems have been studied thanks to the introduc-
tion of the replica methods and how they are described by a breaking
of replica symmetry. In chapter 4 we briefly introduce combinatorial
optimization. In chapter 5 we describe the main physical tool we use in
the thesis: cavity fields.

The second part of the thesis is devoted to the description of some

2



1.4. CONTRIBUTIONS OF THIS THESIS

new results. In chapter 6 we describe how it is possible, for a fixed
instance of an optimization problem (in our case the Max-Cut problem),
to find some bounds for the energy of its optimal state using the cavity
fields. This general method here is applied for the specific case of Ising
Spin Glasses on Random Graphs. In chapter 7 we analyze the behaviour
of an algorithm based on the passing of messages (Belief Propagation)
on the Assignment Problem. This algorithm surprisingly results to be
exact for the Assignment problem. We give a proof of the exactness of
this algorithm and describe its behaviour. In chapter 8 we discuss some
variants of the Assignment problem and introduce then a variant: the
one-in-two problem, suggested us as a simpler but no easier version of
the Traveling Salesman Problem. For this problem here we show the
NP-completeness.

1.4 Contributions of this Thesis

In this thesis we give contributions on some points mainly concerning
approximated algorithms.

More precisely we introduce a new algorithmic method for estimating
the energy of the ground state of the Spin Glasses Model (the basic
disordered systems model). Altough this method could be introduced
also without the introduction of cavity fields, their use is crucial to
make the algorithm well performing. An upper-bound of the energy is
found just by performing an iterated decimation of the spins using cavity
fields. A lower-bound is found using iteratively an exact inequality on
the ground-state energy.

A study of the performance of belief-propagation on the assignment
problem has been done. It has been showed that in a finite time (in-
stance dependent) this algorithm gives the solution of the problem and
a certificate of the fact that the feasible solution obtained is the optimal
one. For each instance we find an upper bound on the time needed by
the belief propagation algorithm we describe. There is numerical evi-
dence of the fact that this limit is not improvable substantially. In fact,
given an instance with a high expected solution time, a high solution
time is effectively needed to find the solution [9].

We introduce the one-in-two problem, a problem with some remark-
able properties: it can be described on a two dimensional modular
graph, it is possible to encode other known problems with a small de-
gree polynomial, its interactions are local. For this problem we prove

3



CHAPTER 1. INTRODUCTION

NP-completeness. In doing that we obtain some reductions from the
Satisfiability problem to the 3-dimensional assignment problem.

4



Part I

Statistical Physics and
Combinatorial
Optimization

5





Chapter 2

Equilibrium Statistical
Mechanics of Ordered
Systems

This chapter is a brief introduction to the concepts of equilibrium sta-
tistical mechanics. It is written for the reader who lacks of familiarity
with this concepts in order to build a background needed for reading
the remaining part of this work. This chapter is not exhaustive of the
subject and the reader already familiar with statistical mechanics can
skip it.

In the context of classical mechanics, a system composed of some
interacting particles could be studied in principle by solving the funda-
mental laws for the whole set of particles. For a system of thermody-
namic size in which the number of particles is huge such a program is
not practicable and not even useful.

What we can do in this case is to determine the macroscopic prop-
erties (not mechanical) that are a manifestation of the underlying mi-
croscopic structure.

This program has been approached with two different methods: sta-
tistical mechanics and thermodynamics.

Thermodynamics was born during the industrial revolution when
the structure of matter was not well known and was mainly based on
empirical observations. Thermodynamics determines relations among
macroscopic properties (pressure, volume, temperature) without any
need of mechanical laws or any reference to the microscopic structure of
the system. To do this, anyway, thermodynamics needs the introduction

7



CHAPTER 2. STATISTICAL MECHANICS OF ORDERED SYSTEMS

of new principles.

Statistical mechanics instead tries to deduces the macroscopic prop-
erties starting from the laws of mechanics. However statistical mechan-
ics needs to make some hypotesis on the microscopic structure, on the
interactions and needs some approximations. Usually statistical me-
chanics needs a model: a simplified system enclosing the essential fea-
ture of the system we want to study. The importance of statistical
mechanics lies in the fact that it does not need some more principles
and it gives an understanding of the relationship between microscopic
structure and macroscopic behaviour.

It is not possible to make a list of all the fields of application of
thermodynamics. In fact every system with many particles, from a
stone to the man, can be studied with thermodynamics and its tools.

One important chapter in statistical mechanics is the study of phase
transitions. An example of phase transition is the passage from ice to
water. A little decrease of the temperature of water can induce some
macroscopic changes in the structure of the water that becomes solid.

In many cases it has been shown that the thermodynamic behaviour
of a sample does not depend on the microscopic details of the particles
and their interactions. This fact justifies the use of simple models and
approximations to get the macroscopic behaviour of systems at phase
transition.

2.1 Equilibrium Statistical Mechanics: basics

The most general result of equilibrium statistical mechanics is concerns
the occupation probability for the microscopic states. Here we do not
discuss how it can be shown, then we just assume as a principle the fact
that the probability that a given system in contact with a thermal bath
at inverse temperature β = 1/T with Hamiltonian H be on the state x
is the following function only of x’s energy:

Prob(x) =
1

Z
e−βH(x) (2.1)

where Z is the normalization (such that Prob(x) is a probability mea-
sure). Then Z is a function of the temperature:

Z(β) =
∑

x

e−βH(x)

8



2.1. EQUILIBRIUM STATISTICAL MECHANICS: BASICS

this function is called partition function and has a special role in statisti-
cal mechanics, in fact the thermodynamical observables can be deduced
from the partition function, here we give three examples: the internal
energy, the free energy, and the entropy:

U(β) = − ∂

∂β
ln(Z(β))

F (β) = − 1

β
ln(Z(β))

S(β) = β [E(β) − F (β)]

The energy of the system is the average value of the energy of the
microscopic system, averaged with the Gibbs measure:

U(β) :=
∑

x

H(x)e−βH(x)

The entropy is the meaures of the information contained in the Gibbs
distribution, in Shannon sense and with an offset given by the fact that
the uniform distribution (corresponding to β = 0 infinite temperature)
there is no information at all and, if the probability distribution is con-
centrated on a single state, then there is complete information about the
state of the system. The entropy is then a measure of the disordered of
the system. Its definition is the following:

S(β) = −
∑

x

Prob(x) ln(Prob(x))

An important remark should be made about the entropy: among all
the distributions probability with a given value of internal energy, the
equilibrium one (the Gibbs measure) is the one that maximizes the
entropy.

A system at thermodynamic equilibrium can be viewed as being in a
state x and evolving according to an ergodic Markov chain such that in
infinite time the fraction of time spent in each state will be proportional
to exp(−βH[x])

If the system is isolated then its energy can not change. In this case
the system (constrained to have an energy fixed by the initial conditions)
will be with equal probability in any allowed configuration. Remark
that the uniform distribution is the distribution maximizing the entropy
within the fixed-energy constraint. Such modelization of a macroscopic

9



CHAPTER 2. STATISTICAL MECHANICS OF ORDERED SYSTEMS

system is called microcanonical and we will refer to the corresponding
probability distribution as microcanonical ensemble.

Anyway, also if it is never possible to isolate a system, microcanoni-
cal ensemble is meaningful because, for large systems, the Gibbs distri-
bution often concentrate on a value of energy.

2.2 Phase Transitions

We talk of phase transition when a continuous change of the tempera-
ture of a system induces a discontinuos variation of a thermodynamical
(macroscopic) observables.

More precisely we say that there is a phase transition of the n-th
order when a (C∞) change of the temperature induces a discontinuos
variation of the n-th derivative of the partition function.

Remark first of all that a given system with a finite number of states
has always an analytical partition function, then the observables ob-
tained as sums or products of a finite number of derivatives of Z with
respect to β are always analytical: there are no discontinuities in the
observables or in their derivatives.

It can be observed that in correspondence of a phase transition often
the distribution probability of many systems undergoes a break of the
simmetry of the Hamiltonian.

Formally both these phenomena (phase transitions and breaks of
the simmetry) should be possible only for infinite systems: in any finite
system the asymptotic distribution is always the Gibbs one and thus no
break of the Hamiltonian’s simmetry is possible. Anyway also for finite
system the time needed to observe the asymptotic Gibbs distribution
can be larger than observation time.

The ergodicity breaking of the phase space happens when, in the
local dynamics, the passage from a phase to another requires the passage
from an high free energy region (w.r.t. β) of the phase space between
the valleys (for the free energy landscape).

Often the phases are charectarized by some quantities as for example
the magnetization for the transition from the paramagnetic state to the
ferromagnetic. For the Ising model (we will discuss it in the next sec-
tion) used to describe this transition, while the high-temperature phase
is a zero-magnetization one, there are two low-temperature equivalent
phases characterized by the (non zero) value of the magnetization.

As we are often interested both in phase transitions and in very
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2.3. ISING SYSTEM AND MEAN FIELD

large systems, then we have to consider infinite systems or to consider
the thermodynamic limit: the physical observables (like the energy) can
be defined in such a way to have a meaningful limit as N , the size of
the system goes to infinity. We can for example define the energy per
variable ε := E/N , so that the limit for N → ∞, if it exists, can be
interpreted as the energy per site in the infinite system.

2.3 Ising System and Mean Field

Ising model is an important archetypal model for the description of
phase transitions in ordered systems. Consider N spins {σi}i=1,...n com-
plexively denoted by the letter σ, and each spin can be in one of two
states: 1 and −1 also referred as up and down. Consider the following
Hamiltonian:

H(σ) = J
∑

〈i,j〉
σiσj + h

∑

i

σi (2.2)

where the first summation is performed only over the nearest neighbours.
J is the strenght of the interaction between the sites and h is an external
magnetic field.

This model can be easily solved in a one-dimensional lattice as de-
scribed in section 3 and it has been solved in two dimensions by Onsager
[42]. In dimensions higher than one a phase transition of the second or-
der (involving discontinuities in the second derivative of partition func-
tion) occurs at a finite value of the temperature.

Here we will see how the mean field approximation works in the Ising
Model. The Ising Hamiltonian can be rewritten as

H[σ] =
∑

i

σi


h+

Jq

2q

∑

j∈V (i)

σj




where q is the number of neighbours of the i-th site, and the summation
is on the neighbours V (i) of i. If we are not able to solve this equation
we can do the following substitution: 1

q

∑
j∈V (i) σj → 1

N−1

∑
j 6=i σj . So

that the new Hamiltonian reads

H̃[σ] = H
∑

i

+
Jq

N − 1

∑

i,j

σiσj

Where the information about the coordination in our original model is
in q. If we define the magnetization m = M/N as the average value of

11



CHAPTER 2. STATISTICAL MECHANICS OF ORDERED SYSTEMS

the spin variables: M [σ] =
∑

i σi then M2[σ] = N +
∑

i,j σiσj and the
mean field Hamiltonian is

H̃[σ] = H ·M [σ] +
J q

N − 1

M2[σ] −N

2

Let r be the number of down spins then M [σ] = N − 2r and Z(β) =∑N
r=0 cr with cr =

(N
r

)
exp{βH(N −2r)+ Jβq

N−1
1
2 [(N−2r)2− N

2 ]}. As we

said m = 1
N 〈M [σ]〉 = 1

Z

∑
r cr(1− 2 r

N ). An easy calculation shows that

cr has is maximum value for M = 1−e−2β(qJM+H)

1+e2β(qJM+H) , moreover the function

cr is concentrated on this value: it has a width of order N1/2. For
βq J < 1 the solution to the equation for the magnetization is M = 0.
For βq J > 1 there are three solutions, and we should look for the one
minimizing the free energy.

In other words there are a lot of configurations with zero magne-
tization, but these configurations do not minimize the energy, at high
temperature the maximization of entropy is more important than the
minimization of energy so the configurations on which the probabil-
ity measure concentrates are the zero-magnetization configurations. At
low temperatures the minimization of energy is more important then
entropy maximization so the probability distribution will be dominated
by configurations of non zero magnetization.

The phase transition then consists in an increase of the correlation
between the spin variables in the sample. If the dynamic (as often hap-
pens in many physical systems) is such that the positive magnetization
states are not enough easy to be reached starting from the negative ones,
then the system will fall in one of the two phases

Remark that our mean-field approach is equivalent to the following
approximation: H =

∑
i σiheff where the effective external field has to

be chosen consistently with the magnetization of the system: heff = (h+
Jq

N−1

∑
i σi) = h+ Jq〈σi〉. In other words the mean field approximation

is equivalent to the assumption of independence of different spins, in fact
the only interaction between spins emerge by the consistence condition.

2.4 Cluster Property

It is also possible to define pure phases in a more formal way. This
approach starts from the assumption that a given ground-state of the
system can be perturbed only locally under local perturbations.

12
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This property must be true only for a given ground state: when the
system allows for different ground states if we perform averages over a
probability distribution (concentrated on more then one phase) then we
get systematic correlations.

We can say that a probability distribution µ describes a pure phase
if and only if for each pair of local physical observables A(x) and B(x),
the connected correlation function vanishes in the large distance limit:

lim
|x−x0|→∞

(〈A(x0)B(x)〉µ − 〈A(x0)〉µ〈B(x)〉µ) = 0

For Ising model the observable that allows to distinguish the two
low temperature phases is the magnetization (in the language above
A = B = σ is already a valid choiche). The two low temperature pure
phases can be selected by adding an infinitesimal external magnetic
field (if we are performing the thermodynamic limit then the external
magnetic field times the size of the system should be kept not smaller
than 1/β, any finite external field works).

The distributions minimizing the free energy at the leading order
are all the measures that can be obtained as convex combination of the
two extremal measures satisfying the cluster property.

13
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Chapter 3

Disordered Systems

In this chapter we will shortly describe some of the tools and results in
the field of disordered systems.

The basics ingredients of disordered systems are frustration and dis-
order. Given a spin system with space of configurations σ and a Hamil-
tonian H[σ] given by the summation of several contribution each one
involving a subset of the spin variables, then we say that there is frus-
tration if there is not a configuration such that all the contributions to
the Hamiltonian are minimal. An example of frustrated system is the
antiferromagnetic Ising model on a triangular lattice, indeed it is easy
to check that for each plaquette, at least one of the three boundary
edge on the plaquette gives a positive contribution to the Hamiltonian.
Frustration, as happens in this example, is often associated to the pres-
ence of several ground-states, or low energy states with energy almost
equal to the energy of the ground-state, more precisely an exponential
number on the large N limit. For comparison, in ordinary ferromagnet,
as the Ising model at zero external field, there are 2 ground states and
a number of states with k excitations only polynomial in N (of degree
k).

The other fundamental ingredient of disordered systems is disorder.
As we saw in chapter 2, statistical mechanics of ordered systems concerns
systems where all the particles are equivalent. This is not true for all the
physical systems. For example there are several systems that have two
different scales of times of thermalization, a well known example is the
one of glasses, where the mutual position of molecules changes slightly,
in the years as the result of little arrangements of the molecules, while
small energy excitations diffuse over the glass at faster time-scales.

15



CHAPTER 3. DISORDERED SYSTEMS

Suppose that we have two set of variables: φ1 φ2, in the context
of statistical mechanics of ordered systems we would be involved in
the study of the properties of the measure obtained by extracting the
possible configurations with weights given by the Gibbs distribution:

e−βH[φ1,φ2]

When we have two thermalization times, we have to extract a configu-
ration φ2 with an opportune weight given by an effective Hamiltonian
of only the slow variables: H̃[φ2] and then we should study the fast
degree of freedom with fixed φ2, so with the measure given by Hφ2[φ1].
In other words we are interested in studying the partition function

Z(β) =
∑

φ2

Zφ2(β)Prob(φ2)

As we are concerned with thermodynamic properties, we want to calcu-
late the free energy that is lnZφ2(β), the average over the slow variables
of the free energy of the system of fast variables with fixed φ2.

Consider the average values of Zn
φ2

[β], these quantities physically
represent a setting with n independent systems (n replicas of the same
system, i.e. whith φ2 fixed). The free energy of n replicas is Fn :=
− 1

βnZ
n
φ2

[β]. It has a well-defined meaning for n integer. The replica
trick consists in letting n free to have real values so to calculate the
logarithm of Z using the limit: lnZ = limn→0

Zn−1
n , and obtain the

average free energy as F = limn→0 Fn.
The replica trick involves an analytical continuation that is not clear

under which assumptions it holds. We will discus some of these issues
through one of the most simple examples: the random energy problem
(REM) introduced by Deridda [11], which is an easy example of glassy
phase transition.

3.1 REM

Given a set of N colour variables (each one can assume values 1, . . . q),
an instance is defined by the cost of each configuration: E[σ]σ∈{1,...qN},
where the costs are drawn independently with the same distribution.
We draw the energies from a Gaussian distribution:

ρN (E) =
e−E2/(NJ2)

√
πNJ2

16



3.1. REM

defined in such a way to have a non trivial thermodynamic limit.

Remark that the optimization problem associated to this model is
not in the NP class. In fact a check of the fact that a given feasible
solution is the one which minimizes the cost needs to read the whole list
of energies.

Given a temperature 1/β the probability distribution for the states is
given by Gibbs distribution (2.1). The partition function ZE(β) depends
on the temperature and on the instance.

Since the energies associated to the configurations are i.i.d. ran-
dom variables, the number of configurations with energy in a “window”
[E,E+ ǫ] is a binomial random variable. So, for values of E out of some
interval [−ǫ∗, ǫ∗] the typical density of energy levels is exponentially
small in N .

With q = 2 the density of levels of given energy E is

n(E) = 2NP (E) ≃ eN [log 2− E2

N2J2 ] (3.1)

We now work in the microcanonical ensemble: we suppose the system
to be constrained to have an energy in a narrow window, and we give
to every allowed configuration the same probability of being realized.

The entropy S(E) = log n(E) is then N [log 2 − E2

N2J2 ] for |E| < E0

with E0 = NJ(log 2)1/2, and S(E) = 0 for |E| < E0. The temperature
is

1

T
=

dS

dE
= − 2E

NJ2

we concentrate on the region −E0 < E < 0 that means T > T0 > 0 with
T0 = NJ2

2E0
. The free energy is F = E−TS = −nJ2

4T −NT log 2. Remark
that F (T0) = −E0. Let’s study the REM in the replica formalism to
check the solution against the one just given.

The replica partition function is

Zn =

2N∑

σ1...σn=1

2N∏

σ∗=1

e−βE ˙Pn

i=1σχ(σi=σ∗)

Given the distribution (3.1) we can perform the sum over the all the
possible energies the level can assume, a Gaussian integral gives that
the average over the external configurations of Zn, the replica partition

17



CHAPTER 3. DISORDERED SYSTEMS

function is

Zn =

2N∑

σ1...σn=1

e
β2N

4

P2N

σ∗=1

P

i=1,...,n χ(σi=σ∗) =

2N∑

σ1...σn=1

e
β2N

4

Pn
i,j=1 χ(σi=σj)

(3.2)
Now this expression appears like a partition function for the system of
n replicas, but is no longer dependent on an external disorder (that has
been integrated out). However the replicas are now no longer indepen-
dent, this is not strange, in fact it is just the effect of the integration over
the disorder. In fact, especially at low temperatures, all the replicas tend
to stay in the low-energy states, so that there is a sort of “attractive”
interaction among the replicas.

A given configuration (set of σ1 . . . σn) enters in the effective Hamil-
tonian of the partition function (3.2) through the overlaps of the replicas.
We introduce a matrix Qi,j := χ(σi = σj) with elements in {0, 1}. This
matrix is symmetric, the entries on the diagonal are 1. Its most general
form (up to permutations) is a set of diagonal square blocks filled with
1-s and 0 elsewhere

Remark that the system described by the replicas is invariant un-
der the group of permutations of the replicas. This simmetry, called
replica simmetry, follows by the definition itself of the replica system
and is a general feature when using the replica trick. This simmetry of
the replica Hamiltonian suggests us that the system itself is symmetric
under permutations of the replicas, when it happens one says that the
system is replica symmetric.

So we suppose that the system is invariant under permutations and
then Qi,i = 1 and Qi,j = q ∀i 6= j, so there are two possible choice
for Q: Qi,j = 1 ∀i, j this correspond to having all the replicas in the
same configurations. Qi,j = δi,j this one corresponds to the configura-
tions with all the replicas in different configurations. Clearly we expect
the first situation to describe low temperatures behaviour, as if all the
replicas were constrained to remain in the same energy level, and we
expect the second picture to dominate the summation in the partition
function. (3.3). Clearly this is an approximation at fixed N size of the
system, but as we are interested in the thermodynamic limit it could
give us the exact result.

We now let n to be real. We can write the partition function in the
following way:

Zn =
∑

Q

exp(Ng(Q)) (3.3)
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3.1. REM

as a sum over all the possible Q matrices of an opportune function given
by a term that correspond to the energy of Q and another that keep
account of the number of different ways to realize that given Q.

As we are interested in the limit N → ∞, we search the minima
of g(Q). We observe (for n > 1) that the function g(Q) has a phase
transition at temperature βc =

√
4 log 2/n, in other words the replica

symmetric configuration minimizing the value of g(Q) is the q = 0 one
for high temperature and the q = 1 for low temperatures. for n < 1
there is a phase transition at βc =

√
4 log 2/n but surprisingly it goes in

the other direction: the high temperature phase correspond to the q = 1
configuration for Q. This is a general problem when considering n < 1.
The solution of this problem is linked to the fact that the eigenvalues
undergo a change of sign (because of the prefactor n(n − 1)) when n
is decreased below 1, so that the minimum is actually realized by the
maxima for n > 1.

We are using an estimation of the free energy valid in the large
N limit and then we are performing the n → 0 limit. Remark that
the correct calculation consists in doing the limit on the number of
replicas before. In doing so we are implicitly assuming that the two
limits commute.

We obtain that for any fixed temperature the sum in the partition
function (3.3) is dominated by the phase with q = 0 meaning that all
the replicas are in different states, the expression that we get for the
free energy is

−βF := lim
N→∞

1

N
ZN =

β2

4
+ log 2

this is the same result obtained in the microcanonical ensemble, but we
should investigate the stability of this solution after breaking the replica
simmetry, we have to investigate if there is a low temperature regime
when β < βc = 2

√
ln 2/n.

The problem is to find a larger set of matrices Q such to include the
ones minimizing g(Q) (or maximizing for n < 1). In the RSB scheme
first proposed by Parisi, a recursive procedure is defined, it consists in
the breaking of the group of permutations.

Suppose that n is a multiple of m, then we can divide the n replicas
in n/m groups of m replicas, we will restrict, at the first step of the
breaking of the simmetry to the matrices such that Qi,i = 1 (for defi-
nition), Qi,j = q1 if the replicas are in the same group and Qi,j = q2 if
the two replicas are in different groups.
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CHAPTER 3. DISORDERED SYSTEMS

Obviously q1, q2 = 0 correspond to the configuration with all the
replicas on different levels, q1, q2 = 1 correspond to the configuration
with all the replicas in the same level, so we are interested in the new
set of matrices obtained with q1 = 1, q2 = 0 where all the m replicas in
the same group are in the same configuration and replicas which belong
to different groups are in different states.

Calculating the function g(Q) we have a contribution from the en-

ergy that is β2

4 nm and a contribution from the entropy (the logarithm
of the number of ways to realize the configuration) that is n

m log 2. This

expression is minimized by m(β) = 2
√

log 2
β . Remark that the inequality

1 < m < n valid for integer values become n = 0 < m < 1 in the n→ 0
limit, so the expression for m makes sense only if β < 2

√
log 2 = βc. We

then obtain that for this solutions the energy is −βF = β
√
log2/n.

In the 1RSB scheme, an arbitrarly chosen replica has a probability
m to be in the same state of another replica and a probability 1−m to
be in the same state. This situation is represented by a growing function
q : [0, 1] → [0, 1] that in the RS solution takes only one value and in the
1RSB takes only two values.

3.2 Spin Glasses

A typical example of disordered system are spin glasses. Consider a
spin system on a lattice (some particles on a lattice with some possible
spin configurations) and an interaction between neighbouring spins as
in equation (2.2), with the remarkable difference that the strenght and
nature of the interaction is not constant:

H(σ) = −Ji,j

∑

〈i,j〉
σiσj − h

∑

i

σi (3.4)

Here the interactions J are the quenched variables, remark that if they
are positive then (at low temperatures) the spins tend to take the same
value, if they are negative the spins will tend to have different values.

Remark that it is not possible to satisfy all the tendency to be aligned
or disaligned on a loop (i1, i2, . . . , il) of spins if on that loop the product
of interactions Ji1,i2Ji2,i3 · Jili1 is negative.

As we have done for the case of ordered system, we begin by dis-
cussing the mean-field case: the case where every spin interacts with
every other spin.
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3.2. SPIN GLASSES

3.2.1 The Sherrington Kirkpatrick model

In the Sherrington Kirkpatrick model of Hamiltonian (3.4) and null
external field the interactions Ji,j between the spins are i.i.d. drawn
from a probability distribution µ0(J).

µ0(J) =

√
N

2π
e−

N
2

J2
. (3.5)

This model has an infinite range of interactions, then it does not corre-
spond exactly to a physical system defined in a finite dimensional space:
there is not a notion of neighbouring or a geometric distance between
pairs of spins. The dependence on N in the distribution (3.5)is such
that in the large N limit the complete interaction on every site has a
non trivial limit.

The partition function of the replicas is:

Zn
N =

∑

σ

∫ ∏

i<j

(
dJi,j

√
N

2π
e−

N
2

J2
i,j+

Pn
a=1 βJi,jσa

i σa
j

)

where the summation on σ is a summation over the 2nN configurations
on the replicas. We integrate over J analogously as we have done for
the REM, we get:

Zn
N =

∑

σ

e
β2

2N

P

i<j(
Pn

a=1 σa
i σa

j )2 = e
(N−n)nβ2

4

∑

σ

e
β2

2N

P

a<b(
PN

i=1 σa
i σa

j )2

After Gaussian integration we get

Zn
N = e

(N−n)nβ2

4

∫ ∏

a<b

dQa,b√
2π/(Nη2)

e−NS[Q]

where Qa,b is a n × n matrix, zero on the diagonal, which describes
the couplings of the n-sites system. Remark that the dependence on
N has been highlighted in this expression, so to evaluate the partition
function we will use (as for the REM) a saddle-point estimate. S[Q] =
− lnM [Q] − lnZ[Q] where the first term is the entropic part and the
second is the energetic part. As in the REM there is an interaction
between the independent replicas due to the fact that they share the
same quenched interactions.

M [Q] = e−
β2

2

P

a<b Q2
a,b
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CHAPTER 3. DISORDERED SYSTEMS

Z[Q] =
∑

σ∈{±1}n

e−β2
P

a<b Qabσaσb

As for the REM model the action is invariant under the action of the
group of the permutations of n elements. In the replica system, with
integer n, the matrix Q has the physical meaning of representing the
overlap between the replicas, in fact the solution of the saddle-point
equation:

∂S[Q]

∂Qa,b

∣∣∣∣ = 0

gives us

Q∗ = 〈σaσb〉 =
1

N

∑

i

〈σi
aσ

i
b〉 (3.6)

With “overlap” between two configurations we mean the number of spins
with the same value minus the number of spins having different value:
q(σa, σb) = 1

N

∑
i σ

a
i σ

b
i , we define a distance between configuration of

spins: d(σa
i , σ

b
i ) = 1 − q(σa, σb) = 1

2N

∑
i(σ

a
i σ

b
i )2. At fixed instance the

distribution

p(q) = 〈δ(q(σa, σb) − q)〉

gives a measure of the correlation and the distance between configura-
tions in different replicas. This quantity is not dependent on the num-
ber of replicas because they are mutually independent. Remark that
p(Q) = limn→0

2!
n(n−1)

∑
a<b δ(Q

∗
a,b −Q) and the equation (3.6) implies

that p(Q) = p(q)

3.2.2 Replica Symmetric Ansatz

We seek for a solution of the saddle point equations. It is natural to
propose an ansatz symmetric under permutations of the replicas, we
thus try a Replica Symmetric one:
For all a 6= b, Qab = q.

Plugging this result in the equation (large N limit) and then per-
forming the n → 0 limit, one find that there is a critical temperature
such that for T > Tc the solution is q = 0 and for T < Tc there is a not
null solution. Unfortunately, it turns out that at low temperatures, not
only the free energy density does not agree with numerical simulations,
but also, the entropy is negative. This is a clear sign that the RS Ansatz
is not stable at all the temperatures.
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3.2. SPIN GLASSES

We are thus forced to propose an Ansatz breaking the simmetry of
the action.

It is possible to classify all the possible matrices Q with the group
of simmetry under permutation of its elements. Each group GQ can be
represented as a rooted tree with n leaves. At each node a subset (with
cardinality c) of the arcs going to a lower level is grouped if and only if
all the c! permutations which exchange rigidly the sets of leaves on the
branches are in GQ.

We will restrict to a smaller class: the class of the fully simmetric
trees: the trees in which each node has a unique grouped set of itd
brnches (downgoing arcs). This implies that the tree is graded (it exists
an height function such that all the leaves have the same height), it
will have a certain height k + 1, the nodes at distance k′ from the
root have all the same number of leaves mk′ below of them. Of course
n = m0 > m1 > · · · > mk > mk+1 = 1 and each mh is a divisor of m′

h

if h′ < h. If we define the distance between two leaves as the height of
the lowest ancestor (the height is bigger as we approach the root) then
the simmetry of Q implies that in the class of full simmetric trees the
value of Qa,b depends only on the distance between the leaves.

Just to get confidence: the simplest full simmetric tree (matrix)
is the two level tree with all the leaves connected to the root with n
grouped arcs. This correspond to a matrix where all the leaves are
equivalent and it is invariant for permutations, this matrix is a RS one.

In the case of the REM: 1 step of replica simmetry breaking the
tree representing the simmetry group of Q is a tree with two levels, n
leaves linked to m/n sites at the first level (each grouping m leaves)
and finally a root grouping m/n branches. This means that the replicas
are interchangeable in every subset of m replicas and whole sets are
interchangeable.

Remark that, as we told for the REM, the inequality on m at differ-
ent levels makes no more sense for n < 1 and should be replaced with
mi ∈ [0, 1] and mi ≥ mj if i > j. Furthermore we have that q1 ≥ q2
meaning that q is bigger for more distant (on the tree metric) replicas.

The choice to search solutions for the saddle point equation gives
a better result than the Replica Symmetric one, but it gives negative
entropy at zero temperature. We then can consider deeper and deeper
trees, at every step we have a better approximation of the solution.

The limit process of taking in account a bigger and bigger level of
simmetry breaking is called full Replica Simmetry Breaking (∞RSB)
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CHAPTER 3. DISORDERED SYSTEMS

Define at each k level of breaking of the simmetry the quantity:

x(q) =

∫ q

0
dQp(Q)

the set of allowed x(q) is the set of monotonic k-step functions mapping
R into [0, 1], the p(q) function is a sum of delta functions. In the limit
k → ∞ we get that x(q) is a monotonic function. And the probability
distribution p(q) is not more constrained to be a sum of Dirac’s delta.
Solving the saddle point equation we find that p(q) has only two singular
contributions:

p(q) = xminδ(q − qmin) + xmaxδ(q − qmax) + p̃(q)

where p̃(q) is a smooth convex function with support on [qmin,qmax]: the
probability density to have Qa,b smaller than qmin or bigger than qmax

is zero.

The replicas with the metrics induced by the distance as the overlap
is an ultrametric space. We will introduce ultrametric spaces in next
section.

This surprising form is not a peculiarty of the SK model. The whole
replica machinery can be applied to different disorderd systems. For
some of them, the RS ansatz turns out to be the correct one for all the
temperatures. To this group belongs the Assignment problem and also
the Traveling Salesman Problem. For other systems, like the K-SAT
problem or the Viana-Bray model the correct solution is given by the
1-RSB ansatz in a low temperature region, and by the RS Ansatz in a
high temperature region. There exists systems, like the p-spin Model,
where the structure of the phase space is described by an 1-RSB Ansatz
at a intermediate range of temperature, and by full RSB Ansatz in a
low temperature region.

3.2.3 Ultrametric Spaces

A metric on a space is a function d(x, y) → R+ such that

d(x, y) = 0 ⇐⇒ x = y

d(x, y) = d(y, x)

d(x, y) ≤ d(x, z) + d(y, z)
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In vectorial spaces it is possible to define a metric starting from a norm.
A space is ultrametric if the triangular disequality is replaced by the
stronger condition:

d(x, y) ≤ max[d(x, z), d(z, y)] ∀x, y, z

As a consequence one get

d(x, y) < d(y, z) ⇒ d(x, z) = d(y, z)

meaning that all the triangles in the space are wheter equilateral wheter
isosceles (with the two equal size edges longer than the smaller edge).
Remark also that every point in a ball is its center.

Remark also that the remarkable property holds: |x+y|p ≤ max(|x|p,
|y|p), so a triangle is wheter equilateral wheter isosceles with the two
equal size edges longer than the other one. Remark that in an ultramet-
ric space two balls are wheter non intersecating wheter one is inside the
other. Remark also that for the balls in an ultrametric space the diam-
eter is equal to the radius. The space is not an Archimedean because
there are some x such that |x+ x|p is not bigger then |x|p.

A way to represent an ultrametric space is a rooted tree. The nodes
of the tree are an ultrametric space if we use as distance the height of
the lowest common ancestor.

3.2.4 Ground States in Spin Glasses

The problem of finding the ground-state of spin glasses is a typical
optimization problem. We will introduce it in greater detail in chapter
6, we will introduce it also in a slightly different (but equivalent) form in
chapter 4.1 as Max Cut Problem. In fact, given a spin glass on a graph
where the nodes represents the spins, every spin configuration induce a
natural partition of the set of sites in two subset (the up-sites and the
down-sites). Let γ be the set of edges with an endpoint on an up-site
and the other endpoint on a down-site. The energy of the configuration
can then be written as:

E(σ) = −H0 + 2
∑

γ

Ji,j

Where H0 is a constant given by the sum over all the edges and does
not depend on the partition. Thus finding the ground-state for the
spin glass is equivalent to find the partition of the sites in two set such
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that 2
∑

γ Ji,j is maximized. This problem belongs to the class of NP-
complete problems. The set of edges γ is a cut and to every cut one
associate the weight 2

∑
γ Ji,j. Anyway it has been showed that on some

graphs the problem is “easily” solvable, for example it is polinomially
solvable on planar graphs.
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Chapter 4

Combinatorial
Optimization

The basic ingredients of a combinatorial optimization problem are a
finite space of feasible solutions, and a cost function over this space. We
will consider two classes of problems: optimization and decision. The
optimization problem is solved when a feasible solution which minimizes
the cost is found. The decision problem is solved when a feasible solution
that costs less than a given threshold is found.

We are interested in the solution of problems via algorithms (a se-
quence of elementary steps). Algorithmic Complexity in particular stud-
ies the scaling of he required time with problem size. An algorithm is,
loosely speaking a procedure for solving a problem. More precisely it is
a set of instructions understandable by an appropriate automatic ma-
chine, such that, given some input data, in a finite number of steps leads
to some output.

It is easy to see that the solution of an optimization problem con-
tains the solution of the related decision problem, it is less obvious the
fact that an algorithm for the decision problem can be adapted for the
related optimization one. Given a procedure (algorithm) able to solve
the decision problem it is often possible to find the optimal solution by
bisecating the range of possible costs. It is for example the case for the
Traveling Salesman Problem with integer distances: since the cost func-
tion is the sum of n terms, the interval between a trivial lower-bound
and a trivial upper-bound is at most of order nL with L the difference
between the largest distance and the shortest one. Bisecating over that
range involves log2(nL) iterations in the worst case.
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The just proposed one is a first example of reduction of a problem
to another: we showed that if we are able to “solve” one problem (the
decision one) then we are able to “solve” another one (the optimization
one) in comparable time. We will examine in more details how reduction
permits to construct complexity classes for optimization problems.

4.1 Some Optimization Problems

Optimization Problems can often be given in mathematical terms with
the use of graph theory.

Here we give a list of optimization problems defined on a connected
graph G of vertices V and weighted edges E.

• Min-Cut Problem
It is desired to find the cut of minimum cost for the graph G. A
subset of arcs is called a cut if it is such that when these arcs are
removed from G, the graph becomes disconnected.

• Minimum Spanning Tree Problem
It is desired to find the minimum cost Spanning Tree subset of G.
A subgraph S of G is spanning if the set of vertices V (S) of the
subgraph is equal to V (G); a graph is a tree if it does not contain
loops and consists of a unique connected component.

• Chinese Postman Problem
It is desired to find the tour (closed path) of minimum lenght that
passes through every edge at least once.

• Assignment Problem
Given a bipartite weighted graphG this problem consists in finding
the optimal dimer covering of the graph. A dimer covering is a
spanning subgraph that contains N edges, 2N vertices and N
disjoint connected components (the dimers).

• Eulerian Circuit
This decision problem consists, given a graph, in finding if there
is a circuit that visits all the edges exactly once and returns to
the starting point. Such a circuit is called Eulerian because the
problem was first solved by Euler in 1736, when he proved that in
a connected graph there exists an Eulerian circuit if and only if
every vertex has even degree.
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For all these problems there are algorithms able to solve them. What
we mean by saying to “solve”? Rigorously speaking any optimization
problem is solvable: the naive algorithm that lists all the feasible solu-
tions (they are finite) and pick up the best in fact solves the problem.

This kind of solution of the problem is not satisfactory for someone
actually needing a solution forhis problem, in fact, given the exponential
asymptotic behaviour of the number of feasible solutions, the running
time needed to solve problems too large also for not-so-small instances.
Suppose that the naive algorithm runs in 1 second on a given machine
to solve a problem with N ! feasible solutions when N = 20. Then to
solve a problem with N = 40 it will need 40!/20! ≫ 2020 seconds. Say
that a problem is not solved if we can not live enough to see the answer.

We need a more formal criterium to decide whether an algorithm
solves a problem or not. A well-defined criterium of goodness is that an
algorithm is good if the required number of elementary steps is bounded
by a polynomial in the size of the problem. An algorithm is super-
polynomial if there is not a polynomial bounding the number of opera-
tions (polynomial in the size of the problem). The size of the problem
can be assumed to be the number of bits required to encode it. One
can define the class P of polynomial problems as the class of problems
having a polynomial algorithm.

Remark that, with the given definitions, a polynomial algorithm
could be slower than a super-polynomial one for small instances. The
threshold between small and large instances could be also greater than
the typical one in every-day usage.

There are some problems that have not been “solved” in this sense,
here we list some examples:

• Max-Cut Problem
It is desired to find the cut with maximal cost.

• Steiner Network Problem
for a given set of points (for example in the plane) the Steiner
network is the shortest set of lines which connects all of them.

• Traveling Salesman Problem
This is probably the most famous optimization problem. Given a
weighted graph (where the sites are towns in the pictorial descrip-
tion and the cost is the lenght of the road), it is desired to find if
there exists a tour that passes through each vertex at least once
and costs less than a given threshold.
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• Three-Dimensional Assignment Problem
Given a tripartite weighted hypergraph (with hyperedges of co-
ordination exactly three) the problem consists of finding a trimer
covering (a subset of disjoint hyperedges such that the union of
their vertices is the set of vertices of the hypergraph) with a cost
(sum of the cost of the hyperedges) smaller than a given threshold.

• Hamiltonian Cycle
it consists, similarly to the Eucledian circuit problem in finding
if, given a graph, there exists an Hamiltonian cycle (a tour that
visits every edge exactly once).

• K-Satisfiability Problem
Given a set of N boolean variables and M clauses, each of them
involving exactly K literals, the problem consists in finding (if it
exists) a configuration of the variables such that every clause is
satisfied.

No one proved that the problems above are not solvable by polynomially
bounded algorithms. Howewer it has been shown that either all of this
problems can be solved or none of them can be.

4.2 Non-deterministic Polynomial Problems

We will restrict our attention to the class of non-deterministic polyno-
mial problems (NP problems).

This is the class of problems which can be solved in polynomial time
by a non-deterministic algorithm. A non deterministic-algorithm is,
roughly speaking, an algorithm that can run in parallel on an arbitrarly
large number of processors.

This is the class of search problems such that, given a feasible solu-
tion xs, the subproblem of checking whether xs is a solution or not is
a polynomial problem. All the problems given above belong to the NP
class.

We say that a problem is in NP class if, given a feasible solution,
the check that it is a solution can be done in polynomial time. In other
words, the time for this algorithms should be calculated following the
formal rule that the time of a forked process is the maximum of the two
forked times of the forked subprocesses (as if the forked processes were
running on different processors), instead of the sum of the two times (as
if the forked processes were running sequencially on a unique processor).
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Consider two problems A and B. We say thta A is polinomially
reducible to B in the following case: say that {IA} are the possible
instances and {σ} are the feasible configurations for A, while {IB} and
{τ} are the analogue for B. Call σ∗(IA) a solution for instance IA, and
τ∗(IB) a solution for instance IB. Then a map φ exists, the encoding,
which associates an instance of B to an instance of A, IB = φ(IA) such
that the size of IB is bounded by a polynomial in the size of IA, and a
map ψ exists, the decoding, which, provided a solution τ∗

(
φ(IA)

)
of the

new problem, gives a solution of the original problem, ψ
(
τ∗
(
φ(IA)

))
∈

{σ∗(IA)}.

The maps φ and ψ must be evaluable in polynomial time, and it is
commonly understood that this is the case, and indeed the complexi-
ties of the encoding and decoding operations are negligible w.r.t. the
complexity of solving problem B.

So the algorithm consisting of this encoding, followed by problem-B
algorithm, and finally the decoding, is a polynomial-time algorithm for
problem A, with polynomial PA(N) = PB(Q(N)). This idea leads to
the concept of polynomial reduction of problems.

Remark that all the polynomial problems are NP problems, (i.e. P ⊆
NP). A main question is whether every NP problem is polynomial (i.e.
P = NP), in fact in that case almost the whole of the optimization and
decision problems of pratical relevance would be polynomially solvable!

Remark that the idea of polynomial reduction holds also for the class
NP. Polynomial reduction is a powerful tool in the study of algorithmic
complexity, especially in the more “elusive” class of NP problems, indeed
it can be used to construct inequalities among the intrinsic complexity
of different problems. In the example above we showed that the time
needed to solve the worst case of the optimization of the Traveling Sales-
man Problem is at most log(nL) times then the time needed to solve
the worst decision problem (worst over the threshold a).

As we are interested mainly in a distinction among polynomial and
super-polynomial, we are principally interested in polynomial reduction.
Given a set of problems S, if there exists a problem such that if we are
able to solve it, then we are able by polynomial reduction to solve any
problem in the set, we say that this problem is S-complete. Remark
that the possibility to reduce one problem to another one gives us the
possibility to construct classes of problems such that whenever we are
able to solve one problem in this class in polynomial time then we are
able to solve every problem of this class in polynomial time. To enlarge
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this class it is enough to find loops of reductions involving at least one
complete problem.

The K-Satisfiability problem, discussed above, is of great importance
also for a reason trascending its pratical applications: it is NP-complete.
This fact has been proved by Cook [10], starting from the formal def-
inition of problems in NP, and of non-deterministic Turing Machines.
The proof of Cook’s Theorem estabilishes that K-SAT is NP-complete
by showing reduction of the general SAT to K-SAT, and then of the
formal class of NP-complete problems to SAT.

Although the question wheter P = NP or not is open, it is widely
believed that NP problems are not polynomial. For example the first
set of problems given in section 4.1 is polynomial, the second set of
problems (page 29) is NP-complete, instead of the fact that they can
been stated on a very similar way. One of the more fascinating tasks in
the study of algorithm complexity is to understand the origin of this in-
trinsic hardness. Heuristic arguments give a hint that their algorithmic
hardness is due to some intrinsic structure of the problem.

Another example of NP-complete problem is in chapter 8, where we
show that if one is able to solve an instance of the one-in-two problem
then in a time polynomial it is possible to encode any instance of K-SAT
problem so that, using Cook’s theorem, the NP-completeness of one in
two problem is proven.

There are some problems that do not belongs to the class of NP
problems but are difficult at least as an NP-complete problem (and
then at least as any NP problem). They are the problems which do not
allow for a short certificate of optimality. For example the optimization
version of the Traveling Salesman Problem (TSP). If I’m able to find
the optimal solution of the TSP problem then automaticlly I can say if
there exists a solution that cost less then the threshold.

4.3 Average case analysis

Here we presented the worst-case complexity of problems. Anyway not
all the efforts are concentrated on the worst case: pratical considerations
may also be directed to a form of average-case analysis, which indeed
is the principal case of many real life applications. In fact in every day
life we are often interested in the possibility to solve in a reasonable
time an instance extracted from a given distribution. We will refer to
the scaling of the solution time with respect to the size of the problem
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as the average complexity. Remark that the average complexity of an
optimization problem is well defined when a measure on the instances is
given. Remark that the worst-case complexity does not depend on the
probability measure we use to draw instances of the problem.

A lot of efforts are also concentrated on the study of approximated
algorithms: some problems (also some NP-complete) admits some poly-
nomial algorithms able to find an approximated solution (a feasible so-
lution with cost almost optimal). For pratical purpose it is in fact often
important to find just a “good” solution. Also for some polynomial prob-
lems (problems for which a polynomial algorithm yet exists) it could be
useful to find a faster approximated algorithm.

An optimization problem can be stated as a physical problem of
statistical mechanics. Indeed, the set of possible solutions can be in-
terpreted as a configuration space, and its cost can be chosen as the
Hamiltonian of the system: cost minimization corresponds then to the
search of the ground state of the physical system, when it is frozen at
zero temperature.

In general the hardness of the optimization problems is related to
the fact that the corresponding disordered system is frustated, as the
ground state configuration is not the one which simply minimizes all
local interactions, it is possible that a local algorithm finding the ground
state does not exists.

Many conjectures have been formulated about a relation between
phase transitions and algorithmic complexity. The NP-completeness is
not directly linked to the presence of a glass phase transition, in fact the
NP-completeness is a property of the worst instances while the statisti-
cal analysis is about the typical instances. There are some polynomial
problems that have a phases transition so we should exclude also the
possibility that a phase transition implies a sort of NP-completeness
on average. There are both problems with continuous (2-coloring) and
with discontinuous (3-core problem) phase transitions admitting a poly-
nomial time algorithm.

Probably it is not possible to find a simple correspondence between
statistical properties of the phase transitions and the NP-completeness
in a given set of instances because statistical mechanics, describing the
structure of the phase space cannot take into account the possibility, for
some problems, of a specific smart algorithm able to visit in a global
way configurations far apart with respect to a natural distance.

The existence of an algorithm solving the problem is often linked
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to the existence of symmetries (as for the XOR-SAT problem and for
the Assignment problem). In this sense it is instructive to analyze the
XOR-SAT problem (see [35], [38] and [7]). This problem admits a smart
algorithm (Gauss algorithm) solving it, but has a transition of the same
kind as 3-COL and 3-SAT.

Statistical Mechanics approach can be fruitful in order to design
good heuristic algorithms based on some physically meaningful approx-
imations. In this field two major applications have been achieved. One
is the use of the so called simulated annealing algorithms. Since most of
the “hard” problems we deal with in this chapter are frustrated, algo-
rithms trying to minimize locally the energy often get trapped in a local
minimum of the cost function, and the resulting configuration can have
a cost much higher than the optimal one. A solution to this issue comes
from the physical formulation: if we introduce a fictious temperature,
allowing for thermal fluctuations, it is possible to avoid being stuck in
local minima, exploring a larger part of the configuration space. When
temperature is decreased, first the system get trapped in the region of
the space of configurations containing the minimum, then, inside a val-
ley, further cooling allows to find the ground state or a low-energy state.
In case this procedure fails, a reheating can be performed, in order to
select a new valley.

A second class of algorithms based on statistical mechanics approach
is more recent and is inspired by the cavity method. This method allows
to analyze on a statistical average but also for single instances of a given
disordered system, and leads to self-consistency relations for the set of
cavity fields, when the phase space is described by a RS-pattern, or for
the surveys of the cavity fields, when the phase space is described by
a 1-RSB pattern. A heuristic algorithm which uses cavity equations
at zero temperature to find the solution of the associated satisfiability
problem can be implemented.

Programmers have been using for long time heuristic message-passing
algorithm, called Belief Propagation [48], which have been recognized
to corespond to cavity equations in the RS approximation. Belief Prop-
agation is highly performing on certain problems but not o some other.
The physical interpetation of this fact is that Belief Propagation fails
when the space of configurations contains many phases, and the Sur-
vey Propagation Algorithm is the proper generalization to 1-RSB land-
scapes. The first application of Survey Propagation has been to the
3-SAT problem [6].
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4.3.1 The Random K-SAT

In an average-case analysis of the K-SAT problem a natural control
parameter is the clause-to-variable ratio α = M/N .

The Random K-SAT (as the K-SAT) problem results to be deeply
different for K = 1, 2, 3.

The K = 1 case is almost surely UNSAT for every α > 0, in fact the
number of interactions per variable is a Poissonian variable with mean
α, then for every finite value of α there is a finite fraction of variables
with at least two interactions. The probability for such variables to be
unsatisfiable is greater than 1/2. All the satisfiable variables with at
least one interaction are then constrained to assume a given value. The
Poissα(0) variables without interactions are free to be 0 or 1. Then the
entropy of the zero temperature has an important contribution (N ln2)
by the fully unconstrained variables. The other contribution comes from
the unsatisfied variables.

The critical α for K > 1 is different from 0. Also the 2- and 3-
SAT have a non-zero entropy for α = 0. The number of solutions is
exponential (in N) for any value of α < αc.

The space of solutions is RS for 2-SAT: two solutions belong almost
surely to the same cluster of Hamming diameter dN .

The space of solutions of 3-SAT is RS below a critical value αRSB <
αc. When replica symmetry is broken the space of solutions breakes
in an exponential number of clusters. In the thermodynamic limit the
distance between configurations belonging to the same cluster decreases,
while the distance between different clusters remains approximatively
the same.

While passing through the critical value for α there is a phase tran-
sition behaviour in the number of backbones variables: fully constrained
variables among all solutions of the instance. This transition is contin-
uous for 2-SAT while it is discontinuous for 3-SAT. For this problem a
relation among the nature of this transition and the behaviour of algo-
rithms able to solve this problem has been shown.

If α is sufficently low, the problem is satisfied with probability go-
ing to 1 in the thermodynamic limit, while if it is sufficently high, the
problem is unsatisfied with probability going to 1. It turns out that,
in the thermodynamic limit, the satisfiability probability undergoes a
sharp SAT-UNSAT phase transition: the probability pN (α) that a ran-
dom 3-SAT instance of size N and ratio α is satisfied, in the large limit
is a step function: limN→∞ pN (α) = θ(αc − α). with αc = 4.267 . . .
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The SAT region presents a second transition point: for values of α be-
low αd = 3.921... the system contains an exponentially large number
of solutions, and the phase space is described by a RS-pattern, while
for values of α between αd and αc the exponential number of solutions
is “clustered” into an exponential number of pure phases, this number
vanishing however in the limit α → αc. The pure-phase clusterization
pattern is well-described by a 1-RSB ansatz.

This statistical mechanics analysis has a practical counterpart. Heu-
ristic algorithms which only use local informations undergo a dynamical

transition at value α
(alg)
d : beyond this value, they fail to retrive a so-

lution. When there are many pure phases, these algorithms always get

stuck on metastable valleys, so αd is an upper bound for all the α
(alg)
d ,

for algorithms in this class. On the other hand, when using Survey-
Propagation inspired algorithms, the non local information propagated
by the survey over pure phases, and by the parameter y (see section 5.4)
which accounts for the reshuffling of the free energies, allows to retrieve
a solution also for large sizes, and values for α near to αc.
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Chapter 5

Theory of Cavity Method

5.1 A trivial example: One Dimensional Spin

Chains

Consider the following physical system: let σi be N spins on a chain
with value in {−1, 1}. Given the Hamiltonian

H[~σ] = −
∑

i=1,N−1

σiσi+1Ji,i+1

Given an instance (the set of N−1 values of the interactions) it is easy to
find the ground-state, in fact it is possible to satisfy all the interactions
(i.e. exists a configuration σ̃ of cost H[σ̃] =

∑
i=1,N−1 |Ji,i+1|).

It is also easy to find the partition function for this system. Sup-
pose to know the two partition functions obtained summing all the con-
figurations for the spins from 1 to n with σn constrained to be ±1
H[~σ, σn = ±1] =

∑
i=1,n−1 σiσi+1Ji,i+1. Let the two partition functions

be
(fn

+1(β)

fn
−1(β)

)
. We can easily deduce the analogous partition functions for

the system with n+ 1 spins, in fact the following equality holds:

(
fn+1
+1 (β)

fn+1
−1 (β)

)
=

(
e−βJn,n+1 eβJn,n+1

eβJn,n+1 e−βJn,n+1

)
·
(
fn
+1(β)
fn
−1(β)

)

The matrix used to pass from the n sites system to the n + 1 sites
system is called transfer matrix and were introduced in the context of
ordered systems. For ordered systems the matrix is the same for any
value of n then the partition function for the whole system is given by
Tr(Mb.c. · T n−1) the trace of the product of n− 1 transfer matrices and
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a matrix Mb.c. keeping account of the specific boundary conditions. An
effective field heff acting on the spin n-th in absence of the interaction
with the n+ 1-th one can be defined. So that

(
fn+1
+1 (β)

fn+1
−1 (β)

)
∝
(
e−βheff

eβheff

)

It is easy to check that the same approach is valid also for a Hamiltonian
with external fields acting on the spin variables:

H[~σ] = −
∑

i=1,N−1

σiσi+1Ji,i+1 −
∑

i=1,N

hiσi

In this case the transfer matrix reads:

(
e−β(Jn,n+1+hn+1) e−(β−Jn,n+1−hn+1)

e−β(−Jn,n+1+hn+1) e−(βJn,n+1−hn+1)

)

It is easy to check that the effect of transfer matrix on the effective
fields is equivalent to the application of an equation linking the effective
fields (the cavity fields) on the n-th site and the cavity field on the
n+ 1-th one. For the Ising model the so called cavity equation is:

hn+1
eff =

∑ 1

β
atanh[tanh(βJn,n+1)tanh(βhn

eff )]

and its zero temperature version is:

hn+1
eff =

∑
min(|Jn,n+1|, |hn

eff |) · sign(Jn,n+1 · hn
eff )

We call cavity fields, the effective external fields here introduced because
they represent the external field experienced by the site n in the system
where the interaction with the spin variable n+ 1 has been removed.

The system described in this section result to be so easy to study
because of the fact that there are no loops, it is a general fact that
on loopless graphs the transfer matrix approach here described for a
one dimensional chain gives an exact (and fast) algorithm to find the
partition function, this is due to the fact that every edge in the graph
is a bridge and then, if removed the system factorizes.
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5.2 Factor Graphs: a general framework

We want to deal with a class of statistical mechanics models sufficently
large to include problems like the Sherrington Kirkpatrick spin glass and
the Random K-SAT as prototype cases.

The variables are defined on a certain state space S, for example
S = ±1 for spin systems, or S = {true , false} for boolean problems. A
configuration ~σ (that we often indicate shortly σ) is then an element of
SN .

The cost function can be represented as a global function of the
whole configuration. Often the cost function can be expressed as a sum
of factorized interactions: interactions involving only a subset of spins.

Each interaction a, involving ka variables, corresponds to a real func-
tion Ea : Ska → R. There are also one-body terms, corresponding to
real functions Wi : S → R acting on a single variable and (for conve-
nience) not labeled by interaction indices. One instance consists in the
parameters defining these functions, clearly they have to be considered
quenched. So the generic cost function can be expressed in the following
way:

H(σ) =

M∑

a=1

Ea(σi1 , . . . , σika
) +

N∑

i=1

Wi(σi)

For a statistical model on a lattice, the typical picture we have in mind
is a regular lattice, in which variables are sitting on the vertices, and the
pattern of interactions is quite simple: usually each interaction involves
a fixed number of spins, and relate spins neighbouring on the lattice.

Dealing with disordered systems often need of more generic graphs
and interactions that involve more than two bodies.

The graphical representation often used are the factor graphs: given
a system of N variables and M interactions, we can represent it via a
bipartite graph G, i.e. a graph in which we have V (G) of two species
V1(G) and V2(G) (say, circles and squares), and edges E(G) only be-
tween vertices of different species

V (G) = V1(G) ∪ V2(G) E(G) ⊆ V1(G) × V2(G) (5.1)

Associate to each variable a circle-vertex i (variable node) and to each
interaction a square-vertex a (function node). Draw an edge between a
circle and a square if the variable associated with the circle is involved
in the interaction associated with the square. Often in factor graph’s
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graphical representations there are no square vertices corresponding to
one-body interactions Wi(σi), because they are implicitly represented
as circle vertices.

Call δ(i) the neighbours of a variable node i and δ(a) the neighbours
of a function node a. We denote c(i), c(a) their cardinalities. A factor
graph inherits the natural notion of distance over graphs, in fact given
two sites i and j in G we can define the distance d(i, j) as the length of
the shortest path on the graph going from i to j.

5.2.1 The Cavity Approach

The basic idea of Cavity Method is that we can understand the proper-
ties of a large system of the kind defined in appendix B by comparison
with systems which only locally differ from the original one (cavity sys-
tems). These systems are chosen in order to almost decorrelate certain
highly correlated variables close to the deformation, while minimally
perturbing other observables, with support far away from the deforma-
tion (Cavity assumption).

We denote the set of neighbours of a given interaction a, but one
given neighbour i, with δ(a)i or V(a) \ i and similarly, the set of neigh-
bours of a given variable i, but one given neighbour a, with δ(i)a

(V(i) \ a).
Given an edge a, i connecting a function a to the variable i we define

a new Hamiltonian in a slightly different system. We disconnect i to
a and introduce a new variable ia to connect to a (so that c(a) is not
changed).

Hi=a(σ ∪ σi) =
∑

i

Wi(σi) +
∑

a′ 6=a

E′
a(σ|δ(a′)) + Ea(σia , σ|δ(a)i

)

This is the Hamiltonian for the cavity system where the effect of inter-
action a on variable i has been removed.

Remark that through iterated applications of this cavity transfor-
mation we can disconnect the graph, for example by disconneting a
function from all its variables we obtain a factorized Hamiltonian (the
disconnected function will be totally independent): its contribution to
the partition function is trivially factorized.

Remark that the one-body interaction in the modified Hamiltonian
is present only on the original variable i and do not need to be duplicated
on the auxiliar variable ia (this follows automatically dealing with one-
body interactions as for the other interactions).
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Given an operator O we denote with 〈O〉a=i the averages over cavity
systems; with 〈O〉/i averages over systems where the i variable has been
removed and with 〈O〉/a averages over systems where the a function has
been removed. In particular F is the Free Energy of the cavity system,
then:

Fa=i = − 1

β
lnZa=i Za=i =

∫
dσe−βHa=i .

We can parametrize the distribution of probability over S for every single
variable with an element h of an opportune space. For example for spin
variable we can use the usual parametrization with h ∈ [−∞,∞]:

fh(σ) =
e−βhσ

2 cosh(βh)

so that a given value of h corresponds to a probability distribution.

We call magnetic field the element hi such that the marginal prob-
ability distribution over site i in the original systems is reproduced.

We call cavity field the element hi→a such to reproduce the marginal
probability distribution over site i in the cavity system with the inter-
action i, a has been removed.

We call cavity bias the element ha→i such that parametrizes the
marginal probability distribution over site ia in the cavity system where
the interaction i, a has been removed.

As we said in section 2.4 we expect (inside a pure phase) the con-
nected expectation values to decrease for points far away. In the follow-
ing we will assume that for our system, correlation functions of operators
far away inside a pure phase can be neglected in the large N limit.

Cavity ansatz: In the thermodynamic limit, inside a pure thermody-
namic state, for the cavity systems in which we removed site i we have
as a consequence of the cavity ansatz

p(σ, hi→a) ∝ e−βWi(σ)
∏

b∈δ(i)\a
p(σ, hb→i) (5.2)

p(σ, ua→i) ∝ e−βEa(σi=σ,σj)
∏

j∈δ(a)\i
(dσj p(σj, hj→a)) (5.3)

Remark that in the Cavity Approximation the cavity fields can be
easily related to the difference between the Free energy in the original
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and in the cavity system:

F − Fa=i ≃ − 1

β
ln

∫
dσp(σ, hi→a)p(σ, ua→i) (5.4)

F − F/i ≃ − 1

β
ln

∫
dσe−βWi(σ)

∏

b∈δ(i)

p(σ, ub→i) (5.5)

F − F/a ≃ − 1

β
ln

∫ ∏

j∈δ(a)

(dσjp(σj , hj→a))e−βEa(σj) (5.6)

The equations 5.2 are expressed in full generality, for the two-state vari-
ables with the language of standard magnetic fields we have

hi→a = wi +
∑

b

ub→i (5.7)

ua→i = − 1

2β
ln

∑
σj

exp(−βEa(+1, σj) − β
∑

j hj→aσj)∑
σj

exp(−βEa(−1, σj) − β
∑

j hj→aσj
(5.8)

5.2.2 Ergodicity Breaking

The ergodicity breaking and the presence of many pure phases consists
in a non-trivial decomposition of Gibbs measure into a sum of measures,
each one being almost coincident with the Gibbs measure restricted on
a subset of the phase space.

The subdivision of the phase space needs a notion of distance in
this space and is temperature dependent, in fact every subset should be
separated by the other valleys by not valicable walls (both entropically
and energetically).

Say we have N pure phases labeled with an index α = 1, . . .N .
The pure-phase measures are defined via a partition of the phase space
χ(α)(σ). So we define:

µα(σ) =
1

zα
χα(σ)e−βH(σ) Zα =

∫
dσχ(α)(σ)e−βH(σ)

For each pure phase the free energy is Fα = −(1/β) lnZα and, for each
observable O, the expectation in the α-th pure phase is

〈O〉(α) =

∫
dµα(σ)O(σ)
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The expectation value of the operator in the full Gibbs measure (re-
member that it has a physical meaning only if the measure time is of an
order of magnitude such that the system can visit different phases) is

〈O〉 =
∑

α

e−β(F−F α)〈O〉(α)

We will work in the hypotesis that the Cluster Property holds in each
pure phase and that, to any pure phase in the original system corre-
sponds a phase in the cavity system.

We saw how in the Ising system a change in temperature induce
the appearence of two phases. In disordered frustrated systems it can
happens to have a number of pure phases exponentially large (in N the
size of the system). Then it is possible to approximate the spectrum of
free energies with a continuos distribution, analogously we introduce a
complexity function Σ(F ) such that

eΣ(F )dF = #{pure phasesα : Fα ∈ [F,F + dF ]}

5.3 Some Examples

To make more clear the idea of cavity fields and how they can be used
both to deduce analitycally new properties of some problems and both
to design new algorithms we present here two examples.

5.3.1 Assignment

In the Assignment Problem, we choose a Factor Graph representation
of the cost function written in variables nij. So, the variables are N2,
each for any pair (ij), the factors exp(−βǫijnij) are the one-variable
factors F (0) we described above, while the 2N constraints (7.3) required
in order to guarantee that n is a valid assignment are the clauses Fa.
More precisely, if δ(k) is the “Kronecker” delta, such that for k ∈ Z

gives 1 if k = 0 and 0 otherwise, we have

exp
(
−βHǫ(n)

)
=

N∏

i,j=1

exp(−βǫijnij)
N∏

i=1

δ
(

1−
∑

j

nij

) N∏

j=1

δ
(

1−
∑

i

nij

)
.

(5.9)
So, the factor graph corresponding to the Assignment Problem is a
“decoration” of the KN,N we already said to represent the problem:
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there is a square on each node of KN,N , while each edge has a circle “in
the middle”, thus of degree 2 (each nij enters a “row” and a “column”
constraint). The constraints, conversely, have all degree N .

The Assignment Problem can be studied as a problem of Statisti-
cal Mechanics of Disordered Systems, in which one seeks for the zero-
temperature limit of the Gibbs measure, which identifies the ground
states. Given a set of variables as in the formulation of equation (7.2),
and the Gibbs measure at finite temperature T = 1/β, i.e. µǫ;β(n) ∝
exp(−βHǫ(n)), for an arbitrary function O(n) (called observable), one
defines the expectation value of O just as

〈O〉ǫ;β =

∑
n O(n) exp(−βHǫ(n))∑

n exp(−βHǫ(n))
. (5.10)

In particular, it is of interest to study the most elementary of these
observables, i.e., for a pair (ij), the operator nij. Clearly one has that

〈nij〉 =
prob(nij = 1)

prob(nij = 0) + prob(nij = 1)
∈ [0, 1] ,

so we can equivalently parametrize this value with a real parameter,
called local magnetic field

prob(nij) =
e−βhijnij

1 + e−βhij
, 〈nij〉 =

e−βhij

1 + e−βhij
, (5.11)

so that h ≪ −1/β means 〈n〉 ∼ 1 and h ≫ +1/β means 〈n〉 ∼ 0. If
the instance is non-degenerate, there are some values of β sufficiently
large such that the measure concentrates on the single groud state of the
system, and thus we enter the “extreme” regime above, but the scaling
in N of the value of β at which this occurs is quite strong.

In order to determine these parameters {hij}i,j∈[N ], one can think
of using what is called a Replica-symmetric Cavity Approximation.

The cavity fields are the fields which parametrize the marginal dis-
tribution of the variables nij in systems in which a certain little portion
of the factor graph nearby node (ij) has been removed (the cavity).

It is customary to define two sets of fields, called cavity fields and
biases. In the special case in which the interactions involve pairs of
variables, as e.g. in an Ising Spin Glass, it is easy to solve one set
w.r.t. the other. The same happens here, although for the “dual” reason,
that variables enters only in pairs of interactions.
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So, we indicate with gi→j the bias which parametrizes the proba-
bility distribution for nij in the modified system where only the row-
interaction on the i-th row is acting on this variable. The cavity field on
site (ij) and “direct towards” column j is then given by gi→j +ǫij. Anal-
ogously hj→i is the bias on nij in the modified system where only the
interaction on the j-th column is acting on this variable. So, in the cav-
ity approximation, one can hope that the combination ǫij + gi→j +hj→i

is a good approximation of the seeked value hij , where, if there is a
single pure phase in the system, the corrections to this relation are ex-
pected to decrease with system size analogously to some observables on
the “topology of the loops” on the graph.

The Cavity Equations are thus a set of self-consistent equations for
the biases:

gi→j =
1

β
log
∑

j′ 6=j

e−β(ǫij′+hj′→i) ; hj→i =
1

β
log
∑

i′ 6=i

e−β(ǫi′j+gi′→j) ;

(5.12)

and, as we are interested in the ground states of the system, we can
hope that it suffices to restrict to the zero-temperature version of these
equations:

gi→j = max
j′ 6=j

(−ǫij′ − hj′→i) ; hj→i = max
i′ 6=i

(−ǫi′j − gi′→j) . (5.13)

These equations raise in general many issues: first, in many cases we do
not know how to state rigorously that there is a single thermodynamic
phase; then, even if this is the case, and one expects that the cavity
fields do satisfy the cavity equations, we don’t know if there are other
“spurious” solutions of these equations; finally, even if this does not
happen, we should also device a reasonable technique for finding the
solution of our system of non-linear equations in many variables and
with no symmetries. A last point is that, even if everything works fine
up to here, if one is interested in the zero-temperature limit, maybe
some prescription is required in the order in which the β → ∞ limit and
the “thermodynamic” N → ∞ limit are performed.

For our problem we get (see chapter 7) strong answers to many of
these questions, by the analysis of the “Cavity algorithm” induced by the
equations. Indeed, often a solution of this kind of equations is obtained
by noticing that they correspond to the fixed-point condition of a certain
recursive map. Then, the method will work if one determines that the
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solution is an attractive point w.r.t. this map, and finds a suitable initial
condition, in the bassin of attraction of this point.

Our equations have special characteristics, coming from the mix of
linearity with “max” operations, that we discuss here. We consider in
all our chapter the so-called parallel updating, i.e. we have a dynamics
on a discrete time, and thus every field, e.g. gi→j , is raised to a function

g
(t)
i→j , which is updated through

g
(t)
i→j = max

j′ 6=j
(−ǫij′ − h

(t)
j′→i) ; h

(t+1)
j→i = max

i′ 6=i
(−ǫi′j − g

(t)
i′→j) . (5.14)

Under parallel updating, the fields in the sets {g(t)
i→j}j∈[N ], {h(t)

j→i}i∈[N ]

are all equal, except for at most a single smaller value, because of the
action of the max. Indeed, for example, for a given value i, the set of

values {−ǫij − h
(t)
j→i}j∈[N ] will have either two or more indices realizing

the maximum (in this case, call j∗ and j∗∗ two of them), or one site
realizing the maximum (call it j∗), and one or more realizing the second-
maximum (call j∗∗ one of them). In both cases, the new fields are

g
(t)
i→j =

{
−ǫij∗∗ − h

(t)
j∗∗→i j = j∗

−ǫij∗ − h
(t)
j∗→i j 6= j∗

(5.15)

(For this reason, we will adopt the notation 2ndi(xi) and arg-2ndi(xi),
besides maxi(xi) and arg-maxi(xi).) A high cavity field on a site means
that the site probably has occupancy 0 (nij = 0) in the optimal match-
ing, on the contrary a low cavity field on a site means that the site
should have occupancy 1. So, in a non-degenerate instance, near to
an “extreme” zero-temperature limit, when the measure concentrates
on a single configuration, we expect a single negative field per row and
per column, identifying the matching, this being qualitatively consistent
with the update above (we will be more precise later on).

Note however that such a behaviour is not what results from an
analytic approach to the cavity equations, or, in other words, an analysis
of the update equations which assumes time stationarity (and symmetry
under exchange of rows with columns). Furthermore, in this approach
it is also used the genuinely cavity idea that the distribution of a cavity
field cannot be sensitive to the parameters of the instance downstream,
while this is not the case in our “extreme zero limit” argument above,
where the strongly negative field is aware of the fact that the ǫij entry
immediately downstream is so good that it is viable for the optimal
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matching. Conversely, the cavity idea would imply that, as N − 1 fields
out of N are achieved from the “max” function over the whole set of N
indices j, and only one takes the “second max”, because of the j′ 6= j
constraint, and as this fraction of entries is not correlated with the
choice of the relevant entries at the following time step, we can neglect
the infinitesimal fraction and write the distributional equations

x
d
= max

i
(−ξi − xi) x′

d
= 2nd

i
(−ξi − xi) (5.16)

where xi are i.i.d. variables distributed according to the unknown dis-
tribution f(x), ξi is the Poisson Process that corresponds to a measure
probability on the entries of the cost matrix with i.i.d. variables dis-
tributed with a probability distribution continue in 0 with value 1. It is
easy to find that

f(x) =
e−x

(1 + e−x)2
=

1

4(cosh(x/2))2
(5.17)

and it is possible to find a general formula for the kth highest value in
each row (or column) for the process (−ξi−xi), where ξi are a P.P.P. and
xi are reshuffling distributed with the Logistic distribution above. This
formula is

fk(x) = f(x)

(
ln(1 + e−x)

)k−1

(k − 1)!
(5.18)

and so x′ is distributed according to this formula with k = 2.

f2(x) = f(x) ln(1 + e−x) . (5.19)

Further analysis of the distributional equation for this random en-
semble allow to determine the expectation over the instances of the min-
imum cost. Indeed the entries of the optimal matching are distributed,
up to the scaling of N , as the entries ξi, with i realizing the maximum
in the distributional equation 5.16, so, using the distribution for the xi’s
and some properties of the Poisson Process, one easily gets that

dµ(ξ) = θ(ξ)
e−ξ(e−ξ − 1 + ξ)

(1 − e−ξ)2

which is indeed normalized. The first moment gives directly the average
cost of the optimal matching for random instances, as the scaling factor
N simplifies with the fact that we have N summands, and gives:

〈minn(Hǫ(n))〉ǫ =

∫
dµ(ξ) · ξ =

π2

6
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This is the result conjectured by Parisi and later proved in [41]

5.3.2 K-SAT

Many computational problems are known to be NP-complete through a
polynomial reduction onto the K-Satisfiability (SAT) problem which is
the first problem shown to be NP-Complete.

We are mainly interested in the Random K-SAT. Consider N vari-
ables xi with i = 1, . . . , N (each boolean variable could be represented
by a spin σi with values in {±1}). In the random version of the SAT
problem there are M clauses randomly chosen: a clause is the logical
OR of K randomly chosen variables, each of them randomly negated or
not (with equal probabilities). The problem consists of the logical AND
of the M clauses. The specific instance is said to be solvable if there
exists a logical assignment of the N boolean variables. It is unsatisfiable
otherwise.

Let M = α ·N . Numerical experiments showed that (for K ≥ 2) the
probability for a random instance to be satisfiable tend to be (for large

N) a step function (it is one when α < α
(K)
c and it is zero when α <

α
(K)
c ). It has been observed that hard radom instances are generated

for values of α close to the critical value.

The cavity equations for the K-SAT are:

hj→a =
∑

b∈V (j)\a
Jbjub→j

where hj→a is the cavity field on the variable j in absence of the inter-
action with the clause a; Jbj is -1 if j is negated in the clause b; ub→j is
the cavity bias of the interaction b on the variable j. If there is at least
one variable j ∈ V (a) \ i such that hj→aJ

a
j ≤ 0 then uai

= 0 otherwise
ua→i = 1. Then, more formally:

ua→i =
∏

j∈V (a)\i
θ
(
hj→aJ

a
j

)

It is possible to interpret these equations in the following way: suppose
that we want to determine the effect of a clause (interaction) b on one of
its variables. If there is a variable j satisfying the interaction b then the
interaction will not ask to the variable i to satisfy it, otherwise (u 6= 0)
the interaction b will ask to be satysfied by biasing the variable i. The
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effect of all the clauses on the variable i is:

hi =
∑

b∈V (i)

Jbjub→j

The difficult task to solve the cavity equations can be approached in
several different ways. (Remark that there is always a trivial solution
with all fields and biases equal 0). One way is to use the equations as
recursive equations: one can use some arbitrary (not all null) starting
fields and biases, then one have to perform some iterated updates of the
fields hoping to reach a self-consistent solution.

Remark that this algorithm not always converge. If one is interested
in finding a solution of the specific problem one strategy is to fix the
variables with strong fields and try to solve the so decimated problem.

One important remark that should be clear is that this algorithm
always converge for tree-like problems (problems such that the structure
of the factor graph is a tree).

The belief propagation is a message passing algorithm consisting
in the propagation of distributions of the fields: let Qa→i(u) = (1 −
ηa→i)δ(u) + ηa→iδ(u− 1). Where ηa→i is the probability for ua→i to be
1. For these probability the following equalities hold:

ηa→i =
∑

u

Q(u)
∏

j∈V (a)\i
θ



∑

b∈Va

ub→j




This way to search for solutions of the cavity equations (as distribution
of probability) is suitable to keep account of the intra-cluster entropy.

When a large number of cluster of solutions exists, a message pass-
ing algorithm can find incongruences, in fact in two regions far apart
messages inherent to different clusters often diffuses and this lead to
contradictions when the messages “meet”.

To keep correctly account of the possible existence of several clusters
we need to do a step forward: we need to implement a message passing
of distributions of distributions of fields.

A simple equivalent way to keep account of the existence of several
clusters is to introduce a new state for the variables. This new state
has as effect to enlarge the space of warnings and to allow to transmit
messages belonging to different clusters.
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5.4 Survey of Cavity Equations over many states

All the equations introduced in 5.2 are valid in each pure phase. In
particular if cluster property holds then we can write some equations
(the so called cavity equations) that relates the cavity fields. So that
any pure phase is characterized by a set of numbers: the Free energy
and |E| cavity fields and |E| cavity bias (|E| is the number of edges in
the factor graph, remark that for the Ising spin glass they are 2 · |V1|:
there are two fields per each interaction). Every pure phases works as if
there were not the other phase. Pay attention to the following fact: the
free energy Fα

a→i in the cavity system is a function of the free energy
in the original system Fα, of cavity bias on the variable i and of cavity
fields on a, thus the set of free energies Fα, if ordered for magnitude,
will be reshuffled respect to the initial order after an application of the
cavity equations. In other words, the phase with smaller free energy
Fα

i→a in a given cavity system is not sure to be the smaller also for free
energy in the original system.

To keep control of the possible reshuffling of energies we now makes
some hypotesis:

• The complexity function for the free energy is convex and such
that there is a parameter y selecting a narrow interval of free
energies relevant for the statistical description of the system (F ∗),
such that

∂

∂F

∑

/a

(F )|F ∗ ≃ ∂

∂F

∑

/i

(F )|F ∗ ≃ y

• We neglect the dependence of the distributions of cavity fields and
bias on F

• We consider the distributions of the cavity field (bias) on a func-
tion (variable) as if they were almost factorized. Then

Prob(hi→a) ∝
∫ ∏

b∈δ(i)a

Probb→idub→i)

e−y∆F ({ub→i})δ(hi→a,hi→a(ub→i)) (5.20)

Prob(ua→i) ∝
∫ ∏

j∈δ(a)i

Probj→adhj→a)

e−y∆F ({hj→a})δ(ua→i,ua→i(hj→a))(5.21)

50



5.4. SURVEY OF CAVITY EQUATIONS OVER MANY STATES

So, as we are not able to deal with all the infinite number of pure phases,
we renounce to calculate the infinite hα

i→a associated to each link i, a
and work on their probability distribution. It can be calculated (in our
hypotesis) starting from the set of neighbouring cavity bias {ub→i}, we
then calculate (by integrating) the probability that the cavity bias are
such that hi,a as a function of the bias has values hi,a. We need to
keep account of the reshuffling of the energy occurring when we apply
the cavity equations. It is possible that our system with a given cavity
field gain free energy when reinserting the removed edge i, a, so that,
forgetting the reshuffling, we would underestimate its probability.
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Part II

Three Optimization
Problems
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Chapter 6

Bounds on the Ground
State Energy of Ising Spin
Glasses

Ising Spin Glasses on random graphs have been often used as a play-
ground for the study of cavity methods both for optimization problems
and statistical mechanics. See for example [33] [32].

Spin glasses present an interesting behaviour also at the mean field
level (as seen in section 3.2). One of the main defects of the mean field
model is the lack of notion of neighbourhood: in the mean field model all
the spins are neighbouring. Random graphs (see appendix B) have the
advantage to have a concept of locality, and locally a tree-like structure.

The problem of finding the ground state of a spin glass is an NP-hard
problem, so if we are interested to know its energy for large instances we
should discard the idea to find it by an exact algorithm. For this reason
approximated algorithms solving this problem have been introduced and
here we present a way to calculate (in polynomial time) a lower-bound
in the case of an Ising Spin Glass.

6.1 The Model

The Ising Spin Glass, introduced in section 3.2 has Hamiltonian:

H(~σ) = −
∑

i6=j

Ji,jσiσj − hext

N∑

i=1

σi (6.1)
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Let α be the average coordination, let the interactions Ji,j be i.i.d.
random variables distributed according to:

prob(Ji,j) =
(

1 − α

N

)
· δ(Ji,j) +

α

N

1

2
χ[−1,1](Ji,j) (6.2)

the spin variables σi are in {−1, 1}, the first summation in (6.1) runs
over all the pairs of different spins (remark that per each spin a non
zero contribution comes only from an average number α of neighbours).
The interaction variables Ji,j as given by (6.2) can be obtained also by
drawing, for every edge in a random graph of average coordination α
some Ji,j i.i.d. from a random distribution: χ[−1,1](J), where for b > a
χ[a,b](x) = θ(b− x) · θ(x− a).

Since we are interested in the ground state (GS) we consider only
the zero temperature properties of the system. Since we are interested
in the thermodynamic limit we consider the average energy per spin:
H(~σGS)/N . At zero temperature the system lies on the ground state.
In the thermodynamic limit we expect its ground state energy per site
to converge to a constant.

Given an instance (a graph and a set J of interactions) the energy
of the ground state is bigger than

ET = −
∑

〈i,j〉
|Ji,j | − hext ·N (6.3)

then, averaging over all the possible instances, using the probability
distribution in (6.2) for the interactions J , we obtain: ET = −α

2 · |J | −
h = −α

4 − h.
Similarly we can deduce an easy upper bound on the average energy

of the ground-state: consider the configuration with all the spins up:
EU = −∑〈i,j〉 Ji,j − h and then its average EU = −h.

The problem we will try to solve is, for a fixed instance, to give better
bounds on the energy of the ground state of the system. We will do it
by introducing two cavity-based algorithms based on cavity method.

The strategy we will use for the upper-bounds is similar to the bound
given above: the energy of a wathever given spin configuration is always
an upper-bound of the energy. Then our efforts are concentrated on
finding a “good” configuration.

To find a “good” configuration (with energy close to the ground-state
one) we implemented an algorithm that uses the informations that can
be deduced by the cavity fields. Other strategies are possible, see for
example Extremal Optimization algorithms [5].
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Improving the lower-bound in (6.3) is harder. Lower bounds for
disordered systems with symmetric distribution functions of the random
disorder were introduced in [25], remark that for the system in (6.1) the
lower-bound in (6.3) is recovered. An algorithmic way to calculate the
lower-bound is by semidefinite programming, see [19]. Here we introduce
a way that uses cavity methods as a basic ingredient.

6.2 Cavity Equations

The cavity equations can be easily found:

hi→j =
∑

j′∈V (i)\j
uj′i→i (6.4)

uij→j =
1

β
arctanh [tanh(βJij) · tanh(βhj→ij)] (6.5)

We will use these equations both on specific instances and on pop-
ulations of cavity fields to deduce thermodynamic observables.

6.2.1 Zero-Temperature Cavity Equations

First of all remark that the zero temperature cavity field on a given
spin i is one half the difference between the ground state’s energy when
the spin i is constrained to be up and down in the system where the
interaction Ji,j = 0:

hi→j =
EGS(σi = +1, Ji,j = 0) − EGS(σi = −1, Ji,j = 0)

2

By keeping in mind the definition above of zero temperature cavity field
it is easy to see on a tree graph that the consistence rule is:

hi→j =
∑

j′∈V (i)\j
sign(Jj′,i, hj′→i) · min(Jj′,i, hj′→i) (6.6)

The cavity bias is:

ui→j = sign(Jj′,i, hj′→i) · min(Jj′,i, hj′→i) (6.7)

It’s easy to check that the zero temperature cavity equations above are
obtained as the T → 0 limit of 6.4
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Cavity fields are the messages that variables “send” to interactions,
so no cavity field is associated to a spin variable with connectivity zero:
the only field on a zero connectivity spin is the external field. Cavity
fields “live” on the edges of the graph and on each edge there are two
cavity fields.

If site i has connectivity one then the cavity field hi→j = hext is equal
to the external field on i. The cavity bias on j is given by equation (6.7).
The simplicity of interactions allows us to write the consistence equation
for the cavity equations without need to calculate biases.

6.2.2 Site Addition

The energy of the system for large sizes can be calculated as the differ-
ence between the energy of systems of slightly different sizes:

E := lim
N→∞

HN ({σ}GS)

N
= lim

N→∞
HN+1 −HN

We can estimate this energy by calculating the energy in a system before
and after the addition of a spin. The extra spin has to be chosen with
coordination distributed according to the Poissonian distribution (as we
are dealing with Erdős Rényi random graphs), however if we perform
this operation on a random graph several times we introduce too many
edges. The contribution to the energy site addition due to the extra
edges addition has to be subtracted:

E := ∆Es −
α

2
∆El

The increment in the energy due to the addition of a spin σ0 connected
to k spins in the hypothesis of independence between its neighbours is
given by:

∆Es = −|u0| −
k∑

i=1

max(|hi→0|, |Ji,0|) +

k∑

i=1

|hi→0|

where u0 is the external field on the spin 0. The formula above is exact
if the k spins are mutually disconnected before the addition or if the
energies of the 2k ground states obtained constraining the values on the
spins σi=1,...,k are given by Const+

∑k
i=1 σi · hi.

Remark that when we want to calculate average quantities we need
to add spins according to the appropriate distribution: both the old
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system and the new one should be extracted with the weight we are
interested in. For example in our case the cavity fields come from sites
of coordination k + 1 with k being a Poissonian random variable of
average α. For example Cayley graph (where all the sites have the same
connectivity k) the site has to be added taking care of keeping the right
connectivity on all the spins.

The energy corresponding to a link addition is the difference be-
tween the ground state energy of the whole system with or without the
edge. In the hypothesis of independence of the spin variables i and j
the link contribution on the global ground state energy with spins i, j
constrained is

∆El = |Jl| − θ(−Jl · σiσj) · min(Jl, σi, σj)

Given an edge {i, j}, the probability distribution that we need to use
to draw the coordination α of the two endpoints is k · Prob(k). In the
random graph case, thanks to the fact that k·Poissα(k) = α·Poissα(k−
1) we can extract two vertices each with i.i.d. poissonian coordination
and then connect them with the edge i, j.

6.3 Population dynamics

A useful tool to find the probability distribution for the cavity fields and
to perform calculations are population dynamics algorithms.

If some cavity fields on the edges of a given system solve the cavity
equations then this set of fields is stable under application of the cavity
equations. If moreover the incoming fields on each site are independent
(as happens on tree graphs) then these fields are distributed accord-
ing to a law stable under iteration of the cavity equations. A discrete
approximation of the distribution of probability over the cavity fields
consists in considering a finite set of fields, each one allowed to assume
a real value.

The population is a set of cavity fields, we ask to the population to be
stable under random iteration of the cavity equations. Let P (h) be their
probability distribution, then the autoconsistency condition consists of
the fact that by applying the cavity equations (6.6) to a random subset
of fields of our population the new cavity field obtained is distributed
according to P (h).

This autoconsistency test for the probability distribution P (h) can
be turned in a method to find it: the cavity equations can be used to
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implement a dynamic on the population.

For example as dynamic we randomly choose a subset of fields and
use the cavity equation to find a new cavity field, as if we picked up ran-
domly one edge of an actual system and calculate one of its two fields.
The new field is used to update the distribution: we choose randomly
one of the elements of the population and we substitute its old field with
the new one. In the scheme of RS theory the population consists of a
population of fields, anyway we could also consider other kind of popu-
lations, for example populations of distributions as in 1RSB-analysis.

The autoconsistency equation for the cavity fields of a spin glass on
random graphs is:

P (h) =

∞∑

k=0

e−c c
k

k!
δ(x− hext) ∗ (P ′(x))∗k (6.8)

where ∗ denotes the convolution and f(x)∗n means that the function
f(x) has to be convoluted n − 1 times with itself. P ′ is not the first
derivative of P but the following function:

P ′(x) :=
P (x) + P (−x)

2
· |x| + χ[−1,1](x)

∫ ∞

|x|
dx′P (x′)

In the RS assumption the system is described by a distribution P (h) that
satisfies equation (6.8). So, a randomly chosen edge has two independent
fields, each one distributed according to (6.8). The RS assumption
consists in keeping in account of the existence of only one pure phase.

We compared the distribution which satisfies equation (6.8) (unique
unless hext = 0) with the distributions actually obtained when running
a message-passing algorithm on a given large-size instance. The distri-
butions result to be the same.

Given the distribution of probabilities of the cavity fields we calcu-
lated the energy as a result of site and link addition as described in
section 6.2.2.

The energy found in this way is plotted in the figures of pages 66
and 67 as “Population RS”.

The results (for graphs with coordination up to 4) are in good agree-
ment with the energy of the configuration found by decimation with a
message-passing algorithm.
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6.3.1 Stability of the RS solution

We know that the RS solution could be not able to describe completely
the system for low values of the external field: we can test its goodness
by testing the stability of the RS solution as a solution of the 1RSB
equations.

In the 1RSB scheme on each site there is not simply a field, but
a distribution of probabilities of fields and then the whole system is
described no longer by a distribution but by a distribution of distribu-
tions. In this scheme the RS solution consists of a distribution of delta
distributions.

So a set hi→j of fields corresponds to a set fi→j(x) = δ(x− hi→j) of
distributions. In the context of 1RSB the equations (6.6) (6.7) (6.4) for
the cavity fields have to be interpreted as equations for the distributions
of cavity fields.

We tested the stability of the delta-like distributions in different nu-
merical ways: the simpler way is by assuming the existence of some
perturbations small enough to admit the linearization of the propaga-
tion equation for the cavity field. This method does not require the
knowledge of the 1RSB distribution and gives no information about it.

We assume to have a perturbed RS solution consisting of a set of
distributions: fi→j(x) = (1 − ǫ)δ(x − hi→j) + ǫi→j f̃i→j(x) where f̃i is a
probability distribution. Then the equations linearized in ǫi are:

hi→j = (1 −
∑

j′ 6=j

ǫj′→i) · δ(hi→j −
∑

j′ 6=j

uj′i) +

+
∑

j′ 6=j

ǫj′→i


δ(hi→j −

∑

j′′ 6=j,j′

uj′′→i) ∗ fj′→i(uj′→i)




ui→j = sign(Jij · hj→i) · min(Jij , hj→i) (6.9)

When the outgoing perturbation is on average bigger than the ingo-
ing one, the RS solution is not stable.

We tested numerically the correctness of the results so found also
using the finite temperature cavity equations and then performing the
zero temperature limit.

The curve obtained in this way has been plotted in figure 6.2.
We also analyzed the behaviour of two different sets of random fields
following the same evolution laws: we compared the ovelap of the two
distributions after the iterated application of the cavity fields on the
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Figure 6.1: Overlap between two populations

same elements of the two different populations. The overlap is plotted
in figure 6.1. The corresponding deduced instability curve has been
plotted in figure 6.2.

6.3.2 Replica Symmetry Breaking

It is possible also to keep account numerically of the presence of sev-
eral phases also by using many fields for each site. The different fields
associated to each site represents different phases.

This method introduced in general in chapter 5 consists in the ap-
plication of the cavity equations to the cavity fields coming from some
different phases. Then each cavity field so calculated has to be repre-
sented in the new element of the population with a weight related to
the free energy induced by the addition of the site: exp(−µ∆F ). The
parameter µ is the so called Parisi parameter that has to be chosen so
to select the relevant region of the space of pure phases.

With such a dynamics (for a more detailed description see [33] and
[32]) a population of sets of cavity fields is obtained. These cavity fields

62



6.4. UPPER BOUND BY BP-DECIMATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  1.5  2  2.5  3  3.5  4  4.5  5

h E
X

T

Coord

Instability of the RS solution 
 Population of 100’000 Fields

Figure 6.2: Local and global instability lines

can be used to calculate physical observables.

6.4 Upper bound by BP-Decimation

To find a good solution to the Max-Cut problem (that is a low cost con-
figuration for the Ising Spin Glass, see 3.2.4) we used a message passing
algorithm starting with some randomly drawn cavity fields. Then we
updated sequencially all the fields several times. When working at low
values of the external field usually the fields do not converge to a solu-
tion of the cavity equations: not all the fields of the system are stable
under iteration of the equations.

Then we fix the more biased sites among the ones with stable values
for the cavity field. So to obtain a smaller system. The energy for the
configuration found in this way is an upper-bound for the energy of the
ground-state of the system.

In general, for the Ising Spin Glass the energy of a configuration
found by belief propagation is a good approximation of the actual ground
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state energy. For this reason we did not try to improve this calculation.
In the figures of pages 66 and 67 we plotted the upper bounds given

by this algorithm.

6.5 Lower bound

The algorithm we introduced to find a lower bound of the ground-state
energy works by reducing the Ising Spin model to a smaller one. A basic
step consists in the deletion of an edge. The basic step is iteratively
applied so to reduce the problem to another consisting only of isolated
spin variables with some auxiliar fields. In a sense this could be seen as
an algorithmic version of the approach in [17] to obtain lower bounds
to the free energy.

The energy of the ground state is the minimum over all possible
configurations {~σ} of H(~σ). Using the fact that

min
x

(f(x)) = min
x

(f(x) + g(x)− g(x)) ≥ min
x

(f(x) + g(x)) + min
x

(−g(x))

(6.10)
Fix an edge i, j, then consider the following inequality, obtained from

the one above.

EGS(H(~σ)) ≥ EGS(H(~σ) − h1σi − h2σj − Jijσiσj) +

+min(h1σi + h2σj + Jijσiσj) (6.11)

The system is reduced to a “cavity” system without the edge i, j.
We keep account of the energy of the deleted edge with the second
summand. Remark that the inequality (6.10) is tight if the function
f(x) + g(x) is constant. Then in (6.11) the inequality is tight only
if the auxiliar (and arbitrary) fields h1, h2 are such that the ground
state energy of the new system is constant (as function of σ1 and σ2).
This is not always possible, anyway the fields that make the minimizing
expression as small as possible are the cavity fields (hi→j ,hj→i).

In general a function of two spin variables can be always written by
using four constants. The energy of the ground state of a spin system
at given fixed values for two spins i, j in general is a function:

EGS(σi, σj) = E0 + h1σi + h2σj + ∆ijσiσj (6.12)

the inequality in (6.11) is surely tight only if ∆ij = 0 and we are using
the appropriate values for the auxiliar fields.
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Our algorithm to calculate the lower bound of the Ising Spin Glass
iteratively searches a solution in terms of cavity fields for the cavity
equations, then delete one edge by using equation (6.11). At each step
the algorithm returns a slightly modified system and a real value, rep-
resenting the energy contributions of the deleted edge.

The main limits on the efficence of this algorithm lie in the fact that
it is not always possible to find a solution to the cavity equations and
in the fact that often the quantity ∆ij in equation (6.12) is non-zero.

We expect ∆ij to be small if the system is tree-like (near the edge
we are going to remove). It is easier to find a solution for the cavity
equations if there is a strong external field biasing a large fraction of
the spin variables. In the case of strong external field we observe that
the lower and the upper bounds are close, while they start to separate
when the external field is lowered in correspondence of a value bigger
then the one corresponding to the instability of the replica symmetric
solution.

In figures 6.3, 6.4, 6.5, 6.6, 6.7 it is possible to see that there are
relatively strong finite sizes corrections: as the size → ∞ the difference
between the upper and the lower bound seems to go to a given value.
The limit curve is compatible with the constant zero only on random
graphs of average coordination around 1.0, in accord with the natural
prediction.

For random graphs of coordination α = 1 the limit difference of
upper and lower bound is null. This fact is linked to the fact that
for these graphs the RS solution is stable. Discrepancies between the
bounds arise when we consider finite size systems where there is not full
independence between two sites in the cavity system.

The number of edges removed altough the cavity equations did not
find convergenceon their value is plotted in the upperside of figures 6.3
. . . 6.7. It is possible to see that for α > 1 there is a threshold value of
the external field such that the fraction of not-converged edges removed
is one. This threshold value (to be determined via a finite size scaling
analysis) is probably in some relation with the instability of the replica
symmetric solution.
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Figure 6.3: Coordination 1.0 (critical hEXT = 0)
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Figure 6.4: Average Coordination 1.5
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Figure 6.5: Average Coordination 2.0
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Figure 6.6: Average Coordination 3.0
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Figure 6.7: Average Coordination 4.0
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Chapter 7

The Assignment problem

There are many “pictorial” representations of the Assignment Problem.
For example, one can consider the problem of assigning N jobs to N
machines, one per each, given a set of costs {ǫij} for executing the i-th
job on the j-th machine, where the goal is to minimize the sum of all
the N costs.

So, a valid assignment consists in a one-to-one mapping of jobs onto
machines, i.e. a permutation π in the symmetric group SN , and the cost
of π is thus encoded in the cost function (or Hamiltonian)

Hǫ(π) =
∑

i

ǫi π(i) . (7.1)

One can give a graphical representation of this problem. Given KN,N ,
the complete bipartite graph of order N , one can identify the two sets of
N vertices, Vr and Vc, as the “jobs” and the “machines”, and naturally
assign weights ǫij to the edges (ij) with i ∈ Vr and j ∈ Vc. Then, a
valid assignment consists of a matching M on the graph, i.e. a subset
of the edge set E ≡ Vr × Vc such that each vertex has degree one. The
weight of the matching is the sum of the weights on the occupied edges.

Another useful representation in terms of permutations is more “al-
gebraic”. Let [N ] ≡ {1, . . . , N}. One can encode a permutation π
through a N ×N matrix nij valued on {0, 1}, such that ni π(i) = 1 and
nij = 0 for j 6= π(i). In this reformulation, the cost function above is
written as

Hǫ(n) =
∑

i,j

ǫij nij = tr(ǫTn) , (7.2)

where the constraint that n corresponds to a permutation is encoded in
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CHAPTER 7. THE ASSIGNMENT PROBLEM

the 2N constraints

N∑

i=1

nij = 1 ∀ j ∈ [N ] ;

N∑

j=1

nij = 1 ∀ i ∈ [N ] . (7.3)

We have chosen to use sub- and superscripts r and c for “row” and “col-
umn” quantities, referred to this formulation (and, pictorially, a row is
a job and a column is a machine). Indeed, we index both the jobs and
the machines with integers in [N ], as natural in the algebraic formula-
tion, instead of what could have been natural in the graph formulation,
e.g. jobs labeled from 1 to N and machines from N + 1 to 2N .

If the instance ǫ has a single configuration π realizing the minimum,
we say that it is non-degenerate, and conversely, if there are two or more
permutations with optimal cost, we say that the instance is degenerate.

Remark that the difference of cost among two configurations π and
π′ is a non-trivial linear combination, with coefficients in {0,±1}, of
the costs ǫij. So, in any random i.i.d. ensemble of real positive costs
drawn from a non-singular distribution, an instance is non-degenerate
with probability 1 in Lesbesgue measure.

7.1 Gauge Invariance

7.1.1 Alternated paths and cycles

Given the complete graph KN,N , with edge costs ǫi,j, and a matching
M on it, we say that a path γ is alternating on M if one every two edges
along their “path” ordering is in M . An analoug definition can be given
for a even cycle γ.

We define the alternate cost of the path (cycle) γ as:

E±(γ;M) := −
∑

(ij)∈γ∩M

ǫi,j +
∑

(ij)∈γ\M
ǫi,j (7.4)

if γ is an alternating cycle E±(γ;M) is the extra cost of the matching
M ′ := Mδγ, in fact Hǫ(M

′) = Hǫ(M) + E±(γ;M).
Conversely for any two matchings M , M ′ their symmetric difference

M∆M ′ is a collection of cycles(∪k
α=1 γα), moreover:

Hǫ(M
′) = Hǫ(M) +

k∑

α=1

E±(γα;M) (7.5)
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7.1. GAUGE INVARIANCE

These facts have many consequences, remark for example that the
E optimality gives that E±(γ;E) ≥ 0. Here and in the following we
consider non degenerate instances, so the inequality above is strict.

For any cicle alternating on the optimal matching E let

∆(γi) :=
E±(γi;E)

||γi||
(7.6)

consider now the matching M ′ 6= E that minimizes the following quan-
tity

Hǫ(M
′) −Hǫ(E)

||E∆M ′|| (7.7)

it is not hard to prove that it differs from E by a single alternating cycle
γ∗, which minimizes the quantity in 7.6.

We will refer to γ∗ as the optimal alternating cycle; we also define
γ∗∗ as the cycle alternating on E and disjoint from γ that minimizes 7.6

7.1.2 Gauge Invariance

It is easy to check that there is a 2N -parameter family of transformations
Φ for the set of costs ǫ which leaves the problem unchanged. We call
such a transformation a gauge transformation. Given two real-valued
vectors {λi}i∈[N ] and {µj}j∈[N ], the new costs ǫ′ = Φ~λ,~µ

(ǫ) are defined
as

ǫ′ij = ǫij − λi − µj (7.8)

and are such that

Hǫ′(π) = Hǫ(π) + h0 ; h0 =
∑

i

λi +
∑

j

µj ; (7.9)

i.e. every feasible solution π has the same cost in the old and in the new
problem, up to a shift of h0, independent from π and thus irrelevant at
the aim of finding the optimal assignment.

Remark that one global parameter has a trivial effect, as do not even
affect the single entries of ǫ′: Φ~λ+a,~µ−a

= Φ~λ,~µ
. One can fix this trivial

mode, for example, by choosing µ1 = 0, or, in a more abstract way, one
can think to the corresponding (2N − 1)-dimensional quotient space.

Also remark that a number of combinations are gauge-independent,
among which the alternated cost of a cycle as defined in equation 7.4, as
each gauge parameter either does not enter in this linear combination,
or it enters with coefficient +1 on a single summand, and −1 on a single
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other summand. Of course, the gauge-independence of E±(γ;M) is also
a consequence of the relation E±(γ;M) = Hǫ(Mδγ) − Hǫ(M), and of
the fact that the new costs are unchanged up to a shift overall.

The space of gauged matrices ǫ′ (or, more shortly, of gauges), acces-
sible from a given ǫ is in bijection with the pairs of vectors (λ, µ) with
the quotient above, and inherits from this the topology and the metric
of R

2N−1, so it makes sense to say that a subset of gauges is connected,
or compact, or convex, or a polytope.

We call a gauge proper if every element ǫ′ij is non-negative. Given
some proper gauge ǫ′, call Z ⊆ KN,N the spanning subgraph of the
complete bipartite graph whose edges (ij) are the ones such that ǫ′ij = 0.

On a proper gauge, h0 is a trivial lower bound to the cost of the
optimal assignment, and, if one could find an assigment π such that
ǫ′i π(i) = 0 for all i (i.e. totally contained in Z), this would also certificate
that π is an optimal assignment for the original instance, with cost
exactly h0. We call a proper gauge Hungarian if the corresponding Z
contains a matching of cardinality N .

All the Hungarian gauges of a single instance ǫ have a set Z which
contains a certain Zmin, union of all the matchings M which realize the
optimal cost (if more than one).

We call a gauge proper and non-trivial if every row and every column
of ǫ′ contain at least one zero (i.e. if no vertex is isolated in Z). Clearly,
this is a necessary but not sufficient condition for being Hungarian, and
a proper non-trivial gauge is easily found for every instance, e.g. by com-
posing first the gauge with µj = 0 and λi = minj(ǫij), and then applying
to the resulting gauge ǫ′ the analogous transformation with λi = 0 and
µj = mini(ǫ

′
ij). We call Φtrivial the map above, which acts as a projector

from the space of proper gauges to the subspace of proper non-trivial
gauges, and increases h0 by the amount

∑
j minj(ǫij)+

∑
i mini(ǫ

′
ij) ≥ 0.

A few remarks are in order. First of all, while gauge transforma-
tions Φ are clearly a group (isomorphic to R

2N with vector sum), the
restriction to proper gauges breaks this structure, and leaves with a
convex polytope of R

2N . Furthermore, the set of Hungarian gauges is
a connected convex polytope, subset of the boundary of this set. It
is of dimension at most N , and exactly N if the optimal matching is
unique. If one considers the quotient w.r.t. the global gauge transforma-
tion (e.g. by keeping µ1 = 0), both the set of non-trivial proper gauges
and of Hungarian gauges are compact.

So, the space of Hungarian gauges is relatively large. Contrarily to
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what could have been argued, there does not exist a single Hungarian
gauge, and not even a “canonical” one. Both the Hungarian Algorithm
reviewed in the next section and our algorithm discussed in this chap-
ter are deterministic, and halt through a Hungarian gauge, but their
output gauges are in general different from each other, and different if
one interchanges the role of rows and columns in the algorithms. An
interesting fact, that we prove in 7.6, is that for every instance ǫ and
every index j ∈ [N ] there exists a Hungarian gauge, deterministically
described in terms of ǫ, such that any other column has at least two
zeroes (exactly two, and exactly one zero on column j, if the instance
is non-degenerate).

Finally, a flavour of the hardness of the problem and of the strength
of the Hungarian Algorithm is given by the fact that, even if one knows
in advance the optimal solution π, it is not easy to find a gauge trans-
formation on ǫ producing a ǫ′ Hungarian, or any other certificate of
optimality for π (without using the algorithm itself).

7.1.3 Technical details on statements about gauge struc-
ture

Here we prove the statements that have been given above without proof.
Convexity of the set of proper gauges is easily checked. Given (~λ, ~µ)

and (~λ′, ~µ′) proper,

ǫij − λi − µj ≥ 0 ∀ i, j , ǫij − λ′i − µ′j ≥ 0 ∀ i, j .

If we take a combination a(~λ, ~µ) + (1 − a)(~λ′, ~µ′), with a ∈ [0, 1], by
combining the two equations above we get

ǫij − (aλi + (1 − a)λ′i) − (aµj + (1 − a)µ′j) ≥ 0 ∀ i, j ,

as was to be proven. Then, the set is a polytope because the boundary
is given by a set of linear inequalities.

The proof for the set of Hungarian gauges is identical, just with
inequalities replaced by equalities for pairs (ij) ∈ Zmin. It is important,
at this aim, the fact that Zmin is intrinsic to ǫ.

Now we prove the compactness of the set of Hungarian gauges. We
can assume without loss of generality that the optimal assignment is the
identity permutation π(i) = i, so we must have

λi + µj ≤ ǫij ∀ i, j ; λi + µi = ǫii ∀ i .
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So, using the fixing µ1 = 0, on one side we get λ1 = ǫ11, and thus
µj ≤ ǫ1j − ǫ11, on the other side we get λi ≤ ǫi1, and thus µi = ǫii−λi ≥
ǫii− ǫi1. As each µ is bounded on both sides (and, through λi +µi = ǫii,
also each λ), we have that (the quotient of) the set of Hungarian gauges
is defined by a set of linear inequalities with ≥, and is contained in an
interval, so it is compact. If non-empty, its dimension is 2N − |Zmin|,
i.e. N in the non-degenerate case (N − 1 in the quotient).

Compactness for the set of non-trivial proper gauges through anal-
ogous reasonings is proven, although a bit more involved. Of course,

λi ≤ ǫi1

from the gauge fixing µ1 = 0. Then, for each column j there exists at
least one index i∗(j) such that ǫ′i∗(j)j = 0. Take, say, the lowest one. In
particular, for j = 1 this gives that λi∗(1) = ǫi∗(1)1. So, for each j > 1
we get

µj ≤ ǫi∗(1)j − λi∗(1) = ǫi∗(1)j − ǫi∗(1)1 ≤ max
i

(ǫij − ǫi1) ,

even if we do not know who is i∗(1). On the other side we have

µj = ǫi∗(j)j − λi∗(j) ≥ min
i

(ǫij − λi) ≥ min
i

(ǫij − ǫi1) . (7.10)

Also for each row i there exists at least an index j∗(i) such that ǫ′ij∗(i) =
0, so

λi = ǫij∗(i) − µj∗(i) ≥ ǫij∗(i) − max
i′

(ǫi′j∗(i) − ǫi′1) ≥ min
i′,j

(ǫij − ǫi′j + ǫi′1) .

where we used 7.10 for j = j∗(i) in the first inequality, while the second
one has been obtained by relaxing the restriction j = j∗(i). So both the
λ’s and the µ’s are bounded on both sides. As again the inequalities are
not strict, then compactness follows.

Chains of ǫ’s with alternated signs, and consecutive items having
in common alternatively the row- and the column-index, as in the ex-
pression ǫij − ǫi′j + ǫi′1 above, will appear many times in our “cavity”
arguments, and will be a leitmotif of our proofs. In this case, remark-
ably, finite-length chains suffice to prove our statement in generality, so
this proof is also a kind of introduction to our methods.
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7.2 The Hungarian Algorithm

A classical algorithm for the Assignment Problem which finds an optimal
matching in worst-case polynomial time 1 is due to H. Kuhn [28], who
called it “Hungarian Algorithm” as a tribute to the mathematicians
authors of the two main lemmas on which is based, Kőnig and Egerváry.

Most of the material in this section can be found in [29]. We state
here only the main facts, and without proof, except for the points where,
at our advice, a restatement of the proof in the language of gauge trans-
formation (see section 7.1) allows to better understand the connections
between Hungarian Algorithm and Cavity Method techniques.

7.2.1 Kőnig and Egerváry theorems

As we said previously, the basic idea is to perform a series of gauge
transformations, up to get a gauge with a graph of zeroes Z which has
a matching M on it of cardinality N . Kőnig theorem provides a useful
equivalent condition for the existence of such a matching.

Consider a graph G edge-subgraph of the complete bipartite graph
Kn,n, for X ⊆ Vr, let V(X) denote the subset of Vc of vertices having a
neighbour in X in the graph Z. The difference of the two cardinalities,
d(X) := |X| − |V(X)|, is called the deficit number of X. Then the
theorem states that:

Theorem 1 (Kőnig 1916) In a bipartite graph G = (Vr, Vc;E) the
minimum number of unmatched elements in Vr (or Vc) over all the pos-
sible matchings is equal to the maximum over all the subsets X of the
deficit number d(X). In particular, a perfect matching is possible if and
only if |V(X)| ≥ |X| for all X ⊂ Vr.

The Egerváry theorem states, in the language of section 7.1, as fol-
lows:

Theorem 2 (Egerváry 1931) The cost of the optimal assignment is
equal to the maximum value of h0 =

∑
i λi +

∑
j µj a proper gauge can

have. So, a proper gauge that realizes the maximum h0 in the whole set
of proper gauges has the property that its graph of zeroes Z admits a
matching. Such a gauge always exists.

1O(n3) after the work of Munkres [40] for speeding up the recovering procedure,
as reported in Knuth [26].

79



CHAPTER 7. THE ASSIGNMENT PROBLEM

The first part of the theorem is proven, e.g. in [29], constructively
through Kőnig theorem, while existence follows then easily from com-
pactness of the set of non-trivial gauges. Of course, Egerváry theorem
is also both a corollary of the stronger structure theorem that we prove
in 7.6, or of the analysis of the Hungarian Algorithm as in [29].

We already know that the set of non-trivial proper gauges is non-
empty, as Φtrivial(ǫ) always exists, and that, if ǫ′′ = Φtrivial(ǫ′) 6= ǫ′, one
has h0(ǫ′′) > h0(ǫ′). Then, given any non-trivial proper gauge ǫ′ such
that Z(ǫ′) does not admit a matching, by Kőnig theorem there exists
X ⊆ Vr with positive deficit. A further gauge Φ~λ,~µ

with parameters

λi =

{
δ i ∈ X
0 i 6∈ X

µj =

{
−δ j ∈ V(X)
0 j 6∈ V(X)

δ = min
i∈X;

j∈VcrV(X);

(ǫ′ij) (7.11)

applied to ǫ′ gives a new proper gauge. But δ > 0 by definitions of
V(X), and the variation of h0 is exactly δ ·d(X), so it is positive (notice
that any intermediate value 0 < δ′ ≤ δ would suffice at this purpose).

Then, the gauge obtained so far can be projected back to the space
of non-trivial gauges by Φtrivial, and also to the gauge-fixing µ1 = 0.
The first step can only further increase h0, and the second one does
not change its value, so h0 has increased of a positive amount. This
proves that non-trivial proper gauges which are not Hungarian cannot
be local maxima of h0, and from compactness and the fact that h0 is
a continuous function of parameters (~λ, ~µ) we conclude that the set of
Hungarian gauges is non-empty.

This mechanism sheds some light on the structure of the problem.
“Hard” problems in computational complexity are expected to show the
emergence of a pseudo-glassy structure in the phase space, such that a
blind local search gets trapped in local minima. Conversely, if all the lo-
cal minima are also global, and all other points have finite gradient, one
could hope to reach a minimum by local search. Assignment problem is
not hard, as it is polynomial, but it is not either a trivial problem. In
a sense, gauge operations are the proper tool to disentangle the land-
scape induced by the Assignment cost function into a multidimensional
parabola-shaped profile.

7.2.2 Kuhn’s contribution

Egerváry theorem seems to be the solution of the problem: just project
ǫ through Φtrivial, device some method to find a positive-deficit set X in
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polynomial time, and apply a sequence of gauge transformations up to
saturate the upper bound.

Actually, this is not enough. Indeed, the compactness argument only
proves an existence statement, and that a sequence of gauges would
induce a monotonically increasing sequence of h0’s, but as we do not
have a positive lower bound on the gain δ · d(x) attained at each step
(unless we work with integer costs, and the bound is exponentially small
if we work with N -bit integers), the naive application of the theorem
would not provide a polynomial algorithm (more precisely, in the case
of N -bit integers, the algorithm would be only quasi-polynomial instead
of strongly-polynomial).

The situation is analogous to the well-known case of maximum flow:
for integer or rational capacities, the max-flow algorithm of Ford-Fulker-
son [15] is finite, but not strongly-polynomial, while with real capacities
examples exists for which the algorithm is not even finite. Nonetheless
Dinic [12], and independently Edmonds-Karp [13] proved that with a
specific recipe (Breadth First Search for Edmonds-Karp) for selecting
the augmenting flows, the Ford-Fulkerson algorithm can be transformed
in a strongly-polynomial one.

Also in our case, the algorithm can be proven to be strongly polyno-
mial if in each gauge transformation the set X in Egerváry theorem is
chosen with the appropriate prescription, namely to choose the X which
has the smaller size, among the ones with maximum deficit. More pre-
cisely, first one easily proves that such a set is unique. Then, if one calls
(d, s) ∈ {0, . . . , N − 1}2 respectively the maximum deficit and the size
of X as above, one has that at each step with d > 0, either dnew < d or
dnew = d and snew > s, and the algorithm halts if d = 0. As both d and
s are polynomially bounded integers, the rules above force the number
of gauge transformations to be . N2. Finally, a procedure implicit in
the proof of Kőnig theorem allows at every gauge step to determine
the appropriate set X in polynomial time, thus completing the proof of
polynomiality of the algorithm.

7.2.3 How do the Cavity Equation Works

The cavity equations for the Assignment Problem are the equations
(5.12),(5.13).

Since we want to solve the optimization problem we will concentrate
on the zero temperature cavity equations. We search for solutions of this
equations as fixed points of a certain discrete-time map on the cavity
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fields. This method works if the solution of the equations is a fixed point
and if the initial conditions are in the bassin of attraction of this point.

We will consider for the assignment problem the so-called parallel
updating i.e. we have a discrete-time dynamic and we update every field
at each step. The bipartite nature is such that a parallel update of all
the variables results in the evolution of two initial condition, for this
reason the update steps are divided in even (for the g-fields) and odd
(for the h-fields).

It is legitimate to ask what is the actual distribution of the cavity
fields in a numerical simulation with parallel updating. The distribution
of fields in equations 5.17 and 5.19 are reproduced quite closely in a very
short time (of order O(1) or O(lnN)) but for a translation overall for
each of the four sets of the relevant fields (in each row N − 1 g-fields
and in each column N − 1 h-fields have the same value).

Let prob1(gt
i = x) be the probability that the max in the i row has

value x; prob2(gt
i = x) be the probability that the second higher value

of gij in row i has value x, and define analoug quantities for h. Then

prob1(gt
i = x) ∼ f(x−G1(t)) prob2(gt

i = x) ∼ f(x−G2(t))

prob1(ht
i = x) ∼ f(x−H1(t)) prob2(ht

i = x) ∼ f(x−H2(t))(7.12)

These four functions of the number t of performed steps are linked by
the fact that both: G1(t)+H2(t) and G2(t)+H2(t) converge to the cost
of the optimal matching (for the disorder distribution we use ∼ π2/6).
The functions G1,−G2,H1,−H2 asymptotically behave like −t ·δ where
δ is a positive “drift” parameter.

In the next sections, with theorem 3 we will be able to explain how
these behaviours follow from the dynamic and how to interpret it in
terms of gauge transformations.

Strictly speaking the stationarety of the analytic cavity predictions
does not hold. In reality it holds with good approximation, as 〈∆〉 → 0
for N → ∞, and holds for a set of parameters which excludes the mean
value of the distribution.

7.2.4 How to construct a gauge from the fields

In order to have an algorithm we need that our belief propagation pro-
cedure be stopped when the cavity fields are such that we can infer the
solution.

This happens for example if we are able to show a gauge, see equation
(7.8), such that its zeroes-graph contains a matching in KN,N .
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We found a recipe to construct such a gauge using the cavity fields.
The gauge parameters are the ones showed in lemma (6). They are
appropriate sums of g-fields and h-fields so to delete the effect of the
drift and of the oscillation during a period.

In the quasi-periodic regime the quantities {g(sec)
i→j , h

(max)
j→i } defined

as

g
(sec)
i (t) =

1

T

t+T−1∑

t′=t

2nd
j
gi→j(t

′);

h
(max)
j (t) =

1

T

t+T−1∑

t′=t

maxihj→i(t
′); (7.13)

are a proper gauge. Namely they provide a certificate that the feasible
solution found is the optimal one.

The Algorithm so designed find with probability one the solution of
the Assignment problem, but (on the set of instances we consider) as
appear by numerical study the mean time needed to solve a problem
is not finite, this is due to the presence of slow instances where the
mechanisms described in the proof of the theorem are slow, this is due
to a quasi-degeneracy in the value of the drifts. In 7.4 we will explain
how works an average-case finite-time algorithm.

7.3 The Main Theorem

One consequence of Egerváry’s theorem (2) is that, to solve the Assign-
ment Problem it is sufficient to find a Hungarian Gauge.

In this section we show that the Belief Propagation Algorithm with
parallel updating is always able to find a Hungarian Gauge in a finite
time.

The Belief Propagation Algorithm we consider consists in the it-
erate application of the cavity equations (see equations 5.14) on some
arbitrarily chosen starting fields.

This procedure is usually used to decimate the problem: the cavity
fields give informations about the biases on the variables and so allow
to fix the more biased ones, reducing the problem to a smaller one.

In this section we show that it is possible to write a belief propagation
algorithm able to find exactly the solution. It consists in performing the
belief propagation updating steps till a Hungarian gauge (a proper gauge
such that the zero-subgraph it induces contains a matching) is obtained.
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The proof uses some ideas of the Bayati Shah and Sharma’s work
[3] but enhances their conclusion with a better bound and a really more
precise set of statements about the stationary phase. These statements
permit to write an Algorithm that find the solution in a finite time.

We first present some definitions and useful notations.

7.3.1 Some Definitions (The Matching Problem on the
Unwrapped Graph)

We are given the Complete Bipartite Graph KN,N with bipartition {r, c}
where |r| = |c| = N and each vertex of r (row-vertex) is adjacent to each
vertex in c (col-vertex). We refer to the edge which links i and j as {i, j}.

Associate to KN,N its Unwrapped Graph, a loopless cover graph of
KN,N . The Unwrapped Graph is a tree such that locally (except on
the leaves) looks like the original graph KN,N . Every vertex of the Un-
wrapped Graph is a copy of a vertex of KN,N . More precisely, given an
integer t, an ordered pair (i, j), and a ”binary choice” among “row”and
“col”. Let T (t, i, j, col) be the Unwrapped Graph of the original Com-
plete Bipartite Graph KN,N , namely the rooted tree in which the root
is a copy of the col-vertex i in KN,N . The root of the tree is only con-
nected with one vertex, that is a copy of the j vertex of r-kind in Kn,n.
The j vertex (the only one vertex at distance one from the root) is
connected to N vertices (like in the Complete Bipartite Graph), each
one of them is a representative for a vertex of the Complete Bipartite
Graph. For 1 < d < 2t there are (N − 1)d−1 vertices at distance d from
the root and they are a copy of a col-vertex if d is even or a copy of a
row-vertex if d is odd. Each vertex has N neighbouring except for the
root and the vertices at distance 2t from the root that are the leaves of
the tree T (t, i, j, col)

Given the Weight matrix ǫij on KN,N , in a natural way they are
induced some weights on the edges of T (t, i, j, col) so to obtain the
Weighted Unwrapped Graph T (t, i, j, col). The Weight on an edge of
T (t, i, j, col) that links two vertex representative of two vertex i′, j′ in
KN,N is ǫi′,j′ .

Consider the matching problem on the Unwrapped Graph as the
search for a subset of the set of the edges in T (t, i, j, col) such that:

• each internal vertex is covered exactly once,

• the leaves are free to be covered or not
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• the sum of the weights on covered edges is minimal.

We refer to this problem as the Matching Problem on the Unwrapped
Graph. It is solved exactly by the iteration of the cavity equations 4t
times because the factor graph corresponding to this problem is a tree.

The cavity equations for the matching problem on the internal vertex
of the Unwrapped Graph are the same as the ones for the matching
problem on KN,N ,

ĝt
i→j = max

j′ 6=j
(−ǫij′ − ĥt−1

j′→i) (7.14)

ĥt
j→i = max

i′ 6=i
(−ǫi′,j − ĝt

i′→j) (7.15)

they are different only on the root and on the leaves because here there
are not the interactions (they are free to be matched or not). In order
to find if the {i, j} edge on the root of the graph is covered or not we
do not need to perform the equations 4t times, but only 2t times (the
deepness of the tree). In fact after this time the cavity field on the top
will not change under successive iterations of cavity equations. The field
on the edge incident on the root is positive if the edge does not belongs
to the optimal matching, it will be negative otherwise. We call ĝt

i→j the
cavity field on the top edge It is easy to check that ĝt

i→j coincides with
the cavity field gi→j on KN,N after 2t iterations of the cavity equations.

One remark should be done about non-null initial fields: starting
with arbitrary initial fields is equivalent to fix an external field on the
leaves (equal to the initial conditions used on the first run of the cavity
equations).

Let E be the set of edges in KN,N belonging to the optimal matching.
Let π be the Optimal Permutation that describes the optimal matching

Let ME be the set of vertices on the unwrapped graph that are copies
of the vertices m belonging to the Optimal matching.

Let the speaking edge of the edge {ij} be the edge j′i in the Un-
wrapped Graph such that the argmax appearing in equation (7.14) is
j′. So that the value of ĝt

i→j is equal to (−ǫij′ − ĥt−1
j′→i)

For each vertex on the Unwrapped Graph there is and is unique
a speaking-edge that is, among the edges that connect it to the lower
level, the one which realizes the maximum in the cavity equation. The
subgraph of Speaking Edges is such that, given a vertex there’s one and
only one path of speaking-edges passing through it, we call this path
speaking-path. Every speaking-path has exactly one end on a leaf (the
root node is generally not considered a leaf node).
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7.3.2 Scheme Of The Proof

Let the drift ∆(E′) of a matching be

∆(E′) =
H(E′) −H(E)

N − |E ∩E′|

Consider the set E∗ of all the matchings Eγi
that differs from M for only

one loop (the symmetric difference of the matching Eγi
and the optimal

matching M△Eγi
consists of only one loop γi). Let E1 be the matching

in E∗ that minimize the drift and E2 the matching that realizes the
second minimum for the drift. Define ∆ := ∆(E1), ∆ := ∆(E2)−∆(E1).

First we show that the cavity fields on the Assignment problem
always identify the solution (lemma 1). At this stage the algorithm
find a feasible solution but has not a certificate of optimality. Then we
identify the asymptotic (in the time) behaviour of the fields (lemma 4)
and give a recipe (6) to give a Hungarian gauge that is a certificate of
optimality.

Lemma (1) is proved using the connection between the cavity fields of
the Assignment problem and the cavity fields of the Matching problem
on the Weighted Unwrapped Graph (where they furnish exactly the
solution). If the Unwrapped Graph is enough deep to reproduce well
the features of the Bipartite Complete Graph then the edge on the top
of the Unwrapped Graph belongs to the Matching if and only if its
corresponding on the original graph belongs to the Matching on the
Bipartite Graph.

Then, using the same ideas as in (1) we identify the asymptoticly
(in the time) behaviour of the fields (lemma 4). The fields result to
be a quasi-periodic function of the algorithmic steps, with a period T
common to all the fields. The period T is the length of the optimal
cycle) and a drift of strength ∆ positive for the fields on edge not in E
and negative for edges in E.

The quasi-periodic behaviour of the fields allows to find (lemma 6)
a Hungarian gauge that is a certificate of optimality.

We call E′ the maximum over k ∈ {1, . . . , k}, of the maximum over
pairs (i, j) ∈ M and among (i′, j′) ∈ γ∗ ∩M of the minimum among
paths γ connecting (i′, j′) to (i, j), of −E±(γ,E), and having length
equal k modulo T = ||γ∗||. Remark that E′ is always smaller than the
maximum entry.
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Theorem 3 Given a non-degenerate cost matrix (a matrix such that
∆,∆12 6= 0), defining,

E = min(max
i,j

(ǫi,j),minM (Hǫ(M))) (7.16)

after a number

t∗∗ = 2N +
E

2∆
+
E′ +N∆

2∆12
(7.17)

of iterations of the cavity equations on some arbitrary fields (for ex-
ample null-fields) the two quantities gsec

i (t∗∗), hmax
j (t∗∗) as defined in

lemma (6) give a Hungarian Gauge. t∗∗ is finite and is a function of
the instance and of the starting fields.

7.4 The Untypical Slow Instances

Two remarks are needed. The main theorem give some upper-bounds of
the solution time. This time is instance dependent so, there are instances
surely easy (if ∆ and ∆1,2 are not ≪ 1), and there are instances that
could be slow (the ones with ∆ ≪ 1 or ∆1,2 ≪ 1).

Numerical Simulations show on a large set of samples that the small-
ness of ∆ and ∆1,2 is the reason for the slowness of the algorithm:
meaning that the time to find the solution is big if ∆ ≪ 1 or ∆1,2 ≪ 1).

This is a sign of the fact that it is not possible to ameliorate the
inequality of theorem (3). An algorithm able to solve the slow instances
in a faster way need some new mechanism. With the aim of writing a
new algorithm belief-propagation based it is useful to know deeply the
cavity fields dynamic (as it is explained in the proof of the theorem).

We tested a fork algorithm that reduce a slow instance to the solution
of two typical problems. Sadly this fork works on average-case instances
(in the worst case the two new problems are hard and not forkable).

7.5 Proof of the Main Theorem

As it is proved in lemma (5) after a time t∗∗ the cavity fields enters in
a quasi-periodic regime (described in lemma (5)). As showed in lemma
(6) this is sufficient to construct a gauge with the parameters of the
thesis.

2
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Lemma 1 If

t >
E

2∆
+N − 1

the sign of ĝt
i→j is negative or positive respectively if π(i) = j or not.

First observe that the sign of ĝt
i→j is negative or positive respectively

if the edge on the top of the Unwrapped Graph belongs to the Optimal
Matching on T (t, i, j, col). If an edge {a, b} belongs to the Optimal
Matching on the Unwrapped Graph MU and it does not belong to the
Optimal Matching on the Original Graph E then it exists (unique) a
path that contains the edge {a, b}, and that contains alternatively edges
in MU and edges copies of E. This path either ends on two leaves of
T (t, i, j, col) or end on the root and on one leaf. So, if the edge on the
root of T (t, i, j, col) belongs to one among E, MU but not to the other,
there is unique a path alternating in the edges belonging to the two
matchings with one end on the root and the other on one leaf.

The proof works through a constructive absurd. If the thesis were
false it would be possible to construct a new matching (M ′

U ) on the
Unwrapped Graph such that its cost is smaller than the one of (MU ).
If the thesis were false there would be an alternating path on the Un-
wrapped Graph connecting the root to a leaf (the path is long 2t edges),
let Mp be the set of edge belonging to this path, MU

(1) = MU ∩Mp and
MU

(2) = Mp \MU .

Consider the set MU
∗ = ((MU ∪ MU

(2)) \ MU
(1)) namely the set

obtained by inverting the variables on the path.

The image of this alternating path on KN,N can be decomposed in
a set of cycles and a single self-avoiding path (not longer than 2N − 2).

The cost of the matching MU
∗ minus the cost of the matching MU

is not bigger than (2t − (2N − 2)) × (−∆) + min(MaxEntry, CostM).
This upper bound of the difference of costs is surely negative when
t > min(MaxEntry, CostM)/(2∆) +N − 1 so the thesis is proved.

2

The case with not-null starting fields needs only little modifications.
Let CostM be the Cost of the Optimal Matching on KN,N ; let Const1
be the minimum starting field and Const2 the maximum one. If the
starting fields are not-null Cost(MU

∗) - Cost(MU ) should be not bigger
than: (2t−(2N−2))·(−∆)+min(MaxEntry, CostM)+Const2−Const1
and so t∗ = [Const2−Const1+min(MaxEntry, CostM)]/(2∆)+N−1.
The time t∗ is bigger but the thesis is still true.
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So, after t∗ iterations the fields on the edges identify a matching and
this matching is the optimal one. A working algorithm needs a halting
condition: it must return a certificate that the found matching is the
optimal one.

One should also remark that the value ∆ is both arbitrarily near
to zero, and impossible to deduce from the instance, unless using some
procedure which is essentially equivalent to solve the problem otherwise.
So we both do not have a bound on the running time, and not even a
certified fixed-instance threshold time such that, stopping the algorithm
after that time, we can safely conclude the reconstructed matching is
optimal.

We now make a statement about the trees with more than 2t∗ lev-
els. We need in fact that something more happens in order to have
the possibility to construct a certificate of optimality for our feasible
solution.

Lemma 2 For each t ≥ t∗, for any vertex not farther than t− t∗ from
the root (all the first t − t∗ levels of the tree) all the edges ∈ ME are
speaking-edges.

This is a corollary of lemma (1) It follows by the fact that in order
to have that ĝt

i→j = (−ǫij′ − ĥt−1
j′→i) be positive, the field h must be

negative, but this happens only if the edge {ij′} is in E.
2

If ĝt
i→j on the root of the Unwrapped Graph T (t, i, j, col) is positive

for every j 6= π(i) and is negative only for j = π(i) this implies that
among the entering messages (−hij−ǫij) with j = 1, . . . , N there is only
one positive and it is the one such that π(i) = j.

Remark 1 In the region of distance smaller than t− t∗ from the root,
the Speaking-path is alternating in the matching.

On the speaking-path starting fronm the root of the Unwrapped Graph,
alternatively one edge of the speaking path is in Me and one not. This
happens because each vertex has exactly one edge that belongs to Me;
a path constraint to pass through a given vertex either it pass in the in-
coming edge through an edge belonging to Me or it pass in the outgoing
one through an edge belonging to Me.

Lemma 3 The Speaking-path on a vertex i linked upward to π(i) is the
one which maximize a global cost function on the path starting on i and
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ending at the level t∗. The Speaking-path on a vertex i linked upward to
j 6= π(i) is the one which minimize an analog quantity.

The fact that the speaking-path is alternating in the matching E,
permits to write the equation

ĝt
i,j = max

j′ 6=j
(−ǫi,j′ + min

i′ 6=i
(+ǫi′,j′ + ĝt−1

i′,j′)

in the form of equation (7.18). Maximizing this quantity at each level
of the tree is equivalent to maximizing it on the whole path where it
consists in a sum of ǫ with alternate signs with 2(t− t∗) + 1 addends.

If t > t∗ the Lemma (2) can be used to write the equations for two
steps:

ĝt
i→j = max

j′ 6=j
(−ǫij′ + ǫπ−1(j′)→j′ + ĝt−1

π−1(j′)→j′
) (7.18)

ĥt
j→i = max

i′ 6=i
(−ǫi′,j + ǫi′,π(i′) + ĥt−1

i′→π(i′))

in both the cases we have to maximize a quantity each two steps on
paths running on a tree from the root to the level t∗ where (7.18) ceases
to hold. This is equivalent to a global maximization. Analog relations
hold if j 6= π(i) So, the thesis is proved.

2

The quantity E defined in 7.16 is related to the cost of a simple open
path alternating on the optimal matching, namely, while a closed path
γ has always a positive cost, an open path can also have a gain, but it
is bounded by −E.

Lemma 4 The speaking path on the unwrapped graph T (t, i, j, col), if
wrapped on KN,N must intersect γ∗ if

t ≥ t∗∗ := t∗ +N +
E + 2E′ +N∆

∆12
(7.19)

Assume first j = π(i) then the speaking path is alternating on the
optimal matching, start from the cavity field g0 at the bottom leaf. The
path, when wrapped on KN,N is decomposable into an open path of
length at most N − 1 alternating on E (thus costing less than E), and
a set of cycles. If the path does not touch the feedback cycle γ∗, this
happens in particular for all the cycles in the decomposition, and thus,
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by definition of ∆1,2 these cycles provide at least a rate −(∆ + ∆12) per
step, for at least t− t∗ −N steps. So, the maximum alternated-cost of
the speaking path is bounded by:

g0 + E − (t− t∗ −N)(∆ + ∆1,2)

The alternated-cost of a path which goes through the optimal cycle
many times is easy to bound using the quantity E′. The complete cycles
provide an alternate-cost larger than −(t− t∗−2k− l)∆. The remaining
open path has an alternate-cost boundable from below so that:

−E±(γ,E) = g0 − 2E′ − l∆ − (t− t∗ − l)∆

The cost difference of the so constructed cycle and the cycle not inter-
secting γ∗ is at least E + 2E′ − (t− t∗ −N)∆12 +N∆ which for t ≥ t∗∗

with t∗∗ defined in 7.19 implies that the speaking path must touch the
feedback cycle.

2

As a consequence we have that asymptotically in t the fields gi→j ∼
Consti,j + t · ∆ with j 6= π(i) and gi→j ∼ Consti,j − t · ∆ if j = π(i).
Where Consti,j is a constant depending on the history of the cavity
fields in the first t∗ steps.

Lemma 5 After t∗ + N ′ + T steps the cavity fields are quasi-periodic
functions of the number of iterations. Meaning that

gt
i→j = gt−T

i→j − ∆ · T ∀i, j : j 6= π(i)

gt
i→j = gt−T

i→j + ∆ · T ∀i, j : j = π(i)

As we know for every t > t∗ +N ′ +T + 1 the speaking-edge run at least
one loop on the optimal cycle. Suppose that gt

i→j < gt−T
i→j + ∆ · T . Let

γT−t be the speaking path for gt−T
i→j and γT be the speaking path for

gt
i→j . The speaking path are path maximizing (see lemma 3) the value

on gt
i→j . The gt

i→j constructed via a modified γT−t cycle that run one

more time on the optimal path is equal to gt−T
i→j − ∆ · T . This fact is in

contradiction with the optimality of the path γT .
Suppose now gt

i→j > gt−T
i→j + ∆ · T . Then the gt−T

i→j constructed
via a modified γT path that run one less time on the optimal cycle is
= gT

i→j + ∆ · T . But it is in contradiction with the optimality of the
path γT−t.

Similarly can be proved the quasi-periodicity for the fields gi→π(i).
2
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Lemma 6 In a quasi-periodic regime (see lemma (5)), and t > t∗∗

(where t∗∗ has been introduced in lemma (4)) the quantities {g(sec)
i (t),

h
(max)
j (t)}defined in equation 7.13 are a good set of dual variables, mean-

ing that the gauge with λi = gi
(sec)(t) and µi = hj

(max)(t) provides a
Hungarian Gauge: a proper gauge whose zeroes subgraph admits a per-
fect matching.

Call ǫ′ij the weights shifted by the variables, i.e., ǫij + λi + µj . We have
two statement to prove: ǫ′i π(i) = 0 ∀ i and ǫ′ij ≥ 0 ∀ i, j. In the first case
we have

ǫ′i π(i) = ǫi π(i) +
1

T

t+T−1∑

t′=t

(g
(sec)
i (t) + h

(max)
π(i) (t)) =

= ǫi π(i) +
1

T

t+T−1∑

t′=t

(g
(sec)
i (t) + (−g(sec)

i (t) − ǫi π(i))) =

= 0 (7.20)

while for the second case, we have that if π 6= π(i)

ǫ′ij =
1

T
(h

(max)
j (t+ T + 1) + g

(sec)
i (t) + (7.21)

+
t+T−1∑

t′=t+1

(h
(max)
j (t + 1) + g

(sec)
i (t))) (7.22)

= ∆ +
1

T

t+T−1∑

t′=t

(g
(sec)
i (t) + (ǫij + h

(max)
j (t− 1))) (7.23)

but, because of the cavity-equations features for times after t⋆, each
summand is at sight positive (and zero if j is the ’arg-second’ index at
all the timesof the period).

2

7.6 Special Gauges

As said in section 7.1 for every instance there are many Hungarian
gauges. We know that to find a solution we only need a Hungarian gauge
with only N zeroes, anyway the typical output gauge of the Hungarian
Algorithm tipically contains many zeroes. Moreover we know that, if the
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instance is not degenerate, can not contain more than 2N −1 zeroes. In
this section we give and prove the following theorem stating that there
is always the possibility to find a special Hungarian gauge.

Theorem 4 Given an instance ǫ of Assignment Problem, and a column
j, it is always possible to perform a Hungarian gauge transformation
such that in the gauged matrix ǫ′ all the colums j′ 6= j have at least two
zeroes. Moreover, if the instance is non-degenerate, there is exactly one
zero in column j and two zeroes in all the other columns, and the graph
of zeroes Z is a spanning tree on KN,N .

Up to a relabeling of the columns, we can assume that j = 1. Choose
an optimal configuration π. Again, up to a relabeling of the rows, we can
assume that π is the identity permutation, and in particular that π(1) =
1. Call M1 the corresponding matching on KN,N , with permutation π,
and H1 the cost.

For each i ≥ 2, analogously define Mi and Hi the optimal matching
and cost in the subensembles in which π(i) = 1 is forced. If Mi is not
unique, consider a whatever optimum M ′

i . The symmetric difference
M1 △ M ′

i is composed of a set of self-avoiding loops, one of which
contains the edges (11) and (i1) by construction (the “special” loop).

By the optimality hypothesis, on each loop the alternated-sign sum
of entries ǫij on edges (ij) is zero, except for the special one, for which
it makes Hi − H1. This implies that the matching Mi such that its
symmetric difference with M1 contains only the special loop has the
same cost Hi as M ′

i .

Consider now the following gauge

λi = ǫij +H1 −Hi ; µ1 = 0 ; (7.24)

∀ j 6= 1 µj = ǫjj − λj . (7.25)

This gauge is such that ǫ′i1 = Hi−H1 for all i ∈ [N ], and, for optimality
of M1, these entries are all ≥ 0. Also, by construction, all entries ǫ′ii on
the optimal matching M1 are zero. So, in order to prove that the gauge
is Hungarian we only need to prove that ǫ′ij for i 6= j and j ≥ 2 is never
negative.

We do this by absurd. Suppose that ǫ′ij < 0. If (jj) is not in the
loop

M1 △ Mi =
(
(i1), (ii), (i2i), (i2i2), . . . , (11)

)
,
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(or if i = 1, so that M1 △ Mi = ∅) then the matching M̂j such that

M1 △ M̂j =
(
(j1), (jj), (ij), (ii), (i2 i), (i2i2), . . . , (11)

)

(i.e.
(
(j1), (jj), (1j), (11)

)
if i = 1) would violate the optimality condi-

tion on Mj , as we have

H1 −Hi + ǫ′i1 =
(
ǫ′ii − ǫ′i2i + ǫ′i2i2 − . . .+ ǫ′11

)
= 0 , (7.26)

so that we would get

H1 −Hǫ(M̂j) + ǫ′j1 = ǫ′jj − ǫ′ij +
(
· · ·
)
> 0 (7.27)

because ǫ′jj = 0 and the expression in parenthesis coincide with the one
in (7.26). Together with H1 −Hj + ǫ′j1 = 0, this causes an absurd, as
would imply that Mj was not optimal.

If (jj) is in the loop M1 △ Mi, the reasoning is similar, in fact in
that case the symmetric difference M1 △ Mi is

(
(j1), (jj), (ij), (ii), (i2 i), (i2i2), . . . , (11)

)
.

Consider now the matching M̂i such that its symmetric difference with
the matching M is

(
(i1), (ij), (ik+2j), . . . , (11)

)
.

its cost is ǫi1 + ǫij then, from the hypothesis (ǫi,j < 0) it is smaller than
ǫi1, in contraddiction with the optimlity of Mi.

In order to prove that ǫ′ has at least two zeroes per column i ≥ 2,
consider the minor of ǫ′ obtained by deleting column 1 and row i. Then
we have a matrix with non-negative entries, that contains a matching
of zero cost (as h0 = H1 by construction of the gauge, and the removed
element ǫ′i1 = Hi −H1, so this already saturates the lower bound Hi),
and this implies that every column has at least one zero entry. This
statement says nothing on columns j 6= i, where one still has the entry
ǫ′jj = 0 by construction, but the entry ǫ′ii is not in the minor, so there
must be another zero in the same column.

If the instance is not degenerate, the set Zmin has cardinality N , and
for any Hungarian gauge the graph Z has no loops. As we have proven
that our gauge has at least 2N − 1 edges, and a loop-free subgraph of
a graph with 2N sites has at most 2N − 1 edges (in this case being a
spanning tree), also the final statement of the theorem follows.

�
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Chapter 8

Some Variants of
Assignment

In this chapter we define and describe some features of some very dif-
ferent problems which have the property to be defined in a similar way
to the assignment problem. This is the case for the three-dimensional
generalization of the Assignment. We will also describe the geometrical
properties of the assignment solutions for the problem on a two dimen-
sional lattice. We will see how the assignment problem can be used to
solve fastly some instances of the Traveling Salesman Problem and how
the investigation of the hard instances of this problem induces to the
definition of a NP-complete variant of the Assignment.

8.1 Multi-index Matching

Consider the weighted hypergraph containing n ·N vertices partitioned
in n subset and Nn weighted hyperedges each one of coordination n,
connecting vertices from different subsets. The problem of finding the
optimal Matching (edge-subset of the hypergraph so that each vertex
has coordination 1) is the multi-index matching problem. Remark that
the Assignment problem is the n = 2 case of the multi-index matching
problem.

Here and in the following, we describe a problem in the scheme

Problem name:

instance feasible solution;
description. condition to satisfy.
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then the 3-Dimensional Matching Problem can be stated:

3-Dimensional Matching Problem:

G(V1, V2, V3;T ) M ⊆ T ;
with T ⊆ V1 × V2 × V3 |M | = n,
and |V1| = |V2| = |V3| = n. ∀v ∈ V1 ∪ V2 ∪ V3 degT (v) = 1.

The object G could be called a “tripartite hypergraph”: indeed, instead
of edges, it contains hyper-edges with three endpoints, one per set of
vertices. Equivalently to what has been done in section 8.4.2, another
representation turns out to be useful, in which the allowed elements for
a matching are encoded in an array of zeroes and ones. As guessable,
now the array is three-dimensional. Thus, define W = {wijk}i,j,k=1,...,n

such that wijk = 1 if (i, j, k) ∈ T , with i ∈ V1, j ∈ V2 and k ∈ V3,
and wijk = 0 otherwise. A feasible matching M is then described by an
array X = {xijk}, with xijk = 0, 1, such that xijk = 1 if the triangle
t = (i, j, k) is in M , and then exactly one element of the array is equal
to 1 per i, j or k fixed, i.e.

∀ i = 1, . . . , n
∑

j,k

xijk = 1 ; (8.1a)

∀ j = 1, . . . , n
∑

i,k

xijk = 1 ; (8.1b)

∀ k = 1, . . . , n
∑

i,j

xijk = 1 . (8.1c)

The cost function for M is then restated into

CW (X) =
∑

i,j,k

wijkxijk , (8.2)

and X is a valid matching if CW (X) = n. The numerical version is
defined accordingly, just now the weights wijk are generic integer, and
we have a threshold value for the cost (8.2).

The space of configurations of multi-index matching, for n ≥ 3 at low
temperatures requires replica simmetry breaking to be described. The
presence of hard-constraints in this problem lead to a scheme different
than for other optimization problem. In fact the system is correctly
described by a frozen-1RSB Ansatz where states are made of single
configurations. See [30] for further details.
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8.2 Assignment on planar graphs

Let G be a planar weighted graph which admits a bipartition in odd
vertices and even vertices (the square lattice is an example of such a
graph). It is possible to associate to this graph an assignment problem
for the even and the odd vertices only if the system has an equal number
of even and odds vertices (this is not the case for the square lattice on
a square domain of odd-vertices × odd-vertices).

Let G be such that the odd species has one vertex more the the even.
So that |odd| = N + 1, |even| = N . Consider the N + 1 assignment
problems obtained removing the i-th odd vertex, denote by πi their
solutions, a solution being a set of edges connecting the odd edges to
the even ones. The symmetric difference of two of these solutions (i, j)
is a walk from i to j plus a set of loops. If the weights on the tree are
different so that the solutions do not admit degeneracy (as in hypothesis
of chapter 7) then the symmetric difference of πi and πj is a self avoiding
walk from i to j.

As a consequence of the existence of the special gauges introduced
in section 7.6 it is possible to state that the union

∪N+1
i,j=1(πi∆πj) = ∪N+1

i=1 πi (8.3)

is a tree. To prove this statement we need to introduce an extra even
vertex, the N + 1-th one. We connect this vertex to all the odd ones
with N + 1 new edges. As we showed in section 7.6 a gauge such that
in the zeroes graph the even N + 1-th vertex is connected to only one
vertex and the whole zeroes graph is a tree exists. This special gauge has
the property that any even vertices but the special one has coordination
two. Then (after the remotion of the special even vertex and of one of
the odd ones) a matching on the so given zeroes graph always exists.
It is now easy to show that the zeroes graph coincides with the tree
defined by the equation (8.3).

We studied some geometrical properties of the trees above for square
lattices. We concentrated on the walk starting from the middle of the
bottom boundary and ending in the middle of the upper boundary,
the so defined curve is fractal and has some properties suggesting the
presence of conformal invariance, anyway this curves are not distributed
(in law) as the SLE 1 curves.

1Schramm-Loewner Evolution (SLE) is a stochastic process that describe the
growht of a self-avoiding path in connected bidimensional domains, for a review see
[2] and references therein.
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Figure 8.1: Double-Matching Instance on a 511×511 square lattice

The tree structure of the Assignment solutions as described in the
context of the special gauges suggests some possible relation between
the geometrical structure of domain walls in disordered systems excited
states and SLE. Further investigations will consider other curves in the
tree defined in (8.3).

8.3 Traveling Salesman Hard Instances

We introduced the traveling salesman problem (TSP) in section 4.1 as
an NP-complete problem. Anyway an average case analysis shows that
this problem is not hard: it exists an algorithm such that the average
solution time is polinomially bounded.

Given a set of “distances” between “cities” the TSP consists in find-
ing the shortest circuit that passes through all cities exactly once. The
TSP can be formulated as a variant of the assignment in the following
way. Given two cities i and j let Mi,j be the distance between i and
j. (In the non-symmetric TSP Mi,j is not constrained to be equal to
Mj,i). It is possible to associate a union of circuits to any assignment:
consider a graph with N vertices and draw an edge connecting i to j
if the element (i, j) belongs to the assignment. In this framework the
TSP consists in finding the optimal assignment for the instances given
by the matrix M such that the corresponding union of circuits consists
of a single circuit.
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8.3.1 Polynomial Algorithm for the Average-Case TSP

Given a TSP instance consisting of the distances-matrix M if we were
able to examine all the N ! feasible assignments (say if they consists
of a single loop or not) we should just pick the cheapest among the
“good” assignments. Given an assignment for a given set of N cities the
algorithm we can test if it consists of a single loop in linear time (with
N steps). Also if the single-loop property is easy to test it is hard to
keep efficently account of it in an algorithm consisting of a local search.
In fact the single-loop property is not a local property (to test it we
need to visit the whole circuit).

An efficent way to solve the TSP consists in the examination of the
whole spectrum of the Assignment problem (see section 8.3.2) up to the
first assignment configuration consisting of a single loop.

The number of different circuits visiting all the sites (cities) is a
fraction 1/N of the number of feasible assignments and, since the single-
loop circuits are distributed homogenously in the feasible assignments,
then the time needed to solve a randomly chosen TSP instance is N2

times the time needed to solve an Assignment instance (the “one-loop
test” being subleading with respect to the Assignment problem).

The fact that the TSP problem is NP-complete (or more exactly
NP-hard) but result to be polynomial in average means that there is a
set of instances not fastly solved by the algorithm given above.

In the set of hard instances there are the instances such that a set
S1 of cities are close each to the other belonging to the set but they are
far from any other out of this set. The lowest states for the assignment
problem consists of some loops visiting the cities in S and some other
loops visiting the other cities, a loop involving cities both in S both out
of S will cost at least two times the minimum distance between a city
in S and one out of S.

It is not hard to write algorithms able to find a structure like this
when present and to solve the problem when there is such a structure.

Anyway it becomes more and more hard to write efficent algorithms
when one restrict the set of random TSP instances to the set of instances
containing several structures as the one described above (of cities close
one to the other but very far from the other) or instances containing
several nested structures of the kind described above.

In this context emerged the idea to study the set below of instances.
This set contains only hard instances with respect to the presented al-
gorithms (it is not possible to prove the existence of intrinsically hard
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instances without proving NP 6=P). Consider (for 1 ≤ n ≤ N/2) in-
stances with M2n,2n−1 and M2n−1,2n smaller than N times the smallest
M entries not in the set above.

The ground-state assignment consists of N/2 loops. The TSP so-
lution via the visit of the spectrum of its related assignment problem
requires an exponential number of visited assignment solutions.

We restrict ourselves to this set because we have argument to say
that it contains a large fraction of hard instances, anyway the concept
of hardness is algorithm dependent, all that we can prove in a formal
way about the hardness of this set of instances is the NP-Completeness
of the TSP restricted to this set of instances.

We introduce the One-in-two algorithm to show the NP-Complete-
ness of the so restricted TSP problem and also because the One-in-two
problem is a simplification of the TSP problem because there is not
anymore the unlocal constraint asking to the assignment to consists of
a single loop. In fact in the One-in-Two problem there are not unlocal
constraints not yet present in the assignment problem.

8.3.2 The Assignment Spectrum

Consider the problem of finding the k-th cheapest Assignment among
the feasible assignments. We refer to this problem as the visit of the
Assignment spectrum. As we explained in ??sect:AverageCaseTSP) it
is part of an algorithm solving the TSP problem in an average time
polynomial. Here we present an algorithm that is easily generalizable
to the visit of the spectrum of other optimization problems (as the
shortest path one). This algorithm is bounded (in the worst-case) by
k ·N times the time needed to solve an instance of the original problem
plus the time needed by the sorting problem (subleading with respect
to the assignment).

The algorithm is based on a successive partition of the space of
feasible solutions. We first solve the assignment problem. We call this
assignment (permutation) π0, then for 1 ≤ i ≤ N we consider the N
problems of finding the best assignment πi such that πi(j) = π0(j)∀j < i
and πi(i) 6= π0(i). We sort this solutions (it could be useful to represent
each of this solutions as a vertex of level one in a rooted tree where the
root represents the optimal solution of the original problem), say i∗ is
the best one, we indicate the subsets belonging to the partition with Si.

Since the subdivision of the space of solutions given above is a par-
tition of the whole space of solutions then the second optimal solution
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of the original problem is the best solution among the N vertex of level
one in the constructed tree. Say it is the set Si′

The step forward consists in the partition of Si′ : the space of fea-
sible solutions containing the second best solution. After this partition
we need to solve the assignment problem in all the subset of the new
partition; then we sort this sets with respect to the cost of the optimal
assignment therein and compare the minimum among these costs with
the cost of the lowest cost matching in the sets Si with i 6= i∗.

The so given algorithm, iterated so to obtain the whole spectrum
up to the k-th level requires at each step the solution of the original
problem (in our case the assignment one) at most N times and at each
step gives a new element of the spectrum of the original problem we are
interested in.

8.4 One in Two Problem

8.4.1 Motivations and a digression

In this section we describe a new NP-complete problem, the One-in-Two
Matching, in the next section we will give a polynomial reduction from
Boolean Satisfiability.

The existence of a new NP-complete problem is interesting by itself,
in the idea of making the list of NP-complete problems still wider (a
larger list of NP-complete problems gives a larger number of possible
starting points for a reduction proof, and thus makes easier the task of
determing whether a new problem is NP-complete). As we will see, as a
side result we show that One-in-Two Matching Problem induces a chain
of reductions from Boolean Satisfiability to the important 3-Dimensional
Matching Problem (3DM in Garey-Johnson [18]) which avoids the com-
plicated and size-demanding original reduction of Karp [23].

Another motivation, which was indeed the original one, is that One-
in-Two Matching and Assignment give a hint on the structural rea-
son why Hamiltonian Circuit (HC) and Traveling Salesman (TSP) are
NP-complete, although their analogue Matching and Assignment are
polynomial, and intrinsecally simple for what concerns the energetic
landscape of configurations. Indeed, configurations of HC and TSP are
permutations π composed of a single cycle. It is trivial to impose that π
has no fixed points (just taking infinite weights on the diagonal), while
the remaining restriction to have no cycles of length 2 ≤ ℓ < n must be
at the root of the complexity discrepancy among the two problems.
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In the definition of One-in-Two problems, put at infinity the non-
diagonal block elements, w2i−1,2i = w2i,2i−1 = +∞, make the diagonal
weight very favourite, wii → wii−∆ with ∆ → +∞, and then transpose
all the row pairs (2i−1, 2i). Then, the One-in-Two constraints is equiv-
alent to forbid all the length-2 cycles among 2i− 1 and 2i (which are a
small subset of all the cycles forbidden in TSP). On the other side, the
matching π(2i) = 2i− 1, π(2i − 1) = 2i constitutes the obvious ground
state of pure Assignment.

So, although random TSP instances have good heuristics and effi-
cient approximants, based on the connection with Assignment [22], this
new ensemble of random TSP instances would be hard in the average
case, as, instead of just condensing a few (O(lnn)) relevant long cy-
cles, it must first choice how to disentangle O(n) robust short cycles.
Roughly speaking, as a cycle of length ℓ can be broken in ℓ points, and
the set of cycle lengths is a partition of n, the average complexity of
this procedure scales with exp(n/ℓ ln ℓ), and has a finite maximum for
ℓ = O(1). Similar arguments are depicted at the end of section 8.4.3.

The reason lying behind the hardness of One-in-Two problem is the
fact that just a change of a single “spin” determination behaves as a
change of a whole row and of a whole column in the original instance.
As we know the replica simmetry of problems is broken when small
changes in the system induce the cross of energy (or free-energy) among
local ground-state. The lack of a special simmetry allowing the design
of a specific algorithm (as happens for Assignment or XOR-SAT) make
of One-in-Two problem an hard problem both in the worst case (as we
prove) both on average (as we guess).

Indeed, the existence of a NP-completeness proof for One-in-Two
problems suggests that this narrow subset of the set of extra constraints
of HC and TSP already contains the core of extra complexity of these
problems. Also remark that, although the chain of reductions from SAT
to Hamiltonian Circuit (3-SAT → Vertex-Covering → HC) is beautiful
and elegant [18], our direct reduction to One-in-Two Matching is much
cheaper.

8.4.2 Definition of 2-Dimensional Matching and Linear
Assignment Problems

Given an unoriented bipartite graph G(V1, V2;E), with |V1| = |V2| = n,
the Matching Problem (discussed in chapter 7) asks for a subset M ⊆ E
of the edges, with cardinality n, such that each vertex has degree exactly
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1 in G|M , or for a certificate that such a set does not exist. A set M
satisfying this requirement is called a perfect matching over G.

The scheme corresponding to Matching is

Matching Problem:

G(V1, V2;E) M ⊆ E;
with |V1| = |V2| = n. |M | = n, ∀v ∈ V1 ∪ V2 degM (v) = 1.

This problem is a specific case of the more general Linear Assignment
Problem, in which integer weights w(e) are associated to the edges, a
threshold value k is given, and the search is restricted to perfect match-
ings M such that the sum of weights on the edges of M is smaller than
k 2.

Linear Assignment Problem:

G(V1, V2;E) M ⊆ E;
with |V1| = |V2| = n; |M | = n, ∀v ∈ V1 ∪ V2 degM (v) = 1,
w : E → Z;

∑
e∈M w(e) ≤ k.

k ∈ Z.

More precisely, the weights could be also infinite, i.e. w : E → Z∪{+∞},
with the natural formal rules n+ ∞ = +∞ + n = +∞ + ∞ = +∞ and
+∞ > k. Then, one can assume without loss of generality that G is the
complete balanced bipartite graph.

In traditional notations, Matching Problem is resumed in the case
w(e) = 1 for edges in E(G) and w(e) = 0 otherwise, ≤ being replaced
by ≥, and k = n.

A convenient representation of these problems is via the n×n matrix
W = {wij} of the weights. A feasible matching M is then described by
a matrix X = {xij}, with xij = 0, 1 and exactly one element equal to
1 per row and per column, such that xij = 1 if edge e = (i, j) is in M .
The cost function for M is restated into

CW (X) =
∑

i,j

wijxij = trWXT . (8.4)

Another convenient representation of feasible matchings is via permu-
tations in the symmetric group over n elements, π ∈ Sn, where π(i) = j

2Equivalently, one can restrict to consider the complete balanced bipartite graph
with 2n vertices, Kn,n, and set w(e) = +∞ for edges in E(Kn,n) r E(G).
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if edge (i, j) is in M . In this notation the cost function reads

CW (π) =
∑

i

wiπ(i) . (8.5)

An example of problem instance and solution could be (on the left, items
wiπ(i) are written in bold)

W =




3 7 2 4 1 1

1 6 1 7 8 2

3 3 2 5 6 3

4 2 8 6 2 5

5 5 1 6 3 4

4 9 8 1 4 3




with k = 15;
{π(i)}i=1,...,6 = {3, 1, 2, 5, 6, 4} ;

C(π) = 13.

Given a whatever Assignment instanceW , many algorithms allow to find
in polynomial time the optimal assignment π∗, and its cost C∗ = C(π∗),
the most famous being probably the Hungarian Algorithm [28, 29].

8.4.3 Definition of One-in-Two Matching and One-in-Two
Assignment Problems

Now we can define the One-in-Two Matching and Assignment Problems
as the variants of Matching (resp. Assignment) Problem in which, as-
sumed that the dimension 2n of the matrix is even, the set of allowed
partitions π is restricted to include only the ones such that, for each
i = 1, . . . , n, either π(2i− 1) = 2i− 1 or π(2i) = 2i.

Thus the description of One-in-Two Matching and Assignment could
be resumed in the tables

One-in-Two Matching Problem:

G(V1, V2;E) M ⊆ E;
with |V1| = |V2| = n; |M | = n, ∀v ∈ V1 ∪ V2 degM (v) = 1,
partition of {V1;V2} into
quadruplets q = (v, v′;u, u′). ∀q

(
(v, u) ∈M

)
∨̇
(
(v′, u′) ∈M

)
.
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One-in-Two Assignment Problem:

G(V1, V2;E) M ⊆ E;
with |V1| = |V2| = n; |M | = n, ∀v ∈ V1 ∪ V2 degM (v) = 1,
partition of {V1;V2} into
quadruplets q = (v, v′;u, u′); ∀q

(
(v, u) ∈M

)
∨̇
(
(v′, u′) ∈M

)
,

w : E → Z;
∑

e∈M w(e) ≤ k.
k ∈ Z.

Remark that, when proven that One-in-Two Assignment is NP-complete,
we will also have a proof that the variant with

(
(v, u) ∈M

)
∨
(
(v′, u′) ∈

M
)

instead of
(
(v, u) ∈ M

)
∨̇
(
(v′, u′) ∈ M

)
is NP-complete. Indeed,

given an instance of the OR problem, shifting the diagonal weights to
wii → wii + ∆, and k → k+n∆, we have that CW (M)− k = n′∆, with
n′ the number of blocks with two matched elements, and in the limit
∆ → +∞ we recover the analogous XOR problem. On the contrary, in
the limit ∆ → −∞ the problem becomes trivial.

The costs of the diagonal elements do not play any role, and can be
fixed to zero. Indeed, if for some i ≤ n we have w2i,2i = w2i−1,2i−1 =
+∞, no finite-cost assignment exists, while if only one of the two is
infinite (say, w2i−1,2i−1), we are forced to fix the permutation on the
other one (w2i,2i), and thus the elements with i or j equal to 2i never
play a role: we would have had an identical cost function if w2i−1,2i−1

were zero, and w2i,j = wj,2i = +∞ for each j 6= 2i:

W =




+∞ w12 w13 . . .

w21 w22 w23 . . .

w31 w32 w33 . . .
...

...
...

. . .


 ≡




0 +∞ w13 . . .

+∞ w22 +∞ . . .

w31 +∞ w33 . . .
...

...
...

. . .


 . (8.6)

Thus, without loss of generality, we can assume that wii is finite for each
i. Then, from the invariance of Linear Assignment, one easily convince
himselfs that an equivalent instance (i.e. an instance with identical cost
function, up to an overall constant) can be produced, with wii = 0 for
each i ≤ 2n, and that the values w2i,2i−1 and w2i−1,2i never appear in
allowed matchings. For this reason, we will assume in the following that
wii = 0, and denote the four elements in the n diagonal blocks of size
2 with special symbols ∗ and ·, instead that with a weight value. For
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example, an instance with 2n = 6 could be

W =




∗ · 2 4 1 1
· ∗ 1 7 8 2
3 3 ∗ · 6 3
4 2 · ∗ 2 5
5 5 1 6 ∗ ·
4 9 8 1 · ∗




with k = 10;

The choice of representation with ∗s is done for mnemonic reasons: at
sight, one knows that a valid matching should use exactly one ∗ per
block. For example, a valid matching with weight 9 could be the fol-
lowing (on the right side, elements i such that π(i) = i are underlined
in order to highlight the one-in-two constraint satisfaction)




∗ · 2 4 1 1

· ∗ 1 7 8 2

3 3 ∗ · 6 3

4 2 · ∗ 2 5

5 5 1 6 ∗ ·
4 9 8 1 · ∗




{π(i)}i=1,...,6 = {3, 2; 6, 4; 5, 1} ;

C(π) = 9.

Clearly, a one-in-two matching can be described by a choice of the ele-
ments kept fixed by the permutation (i.e. the ∗ chosen in each block),
times an allowed choice of assignment in the n-dimensional minor ma-
trix resulting from the removal of the fixed rows and columns. Thus,
allowed matchings are in bijection with pairs (~σ, π), where ~σ ∈ {0, 1}n

and π ∈ Sn, with all π(i) 6= i. For example, the previous configuration
could be described as (~σ, {π(i)}i=1,...,3) = ((0, 0, 1), {2, 3, 1}). This fact
suggests a naive interpretation for the potential hardness of this variant
of Assignment: for any choice of fixed elements (the ∗s), the problem
of finding the optimal assignment is polynomial (just put +∞ on the
remaining ∗s, and use Hungarian Algorithm on the resulting Linear
Assignment instance), nonetheless one should perform a search among
these 2n possible choices, which, in absence of a sufficiently strong cor-
relation or a skill mathematical structure, could make the search expo-
nential in size.
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8.5 Proof of linear reduction from Boolean Sat-
isfiability problems

Here we prove that also One-in-Two Matching, less general w.r.t. the
analogue One-in-Two Assignment, allows for linear reduction from ar-
bitrary instances of SAT, 3-SAT or NAE-3-SAT Problems.

A SAT (or NAE-SAT) instance with n literals and m clauses can
be encoded into a bipartite graph G(Vℓ, Vc;E), with Vℓ being the set
of literals {ui}i=1,...,n and Vc the set of clauses {Ca}a=1,...,m, and a map
s : E → {±1} which states whether the literal enters negated or not,
i.e. if ui ∈ Ca then s(i, a) = +1, while if ui ∈ Ca then s(i, a) = −1.

It is customary to graphically represent a Satisfiability instance by
mean of a factor graph, i.e. the bipartite graph above, where “literal”
vertices in Vℓ are denoted by small circles, and “clause” vertices in Vc by
small squares, and an edge is drawn in solid line if s(e) = +1, and dashed
if s(e) = −1. The instance is satisfied by a given boolean assignment
if for each clause vertex there is at least one solid-edge true neighbour
or one dashed-edge false neighbour. In NAE-SAT the same as above
holds, but also not all the neighbours must satisfy the clause.

In order to perform our reduction, it is easier to first perform a dec-
oration on the graph: for each variable, introduce an auxiliary variable
per incident edge (in a sense, the literal “as seen from the clause”), then
substitute the original variable node by a “consistency check” clause
(drawn as a small triangle), which ensures that the boolean values on
the copies of the variable coincide. A small example of SAT factor
graph, and the corresponding decorated graph, could be the following:
In our reduction, we have two 2×2 blocks

( ∗ ·
· ∗
)

per edge (i, a) ∈ E(G),
and thus the entries of the matrix W are labeled by an index (i, a)±1,2,
where (1, 2) stands for the first and second block, and ± stands for the
first and second index inside the block. Suppose to order arbitrarily the
edges eα = (iα, aα), then for helping visualization, we will assume that
the entries of W are ordered as

((i1, a1)+1 , (i1, a1)−1 , . . . , (ik, ak)+1 , (ik, ak)−1 ,

(i1, a1)+2 , (i1, a1)−2 , . . . , (ik, ak)+2 , (ik, ak)−2 ) (8.7)

that is, first all the 1-blocks, then, in the same order, all the 2-blocks.

The choose of ∗s in the matching correspond to the sequence of
boolean assignments for the literals, “as they are seen from the clause”,

107



CHAPTER 8. SOME VARIANTS OF ASSIGNMENT

i.e. for the literals in the decorated instance. So we need a “truth-
setting” structure, which ensures that all these values coincide (in other
words, implements the “consistency check” clause), and a “satisfaction-
testing” structure, which checks that each boolean clause in the original
formula is satisfied. The truth-setting structure is encoded in the set of
1s in the entry pairs with i = j, while the satisfaction-testing structure
is encoded in the set of 1s in the entry pairs with a = b. More precisely,
entries w = 1 can appear in the off-block matrix elements at index pairs
((i, a)±α , (j, b)

±
β ) only in one of the two cases:

i = j, α = 2 and β = 1 (truth-setting structure)
a = b, α = 1 and β = 2 (satisfaction-testing structure)

We start describing the truth-setting structures. For each variable i, call
A(i) the set of adjacent clauses, and choose an arbitrary cyclic ordering
on this set. For i ∈ Vℓ and a, b ∈ A(i) we state

w(i,a)σ
α,(i,b)τ

β
=





1
a = b, σ = τ = −, α = 2, β = 1;
a = b− 1, σ = τ = +, α = 2, β = 1;

0 otherwise.

(8.8)

that is, the minor of W restricted to indices with fixed i looks like

W |fixed i =

(
I∗ 0

W ′ I∗

)
;

I∗ =




∗ ·
· ∗ 0 0 . . . 0

0 ∗ ·
· ∗ 0 0

0 0 ∗ ·
· ∗ 0

...
. . .

...

0 0 0 · · · ∗ ·
· ∗




W ′ =




0 0
0 1 0 0 . . . 1 0

0 0
1 0
0 0

0 0
0 1 0 0

0 1 0
0 0

0 0
0 1 0

...
. . .

. . .
...

0 . . . . . . 1 0
0 0

0 0
0 1



. (8.9)

Remark that in all rows with sub-index 2 and columns with sub-index
1 (i.e. all rows ands columns in W ′) we have exactly one allowed entry
beyond the ∗ element on the diagonal. In order to see how the truth-
setting procedure works, consider what happens if we choose the top-left
∗ in the first block (i.e. we choose “σ(i,a1) = 1” in the string of ~σ(i,a) for
the “variables seen from the clauses”). At the beginning the matrix is (a
circle means “element chosen in the matching”, a bar means “element
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not choosen in the matching”)

W =




∗ ∗ ∗ ∗
. . .

∗ ∗ ∗ ∗
. . .

1

1
1

. . .
. . .

g



while, after six logical implication we have

W =




∗ ∗ ∗ ∗
. . .

∗ ∗ ∗ ∗
. . .

1

1
1

. . .
. . .

?
- ?�

6

�

g

g

g
g




Remarking that the choice of 1s in the matrix has a cyclic ordering
w.r.t. clause indices, with a simple induction one deduces that the
boolean assignments are “σi,ak

= 1” for all clauses ak incident with
variable i. A similar statement can be done in the case “σi,a1 = 0” (just
exchange circles with bars in the diagrams above). So, we have deter-
mined that only consistent boolean assignment of literals are allowed.

Now we can build the structures for the satisfaction testing. We are
interested in the restriction of W to a given fixed index a, which is of
the form

W |fixed a =

(
I∗ W ′′

0 I∗

)
. (8.10)

We describe the matrix W ′′ for a clause of length k with all unnegated
literals, Ca = ui1∨. . .∨uik . All the other cases can be trivially inferred 3.

3Define the transposition matrix (T (k))ij = 1 if i = j 6∈ {2k, 2k − 1}, if i = 2k

and j = 2k − 1 or if i = 2k − 1 and j = 2k, and zero otherwise. I.e., matrix
T (k), acting on the left, transpose rows 2k − 1 and 2k, while acting on the right
transpose the corresponding columns. Then, if matrix W ′′ encodes a clause involv-
ing (u1, . . . , uk, . . . , uℓ), the matrix T (k)W ′′T (k) encodes the same clause on literals
(u1, . . . , uk, . . . , uℓ).
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Choose a whatever literal index (say, i1) among the neighbours of the
clause a, and set

w(i,a)σ
1 ,(j,a)τ

2
=





1

if i = j and σ = τ = −1;
if i = j 6= i1 and σ = τ = +1;
if i = i1, j 6= i1, σ = +1 and τ = −1;
if i 6= i1, j = i1, σ = −1 and τ = +1;

0 otherwise

(8.11)

that is, in an extensive representation of the matrix,

W ′′ =




0 0 0 1 0 1 . . .
0 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
1 0 0 1 0 0 . . .
0 0 0 0 1 0
1 0 0 0 0 1
...

...
...

...
. . .




(8.12)

which indeed makes the game, as one can easily check. Indeed, if all
literals are negated, we are left with matrix minor

W ′′
(F,F,. . . ,F) =

(
0 0

0 Ik−1

)
,

which clearly does not allow for any valid matching, while, if the first
literal is true we have

W ′′
(T,. . . ) =

(
1 ·
· Ik−1

)
,

which allows at least for the diagonal matching, π(j) = j for all j =
1, . . . , k, and if the first literal is false, but one of the others (say, the
h-th) is true, we have

W ′′
(F,. . . ,T,. . . ) =




0 · 1 ·
· Ih−2 0 0
1 0 1 0
· 0 0 Ik−h


 ,

which allows at least for the matching π(1) = h, π(h) = 1 and π(j) = j
otherwise. Similarly, for a NAE-k-SAT clause Ca = (ui1 ∨ . . . ∨ uik) ∧
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(ui1 ∨ . . . ∨ uik) we can choose

w(i,a)σ
1 ,(j,a)τ

2
=





1

if i = j 6= ik and σ = τ = −1;
if i = j 6= i1 and σ = τ = +1;
if i = i1, j 6= i1, σ = +1 and τ = −1;
if i 6= i1, j = i1, σ = −1 and τ = +1;
if i = ik, j 6= ik, σ = −1 and τ = +1;
if i 6= ik, j = ik, σ = +1 and τ = −1;

0 otherwise

(8.13)

corresponding to the matrix minor

W ′′ =




0 0 0 1 0 1 . . . 0 1
0 1 0 0 0 0 . . . 0 0
0 0 1 0 0 0 . . . 0 1
1 0 0 1 0 0 . . . 0 0
0 0 0 0 1 0 0 1
1 0 0 0 0 1 0 0
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · 1 0
1 0 1 0 1 0 · · · 0 0




(8.14)

This completes the reduction proof for SAT and NAE-SAT (and then, in
particular, for 3-SAT and NAE-3-SAT). Indeed, the proposed encodings
of a SAT and NAE-SAT clause are a special case of the most general
k-literal clause, in which the number of true literals must be in the range
{hmin, . . . , hmax}, (also having as a special case the 1-in-3-SAT problem,
which is NP-complete [18]), for which a general encoding is possible

It is common in reduction proofs that multiple appearence of a lit-
eral in a clause requires some care (truth-setting and satisfaction-testing
structures could damagely interfere), and one should make some stan-
dard comment on the fact that this case can be excluded with small effort
from any SAT instance. This does not happen in our case. One can
understand this from the fact that the 1s in the two structures appear
in different rows and columns, and logical implications which allow to
test the performance of the structures involve only these rows/columns.

Also remark that the reduction is linear not only in matrix size
w.r.t. the original factor-graph size (the dimension n of the Matching
matrix is four times the number of edges in the factor graph), but also
in the number N of non-zero entries in the matrix, which is indeed very
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sparse. Each literal of coordination k requires a truth-setting structure
with 2k entries, while each clause of length k requires a satisfaction-
testing structure with 4k− 3 entries (6k− 8 for a NAE clause), thus we
have that, for a factor graph G(Vℓ, Vc;E)

N = 6|E(G)| − 3|Vc(G)| SAT problem;

N = 8|E(G)| − 8|Vc(G)| NAE-SAT problem.
Finally, we also remark that the instances of One-in-Two Matching ob-
tained as reduction from Satisfiability Problems are of a particular kind:
the 1s are contained only in the top-right and bottom-left 2n×2n quad-
rants (the matrices W ′ and W ′′). We call Bipartite One-in-Two Match-
ing this specialized problem.

8.6 Proof of linear reduction from One-in-Two

Matching to 3 Dimensional Matching

Now we describe the reduction from One-in-Two Matching to 3DM.
An identical reduction goes from One-in-Two Assignment to Numerical
3DM. Call W = {wij} our One-in-Two Matching instance of dimension
2n to be encoded, with

wij =





∗ i = j ≤ 2n;

· i = 2h, j = 2h− 1, h ≤ n
or i = 2h− 1, j = 2h, h ≤ n;

wij (∈ {0, 1}) otherwise.

(8.15)

and W (3) our suggested output 3DM instance, also of dimension 2n.
Our formal reduction is, calling A(k) = {2(k − n) − 1, 2(k − n)} for
k = n+ 1, . . . , 2n,

w
(3)
ijk =





1
i = j = 2k − 1,
i = j = 2k;

wij i ∈ A(k), j 6∈ A(k);

0 otherwise.

(8.16)

or, more pictorially, call ~ei and ~wi the vectors

~ei = (0, . . . , 0,
i-th
1 , 0, . . . , 0) ; (8.17a)

~w2i−1 = (w2i−1,1, . . . , w2i−1,2i−2, 0, 0, w2i−1,2i+1, . . . , w2i−1,2n) ; (8.17b)

~w2i = (w2i,1 , . . . , w2i,2i−2 , 0, 0, w2i,2i+1 , . . . , w2i,2n ) ; (8.17c)
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then W (3), written as a matrix on indices (i, k), of vectors on index j,
looks like

W (3) =




~e1 0 . . . ~w1 0 . . .
~e2 0 . . . ~w2 0 . . .
0 ~e3 . . . 0 ~w3 . . .
0 ~e4 . . . 0 ~w4 . . .
...

...
. . .

...
...

. . .



. (8.18)

Indeed, remark that in the planes (i, j) for k = 1, . . . , n there are only
two allowed entries, whose (i, j) coordinates correspond to the ones of
the ∗s in the k-th block of the original instance. Mimicking the One-
in-Two constraint, for each block k we are forced to choose a value
σk ∈ {0, 1}, with (say) 0 and 1 selecting respectively the entry with even
and odd indices. Then, in all (i, j) layers with k = n + 1, . . . , n there
are only two non-empty i-rows, (which are empty in all the other layers
with k = n + 1, . . . , 2n). Because of the choice of the vector ~σ, exactly
one of them is now forbidden. So, the three-dimensional constraint of
choosing one element per index i, j and k is at this point reduced to a
traditional two-dimensional matching constraint, as there is a bijection
between unmatched layers k and non-empty unmatched rows i. I.e. the
3-dimensional 2n× 2n× 2n array of equation (8.18) is now restricted to
the n× n× n array

W ′(3)(~σ) =




~w
(~σ)
2−σ(1) 0 0 . . .

0 ~w
(~σ)
4−σ(2) 0 . . .

0 0 ~w
(~σ)
6−σ(3)

. . .
...

...
...

. . .




; (8.19)

(
~w

(~σ)
i

)
j

=
(
~wi

)
2j−σ(j)

. (8.20)

It is easily understood that the set of forbidden indices j after the choice
of vector ~σ and the disposition of the entries wij are in accord with the
picture of section 8.4.3, where a vector ~σ determines a n-dimensional
minor of the original 2n-dimensional instance, with forbidden entries on
the diagonal.

As a corollary of the construction we have that the reduction is linear
not only for what concerns the size of the array (an n × n One-in-Two
instance goes into an n× n× n 3DM array), but also on the number of
non-zero entries in the instance 4, which is proportional to the length of

4More precisely, the cardinality of T for 3DM equals the one of E for One-in-Two
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the bit-encoding of the instance.
Putting together this result with the one of section 8.5, we have in

turn a linear reduction from SAT problems to 3DM,

N3DM = 10|E(G)| − 3|Vc(G)| SAT problem;

N3DM = 12|E(G)| − 8|Vc(G)| NAE-SAT problem.
which is much more economic of the cubic one first presented in Karp
seminal ’72 paper [23] (see also [18]), and maybe (depending from the
tastes) technically simpler.

Matching, plus the 2n “deterministic” entries of vectors ~ei, i.e. inside a factor 2 if
we understand that 3DM instances having planes with only one valid entry can be
trivially reduced in size.
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Chapter 9

Conclusions

In this thesis we discussed the relation between optimization problems
and the physics of disordered systems, and in particular of cavity meth-
ods.

In chapter 6 we discussed a classical disordered systems problem:
the spin glass model. In particular we concentrate on the ground-state
(finding it is an NP-Complete problem) and on the determination of
its energy. We propose an algorithm that makes use of cavity fields to
determine an upper and a lower bound for the energy of such a system.
The algorithm we gave has been implemented and studied on this model,
anyway it can be extended to a larger class of disordered systems.

We presented in chapter 7 an algorithm to solve a classical (and
also useful) problem in Combinatorial Optimization: the Assignment.
The algorithm we presented uses the cavity fields and equations to work.
This algorithm has the advantage to be easier to implement on hardware
device than the well-known (and well-performing) Hungarian Algorithm.
Surprisingly this algorithm converge almost always to the optimal solu-
tion for the assignment problem. In chapter 7 we find a bound on the
convergence time.

In chapter 8 we presented some problems related to the Assign-
ment problem. Many of them also if slightly differently stated are NP-
complete. For the one-in-two problem the NP-complteness is proven.
The one-in-two problem is presented here because of the low-dimensional
geometry of the space where it can be defined, because of the small-
encoding of reduction to and from other hard problems, and because of
the locality of its interactions. The reduction is relatively simple and
specially compact. As a side result, combination with a reduction proof
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from one-in-two Matching to 3-Dimensional Matching (3DM) provides
a simple reduction proof for 3DM.

We worked always on cavity fields and equations at zero tempera-
ture, this approach allows to simplify the discussion of the cavity method
in several aspects and allows to concentrate on the ground state of the
problems. When there exists many local ground states one of the as-
pects that make hard to find the global one is the crossing between their
energies when adding a new variable. When working in this regime the
physics of disordered systems (replica simmetry and its breaking) comes
into play.

Further directions of investigation will include

• A deeper comprehension of the behaviour of the algorithm used in
chapter 6 to find lower-bounds to Ising Spin Glasses Ground-State
energy.

• The extension of the algorithm introduced in chapter 6 to other
optimization problems.

• A study of the efficency of the cavity algorithm for the assignment
when used to find approximated solutions.

• A statistical investigation of the properties of the random version
of one-in-two problem.

• An investigation of One-In-Two problem via cavity method tech-
niques also in relation to the important question of determining
the geometrical characteristics of the hard instances of the Trav-
eling Salesman Problem.

The approach to combinatorial optimization via the physics of cav-
ity fields have many applications, we expect that these methods allows
further investigations, both for a deeper comprehension of the nature
of complexity and for the design of faster algorithms, both exact and
approximated.
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Graph Theory

Graph Theory is a branch of mathematics, its origin probably date back
to Euler’s work on the Königsberg bridges problem in 1766. Graph
theory can be used to solve optimization problems on networks.

A graph G is an ordered pair (V (G), E(G)) where V (G) and E(G) are
disjoint sets called the vertices and edges of G respectively, together with
an incidence function f which associates an unordered pair of vertices
{u, v} with each edge e of G.

We will restrict to “proper” graphs (graphs such that the endpoints
of each edge are distinct).

Graphs are often represented drawing in the plane vertices repre-
sented by points and edges represented by lines between the two points
corresponding to the endpoints.

Another representation is through the incidence matrix M(G): a
square matrix with N = |V | rows, such that the entry Mi,j is one if
there is an edge incident both on i and j, and is zero otherwise.

• An undirected graph G = (V,E) is given by its vertices i ∈ V and
its undirected edges i, g ∈ E

• The number |V | of vertices (nodes) is the order and |E| the number
of edges (arcs) is the size of the graph.

• Two vertices are adjacent (neighboring) if i, j ∈ E.

• The edge i, j is incident on its ends i and j.

• The degree (coordination) of a vertex is the number of adjacent
vertices. The vertices of zero degree are called isolated, a vertex
with degree one is called leaf.
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• A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊂ V and E′ ⊂ E.

• A walk is a sequence of edges i0, i1, i1, i2, . . . , il−1, il. A path is a
self avoiding walk.

• A path with i0 = il is called a cycle.

• A walk with i0 = il is called circuit.

• A graph G is connected if for every pairs i, j of vertices in V there
is at least a path with endpoints in i and j.

• A graph with no cycles is a forest.

• A tree is a forest consisting of a single connected component. A
forest is the union of disconnected trees. For a tree |V | = |E| + 1
holds. For a forest |V | = |E|+ number of connected components.

• Given a path or a walk, the number of edges is its length.

• The girth of a graph is the length of the shortest cycle contained
in the graph.

• The complete graph of vertices V is the graph such that for all
pairs i, j the edge i, j ∈ E

• A graph is weighted if there is a function that associates a weight
to every edge.

• A graph G is bipartite with bipartition {X,Y } if {X,Y } is a par-
tition of the vertices V (G) and all the edges of G join vertices of
X to vertices of Y .

• A circuit that uses every edge exactly once is an Eulerian circuit.

• A circuit that visits every vertex exactly once is an Hamiltonian
cycle.

• A directed graph G = (V,E) is given by its vertices i ∈ V and its
directed edges i, j ∈ V × V .

• A vertex i has an outdegree equals to the number of outgoing edges
(i, j) and an incoming degree equals to the number of ingoing edges
(j, i).
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• A directed graph D is strongly connected if, for each ordered pair
of vertices u and v of D, there is a directed walk from u to v in
D.

• Let e be an edge of a graph G. The e is a bridge of G if G \ e has
more connected components than G.

Let e be a bridge of a connected graph G and let u and v be the
end vertices of e. Then G \ e has exactly two components H1 and
H2 with u ∈ V (H1) and v ∈ V (H1). Let e be an edge of a graph
G. Then e is a bridge if and only if e is not contained in any cycle
of G. Remark also that a connected graph is a tree if and only
if every edge of G is a bridge. Let T be a tree then all edges are
bridges.

Some further remarks: let G1, G2 be connected subgraphs of a graph
G such that V (G1)∩V (G2) 6= ∅. Then G1 ∪G2 is connected. Similarly,
let D1, D2 be strongly connected subdigraphs of a digraphs D such
that V (D1) ∩ V (D2) 6= ∅. Then D1 ∪D2 is strongly connected. Let G
be a graph and u, v be distinct vertices of G. If G has a walk from
u to v then G has a path from u to v. In every graph G we have∑

v∈V (G) d(v) = 2|E(G)|.

A.0.1 Cayley Graphs

Often we need to work on graphs with large girth, as for example hap-
pens in information theory. Then an important question is whether large
girth graphs with high connectivity exists. The answer is yes, here we
will explain how to construct some high connectivity large girth graphs.

We will see another example of large girth graphs in the context of
Random Graphs in appendix B.

A special class of graphs are the Cayley graphs. To define them we
only need a group and a subset of elements of this group.

Consider a group G with a given operation +. Consider a subset
S ⊂ G. The directed Cayley Graph C(G,S) has a vertex for each element
of the group G and a directed edge joining two vertices v w if exists s in S
such that w = v+s. If the set S is symmetric (for each element s ∈ S also
s−1 ∈ S) then for every directed edge (v,w) in the Cayley graph there
is (w, v) and then we can define the undirected Cayley Graph replacing
each couple of directed edges (v,w), (w, v) with a single undirected edge.
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Remark that a large girth Caley Graph has o be defined through a
non-abelian group G, in fact an abelian group gives Cayley graphs with
girth four.

A.1 Basic Graph Algorithms

A.1.1 Euler Tours

A graph G is eulerian (admits an Eulerian circuit) if and only if it is
connected and all its vertices have even degree. This statement can be
shown by an algorithm for the construction of Euler’s tour.

Consider a graph with even degree on all vertices. Choose arbitrarly
a starting point is, then construct an auxiliar circuit C by increasing a
walk passing through the starting vertex. If the circuit does not passes
through each arc then on the circuit there are some non-saturated ver-
tices (vertices such that not all the incident edges are in the circuit).

We choose arbitrarly one of such non-satuarated vertices iv on the
circuit as starting point for the search of a circuit C̃ on the graph G\G′

obtained by deleting the edges in C. Then we use as auxiliar circuit the
circuit given by a walk WC ⊂ C going from is to iv ∪ C̃ ∪ (C \WC).

It is easy to see that this iterative algorithm ends (in a finite time)
with an eulerian circuit.

Remark that a circuit has degree even on all the vertices. Then if
we delete a circuit from a given graph we do not change the parity of
the degree of its edges. Then a graph with at least one vertex with odd
degree cannot admit an eulerian circuit.

A.1.2 Shortest path

Consider an undirected network N in which all edges have non-negative
weights. We will describe the Dijkstra’s Algorithm: an algorithm for
finding the shortest paths in N from a given vertex to every vertex. Let
P be a path; w(P ) is the sum of the weights of the edges of P .

We start with a tree T1 that contains only the starting site x1. In the
i-th step we have a tree Ti with vertices {x1, x2, . . . , xi} and a function
dTi

(x1, x) of the vertices x ∈ Ti (This is the distance between x1 and x
on the tree Ti). We grow at each step the tree by choosing the edge x, y
in the graph from Ti to G \ Ti such that dTi

(v, x) + w(x, y) is as small
as possible.
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It easy to show, by induction, that this algorithm works (remark
that the proof uses the fact that the edges have positive weight): at
each step the best walk from x1 to an element of Ti is in Ti.

A.1.3 Maximum flows in networks

Consider a directed graph D with weights on the edges non-negative
integer. Given a vertex v of D, we denote the set of arcs leaving v by
a+

D(v) and the set of arcs entering v by A−
D(v). Associate to each edge

a weight c(e) called its capacity. and two special points x and y.

Suppose f is a given function that associates a non-negative integer
with each arc of D. For each vertex define the outgoing flow f+ as-
sociated to f : f+(v) =

∑
e∈A+

D
(v) f(e) and f+(v) =

∑
e∈A+

D
(v) f(e) the

incoming flow. We say that f is a flow in D if:

• 0 ≤ f(e) ≤ c(e) for all edges e.

• f+(v) = f−(v) for all vertices in V (D) \ x, y.

The value of a given flow f is f+(x) − f−(x).

In a pictorical representation the capacity of an edge can represent
the capacity of a pipe between the two endpoints. We have a spring in
x and a sink in y. We look for the flow such to maximize the quantity
of fluid we can move from x to y.

Consider the problem of finding a flow with maximum value.

Given a subset U of D we consider the arc-cut A+
D. Its capacity

is c+(U) =
∑

e∈A+
D
c(e). Similarly c−(U) =

∑
e∈A−

D
c(e); f+(U) =

∑
e∈A+

D
f(e) and f−(U) =

∑
e∈A−

D
f(e). Remark that if U is such that

x is in U and y is in U ’s complement then the value of a flow f is equal
to f+(U) − f−(U). It follows that the value of every flow is smaller of
equal of c+(U). Then if we have a flow f and a set such that the value
of f is equal to c+(U) then f is optimal.
Given a flow f , an f -unsaturated path is a path P satisfying the follow-
ing two conditions:

• for each forward directed arc e of P , f(e) < c(e), and

• for each backward directed arc of P f(e) > 0

If f contains an unsaturated path from x to y then there is a g flow
with value bigger then f .
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To solve this problem Ford and Fulkerson gave an algorithm in 1956.
The algorithm starts from a flow in D, then at each step construct a
unsaturated flow tree rooted on x untill it touches y (and then another
flow with higher value is constructed) or gives a set U such that c+(U)
is equal to the value of f (then a certificate of optimality is given)

Remark that the time needed by the so given Ford-Folkerson algo-
rithm can be equal to the maximum value of the capacity, then this
algorithm is not a polynomial one. There is a refinment of the construc-
tion of the unsaturated flow tree such that the algorithm is strongly
polynomial. Something similar happens also for the Assignment [16].

A.1.4 Matching

Given a graph G a matching M is a subset of the edges of G such that
no two edges of M have a common end-vertex.

A maximum matching is a matching with maximal cardinality over
all matchings in G.

Let M be a matching in a graph G. An M -alternating path in G
is a path whose edges alternate between M and E(G) \ M . An M-
augmenting path in G is an M -alternating path whose end vertices are
M -unsatured.

Let M be a matching in a graph G. Then M is a maximum matching
in G if and only if G has no M -augmenting path.

When the graph is bipartite we refer to the matching problem as
the assignment problem. On the assignment problem there is a special
way to modify the weights of the problem so to have as the result of the
iterative steps of an algorithm spanning subgraphs of zero-weight edges.
We refer to these subgraphs as zeroes subgraphs. The optimal assign-
ment problem is solved by the iteration of two steps: the construction of
bigger zeroes graph as possible using Egerváry’s theorem and the search
for an optimal matching in the zeroes graph using Kőnig’s theorem. For
more details see chapter 7.
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Random Graphs

Let n be a positive integer, 0 ≤ p ≤ 1. The random graph G(n, p) is
a probability space over the set of graphs on the vertex set {1, . . . , n}
where the probability for every edge {i, j} to be in G is p and these
probabilities are mutully independent. This kind of graphs has been
studied and introduced by Erdos and Rényi in 1960 ([14]).

It is useful to introduce a dynamic model for the construction of
random graphs. Let xi,j be a set of i.i.d. random variables drawn
uniformly in [0, 1] associated to the edges of the complete graph with n
vertices. Now let p go from 0 to 1. Fixed a real p the edges such that
p < xi,j are turned-off and the other ones are turned-on. As p increases
the graph evolves from empty to full.

Another set of random graphs is often defined: G(n, e), that is the
probability measure such that only the graphs with exactly e edges have
non-zero probability and they have all the same probability. Also for
this set is possible to define an evolution model: start with the empty
graph and randomly add one edge until the graph become full.

Generally G(n, e) and G(n, p) with p = e/
(n
2

)
have several common

features.
Given a property A there is a probability that G(n, p) satisfies A.

We say that A is monotone if the probabilty for a graph in G(n, p) to
satisfy A is a monotone function in p. As an example we can consider
the event ‘G is triangle free‘. Let X be the number of triangles of a
graph, the expectation is E[X] =

(n
3

)
p3 and then in the limit n→ ∞

lim
n→∞

E[X] = (np)3/6

Asymptotically the distribution of X is poissonian, so the limit for n
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large for the probability to realize the event A is e−(np)3/6. Remark
that when p ≪ 1/n this probability is almost 1 and when p ≫ 1/n the
probability is almost 0.

We say that a function r(n) is a threshold function, meaning that

• when p(n) ≪ r(n) limn→∞ of the Probability for A to be satisfied
by the random graph G(n, p) is zero.

• when p(n) ≫ r(n) limn→∞ of the Probability for A to be satisfied
by the random graph G(n, p) is one.

In our example r(n) = 1/n is a threshold function but also 10/n is a
threshold function: the threshold function, when it exists is not unique.

We could approach the problem of triangle freeness by considering
every set S of three vertices. Let BS the event that S is a triangle,
then Prob[BS ]= p3. If the BS where mutually independent we would
have thet the probability to do not have triangles in G(n, p) is e−(np)3/6.
In reality, Bs and BT are mutually independente only if the edges eS
connecting the three vertices S are disjoint by eT . This situation appears
often in the study of random graphs,

B.1 Small Subgraphs

Let H be a graph with v vertices and e edges. Let ρ(H) := e/v be the
density of H. We call H balanced if every subgraph H ′ has ρ(H ′) ≤
ρ(H). We call H strictly balanced if every proper subgraph H ′ has
ρ(H ′) < ρ(H). Then cliques and loops are strictly balanced.

Theorem 5 Let H be a balanced graph with v vertices and e edges. Let
A(G) be the event that H is a subgraph of G. Then p = n−v/e is the
threshold function for A.

Let XS be the indicator the random variable for AS , then the indicator
X for the total number of appearence of the graph H in G is the sum
over all the choices of v vertices of XS

X =
∑

|S|=v

XS

The expectation of X is, by linearity E[X] = O(nvpe). If p << n−v/e

then E[X] = o(1) and so X = 0 almost surely ( in general Pr[X >
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0] ≤ E[X] holds). If p >> n−v/e then E[X] → ∞ ( If E[X] → ∞ and
∆∗ = o(E[X]) then X > 0 almost always and X ∼ E[X] almost always;
where ∆∗ =

∑
Correlated{i,j} Pr[Aj |Ai] and the variables are symmetric:

There is automophsm that send event in Ai in Aj). �

As a Corollary it is easy to show that if H is not balanced then
p = n−v/e.

B.2 Optimization Problems on Random Graphs

As we said in section 4.3 often we are interested in the behaviour of
algorithms on random instances. A lot of problems are defined on graphs
(weighted or not) then we need a measure for the weights and for the
graphs.

It is useful to study Optimization Problems on different set of ran-
dom ensembles. A natural set which has been often studied is the set of
Erdős Rényi random graphs, since it is a big set of graphs and its edges
are almost independent.

Moreover Erdős Rényi random graphs have the remarkable feature
to be large girth graphs. This feature is very useful when we want to
test the validity of cavity methods that are exacts on trees.

Many different problems have been studied on different kind of sam-
ples, one example is the coloring problem. Given a graph and q colors
the coloring problem consists in determining the way to color the ver-
tices of the graph that minimizes the number of neighbour vertices with
the same color. The graph is called q-colorable if exists a coloring such
that the number of neighbour vertices with the same color is zero.

The Hamiltonian that corresponds to this problem is the Pott’s one;

H[σ] =
∑

<i,j>

δσi,σj

where σi has value in 0, q − 1

The coloring problem has been shown ([27]) to undergo several phase
transitions while p is changed.

B.3 Tree Approximation

The difficulties in the solution of optimization problems come from the
complexity of the energy landscape linked to the presence of frustration.

125



APPENDIX B. RANDOM GRAPHS

An optimization problem defined on a tree (such that its factor graph
has no loops) is not hard.

One of the reasons that induced to study the Optimization Problems
on Erdős Rényi Graphs is the fact that (for finite average connectivities)
the structure of such graphs is locally a tree structure. In fact in the
large N limit the size of the loops is logarithmic in the size.

Given a fixed vertex it is easy to see that for any fixed n the proba-
bility to have at least one loop long n goes to zero in the large N limit.
It is also possible to show that the typical length of loops is O(lnN). In
fact the average number of vertices connected to a fixed vertex after n
steps is kn. A loop will be closed when this number is comparable with
N .

By increasing the parameter p from 0 to 1 we can observe the evo-
lution of geometrical structures in the ensemble of random graphs. It is
not exact (for any finite size) to say that the connectivity distribution
of each vertex is Poissonian; anyway as we are interested in the ther-
modynamic limit we will always assume to be in this limit so that such
(asymptotic) statements are true. At the beginning (p = 0) we have N
isolated clusters, then there will be small clusters of small size. One of
the first questions we want to answer is what is the value of p such that
finite-size clusters appear. By finite-size cluster we mean a cluster such
that its sites are a finite fraction of the sites in G. Such value for the
parameter p is called percolation threshold.

In fact the problem of the giant component is equivalent to the
percolative problem on the complete graph; then it can be studied in
the Fortuin-Kastelyin representation as a statistical mechanics problem.
The appearence of a gigantic component (a finite-size connected compo-
nent) shows non-analytic behaviour in the thermodynamic limit because
it has a phase transition. The appearence of the gigantic component cor-
respond to the break of the simmetry under change of the spin values
of the variables (up-down for the q = 2 case)).

We can analyze this problem just by analyzing it in the tree approx-
imation. It is possible because when there is not a gicantic component
then there are O(N) isolated clusters. If we randomly put another edge
it has a probability ∼ 1/N to connect a vertex of a component to an-
other of the same component. Then, in absence of a gigantic component,
the isolated clusters are (typically) trees.

Given a random tree, if we remove a vertex i with connectivity ki

we have ki disconnected trees and each vertex on them has the same
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distribution of a randomly drawn vertex except for the vertices origi-
nally linked to i. Remark that if the distribution of the connectivity
is poissonian on the vertices in the graph then if the tree is drawn by
choosing randomly the vertex to be eliminate in G, the connectivity of
its neighbours is distributed according to p(x) = Poissk(x−1) for x 6= 0
and p(0) = 0, then after the remotion of i the graph remains Poissonian.

In general a vertex is in the gigantic component of a graph if its
neighbours are there. A (finite connectivity) vertex belonging to a tree
is in the gigantic component if, after its remotion, at least one of its
neighbours are in a gigantic component. This maybe is the easier ex-
ample of use of the cavity method! The cavity consists in the remotion
of the vertex i. The cavity systems is the original graph without the i
vertex; we are considering the observable “belong to the gigantic com-
ponent“, and we are supposing that the probability which i’s neighbours
have this property is independent of the fact that i itself has this prop-
erty. Let η be this probability

1 − ηi =
∏

j∈V(i)

(1 − ηj)

This equation for the Erdős Rényi graphs is

η = 1 − e−γη

This equation has a null solution for every γ and a not null solution for
γ > γc with γc = 1.

For γ > 1 the not null solution is the physical one. A poissonian
graph has not a gigantic component for γ < 1 and has (almost surely)
one gigantic component if γ > 1. The size of the gigantic component is
η ·N and is continue in the parameter γ.

B.3.1 k-core

The k-core is the subgraph of maximum size such that all its vertices
have connectivity at least k. The characterization of the k-core has a
crucial importance in the study both theoretical and algorithmitic of
several Optimization Problems. Also the k-core can be studied in the
tree approximation, it exhibit a discontinuous phase transition. For a
spin-glass it is easy to see that is possible to reduce the problem just
removing all the part of the graph not belonging to the 2-core and
substituting it with some easy to find (in complexity) external fields.
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The algorithmic problem of finding the k-core of a given graph is
easy. A way to find the k-core of a graph is the leaf removal. Begin
with the whole graph, and perform the following iterative step:

• if there are not vertices with coordination smaller than k then
stop, else remove one among these vertices

Also the size of the k-core of random graphs is affected by phase tran-
sitions.

Leaf removal algorithms can be used also to find the hard-part of
problems easily described by hypergraphs. One example are the sat-
isfaction problems. The clauses in satisfaction problems involves often
more than two variables, this clauses can be represented by hyperedges
and the set of vertices and hyperedges is called hypergraphs. Hyper-
edges involving vertices with connectivity one correspond to satisfiable
clauses in SAT and XORSAT problems then in hypergraphs the vertices
with coordination 1 play the same role of the leaves in graphs, for this
reason we refer to them as leaf. The leaf removal described above works
for hypergraphs as well as for graphs. Remark that the leaf removal
algorithm is not able to remove the hyperloops (sub-hypergraphs such
that every site has even connectivity).

We can analyze the 2-core properties by using a random leaf removal
algorithm: the algorithm such that, given the set of removable vertices
at the iterative step, removes randomly one of them with the same
probability. It is possible to extend, by using the same algorithm, the
analysis also to hypergraphs.

Such an algorithm induce a dynamic on the fraction of sites with
given connectivity. This dynamic in the thermodynamic limit is deter-
ministic and solvable, it stops when no more sites with connectivity one
are found.

In the case of graphs the leaf removal transition coincides with the
percolation one: when γ = 1 a k-core emerges and its size is continuous
in γ. This critical value coincides with the percolative value because,
when a finite fraction of sites belongs to a single connected component
then a random new edge close a loop with finite probability.

For random hypergraphs with hyperedges of fixed coordination p,
the percolative critical average coordination γp = 1

p−1 is smaller than
the core-critical γc one. Moreover the transition is not continuous: im-
mediately above the critical value γc the size of the core is finite.

A deeper statistical description of the core in random graphs and
hypergraphs is given in [35]

128



Acknowledgments

I wish to express my deepest gratitude to Sergio Caracciolo, Andrea
Montanari and Andrea Sportiello who patiently guided me during these
years of fruitful scientific collaboration.





Bibliography

[1] H. Bauke S. Franz and S. Mertens, Number Partitioning as Ran-
dom Energy Model J.Stat.Mech P04003(2004)

[2] B. Bauer and D. Bernard, 2D growth processes: SLE and Loewner
chains Phys Rept (432) 2006 115-221 math-ph/0602049.

[3] M. Bayati, D. Shah, M. Sharma Maximum Weight Matching via
Max-Product Belief Propagation Proc of the 2005 IEEE Intern.
Symposium on Information Theory, cs.IT/0508101

[4] M. Bayati, C. Borgs, J.Chayes, R. Zecchina, Belief-Propagation
for weighted b-Matchings on Arbitrary Graphs and its Relation to
Linear Programs with Integer Solutions

[5] S. Boettcher Numerical Results for Ground States of Spin Glasses
on Bethe Lattices Eur. Phys. J. (B 31) 29-39 (2003)

[6] A. Braunstein, M. Mezard, R. Zecchina Survey propagation: an al-
gorithm for satisfiability Random Structure and Algorithms (27),
201-226 (2005)

[7] S. Caracciolo A. Sportiello An exactly solvable random satisfiabil-
ity problem J. Phys. (A 35) 7661-7688 (2002)

[8] T. Castellani, F. Krza̧ka la, F. Ricci-Tersenghi Spin Glasses with
ferromagnetically biased couplings on the Bethe lattice: analytic
solutions and numerical simulations. Eur. Phys. J. B 47, 99 (2005)
cond-mat/0403053v3

[9] F. Castellano A Cavity Algorithm for Optimal Assignment Uni-
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