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Chapter 1

The Grid-Poisson Marriage

In this chapter we will introduce basic definitions of graph theory and
combinatorial optimization; we will present the Grid-Poisson Marriage,
the model of statistical mechanics that we will study in this work, and his
connections with the Assignment problem, a classical problem of combi-
natorial optimization.

1.1 Introduction

Graph theory, combinatorial optimization and statistical physics are disci-
plines with a huge overlap between each other.
One of the main aims of statistical physics is to describe phase tran-

sitions and critical phenomena; the natural framework for describe the
physical world is the continuous space, with all the benefits coming from
the symmetries that a continuous model may enjoy; statistical physics re-
nounces using this framework to adopt the discrete space, which is de-
scribed with the mathematical language of graph theory. To appreciate
the goodness of this choice, we can think to the amount of results obtained
since when, in late 1920, Lenz introduced the discrete model which would
have become famouswith the name of his student Ising. In the other hand,
also graph theory obtained benefits from statistical physics; an old exam-
ple of this is the work of Kasteleyn (a physicist) who introduced a method
for counting perfect matchings over planar graphs (a discrete mathemat-
ics problem). At the same time graph theory is the natural framework to
describe problems of combinatorial optimization.
One of the most exciting challanges of modern statistical physics is

the description of disordered systems, with the prototipe example of spin
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glasses; in the last thirty years a set of sophisticated mathematical meth-
ods, like Replica and Cavity Method, have been introduced to understand
these systems; such new developments have found a natural field of ap-
plication in combinatorial optimization, and it is not surprising that one
of first accounts of such methods [1] devoted one section to applications
in optimization problems. Also common methods of combinatorial opti-
mization hasve been used for a better comprehension of disordered sys-
tems.
We have then seen that this situation of overlap has led to a transgres-

sion of boundaries so that progress in one discipline can benefit the others.

1.2 About graphs

A directed graph G = (V, E) consists in a set of vertices V and a set of arcs
E ⊆ V2; every arc (u, v) joins two – possibly identical – vertices u and v.
We say that an arc (u, v) is incident from u and incident to v.

An undirected graph, or graph, is a directed graph with symmetric inci-
dence relation: if (u, v) is in the arc-set of G, then also (v, u). Hence we call
such a pair of arcs an edge incident to u and v. The vertex set of a graph G
is referred to as V(G) and the edge set E(G). A weighted graph is a graph
together with a weight-function on his edges: w : E(G) → R.

Two vertices joined by an edge are said adjacent. The neighbourhood
NG(v) of a vertex is the set of vertices adjacent to it. The degree degG(v)
of a vertex is the number of edges incident to it. If all the vertices of a
graph G have same degree k, G is said k-regular. The complete graph Kn is
a graph with n vertices and each pair of vertices is joined by an edge; thus
the complete graph is (n− 1)-regular.
A graph is said bipartite if it is possible to separate its vertex set in two

classes, so that its edges join only vertices belonging to different classes. A
complete bipartite graph Km,n is a bipartite graph with m vertices in a class
and n vertices in the other class, where each pair of vertices belonging to
different classes is joined by an edge.

We call S = (V′, E′) a subgraph of a graph G = (V, E) if V′ ⊆ V, E′ ⊆ E
and V′ contains all the vertices adjacent to E′. If V(S) = V(G) we say that
S is spanning in G.
A matching of a graph G is a subset M ⊆ E(G) such that ∀v ∈ V(G)

at most one edge in M is incident in v. The size of a matching |M| is the
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Figure 1.1: Left: the complete bipartite graph K3,4; right: a maximum
matching of the complete bipartite graph K3,4 (dark lines).

number of edges in M; a maximum matching is a matching M such that ev-
ery other matching M′ satisfies |M′| ≤ |M|. If the graph G is a weighted
graph, the weight of a matching is the sum of the weights of edges in M.

A walk w in a graph G = (V, E) connecting w0 with wk is a sequence
(w0, e1,w1, e2,w3, . . . , ek,wk) such that allwi ∈ V, all ei ∈ E and (wi−1,wi) =
ei for 1 ≤ i ≤ k. A loop is a walk connecting the starting point w0 with it-
self. A path in G is a walk in which w0, . . . ,wk are distinct vertices of G and
e1, . . . , ek are distinct edges of G. A cycle in G is a walk in which:

a) w0, . . . ,wk−1 are distinct vertices of G, and wk = w0,

b) e1 . . . , ek are distinct edges of G,

c) k ≥ 2.

A graph G is said to be connected if every pair of vertices in G can be
connected by a walk. The connectd components of G are the maximal con-
nected subgraphs of G. We denote by k(G) the number of connected com-
ponents of G.

A forest is a graph that contains no cycles. A tree is a connected forest
(thus, the connected components of a forest are trees).

For every graph G = (V, E) is valid the Euler formula, which relates
the number of vertices |V(G)|, the number of edges |E(G)|, the number of
connected components k(G) and the number of independent loops L(G):

|V(G)|+ L(G) = |E(G)|+ k(G). (1.1)
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Figure 1.2: A spanning tree subgraph for the 8× 8 square graph.

1.3 A short introduction to combinatorial opti-

mization

Combinatorial optimization is a branch of computer science that tries to
solve problems that descendmainly frompractice and every-day life. Even
in the very primitive human societies, finding short paths and searching
(for instance for food) were essential problems to solve. An example is the
following:

Given a number of cities and the cost of traveling from a city to any
other city, what is the least-cost round-trip route that visits each city
exactly once and then returns to the starting city?

This problem (known as Travelling Salesman Problem, TSP) crops upwhen
you plan sightseeing or when a doctor or a mailman plans his tour. Sim-
ilarly, assigning jobs to men, trasporting goods and making connections
are elementary problems, not just fot mathematicians.

From a mathematical point of view, basic ingredients of a combina-
torial optimization problem are: an instance (in the TSP, the set of cities
and the set of costs of traveling), a finite space of feasible solutions (in
the TSP, all the possible round-trips with requested properties) and a cost
function over the space of feasible solutions (in the TSP, the total cost of
every round-trip). The optimization problem is solved when, given an in-
stance, a feasible solution which minimizes the cost function is found.

Optimization problems can often be given in mathematical terms with
the use of graph theory. Here we give a list of optimization problems
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defined on a connected weighted graph G = (V, E).

• Min-Cut Problem: it is desired to find the cut of minimum cost for the
graph G. A subset of edges is called a cut if it is such that when these
edges are removed from G, the graph becomes disconnected.

• Minimum Spanning Tree Problem: it is desired to find the minimum
cost spanning tree subset of G.

• Chinese Postman Problem: it is desired to find the loop of minimum
lenght that passes through every edge at least once.

• Assignment Problem: given a bipartite weighted graph G this problem
consists in finding the optimal maximum matching of the graph G;
the optimal maximum matching it’s the maximum matching with
minimal weight.

We are interested to find the solution of problems via algorithms. An
algorithm is, loosely speaking, a procedure for solving a problem. More
precisely it is a set of instructions understandable by an appropriate au-
tomatic machine, such that, given some input data, in a finite number of
steps, leads to some output.
Since the space of feasible solutions is finite, it is always possible to

find an algorithm that “solves” the problem; we can think to the naı̈ve
algorithm that assigns to every feasible solution his cost and pick up the
best one.
But this kind of solution is not satisfactory. We can understand why

if we think to the TSP; if the number of cities is n, we easily find that
the number of possible tours is (n − 1)!/2; now suppose that the naı̈ve
algorithm runs 1 second, on a given machine, to solve the problem if the
number of cities is n = 20. Then to solve the problem with n = 40 cities it
will need 39!/19!≫ 2020 seconds. In fact this algorithm finds the solution,
but we will not live enought to see it.
So we change our definition of “solving” the problem; we say that an

algorithm “solves” a problem if the required number of elementary steps
needed by the algorithm to find the solution is bounded by a polynomial
in the size of the problem. The size of the problem can be assumed to be
the number of bits needed to encode it.

All the problems listed above have been solved in this sense, but there
are problems that have not been; here we liste some examples.

• Max-Cut Problem: it is desired to find the cut with maximal cost.
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• Steiner Network Problem : for a given set of points (for example in the
plane) the Steiner network is the shortest set of edges which connects
all of them.

• Traveling Salesman Problem

• K-Satisfiability Problem: given a set of N boolean variables and M
clauses, each of them involving exactly K literals, the problem con-
sists in finding (if it exists) a configuration of the variables such that
every clause is satisfied.

This is a very short and naı̈ve introduction to combinatorial optimiza-
tion; if the reader is interested in a complete and rigorous one can see for
example [4].

1.4 The model

After this short introduction to combinatorial optimization, we present the
model of statistical mechanics that we will study in this work: the Grid-
Poisson Marriage (GPM); we will see that this is strictly related to the as-
signment problem described before. There is some study of this model in
litterature [2] or related models [3] .

Consider the square [0, L] × [0, L] ⊂ R2 in the plane, with L integer; in
the square is defined the euclidean distance d(a, b) = ((xa − xb)2 + (ya −
yb)
2)1/2. Wewill call grid points the discrete subset of points of the square,

defined by:

G = {(i− 0.5, j− 0.5) ∈ [0, L] × [0, L] : i ∈ (1, 2, . . . , L), j ∈ (1, 2, . . . , L)}.

We define N as the number of grid points: N := |G| = L2.

We define an instance of Poisson points as the discrete subset of the
square:

P = {(xi, yi) ∈ [0, L]× [0, L] : i ∈ (1, 2, . . . ,M)},
where xi and yi are i.i.d. random variables with uniform distribution in
[0, L]; the number of Poisson points is M := |P| ≥ N. A mathematician
would say that an instance of Poisson points is the support of a point pro-
cess. A point process is the rigorous formulation of “take random discrete
subsets of points in a given set” in terms of randommeasures. If the reader
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Figure 1.3: Left: grid points in a square of side L = 8. Right: an instance
of N = 64 Poisson points.

is interested to a complete exposition of the argument we refer to [5].

Given an instance of Poisson points, we define a marriage between
grid and Poisson points as a function π : G → P that marries a grid point
to a Poisson point, such that every Poisson point is married to no more
than a single grid point.
We define the energy of a marriage π as the sum of the distances be-

tween married points:

HP (π) =
N

∑
i

d(i,π(i)).

We will call πopt the marriage with minimum energy; we define the
energy of an instance of Poisson points as the energy of πopt:

H(P) := HP (πopt) = min
π
HP (π).

Then, to find the energy of an instance of Poisson points, we have to
solve a problem of combinatorial optimization, where the space of feasi-
ble solutions is the set of all the possible marriages – if |G| = |P| = N the
number of possible marriages in N! – and the cost function to minimize is
the energy HP (π).

We give a graphical representation of this problem; consider a complete
bipartite weighted graph KN,M, with V(KN,M) = G ∪ P and weight func-
tion w((i, j)) = d(i, j). The problem of finding the energy of an instance of
Poisson points is equivalent to the problem of finding the optimal maxi-
mum matching of the graph KN,M.
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Figure 1.4: The optimal marriage (πopt) of 196 grid points and 196 Poisson
points.

This is the assignment problem, introduced before, that we will de-
scribe in the next section.

1.5 The assignment problem

There are many “pictorial” representations of the assignment problem1.

For example one can consider to have N jobs to do and M machines,
M ≥ N, that can do them; every machine can do only a job and it is given
a set of costs ǫ = {ǫij} for executing the i-th job on the j-th machine. The
goal is to assign every job to a different machine, minimizing the total cost

1The assignment problem is one of the first studied combinatorial optimization problems. It was investi-
gated byG.Monge in 1784 [6], camouflaged as a continuous problem, and often called a transportation problem.
Monge described the problem as follows:

Lorsqu’on doit transporter des terres d’un lieu dans un autre, on a coutime de dnner le nom de
Déblai au volume des terres que l’on doit transporter, & le nom de Remblai a l’espace qu’elles
doivent occuper après le transport.

Le prix du transport d’une molécule étant, toutes choses d’ailleurs égales, proportionnel a
son poids & a l’espace qu’on lui fait parcourir, & par conséquent le prix du transport total
devant être proportionnel a la somme des produits des molécules multipliées chacune par
l’espace parcouru, il s’ensuit que le déblai & le remblai étant donnés de figure & de position, il
n’est pas indifférent que telle molécule du déblai soit transportée dans tel ou tel autre endroit
du remblai, mais qu’il y a une certaine distribution a faire des molécules du premier dans
le second, d’après laquelle la somme de ces produits sera la moindre possible, & le prix du
transport total sera un minimum.

More information can be found in [7].
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for executing the jobs. We will call a valid assignment a map that assigns to
every job a different machine.
Then for this combinatorial optimization problem an instance is a set

of costs ǫ, the set of feasible solutions is the set of valid assignments and
the cost function on the set of feasible solutions is the function that gives
to every valid assignment the sum of the costs of the jobs prescribed by
this assignment.

Suppose that the number of machines is equal to the number of jobs:
M = N. We have the following representations of the problem.

• A valid assignment can be associated to a permutation π of the sym-
metric group SN; the cost function can be written as:

Hǫ(π) =
N

∑
i=1

ǫiπ(i) .

• Another useful representation is more “algebraic”. We can encode
a permutation π through a N × N matrix nij valued on {0, 1}, such
that niπ(i) = 1 and nij = 0 for j 6= π(i). In this reformulation the set
of feasible solutions is composed by the set of matrices N×N valued
on {0, 1} with the costraints:

N

∑
i=1

nij = 1 ∀ j ∈ {1, . . . ,N} ,
N

∑
j=1

nij = 1 ∀ i ∈ {1, . . . ,N} ;

and the cost function is:

Hǫ(n) = ∑
i,j

ǫijnij .

• We then also give the graphical representation. Consider a complete
bipartite weighted graph KN,N with V(KN,N) = Vr ∪Vc, where Vr is
the set of jobs and Vc is the set of machines, and a weight function
w((i, j)) = ǫij. Then the set of feasible solutions is composed by the
set of maximum matchings of the graph KN,N, and the cost function
is the weight of the matchings.

If the instance ǫ has a single assignment π realizing the minimum, we
say that it is non-degenerate, and conversely, if there are two or more as-
signments with optimal cost, we say that the instance is degenerate.
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Looking at the graphical representation of the assignment problem and
of the GPM, we see that the GPM is a particular case of the assignment
problem; let us underline this difference. If we think to the pictorial rep-
resentation of the assignment problem in terms of jobs and machines, we
can suppose that every cost ǫij is independent from other costs; for exam-
ple we can choose them random in [0, 1] and then solve the problem. For
the GPM this is no more true: the costs ǫij are not independent because
subjected to geometrical constraints.

Now we explain how the Hungarian algorithm finds the solution of
this problem.

1.5.1 Gauge invariance

Given two real-valued vectors with N components λ and µ, we introduce
a 2N-parameter family of transformations Φ = Φλ,µ that assigns to every
set of costs ǫ a new set of costs ǫ′ = Φλ,µ(ǫ), defined as:

ǫ′ij = ǫij − λi − µj .

This family of transformations, that we will call gauge transformations,
has the property of leave the problem unchanged. In fact, for every as-
signment π, it is easy to check that:

Hǫ(π) = Hǫ′(π) + h0 ; h0 = ∑
i

λi + ∑
j

µj .

This means that every feasible solution π has the same energy in the old
and in the new problem, up to a shift of h0, independent from π and thus
irrelevant at the aim of finding the optimal assignment.
We will call a gauge transformed matrix ǫ′ accessible from a given ǫ

simply gauge. The space of gauges ǫ′ is in bijection with the pairs of vec-
tors (λ, µ) and inherits from this the topology and the metric of R2N, so
it makes sense to say that a subset of gauges is connected, or compact, or
convex.

We will call a gauge ǫ′ proper if every element ǫ′ij is non-negative. We
assign to every proper gauge ǫ′ the spanning subgraph Zǫ′ of the complete
bipartite graph KN,N whose edges (i, j) are the ones such that ǫ′ij = 0.
Starting from a proper gauge ǫ and performing a gauge transformation

to another proper gauge ǫ′, h0 is a trivial lower bound to the cost of the
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optimal assignment for ǫ. In fact:

0 ≤ Hǫ(πopt) = min
π
Hǫ(π) = min

π
Hǫ′(π) + h0 ;

since minπ Hǫ′(π) ≥ 0, then Hǫ(πopt) ≥ h0. Not only, if one could find
an assignment π such that Hǫ′(π) = 0, which means ǫ′

iπ(i) = 0 for all i,

this certificates that π is an optimal assignment for ǫ, with cost exactly h0.
From a graphical point of view:

given a gauge transformation Φλ,µ from a proper gauge ǫ to another
proper gauge ǫ′, if the graph Zǫ′ contains a matching of size N, then
the assignment associated to the matching is the optimal assignment
for the instance ǫ, and the cost of the optimal assignment is the h0
given by the gauge transformation.

We call a proper gauge ǫ Hungarian if the corresponding Zǫ contains a
matching of size N.
This is the basic idea of the Hungarian algorithm, that we will describe

in the next section: starting from a proper gauge, perform a series of gauge
transformations, until we get a Hungarian gauge.

We call a gauge proper and non-trivial if every row and every column of
ǫ′ contains at least one zero (this means that no vertex in Zǫ′ is isolated).
Clearly, this is a necessary but not sufficient condition for being Hungar-
ian.
A proper non-trivial gauge is easily found for every instance ǫ, e.g. by

composing first the gauge with µj = 0 and λi = minj(ǫij), and then ap-
plying to the resulting gauge ǫ′ the analogous transformation with λi = 0
and µj = mini(ǫ′ij). We call Φtrivial the map above, which acts as a projec-

tor from the space of proper gauges to the subspace of proper non-trivial
gauges, and increases h0 by the amount ∑jminj(ǫij) + ∑imini(ǫ′ij) ≥ 0.

1.6 The Hungarian Algorithm

A classical algorithm for the assignment problem which finds an opti-
mal matching in polynomial time (worst-case) is due to H. Kuhn [8], who
called it “Hungarian algorithm” as a tribute to themathematicians authors
of the two main lemmas on which is based, Kőnig and Egerváry.

Consider the complete bipartite graph KN,N, with V(KN,N) = Vc ∪Vr,
and a spanning subgraph Z of KN,N. For X ⊆ Vr, let V(X) denote the
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subset of verte of Vc connected to some vertex in X with an edge in Z.
The difference of the two cardinalities, d(X) := |X| − |V(X)|, is called the
deficit number of X. Consider a matchingM in Z, letN (M) the number of
unmatched elements inVc by thematchingM. Thenwe have the following
theorem.

Theorem 1 (Kőnig 1916). In a bipartite graph Z = (Vc ∪Vr, E) the minimum
number of unmatched elements in Vr, N (M), over all the possible matchings is
equal to the maximum over all the subsets X of the deficit number d(X):

min
M

N (M) = max
X
d(X) .

As a corollary, the graph Z has a matching of size N if and only if
|V(X)| ≥ |X| for all X ⊆ Vr.
It is possible to give a constructive proof of the theorem [4] and then

apply some idea of the proof to obtain a maximum matching algorithm.
Egerváry theorem, instead, uses Kőnig’s results in weighted bigraphs

(over which is defined the assignment problem, and his converse the max-
imumweighted matching problem). We present it with the language used
in section of gauge invariance.

Theorem 2 (Egerváry 1931). The cost of the optimal assignment is equal to the
maximum value of h0 = ∑i λi + ∑j µj a proper gauge can have. So, a proper
gauge that realizes the maximum h0 in the whole set of proper gauges has the
property that its graph of zeroes Z admits a matching. Such a gauge always
exists.

The first part of the theorem is proven, e.g. in [9], constructively through
Kőnig theorem. We will show the existence of solutions.
We already know that the set of non-trivial proper gauges is non-empty,

since, for every proper gauge ǫ, Φtrivial always exists, so let ǫ′ = Φtrivial(ǫ)
with h0(ǫ′) ≥ 0. Then, given any non-trivial proper gauge ǫ′ such that Zǫ′

does not admit a matching, by Kőnig theorem there exists X ⊆ Vr with
positive deficit d(X). We can construct a further gauge transformation
Φλ,µ with parameters:

λi =

{

δ i ∈ X
0 i /∈ X µj =

{ −δ j ∈ V(X)
0 j /∈ V(X)

δ = min
i∈X

j∈Vc\V(X)

(ǫ′ij)

which applied to ǫ′ gives a new non-trivial proper gauge ǫ′′ with h0(ǫ′′) =
δ · d(X); since δ > 0, h0(ǫ′′) is positive.
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This proves that non-trivial proper gauges which are not Hungarian
cannot be local maxima of h0, and from compactness of the set of non-
trivial proper gauges (with a opportune quotient) and the fact that h0 is a
continuous function of parameters (λ, µ)we conclude that the set of Hun-
garian gauges is non-empty.

Thismechanism sheds some light on the structure of the problem. “Hard”
problems in computational complexity are expected to show the emer-
gence of a pseudo-glassy structure in the phase space, such that a blind
local search gets trapped in local minima. Conversely, if all the local min-
ima are also global, and all other points have finite gradient, one could
hope to reach a minimum by local search. Assignment problem is not
hard, as it is polynomial, but it is not either a trivial problem, and the the-
orem above shows that, under a well chosen parametrization, a steepest
descending algorithm finds the global minimum.

Egerváry theorem seems to be the solution of the problem: just project
ǫ through Φtrivial , device some method to find a positive-deficit set X in
polynomial time, and apply a sequence of gauge transformations up to
saturate the upper bound.
Actually, this is not enough. Indeed, the compactness argument only

proves an existence statement and that a sequence of gauges would in-
duce a monotonically increasing sequence of h0, but, as we do not have a
positive lower bound on the gain δ · d(X) attained at each step, the naı̈ve
application of the theorem would not provide a polynomial algorithm.
As showed by Khun, the algorithm can be proven to be strongly poly-

nomial if in each gauge transformation the set X in Egerváry theorem is
chosen with the appropriate prescription, namely to choose the X which
has the smaller size, among the ones with maximum deficit.

The implementation of the Hungarian algorithm, that we have used to
perform simulations in our work, done by Knuth [10], has a worst-case
complexity upper bound of O(n3). We would also stress the fact that in
the GPM the size of the model is n = L2, then, if we consider the side of the
square, we would have a worst-case complexity upper bound of O(L6).
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Chapter 2

Super-extensivity of the Energy

In the previous chapter we have given a short introduction to combina-
torial optimization and we have seen how the Hungarian algorithm finds
the solution of the assignment problem. We have also seen that, given an
instance of Poisson points for the GPM, if we construct the distance ma-
trix ǫ, with entrance ǫij equal to the distance between the i-th grid point
and the j-th Poisson point, we can use the Hungarian algorithm to find the
optimal matching and his energy.
We also remember that:

H(P) := HP (πopt) = min
π
HP (π)

and that Poisson points are taken with uniform distribution in the square.
Then we can define 〈H(P)〉P as the average of H(P) over this probability
distribution.

In this chapter we will study 〈H(P)〉P as a function of the size N of
the system and of the number M of Poisson points; if we define a density
ρ := M/N, we will discover a particular behaviour for ρ = 1.

At this point, the reader familiar with the argument may remember the
well-known Parisi conjecture for the random assignment problem. Parisi
and Mèzard in [11] used the replica theory to study the assignment prob-
lem in which the matrix elements ǫij were random variables taken with
uniform distribution in [0, 1]. This allowed to calculate the mean value of
the energy 〈H(ǫ)〉ǫ at a given size N. In 1998 Parisi [12] conjectured that, in
the case where the probability distribution of each matrix element ǫij were
p(ǫij) = exp (−ǫij), the mean value of the energy at a given size N was:

〈H(ǫ)〉ǫ(N) = ∑
N
k=1

1
k2
, and in particular limN →∞〈H(ǫ)〉ǫ(N) = π2/6.
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This conjecture was proved by Aldous in 2001 [13] and by Nair et al. in
2005 [14].
As underlined before, the GPM differs from the random assignment

problem for the geometrical constraints to which are subjected the costs
ǫij. These constraints make also very difficult perform analytically the sta-
tistical average. To overcome this difficulty we will introduce a heuristic
to obtain an upper-bound for 〈H(P)〉P , and then we will perform numer-
ical simulations. We see that in random assignment problem, by Parisi
conjecture, for N → ∞ the energy becomes a constant; for the geometrical
properies of GPM, it’s easy to show that in this case the energy is at least
extensive in the size N of the square.

Let us explain what we mean with heuristic. We have said that in com-
binatorial optimization the goal is to find the feasible solution that mini-
mizes the cost function; sometimes this can need hard efforts. A heuristic
algorithm (or simply a heuristic) is an algorithm that gives up finding the
optimal solution, but can be faster or easier to understand compared with
the optimal one. In the following we present two heuristic algorithms for
the GPM: the Stable marriage algorithm and the Box algorithm.

2.1 The Stable marriage algorithm

Consider two discrete sets of points U,V ⊆ Rd and a marriage of U in V.
Following Gale and Shapley [15], we will say that the marriage π is stable
if do not exist two points x ∈ U and y ∈ V satisfying:

|x− y| < min{|x− π(x)|, |y− π(y)|}, (2.1)

where |x − π(x)| := ∞ if x is unmarried. A pair x, y satisfying (2.1) is
called unstable (the motivation for this definition is that each point prefers
to be married with closer points, so an unstable pair x, y prefer to divorce
their current partners and marry each other).

The following algorithm, a “greedy” algorithm that tries to optimize
locally, finds the stable marriage of two discrete sets of points U,V ⊆ Rd.
We will say that x ∈ U and y ∈ V are mutually closest if y is the closest
point to x in V and x is the closest point to y in U. Given a point config-
uration, marry all mutually closest pairs to each other, then remove these
points and marry all mutually closest pairs in the remaining set of points.
Repeat indefinitely. Since at every round the number of mutually closest
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Figure 2.1: An example of πst on a square of size L = 16.

pairs is greater or equal to one, the algorithm stops in a finite number of
rounds.

There is also a pictorial representation of the algorithm. Grow a ball
centered at each point in U (U-balls) and at each point in V (V-balls) si-
multaneously, so that at time t all the balls have radius t. Whenever a
U-ball and a V-ball touch, match their centers to each other, and remove
the two balls. This kind of pictorial representation can also be seen in [16].

If we consider as discrete subsets of R2 the sets G and P , we can apply
the Stable marriage algorithm to the GPM; we will call πst the marriage
found by the Stable marriage algorithm (see an example in fig. 2.1). Obvi-
ously this inequality holds:

HP (πopt) ≤ HP (πst).

This means that the Stable marriage algorithm is a heuristic for the
GPM. We have implemented the Stable marriage algorithm, that is poly-
nomial, and with a suitable implementation has the bound in O(n2).

2.2 The Box algorithm

The box algorithm is an algorithm of the kind “divide and conquer”.

Consider the GPM with N = 2k̄ grid points – with k̄ even such that

L = 2k̄/2 – and an instance of M Poisson points.
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For any k = 0, . . . , k̄, we consider the natural subdivision of the square
of side L in: squares of area 2k if k is even, rectangles of area 2k and ratio
1/2 if k is odd; we can see an example of these subdivisions in figure 2.2.
Then there are pairings of k-boxes that give (k+ 1)-boxes.

Figure 2.2: A square of side L = 8 divided in 0-boxes, 1-boxes and so on.

We introduce a parameter that will be useful in the following: if hc is
the number of Poisson points in a k-box c, we define qc as the difference
of the number of Poisson points and of grid points present in the k-box c:
qc := hc − 2k; then qc ∈

{

−2k, . . . ,N − 2k
}

.

The steps of the algorithm are the following:

Preparatory step of the algorithm: divide the square in 2k̄ 0-boxes; in every
box, if possible, marry the grid point to a Poisson point (chosen randomly)
in the same box and remove the married pair.

k-th step of the algorithm: divide the square in N/2k+1 (k + 1)-boxes;
within each (k + 1)-box, marry as many grid-Poisson pairs as possible
(choose randomly a pair and remove it).

After the preparatory step, the algorithm starts with the 0-step and
stops at the (k̄ − 1)-step. At the end every grid point will be married to
a Poisson point and we call πbox the obtained marriage. The energy of
πbox is the sum of the energies resulting from the preparatory step, Eprep,
and from every k-step, E(k):

HP (πbox) = Eprep +
k̄−1
∑
k=0

E(k). (2.2)

Since the choices perfomed by the Box algorithm are sub optimal to the one
performed by Stable marriage algorithm, the following inequality holds:

HP (πopt) ≤ HP (πst) ≤ HP (πbox).

The goal of this section is to calculate 〈HP (πbox)〉P ; this is possible and
easy to do thanks to hierarchical strucure of k-boxes, while should have
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been very difficult with the Stable marriage algorithm. The following con-
sideration are devoted to understand how to do this.

2.2.1 Evaluation of 〈HP(πbox)〉P
Given an instance of Poisson points, we perform the algorithm.
Consider the preparatory step: after having married the points in a 0-

box, we can obtain the following configurations of 0-boxes, described by
the parameter q:

if h = 0 then q = −1;

if h = 1 then q = 0;

if h = 2 then q = 1;

if h = 3 then q = 2;

and so on.
The energy of the preparatory step is the sum of the energies coming

from every 0-box, which can be maximized by: the number of marriages

in a 0-box (#marr(0-box) ) multiplied by
√
2:

Eprep = ∑
0-box

E(0-box) . ∑
0-box

#marr(0-box)
√
2 ;

this can be generalized for every k-step:

E(k) = ∑
(k+1)-box

E((k+1)-box) . ∑
(k+1)-box

#marr((k+1)-box) 2
k/2 .

Now consider the 0-step; we see in fig. 2.3 (left) which are the possible
1-box configurations obtained joining two 0-boxes and marrying all pos-
sible pairs. We see that the number of marriages depends on the 0-boxes
joined. In fig. 2.3 (right) we see the number of marriages in function of the
parameter q of the joined 0-boxes.
We easily understand that:

• joining two 0-boxes with parameter q1 and q2 we obtain marriages if
and only if sign(q1 · q2) = −1;
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Figure 2.3: Left: the possible 1-box configurations obtained from the 0-step
of the box algorithm. Right: the number of marriages in function of q1 and
q2 at 0-step.

• the number of generated marriages is equal to min(|q1|, |q2|);

These two sentences are true at every k-step. Then the number of mar-
riages of a (k+ 1)-box obtained joining two k-boxes, one with parameter
q1 and the other with parameter q2, is:

#marr((k+1)-box) = min(|q1|, |q2|) δ(sign(q1 · q2),−1)
In conclusion we can write that:

〈E(k)〉P . ∑
(k+1)-box

〈#marr((k+1)-box)〉P 2k/2 = (2.3)

= ∑
(k+1)-box

〈min(|q1|, |q2|) δ(sign(q1 · q2),−1) 〉P 2k/2 =

=
N

2k+1
〈min(|q1|, |q2|) δ(sign(q1 · q2),−1) 〉P 2k/2 =

=
N

2k+1

N−2k

∑
q1,q2=−2k

p(q1, k) p(q2, k) min(|q1|, |q2|) δ(sign(q1 · q2),−1) 2k/2

where p(qi, k) is the probability that a k-box i has parameter qi. Since
qi = hi − 2k then p(qi, k) = p(hi − 2k, k); we calculate p(hi, k) that is the
probability of finding hi of M Poisson points in a k-box i.
Given M independent points, taken with uniform distibution on a set

of measure V, the probability to find m points in a set of measure v is the
binomial distribution:
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p(m, v,M,V) =

(

M

m

)

( v

V

)m (

1− v
V

)M−m

that, for m ≫ 1 and M−m ≫ 1 is well described by a Gaussian distribu-
tion:

p(x, v,V,M) =
1

√

2πM vV
(

1− v
V

)

exp

[

−
(

x−M vV
)2

2M vV
(

1− v
V

)

]

.

Then for us: m = h, v = 2k, M = ρN and V = L2 = N:

p(h, k,N, ρ) =

(

ρN

h

)

(

2k

N

)h(

1− 2
k

N

)ρN−h

and:

p(x, k,N, ρ) ∼ 1
√

ρ2k
exp

[

− (x− ρ2k)2

2ρ2k

]

.

So the probability distribution for the parameter q, for a box at step k,
is:

p(q, k,N, ρ) ∼ 1
√

ρ2k
exp

[

− (q− (ρ − 1)2k)2
2ρ2k

]

.

Now:

〈E(k)〉P .
N

2k/2

∫

D
p(q1, k,N, ρ)p(q2, k,N, ρ)min(|q1|, |q2|)

where the domainD is the light gray zone in fig. 2.4 and p(q1, k,N, ρ)p(q2, k,N, ρ)
is a two dimensional gaussian distribution centered in

(

(ρ − 1)2k, (ρ − 1)2k
)

and σ =
√

2ρ2k.

There will be two different behaviours depending on ρ:

• if ρ 6= 1, starting from k ≃ − ln |ρ−1|ln 2 , there will be pratically no over-
lap between the domain D and the gaussian distribution; then for

k & − ln |ρ−1|ln 2 is 〈E(k)〉P ∼ 0. Which means, by (2.2):

〈HP (πbox)〉P ∼ N for N → ∞ ;
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Figure 2.4: In light gray: the domain D. In dark gray: the points that fall
in one σ of the gaussian distribution.

• if ρ = 1, for every value of k there is overlap between the domain D
and the gaussian distribution; we can evaluate:

∫

D
p(q1, k,N, 1)p(q2, k,N, 1)min(|q1|, |q2|) ∼ 2k/2 ,

and so substituing in (2.3) and for (2.2):

〈HP (πbox)〉P ∼ N lnN for N → ∞ .

In conclusion the Box algorithm produces an upper bound to the mean
value of the energy of the GPM obtained with the optimal marriage and
with the Stable marriage; this upper bound is dependent on the density ρ:

〈HP (πopt,N)〉P . 〈HP (πst,N)〉P .

{

N if ρ 6= 1
N lnN if ρ = 1

for N → ∞ (2.4)

2.3 Numerical simulations

In previous section we have introduced the Box algorithm, a heuristic for
the GPM; we have seen by (2.4) that this heuristic produces an upper
bound to the energy, which behaviour depends on the value of ρ: if ρ 6= 1,
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the energy is bounded by N, if ρ = 1, the energy is bounded by N lnN.
We have also introduced the heuristic of Stable marriage algorithm.
We are interested to know if also the energy of the optimal marriage

and of the Stable marriage present different behaviours depending on
ρ, and if these behaviours are the same predicted by the Box algorithm.
To do this, we have performed numerical simulations; we have used the
Hungarian algorithm to obtain informations about 〈HP (πopt,N)〉P and
the Stable marriage algorithm for 〈HP (πst,N)〉P ; these values have been
obtained averaging the energies obtained from a sampling of 1.000 inde-
pendent instances . With the Hungarian algorithm, which is O(N3), we
can arrive to investigate until the size N = 1600, which means a square of
side L = 40; while with the Stable marriage algorithm, which is O(N2),
we can easily arrive to larger sizes: N = L2 = 5122. We present the results
of our simulations.

First result.We present the results of a simulation in which we have set
ρ = 17/16; we see in fig. 2.5 that, after initial strong finte-size corrections,

growing the size N,
〈HP (N)〉P

N becames a constant for both algorithms. This
is in accord with the predictions of the heuristic, eq. (2.4).

Second result.We present the results of a simulation in which we have
set ρ = 1; in fig. 2.6 we see that, for both algorithms, increasing size,
〈HP (N)〉P

N grows. The heuristic predicts that, eq. (2.4), this cannot grow
more than a logarithm.
Our data are well fitted by a function:

f (N) = a lnN + b+ c/N .

Since with the Stable marriage algorithm it is possible to reach with simu-

laions big sizes, we are sure enought that
〈HP (N)〉P

N grows like a logarithm;
on the other hand, for the difficulty to increase the size in simulations with
the Hungarian algorithm, we cannot be sure of his behaviour. Fit values
for both the algorithms are reported in table 2.1.

These results let us understand that for the GPMwith ρ = 1 the energy
is no more an extensive quantity, but this becomes super-extensive; this is
surprising, but not unexpected; in fact it can motivated by fluctuations of
Poisson point distribution: for ρ 6= 1 fluctuations are counterbalanced by
the high number of Poisson points, while, for ρ = 1, these can be so strong
to generate this behaviour.
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Stable marriage Optimal marriage

a 0.0920± 0.0004 d 0.0343± 0.0009
b 0.565± 0.003 e 0.622± 0.006
c −1.06± 0.06 f −0.76± 0.07

reduced χ2 0.260 reduced χ2 0.522

Table 2.1: Values of fit parameters and of reduced χ2 from data plotted in
fig. 2.6.

These results shed some light on our model: we understand that this
presents different behaviours depending on the density ρ; so we can say
that this parameter has the same function that the temperature would
have in a typical model of statistical mechanics; not only, we believe the
model presents some criticality in ρ = 1, like suggested by the behaviour
of the energy, then ρ is the critical parameter. The simulations that we will
present in next chapters have been performed to test this criticality. We
would also stress that ρ is not the only possible parameter for our model:
it could be possible to introduce a temperature and then a Gibbs measure;
since in the GPM we choose always the marriage with minimal energy, it
is as if we would have set the temperature T = 0.

Third result. From these simulations we have also found the cumulant
probability distribution for the energy at different sizes and fixed ρ = 1;
we have found that this distribution is described by a Gumbel function:

Λ(x) = exp (−e−x).
Gumbel function is very particular [17]; it play a role similar to the one

played byGaussian function in central limit theorem. In fact, if X1,X2,X3, . . .
is a sequence of random variables i.i.d. with identical probability distribu-
tion and Mn = max (X1, . . . ,Xn), then the probability distribution of Mn,
for n → ∞, is forced to be of only three possible kinds; one these is the
Gumbel function.
Our fits, for different sizes, are plotted in fig. 2.7.
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Figure 2.5: Plot of
〈HP (N)〉P

N vs N for ρ = 17/16; these values have been
obtained averaging the energies obtained from a sampling of 1.000 inde-
pendent instances.
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Figure 2.6: Plot of
〈HP (N)〉P

N vs N for ρ = 1; these values have been obtained
averaging the energies obtained from a sampling of 1.000 independent in-
stances. The values of fit parameters and of the reduced χ2 are reported in
table 2.1.
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Figure 2.7: Plot of the cumulant distribution of the HP (N) for N =
8, 12, 16, 20, 24, 28 (from left to right) in black, and the fits in red; distri-
bution obtained from a sampling of 1.000 independent instances.
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Chapter 3

Finite-size scaling

We have concluded the last section saying that we believe that GPM is
critical in ρ = 1. The study of critical phenomena is one of the most ex-
citing challanges of statistical mechanics. The behaviour of a system at
the critical point is characterized by a diverging correlation length and
cannot easily be approximated by considering small systems. Phase tran-
sitions are characterized by a non-analytic behaviour at the critical point
of some observable. These non-analyticities are however observed only
in the infinite-volume limit. If the system is finite, all thermodynamic
functions are analytic in the thermodynamic parameters (like tempera-
ture or applied magnetic field in tipical models). However, even from
a finite sample, it is possible to obtain many informations on the critical
behaviour. Indeed, large but finite systems show a universal behaviour
called finite-size scaling (FSS). The FSS is a very powerful method to ex-
trapolate to the thermodynamic limit the results obtained from a finite
sample, both in experiments and in numerical simulations. We refer to
[18] for a complete tractation of this topic; in the following we will give a
short introduction to FSS, giving emphasis to the aspects concerning our
simulations.

3.1 Thermodynamic limit

We will describe FSS in the context of continuous (second-order) phase
transitions in systems controlled by a single scalar parameter T which we
assimilate to a temperature (for the GPMwill be the density ρ). We assume
the existence of a thermodynamic description of the system in a finite box
Λ (e.g. a bounded subset of a discrete lattice where spin-like variables
live): given any observable O we can compute its value on the thermody-
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namic state determined by T and Λ as

OΛ(T) := 〈O〉Λ(T)

where 〈·〉Λ(T) is the appropriate averaging. The infinite system is then
understood in terms of the thermodynamic limit. Given an increasing se-
quence {Λn}n of boxes, the value O∞(T) of the observable in the infinite-
volume system is given by:

O∞(T) := lim
n→∞

OΛn(T)

Usually this limit exists for a wide class of O and taking arbitrary
shapes for Λn.

The correlation length. The existence of the thermodynamic limit is
tightly linked to the decay of correlation functions for local observables. In
particular, in systems with short-range interactions, the (connected) corre-
lation function

Gφ,∞(x) = 〈φ(0)φ(x)〉∞ − 〈φ(0)〉∞〈φ(x)〉∞

of a general local observable φ has an exponential decay. It is then possible
to define a exponential correlation length ξφ,∞ for φ as:

ξφ,∞ := − lim
|x|→∞

|x|
log |Gφ,∞(x)| .

This is not the only possible definition of a correlation length in a in-
finite system; on the contrary, in finite volume does not exists a natural
definition of correlation length and the one defined before cannot be gen-
eralized to finite volume. Then, in order to define consistently a finite
system correlation length, we require that in the termodinamic limit this
recover an infinite system correlation length.

Critical singularities. When T → Tc there are quantities O∞ which
behave as

O∞(t) ∼ |t|−xO for t→ 0
where t := (T − Tc)/Tc is the reduced temperature and where ∼ means
that |t|xOO∞(t) has a finite limit as t → 0. Along with these diverging
quantities it is possible to identify a distinguished local operator φ (the
order parameter) for which the associated exponential correlation length
ξφ,∞ diverges as
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ξ∞ ∼ |t|−ν.

As we already remarked, in the finite systems all thermodynamic func-
tions have an analytic dependence on control parameters which means
that the interchange of the infinite-volume limit with the limit t → 0 is in
general not permitted:

lim
t→0
lim

Λ→∞
|t|xOOΛ(t) 6= lim

Λ→∞
lim
t→0

|t|xOOΛ(t) = 0

if, for example, xO > 0.
FSS theory predicts the asymptotic shape of the function OΛ(t) when

Λ → ∞ and t→ 0 in a well-determined way.

3.2 Finite size scaling ansatz

A natural way of taking the infinite volume limit is to consider boxes of
size L in all directions. Denote the corresponding averages with 〈·〉L .
When t → 0 there is a correlation length ξ which diverges. If L is large
and if there are no other characteristic lengths of magnitude comparable
to that of ξ or L we can write OL(t) as a function of ξ∞(t) and L:

OL(t) ≈ FO,0(ξ∞(t), L) =

= ξ∞(t)yOFO,0(1, L/ξ∞(t)) =

= ξ∞(t)yOFO,1(L/ξ∞(t)) (3.1)

where ≈ means equality up to terms which are asymptotically negligible
as L, ξ∞ → ∞. Indeed it is clear that, being ξ∞ and L the only dimen-
sionful quantities present, the function FO,0(x, y) must be a homogeneous
function whose degree yO can be determined through the limit L → ∞

with ξ∞ fixed:

O∞(t) = lim
L→∞

OL(t) = ξ∞(t)yOFO,1(0) ∼ |t|−ν yO

so we understand that yO = xO/ν. With some assumptions on the exis-
tence of the limit for FO,1(z) when |z| → 0.

Another way of rephrasing eq. (3.1) is

OL(t) ≈ LxO/νFO,2(ξ∞(t)/L), (3.2)
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for L→ ∞ with z := ξ∞(t)/L constant, where FO,2(z) has a finite limit for
z→ ∞ and

FO,2(z) ∼ |z|xO/ν for z→ 0. (3.3)

For a good finite-volume definition of correlation length ξL we obtain
similarly

ξL(t) ≈ LFξ,2(ξ∞(t)/L) (3.4)

since in this case xξ = ν. Moreover

lim
z→0+

Fξ,2(z)

z
= 1. (3.5)

3.2.1 Asymptotic FSS

The functional relation expressed by eq. (3.1) cannot be direclty used to an-
alyze simulation (or experimental) data since usually the infinite-volume
correlation length is an unknown quantity. A very common approach to
overcome this problem is that of substituting the asymptotic expression of
ξ∞ as a function of t in (3.1) resulting in:

OL(t) ≈ LxO/νGO(tL1/ν). (3.6)

The function GO(z) is finite and non-vanishing in zero, and should
satisfy

GO(z) ∼ |z|−xO for z→ ∞. (3.7)

In eq. (3.6) only accessible quantities appear: t can be tuned by the
experimentalist while OL(t) is directly measurable. Even if the (infinite-
volume) correlation length does not shows up explicitly it is always lurk-
ing in the background as witnessed by the presence of the related critical
exponent ν. This form of FSS relies heavily on the knowledge of the critical
temperature Tc (present in the definition of t).
Once we know Tc we can find the critical exponents though eq. (3.6)

which says that there is a well defined functional dependence between
y = L−xO/νOL and x = tL1/ν . We can then try to estimate values of
xO and ν such that the set of points (xn, yn) gathered from experiments
collapse on a single curve. Of course this can approximately happen only
for T near enough at Tc (for the scaling hypothesis to hold) and for L large
enough (so that corrections to FSS are small): this is the critical region.
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3.2.2 Correlation length FSS

Following e.g. [19], instead of replacing ξ∞ with t in FSS relations we
can proceed by inverting the functional relation expressed by eq. (3.4) to
obtain

ξ∞(t)

L
≈ Fξ,3

(

ξL(t)

L

)

(3.8)

Plugging this in eq. (3.1) we obtain a relationship which relates only
quantities directly measurable in finite systems:

OL(t) ≈ LxO/νFO,3

(

ξL(t)

L

)

. (3.9)

Taking the ratio of OL at two different sizes L and αL we get

OαL(t)

OL(t)
≈ FO

(

ξL(t)

L

)

(3.10)

where the (unknown) ratio xO/ν disappears.

The correlation length FSS is a good method to find the value of an
observable O in the limit of L → ∞. The method proceeds as follows.
Make numerical simulations at numerous pairs (t, L) and (t, αL). Plot
OαL(t)/OL(t) versus ξL(t)/L using those points satisfying both ξL(t) ≥
some value ξmin and L ≥ some value Lmin. If all these points fall with
a good accuracy on a single curve – thus verifying the ansatz (3.10) for
ξL(t) ≥ ξmin and L ≥ Lmin – choose a smooth fitting function FO. Then, us-
ing the functions Fξ and FO, extrapolate the pair (ξ,O) successively from

L→ αL→ α2L→ · · · → ∞.

3.3 Numerical simulations

We have seen that if a system verifies the FSS hypothesis, then there will
be some observable O of the system which verifies the scaling relations
described by eq. (3.6) or (3.10). In the following we will introduce a corre-
lation function for the GPM, fromwhich extrapolate a correlation length ξ;
we will choose ξ as observable and then we will test the scaling relations.

Consider the GPM on the square: given an instance of Poisson points
and found the optimal marriage, we can associate to every grid point with
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Figure 3.1: GS,L(~0,~r) (left) and GT,L(~r) (right); red means positive corre-
lation, blue negative correlation, white no correlation. These results have
been obtained performing a sampling of 1000 independent instances of
N = 362 grid points and M = 1400 Poisson points.

coordinates ~x a vector ~ϕ(~x) with the tail in ~x and the tip in the married
Poisson point. We introduce a finite size correlation function

GS,L(~x,~y) = 〈 ~ϕ(~x) · ~ϕ(~y)

|~ϕ(~x)||~ϕ(~y)| 〉P . (3.11)

Since now we have considered the GPM on a square; in the following
we will also consider the same problem on a torus. We have introduced
these new boundary conditions because this prevents our simulations to
be affected from effects given to the border and then the correlation func-
tion becomes:

GT,L(~r) = ∑
~x

〈 ~ϕ(~x) · ~ϕ(~x+~r)

|~ϕ(~x)||~ϕ(~x+~r)| 〉P . (3.12)

First of all we are interested to know if the behaviour of the correlation
function depends on boundary conditions. In figure 3.1 we plot GS,L(~0,~r)
(left) and GT,L(~r) (right) obtained from simulations. We see that if we con-
sider the square, there is a strong positive correlation near the origin, then,
if we increase the distance, the correlation vanishes; only at the opposite
corner there is a negative correlation, easily understood by geometrical
reasons. While if we consider the torus, there is still a strong positive corre-
lation near the origin, but this is rounded by a ring of negative correlation;
increasing the distance the correlation vanishes.
Then we introduce a Wall-to-Wall correlation function, defined by

GW,L(y) = ∑
x

GT,L(x, y) . (3.13)
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The correlation lengths that we will consider in the following are all ex-
trapolated from the Wall-to-Wall correlation function, because it is easier
to handle, since it is mono dimensional and defined on integers.
We can see in figure 3.2 typicalWall-to-Wall correlation functions obained

with numerical simulation on a torus with 1600 grid points at different
densities ρ. We see that, as expected from previous considerations, the cor-
relation functions, after have reached a negative minimum value, present
a right tail that go to zero. We have used two ways to extrapolate corre-
lation lengths; the first one is to “cut” the right tail and fit the correlation
functions with the following function:

f (x) = a+ exp(bx+ c)

and then ξ = 1/b; the second one is to keep the tail and fit the correlation
functions with:

f (x) = b cosh [a(x− L/2)]
[

−1+ c sin2(π/2(x− L/2)/L)
]

and then ξ = 1/a. We plot in figure 3.2 the fits obtained in the second way.
The correlation lengths that have been used to obtain the results that are
reported in the following had been obtained with fits of the first way; the
error bars that will appear in following figures have been obtained propa-
gating the errors of fit coefficients.

In conclusion of the previous section we have said that the density pa-
rameter played the role that in tipical models of statistical mechanics is
played by the temperature; we had also argued that ρc = 1. Then for us

the reduced temperature will be t = ρ−ρc
ρc

= ρ − 1.

Asymptotic FSS. In this simulationwe have tested if ourmodel verifies
the scaling ansatz (3.6). We choose as observableOL the correlation length
ξL, then xξ = ν; then eq. (3.6) becomes:

ξL(t)

L
≈ Gξ(tL

1/ν) . (3.14)

Our method has been the following: we have performed numerical
simulations at different sizes L and different densities ρ, and we have ex-
trapolated the correlation length ξL(t), as explained before. Then if it is
true that the GPM is critical in ρ = 1, there must be a value of ν such
that the coulples of points (ξL(t)/L, tL

1/ν) collapse on a single curve. We
present our results for ν = 3/4, 5/4, 7/4 and 9/4 in figures 3.3, 3.4, 3.5 and
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Figure 3.2: Plot of GW,L(x) obtained performing a sampling of 1000 inde-
pendent instances on a torus with 1600 grid points and with the following
Poisson points: 1612, 1620, 1632, 1640, 1652, 1660, 1680, 1700, 1720, 1740,
1760, from red to purple.

3.6. We see that for ν = 5/4, or values near to this, the points stay with a
good accuracy on a curve, while for ν = 7/4, or greater, and ν = 3/4 or
smaller, the points are scattered.

Correlation length FSS. In this simulaiton we have tested if our model
verifies the scaling ansatz (3.10). Once again we have chosen as observable
O the correlation length ξ, and as parameter α = 2; then (3.10) becames:

ξ2L(t)

ξL(t)
≈ Fξ

(

ξL(t)

L

)

. (3.15)

We have performed numerical simulations at L = 20, 22 and we have
extrapolated the correlation length. Plotting (fig 3.7) ξ2L(t)/ξL(t) versus
ξL(t)/L, we see that the points fall with a good accuracy on a curve. We
have also found that the points are well fitted by a curve:

Fξ(x) = 1+ a exp (b/x) (3.16)

and fit parameters are reported in table 3.1.
The choose to use this function is partially motivated by the theory,

which tells us that F(x) → 1 exponentially fast as x → 0.
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Figure 3.3: Plot of ξL(t)/L versus tL
1/ν, with ν = 3/4.
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1/ν, with ν = 5/4.
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Fit parameters

a 3.7266± 0.3919
b −0.318109± 0.01838

reduced χ2 0.0022

Table 3.1: Values of fit parameters and of reduced χ2 obtained fitting data
plotted in fig. 3.7 with the function Fξ(x) = 1+ a exp (b/x).
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Figure 3.7: Plot of ξ2L(t)/ξL(t) versus ξL(t)/L for L = 20, 22; the solid line
is the fit with a curve Fξ(x) = 1+ a exp (b/x).
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Chapter 4

Test of conformal invariance of
spanning trees in GPM

In this chapter we will show that with the Hungarian algorithm it is pos-
sible to generate in a natural way spanning tree on the complete graph
with vertices the grid points; we will test the conformal invariance for this
ensemble of spanning trees.

4.1 Conformal maps

We define a domain as an open connected subset of the complex plane.
We call a domain simply connected if it contains no holes. More precisely,
a domain is simply connected if its complement in the complex plane is
connected or, equivalently, if every closed curve in the domain can be con-
tracted continuously to a single point of the domain.

A conformal map f of a simply connected domain D 6= C onto another
simply connected domain D′ 6= C is a one-to-one map which preserves
angles. That is, if γ0 and γ1 are two curves in Dwhich intersect at a certain
angle, then their images f ◦ γ0 and f ◦ γ1 must intersect at the same angle.
In practice this means that a conformal map f : D→ D′ is an injective and
analytic function on D, which has nonzero derivative everywhere on D. It
has an inverse f−1 which is also conformal.
A foundamental theorem about these conformal maps is the Riemann

mapping theorem, which tells us that any simply connected domain D can
be mapped conformally onto the open unit disk D = {z ∈ C : |z| < 1} .
Note that the theorem says nothing about the behaviour of the map at the
boundary ∂D.
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Theorem 3 (Riemann mapping theorem). Let D 6= C be a simply connected
domain in C. Then there is a conformal map of D onto the open unit diskD.

The conformal map of a domain D ontoD is unique up to composition
with a conformal map of the unit disk into itself. Therefore, the Riemann
mapping theorem together with the following theorem on the conformal
maps of the unit disk into itself provide the basis for the theory of confor-
mal maps.

Theorem 4. The conformal maps of the open unit diskD into itself are precisely
the transformations of the form

f (z) = eiφ
z− a
1− āz |z| < 1

where a is complex, |a| < 1, and 0 ≤ φ ≤ 2π.

It follows from this theorem that the map f : D → D is determined
uniquely if we specify three real parameters. For example, one commonly
specifies f (z) = 0 and f ′(z) > 0 (which makes sense when f ′(z) is real
and positive) at some specific point z ∈ D, to make the map unique.

Using the Riemann mapping theorem, we can also study conformal
maps between two simply connected domains D,D′ 6= C in the complex
plane. A conformal map of D onto D′ is easily defined through the con-
formal map of D ontoD, and the inverse of the map of D′ ontoD. Again,
the map is unique if we specify three real parameters. For example, if we
fix two points z ∈ D, w ∈ D′ , then there is a unique conformal map f of
D onto D′ with f (z) = w and f ′(z) > 0. Another way commonly used
to specify a map uniquely is the following. Fix three distinct points z1,
z2, z3 ordered counter-clockwise on the boundary of D, and three distinct
points w1, w2, w3, ordered similarly on the boundary of D

′ . Then there is
a unique conformal map f of D onto D′ with f (zi) = wi, i = 1, 2, 3.

A domain that we will often use in the following is the complex up-
per half-plane H = {z ∈ C : Im(z) > 0}. Our first observation is that
any simply connected domain can be mapped conformally onto H. This
follows from the Riemann mapping theorem, and the fact that the map
f (w) = i(1+ w)/(1− w) is a standard conformal map of D onto H. We
can also go back from the upper half-plane to the unit disk by using the
inverse map f−1(z) = (z− i)/(z+ i).
Conformal maps of simply connected domains onto the upper half-

plane are unique up to composition with the conformal maps of the upper
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half-plane into itself. The form of these maps is given by the following
theorem.

Theorem 5. The conformal maps of the upper half-plane H into itself are pre-
cisely the (fractional linear or Möbius) transformations

f (z) =
az+ b

cz+ d
Im(z) > 0

where a, b, c and d are real numbers satisfying ad− bc > 0.

4.1.1 Schwarz-Christoffel trasformation

In this section we will introduce the Schwarz-Christoffel formula for con-
structing a conformal map from the upper half-plane H onto a region G
bounded by a polygonal curve.

Theorem 6 (Schwarz-Christoffel formula). Let P a polygon in the complex
plane C with vertices w1,w2, . . . ,wn and exterior angles α1, α2, . . . , αn, where
−π < αk < π. There exists a conformal map f from the upper half-planeH onto
G that satisfies the boundary conditions:

wk = f (xk) for k = 1, 2, . . . , n− 1 and wn = f (∞)

where xi are real and ordered: x1 < x2 < · · · < xn−1 < ∞. The derivative f ′(z)
is

f ′(z) = A (z− x1)−α1/π(z− x2)−α2/π . . . (z− xn−1)−αn−1/π

and the function f (z) can be expressed as an indefinite integral

f (z) = B+ A
∫

(z− x1)−α1/π(z− x2)−α2/π . . . (z− xn−1)−αn−1/πdz

where A and B are suitably chosen constants.

Wegive a clarifying example of a conformalmap obtained by the Schwarz-
Christoffel formula; this example will also be useful in the next chapter.
We use the Schwarz-Christoffel formula to verify that

f (z) =
√

z2 − 1

maps H onto H slit along the line segment from w = 0 to w = i. We
choose x1 = −1, x2 = 0, x3 = 1, w1 = −d,w2 = i,w3 = d and α1, α2, α3 as
in figure (4.1); then, from the Schwarz-Christoffel formula, we obtain



48 Test of conformal invariance of spanning trees in GPM

Figure 4.1: The points w1 = −d,w2 = i,w3 = d and angles α1, α2, α3.

f ′(z) = A (z+ 1)−α1/π(z)−α2/π(z− 1)−α3/π.

Now, if we let d → 0, we have w1 → 0, w3 → 0 and α1 → π/2, α2 → −π
and α3 → π/2. Then the limiting formula is

f ′(z) = A
z√
z2 − 1

.

Integrating we have:

f (z) = B+ A
√

z2 − 1 .

Imposing that f (±1) = 0 and f (0) = i, we find that:

f (z) =
√

z2 − 1 .

We easily find also that the inverse function that mapsH slit along the
line segment from z = 0 to z = i ontoH is:

f−1(z) =
√

z2 + 1. (4.1)

We present, wihout proof, other maps that we will use in the following;
the domains that we consider are: the circleD, the upper half-planeH and
the square S = [0, 1] × [0, i]. The maps between these domains are:
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Figure 4.2: Left: Straight lines on H. Right: Straight lines on H mapped
to H slit along the line segment from w = 0 to w = i with the function

f (z) =
√
z2 − 1.

fD→H(z) = i(1+ z)/(1− z) (4.2)

fH→D(z) = (z− i)/(z+ i) (4.3)

fH→S(z) =
F

(

arcsin
(√
z
)

-1
)

K(−1) (4.4)

fS→H(z) = sn (z K(−1)| − 1) (4.5)

fD→S(z) =
F

(

arcsin
(
√

i 1+z1−z
)

-1
)

K(−1) (4.6)

fS→D(z) =
sn (z K(−1)| − 1) − i
sn (z K(−1)| − 1) + i

(4.7)

where F(z|m) is the elliptic integral of the first kind, K(m) is the complete
elliptic integral of the first kind and sn(z|k) is a Jacobi elliptic function, see
[32].
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Figure 4.3: Left: The circle D. Center: D mapped into H with fD→H(z).
Right: D mapped into the square with fD→S(z).
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4.2 Special gauges and spanning trees

In this section we come back to the assignment problem; we introduce the
so called special gauges in order to show how we can associate to every in-
stance of the GPM a spanning trees on the complete graph with vertices
the grid points.

Theorem 7. Given an instance ǫ of assignment problem, and a column j, it is
always possible to perform a Hungarian gauge transformation such that in the
gauged matrix ǫ′ all the columns j′ 6= j have at least two zeroes. Moreover, if the
instance is non-degenerate, there is exactly one zero in column j and two zeroes
in all the other columns, and the graph of zeroes Z is a spanning tree on KN,N.

Given a proper gauge ǫ we call πopt the optimal assignment. Up to a
relabeling of the columns, we can assume that j = 1 and that πopt is the
identity permutation. We will call H1 = Hǫ(πopt).
For each i ∈ [N] and i 6= 1, we define πi the optimal assignment in the

subensemble of permutations such that π(i) = 1 and then Hi = Hǫ(πi).
Consider the following gauge:

{

λi = ǫi1 + H1 − Hi
µj = ǫjj − λj

;

the gauged matrix ǫ′ will have the following properties:

ǫ′ii = 0 ∀i ∈ [N] ;
ǫ′i1 = Hi − H1 ∀i ∈ [N] .

It is possible to prove [20] that ǫ′ is a proper gauge; then ǫ′ is hungarian.
In order to prove that ǫ′ has at least two zeroes per column i ≥ 2,

consider the minor of ǫ′ obtained by deleting column 1 and row i; we have
a matrix with non-negative entries, that contains an assignment of zero
cost (since Hi = Hǫ(πi) = Hǫ′(πi) + H1 then Hǫ′(πi) = Hi − H1; since
ǫi πi(i)

= ǫi1 = Hi − H1 then ǫ′
j πi(j)

= 0 ∀j 6= 1 ), and this implies that
every column has at least one zero entry. This statement says nothing on
columns j 6= i, where one still has the entry ǫ′jj = 0 by construction, but

the entry ǫii is not in the minor, so there must be another zero in the same
column.
If the instance is not degenerate, the set Zmin has cardinality N and, for

any hungarian gauge, the graph Z has no loops. As we have proven that
our gauge has at least 2N − 1 edges, and a loop-free subgraph of a graph
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Figure 4.4: Left: the spanning tree on the complete bipartite graph G ∪
P . Right: the spanning tree on the complete graph G obtained from the
previous one.

with 2N sites has at most 2N− 1 edges (in this case being a spanning tree)
for the Euler formula (1.2), also the final statement of the theorem follows.
2

We will call the gauge ǫ′ obtained in the theorem special gauge. This
theorem is true in general for the assignment problem, and then we can
consider it applied to the GPM; in that case the bipartite graph KN,N =
G ∪ P ; then generating an instance of Poisson points, associating it the
matrix ǫ and finding the special gauge ǫ′, we generate a spanning tree on
the complete bipartite graph G ∪P . We see an example in figure 4.4 (Left).
The fact that every column i 6= j of the matrix ǫ′ has two zeros implies
that every Poisson point i 6= j has exactly two incident edges that we will
call (ai, i) and (bi, i), where ai, bi are grid points. We delete every Poisson
point i 6= j and his two incident edges, and we replace them with the
edge (ai, bi); we delete also the Poisson point j with his edge, and then we
obtain a spanning tree on the grid points, as we see in figure 4.4 (Right).

We have implemented an algorithm that generates an instance of Pois-
son points and, using repeatedly the Hungarian algorithm, finds the spe-
cial gauge and then the spanning tree. We note that, for what said before,
that the spanning tree generated depends on the choice of the Poisson
point j; since Poisson points are taken with random distribution on the
square, the choice of a given j does not introduce an arbitraty act in the
sampling of the trees; this would not have been true if we had to choose a
grid point j.
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It is possible to see, from the distribution of the lengths of the edges of
the trees obtained by the sampling, that it is hardly probable to generate
trees with long edges; this means that, also if the trees generated by the
GPM are not planar, the violation to planarity are rare events, and then
this ensemble of trees is not very different from an ensemble of planar
trees; apart little corrections, they are in the same universality class.
We will also stress the fact that we have to use repeatedly the Hungar-

ian algorithm, N times for every instance, to generate the spanning tree;
this implies that the computational complexity of the algorithm that gen-
erates spanning trees is O(N4 = L8).
In the following section we will deal with questions as: which is the

probabilitymeasure for the spanning trees generatedwith the special gauges?
Is this measure conformally invariant?

4.3 Test on conformal invariance of spanning trees

4.3.1 Introduction

One of the main goals of both probability theory and statistical physics
is to understand the asymptotic behavior of random systems when the
number of microscopic random inputs goes to infinity. O. Schramm [21],
in 1999, explained:

It is often the case that grid-based probabilistic model should
be considered as a mere substitute, or semplification, of a conti-
nous process. There are definite advantages for working in the
discrete setting, where unpleasant technicalities can frequently
be avoided, simulations are possible, and the setup is easier
to comprehend. On the other hand, one is often required to
pay some price for the simplification. When we adopt the grid-
based world, we sacrifice rotational or conformal symmetries
that the continous model can enjoy, and often have to accept
some arbitrarines in the formulation of the model [...]. Under-
standing the connections between grid-based models and con-
tinous processes is a project of foundamental importance, and
so far has only limited success.

One resonable way to define a continous process, is by taking a scaling
limit of a grid process. This means making sense of the limit of a sequence
of grid processes on finer and finer grids.



4.3 Test on conformal invariance of spanning trees 53

In his work Schramm considered the Loop Erased RandomWalk (LERW)
on a domain D ∩ δZ2 (a LERW from a ∈ D to b ∈ D is a random sim-
ple curve joining a to b obtained by erasing the loops in chronological or-
der from a simple random walk started at a and stopped upon hitting b);
he defined a measure µδ(D, a, b) supported on the LERW on the domain
D ∩ δZ2 and a scaling limit for δ → 0. Then he proved that the scaling
limit measure µ(D, a, b) is defined on simple paths in D from a to b. Not
only, he conjectured that the limiting measure was conformally invariant;
conformal invariance means that: consider two domains D and D′ and a
conformal map f : D → D′, if a, b ∈ D then f (a), f (b) ∈ D′ . The measure
µ on simple curves on D induces a measure, called f ∗ µ supported on
simple curves on D′; the conformal invariance property states that this is
the same as the measure which would be obtained as the continuum limit
of lattice curves from f (a) to f (b) in D′. That is:

( f ∗ µ)(D, a, b) = µ(D′, f (a), f (b)).

This conjecture was proved two years after in [22]. Conformal invari-
ance is a very useful property, because, by the Riemannmapping theorem,
if we know the measure for one simply connected domain D, we know it
for all simply connected domains.
Now we can consider spanning trees; given a graph and a measure on

spanning trees of the graph, we can sample spanning trees. For example:

• Uniform Spanning Trees (UST): a UST in a finite, connected graph G
is a sample from the uniform probability measure on spanning trees
of G;

• Minimal Spanning Trees (MST): the MST is formed by assigning uni-
formly random weights to the edges of the graph, and picking the
spanning tree which minimizes the total weight.

If the reader is interest to a study of conformal invariance of this en-
sembles of trees, we refer to [23].
Since UST are strictly related by LERW, as proved by D. Wilson [24]

with his algorithm, has been proved that is possible to define a scaling
limit for UST and that they are conformally invariant.

4.3.2 Test on conformal invariance

In [25] D. Wilson proposed a test of conformal invariance for spanning
trees; to prove the good quality of his test, he performed it on UST and,
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Figure 4.5: In red the path joining the green points at the corners of the
square; the blue point is the triple point.

as expected, could not exclude their conformal invariance. Starting from
this result, he performed the test on the yet unproved MST and excluded
that they could be conformally invariant. We have used this test to try to
understand if the spanning trees generated with the GPM can be confor-
mally invariant, as conjectured by us.

Consider a tree; chosen three vertices of the tree, find the three paths
joining this points; since we deal with a tree, the union of these paths con-
tains no loops and, not rigorously speaking, form a kind of “Y”; there is
also only one point belonging at the same time to the three paths, this is
called ”triple point”.
Consider then a spanning tree generated by the GPM and, as proposed

byD.Wilson, choose the three points at the corners of the square (the green
points in figure 4.5) and call T the triple point (the blue point in figure 4.5).
Consider also the map

fS→D(z) =
3isn (z K(−1)| − 1) +

√
3√

3− 3isn (z K(−1)| − 1)
(4.8)

that maps the square to the diskD, as we see in figure 4.6.
The test is the following: if spanning trees were conformally invariant,

than the image of spanning trees on the diskD would be isotropic; if this
was, then T, T eπi/3 and T e2πi/3 would be equidistribuited.
We applied this test to trees generated by GPM. In order to do that, we

have found the distribution of the triple point in the square of side L = 16
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Figure 4.6: Left: a grid on a square. Center: the grid mapped into H.
Right: the grid mapped into the diskD with fS→D(z).

averaged over 28.000 independent instances and we have mapped it into
the diskwith fS→D(z) of eq. (4.8), as plotted in figure 4.7; thenwe obtained
the difference of this distribution and the the same distribution rotated of
120◦; we have plotted this in figure 4.8: red means positive difference, blu
negative difference and white no difference. From this result it is difficult
to conclude if there is or not conformal invariance.
We underline that we have arrived only at L = 16; it could be an in-

teresting perspective to perform simulations at larger size, but this would
need strong efforts in computational time, since, as said before, the com-
plexity of the algorithm that generates spanning trees is O(N4 = L8).
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Figure 4.8: The difference between the distribution of the triple point
mapped into the circle, figure 4.7, and the same rotated of 120◦; red means
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Chapter 5

Connection between GPM and
SLE

In this chapter we will give a short introduction to Stochastic Loewner
Evolution (SLE), a mathematical tool that is conjectured to describe the
scaling limit of curves generated by models of statistical mechanics at the
critical point; recently, some efforts have been also done to relate minimal
paths in two dimensional disordered systems and SLE processes, see for
example the boundary walls in Ising Spin Glasses [26] [27]. We will see
that also the GPM, at the critical value ρ = 1, generates curves; we will
test if these curves can be described by a SLE.

5.1 Stochastic Loewner Evolution

In this section we introduce Stochastic Loewner Evolution, following the
rewievs of Cardy [28], Nienhuis [29] and Gruzberg [30].

5.1.1 Introduction to SLE

We can understan how SLE is linked to statistical mechanics if we consider
the following example.
Consider the Ising model in a simply connected region D with bound-

ary ∂D, with a very fine lattice inside (essentially, we want the lattice spac-
ing to be much smaller than the system size and the correlation length at
a given temperature).
We impose the following boundary conditions, see figure 5.1. On the

upper portion of the boundary ∂D between A and B we force the spins
to be up and, on the lower portion, to be down. This forces a domain
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Figure 5.1: The Ising model in a domain D at T = 0 (left) and T near Tc
(right).

wall to go between the points A and B. Then at zero temperature there
will be exactly one straight domain wall between the points A and B. As
the temperature increases, the domain wall will wander off the straight
line, and eventually, at the critical temperature will become a complicated
fractal curve.
The fractal curves that appear at the critical temperature are the ones

that the SLE focuses on.

5.1.2 Loewner equation

Consider the upper half-plane H. A compact subset K of H, such that
H\K is simply connected and K = K ∩ H, is called a hull. For any hull
K there exists a unique conformal map, denoted by gK which sendsH\K
ontoH and satisfies the normalization

lim
z→∞

(g(z)− z) = 0.

This map has an expansion for z→ ∞ of the form

g(z) = z+
b1
z

+ · · · + bn
zn

+ . . .

where all expansion coefficients are real. The coefficient b1 = b1(K) is
called the capacity of the hull K.

Suppose that γ(t) (where t ≥ 0) is a continuous path inH which starts
from γ(0) ∈ R. We allow the path to hit itself or the real line, but if it
does, we require the path to reflect off into open space immediately. In
other words, the path is not allowed to enter a region which has been
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Figure 5.2: Left: a path that doesn’t hit itself, the hull is the path. Right: a
path that hits itself and the real line, the hull is the path and the gray zone.

disconnected from infinity by γ [0, t] ∪ R. To be specific, let us denote by
Ht for t ≥ 0 the unbounded connected component ofH\γ [0, t], and let Kt
be the closure of H\Ht . Then we require that for all 0 ≤ s < t, Ks is a
proper subset of Kt. Kt is the hull and τt = γ(t) the tip of the curve γ [0, t].
We see in figure 5.2 two paths satisfying these conditions with their hull.
Given a path γ(t) we define gt(z) := gKt(z). The function gt(z) maps

the whole boundary of Kt onto part of the real axis. In particular, it maps
the tip τt to a real point at. As the path grows, the point at moves on the
real axis. It can be proved that at is a continuous function in t.

A simple but instructive example is when γ is a straight line growing
vertically upwards from a fixed point a: γ(t) = a+ i2

√
t. In this case, as

showed in the previous chapter by equation (4.1),

gt(z) = a+
√

(z− a)2 + 4t (5.1)

and at = a.

It can be shown that, given a curve γ, the map gt satisfies a very simple
differential equation called Loewner equation

∂t gt(z) =
2

gt(z) − at
, g0(z) = z . (5.2)

We can give an intuitive derivation of this equation. Suppose that we
already know the map gt and want to find out what happens during the
time increment between t and t + dt. Using the composition of maps
we write gt+dt = dgt ◦ gt. Under the map gt the segment γ [t, t+ dt] is
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mapped to a (almost) straight short vertical segment beginning at point
at ∈ R. By equation (5.1) the conformal map dgt removing the segment is

dgt(z) = at +
√

(z− at)2 + 4dt (5.3)

Composing this with gt and expanding in small dt we get

gt+dt(z) = dgt(gt(z)) = at +
√

(gt(z) − at)2 + 4dt ≈ (5.4)

≈ gt(z) +
2dt

gt(z) − at
. (5.5)

This immediately leads to Loewner equation (5.2) in the limit dt→ 0.

There are two ways in which one can think about Loewner equation.
The first one was just presented: given a curve γ the upper half-plane, we
can obtain, at least in principle, the real function at by constructing the cor-
responding conformal maps. The second way is the opposite: given a real
continuous “driving” function at we can plug it into Loewner equation
and solve it forward in time starting with the initial condition g0(z) = z.
An example: we can consider the driving function at = a; we can eas-

ily solve the Loewner equation (5.2) and we obtain the expected result of
equation (5.1).
We explain now howwe can find the hull corresponding to a map gt(z)

that solves Loewner equation (5.2) with a driving function at. For a given
point z ∈ H, the solution of equation (5.2) is well defined as long as gt(z)−
at 6= 0. Thus, we define t̄z as the first time t̄ such that limt→t̄(gt(z) − at) =
0. For some points z in H the time t̄z = ∞, meaning that at these points
the Loewner map is defined for all times. The union of all the points z for
which t̄z ≤ t is the hull corresponding to the map gt(z):

Kt =
{

z ∈ H : t̄z ≤ t
}

and its complement Ht = {z ∈ H : t̄z > t} = H\Kt is the domain of gt,
that is the set of points for which gt(z) is still defined.
Another useful notion is that of the trace γ produced by Loewner equa-

tion. This is defined as the union points

γ(t) = lim
z→0
g−1t (z+ at)

where the limit is taken within the upper half-plane.
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Some example. If we consider the driving function at = a we find that
the hull is equal to the trace.
It’s possible to show that the map:

gt(z) =
(z− r)2 + 2z

√
r2 − 2t+ (z+ r)

√

(z+ r)2 − 4z
√
r2 − 2t

2z
(5.6)

is the solution of the Loewner equationwith driving function at = 3
√
r2 − 2t−

2r; for t < r2/2, gt(z) removes a circular arc of radius r growing in the
complex plane from the point r on the real axis towards the point −r. The
branches of the square roots in equation (5.6) have to be chosen in such a
way that

lim
t→r2/2

gt(z) =

{

z+ r2/z for |z| ≥ r,
−2r for |z| < r.

(5.7)

Note that at time τ = r2/2 the map gt changes discontinuously. At any
time before that the hull of the map is the segment of the arc. But exactly
at t = τ the whole region D = {|z| < r, Im z ≥ 0} (the upper half of the
disc of radius r) is mapped to the point −2r; then at t = τ the hull is the
region D.

Since now we have discussed the Loewner equation in a deterministic
way; in the following we will introduce the Stochastic Loewner Evolution.

5.1.3 Stochastic Loewner Evolution

The remarkable discovery of Schramm [21] was that one can study Loewner
equation (5.2) with random driving functions and in this way obtain all
possible ensembles of curves with conformally invariant measures. We
will not prove, but this it’s true if we take at =

√
κBt where κ > 0, and

Bt is the standard Brownian motion started at a(0) = 0. The resulting
stochastic Loewner equation is

∂t gt(z) =
2

gt(z) −
√

κBt
, g0(z) = z , (5.8)

and the sequence of conformal maps that it produces came to be known as
SLEκ.
We then summarize the properties of SLEκ:

• for all values of κ one can still define the trace of an SLEκ as the union
of points γ(t) = limz→0 g−1t (z+ at) (and this limit exists). Moreover,
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Figure 5.3: Simplified impression of SLE for κ ≤ 4, 4 < κ < 8 and κ ≥ 8
from left to right. The trace of the SLE process is shown in black. The
union of the black path and the gray areas represents the hull.

the trace is a continuous curve staring at γ(0) = 0, reaching infinity
as t→ ∞ and never crossing itself (self-avoiding).

• For 0 ≤ κ ≤ 4 an SLE trace γ is a simple curve (does not have
double points). In this case the SLE hull coincides with the trace:
Kt = γ [0, t].

• For 4 < κ < 8 an SLE trace has an infinite number of double points.
The trace “touches” both itself and the real axis at every scale.

• For κ ≥ 8 the trace is a space-filling curve: all the points inH lie on
the trace.

• The fractal dimension of the trace is

d f (κ) =

{

1+ κ
8 for κ ≤ 8,

2 for κ ≥ 8. (5.9)

SLE had been introduced by Schramm in [21] in order to prove that
LERW (introduced in previous section) is conformally invariant; to do that
he proved that the scaling limit of LERW in a domain D converges to the
measure of a SLE2 conformally mapped into the domain D.

Starting from this result, great attention has been posed on SLE, trying
to establish connections between SLE and discrete models. The connection
is made by defining a path in these discrete models, which in the scaling
limit converges to the trace of a SLE process.

Before trying to establish a connection between GPM and SLE, we de-
scribe the connection between percolation model and SLE.
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5.1.4 SLE and critical percolation

We define site percolation on the triangular lattice as follows. All vertices
of the lattice are independently coloured blue with probability p or yel-
low with probability 1− p. An equivalent, and perhaps more convenient,
viewpoint is to say that we colour all hexagons of the dual lattice blue or
yellow with probabilities p and 1− p, respectively. It is well-known that
for p ≤ 1/2, there is almost surely no infinite cluster of connected blue
hexagons, while for p > 1/2 there exists a.s. a unique infinite blue cluster.
This makes p = 1/2 the critical point for site percolation on the triangular
lattice. For the remainder of this subsection we assume that we are at this
critical point.

Let us for now restrict ourselves to the half-plane. Suppose that as
our boundary conditions, we colour all hexagons intersecting the negative
real line yellow, and all hexagons intersecting the positive real line blue.
All other hexagons in the half-plane are independently coloured blue or
yellow with equal probabilities. Then there exists a unique path over the
edges of the hexagons, starting from the origin, which separates the cluster
of blue hexagons attached to the positive real half-line from the cluster of
yellow hexagons attached to the negative real half-line. This path is called
the chordal exploration process from 0 to ∞ in the half-plane. See figure
5.4 for an illustration.

The exploration process can also be described as the unique path from
the origin such that at each step there is a blue hexagon on the right, and
a yellow hexagon on the left. This path can also be generated dynami-
cally, as follows. Initially, only the hexagons on the boundary receive a
colour. Then after each step, the exploration process meets a hexagon. If
this hexagon has not yet been coloured, we have to choose whether to
make it blue or yellow, and the exploration process can turn left or right
with equal probabilities. But if the hexagon has already been coloured blue
or yellow, the exploration path is forced to turn left or right, respectively.

Note that in this dynamic formulation it is clear that the trajectory of
the exploration process is determined completely by the colours of the
hexagons in the direct vicinity of the path. Further, it is clear that the tip
of the process can not become trapped, because it is forced to reflect off
into the open if it meets an already coloured hexagon. This suggests that
in the continuum limit, when we send the size of the hexagons to zero, the
exploration process may be described by a Loewner evolution. The only
candidate is SLE6 , because it can be proved that only SLE6 has the locality
property.
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Figure 5.4: Part of the percolation exploration process in the half-plane.

5.2 Paths in critical GPM compared to SLE

In this section we will show how the GPM at the critical point ρ = 1 gen-
erates naturally non intersecting paths with end points on the boundary
(defining properies of a SLE); then we will compare this paths with the
SLE and we find that they can correspond to a SLE4.

5.2.1 Paths in critical GPM

Consider the set G of N = L2 grid points and an instance P of N − 1 Pois-
son points. Let g1 ∈ G (g2 ∈ G) and define π1 (π2) the optimal marriage
between G1 := G\{g1} (G2 := G\{g2}) and P . We show that the graph L,
whose edge set is π1 △ π2 := (π1 ∪ π2)\(π1 ∩ π2) and whose vertex set is
the subset of G ∪ P composed by vertices adjacent to edges in π1 △ π2, is
a path joining g1 to g2.
To do this we introduce a point p̄ (we can imagine this out of the

square) and we define P̂ := P ∪ { p̄}. We will call π̂1 (π̂2) the optimal
marriage between P̂ and G such that π̂1(g1) = p̄ (π̂2(g2) = p̄). The set
π̂1 △ π̂2 is composed by edges between the grid and Poisson points that
have changed “partner” in π̂1 and π̂2. We consider the graph L̂ whose
edge set is π̂1 △ π̂2 and whose vertex set is the subset of G ∪ P̂ composed
by vertices adjacent to edges in π̂1 △ π̂2. All the vertices in L̂ have coordi-
nation 2; then L̂ is composed by loops. If the instance of Poisson points is
not degenerate, we can infer, for geometrical reasons, that L̂ is composed
by a single loop containing p̄. If we remove from L̂ the vertex p̄ and the
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edges ( p̄, g1) and ( p̄, g2) we obtain a path joining g1 to g2; obviously this
graph is equal to L.
Since every Poisson point p ∈ V(L) has coordination 2, we can replace

it and his incident edges (p, ga) and (p, gb) with an edge (ga, gb). Then we
obtain a path on the grid points joining g1 to g2.

If we impose L to be odd and we chose g1 to be the grid point in the
middle of the upper boundary of the square and g2 the grid point in the
middle of the lower boundary of the square, we obtain paths like the one
shown in figure 5.5.

Figure 5.5: A path connecting the grid point in the middle of the upper
boundary of the square and the grid point in the middle of the lower
boundary of the square, in a square of side L = 15.

5.2.2 Paths in critical GPM compared to SLE

We have compared the paths generated by GPM at the critical point with
the SLE finding the left passage probability of the points of the square.
Consider the square with a fine grid inside; the left passage probability of
a point p of this fine grid is the probability that a path generated by the
GPM passes at the left of p.

For the SLEκ it is known the left passage probability for the points of
the upper half-plane H. Let us fix a point z = x + iy ∈ H, then the



66 Connection between GPM and SLE

probability that a trace of a SLEκ passes to the left of this point is (Schramm
formula)

P [γ left of z] =
1

2
+

Γ
(

4
κ

)

√

πΓ
(

4
κ − 1

2

)

x

y
2F1

(

1

2
,
4

κ
;
3

2
;−x

2

y2

)

(5.10)

where 2F1 is a hypergeometric function [31].
We have mapped this distribution into the square and then we have

compared it, for different values of κ, with the left passage probability for
the points of the square obtained by simulations with the GPM, perform-
ing a sampling of 50.000 paths on a square of side L = 15; we compared
the contour lines of these two distributions; we see in figure 5.6 that our
distribution is very similar to the distribution of a SLE4.

After that we have found the distribution of the lengths of curves gen-
erated with the GPM on a square of side L = 9, 15, 25, obtained by a sam-
pling as before, as we see in figure 5.7. The distributions for L = 9 and
L = 15 have been rescaled by a factor c2 and c rispectively and we ob-
tained that, for a value of c = 1.165 ± 0.010, they are placed one upon
another, as we can see in figure 5.8. From this we can then find the fractal
dimension d of our curves, given by the relation:

d− 1 =
log c

log 5/3
(5.11)

since the ratio between following sizes is 5/3. By equation (5.9), this is the
same fractal dimension of a SLEκ with the following κ:

κ = 8(d− 1) = 2.4± 0.2. (5.12)

This result is not consistent with the one obtained from the left passage
probability.
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Figure 5.6: Contour lines of the distribution of the left passage probability
obtained with the GPM from a sampling of 50.000 paths on a square of
side L = 15 (in black) and the one of an SLE4 (in blue).
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Figure 5.7: The length probability distribution for the curves generated by
GPM on a square of side L = 9 (red), L = 15 (blue) and L = 25 (purple)
with a sampling of 50.000 paths.
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Figure 5.8: The lenght probability distribution of figure 5.7 rescaled of c2

for L = 9 and c for L = 15, with c = 1.165.



Riassunto in italiano

Capitolo 1

Nel primo capitolo, dopo aver fornito le fondamentali definizioni di teo-
ria dei grafi e una concisa introduzione all’ottimizzazione combinatorica,
viene presentato il Grid-Poisson Marriage, il modello di meccanica statis-
tica oggetto di studio del presente lavoro di tesi. Vengono quindi messi
in luce i legami esistenti fra tale modello e il noto problema di ottimiz-
zazione combinatorica conosciuto con il nome di Assignment Problem.
Viene quindi fornita una descrizione dell’algoritmo ungherese che trova
la soluzione di tale problema in tempo polinomiale.

L’ottimizzazione combinatorica è una branca della computer science
il cui scopo è trovare la soluzione di problemi il cui insieme di possibli
soluzioni ha cardinalità finita. Si consideri il seguente esempio: sono date
Nmacchine e N lavori da compiere, sia ǫij il costo necessario alla macchina
i per svolgere il lavoro j. Si vuole assegare un lavoro ad ogni macchina
minimizzando il costo totale. Quello ore descritto è l’Assignment Problem.
Gli elementi di un problema di ottimizzazione combinatorica sono:

una instance del problema, un insieme di possibili soluzioni e una fun-
zione da minimizzare definita sull’insieme delle possibili soluzioni. Per il
suddetto problema tali elementi sono rispettivamente: unamatrice di costi
ǫij, l’insieme delle possibili assegnazioni e il costo di ogni assegnazione.
Si è interessati a trovare la soluzione dei problemi di ottimizzazione per
via algoritmica; si dice che un algoritmo risolve un problema se il tempo
impiegato dall’algoritmo per trovare la soluzione del problema è maggio-
rato da un polinomio nella taglia del problema (un polinomio in N per
l’Assignment Problem).
L’algoritmo ungherese (attributo assegnatogli in onore di alcunimatem-

atici ungheresi per i contributi apportati allo sviluppo del medesimo) ri-
solve l’Assignment Problem in un tempo O(N3).
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Il Grid-PoissonMarriage (GPM) è cosı̀ definito: consideriamo il quadrato
[0, L] × [0, L] ⊂ R2 nel piano, L intero, con metrica euclidea. Definiamo i
punti che chiameremo di griglia:

G = {(i− 0.5, j− 0.5) ∈ [0, L] × [0, L] : i ∈ (1, 2, . . . , L), j ∈ (1, 2, . . . , L)}

(sia N := |G| = L2) e quelli che chiameremo di Poisson:

P = {(xi, yi) ∈ [0, L]× [0, L] : i ∈ (1, 2, . . . ,M)}

con xi e yi variabili aleatorie indipendenti con distribuzione uniforme in
[0, L] (sia M := |P| ≥ N).
Data una instance di punti di Poisson, definiamo un marriage come

una funzione π : G → P che assegna ad ogni punto di griglia un punto
di Poisson, in maniera tale che nessun punto di Poisson venga assegnato
a più di un punto di griglia.
Definiamo l’energia di un marriage π come la somma delle distanze

fra punti accoppiati:

HP (π) =
N

∑
i

d(i,π(i)).

Chiameremo πopt il marriage che minimizza l’energia e definiamo come
energia di una instance di punti di Poisson l’energia di πopt:

H(P) := HP (πopt) = min
π
HP (π).

Figure 5.9: πopt per 196 punti di griglia e 196 punti di Poisson.

Vediamo che per trovare l’energia di una instance di punti di Poisson
dobbiamo risolvere una variante dell’Assignment Problem in cui la ma-
trice dei costi ǫij è sottoposta a vincoli geometrici.
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Poiché i punti di Poisson sono estratti con distirbuzione uniforme nel
quadrato, è possibile definire 〈H(P)〉P come la media di H(P) rispetto a
tale distribuzione.

Capitolo 2

In questo capitolo studieremo il comportamento di 〈H(P)〉P in funzione
della taglia N del sistema e di un parametro densità definito come ρ :=
M/N; scopriremo un comportamento particolare per ρ = 1. Faremo
questo conducendo simulazioni numeriche e introducendo due euristiche:
lo Stable Marriage algorithm e il Box Algorithm.

Un’euristica è un’algoritmo che non trova la soluzione ottimale di un
problema di ottimizzazione combinatorica, ma è ha il vantaggio di essere
più veloce o più semplice da trattare analiticamente.

Lo Stable Marriage algorithm è un algoritmo di ottimizzazione locale;
consideriamo due insiemi discreti di punti U,V ⊆ Rd; diremo che due
punti x ∈ U e y ∈ V sono “mutually closest” se y è il punto più vicino
a x in V e x è il punto più vicino a y in U. Data una configurazione
di punti, uniamo tutte le coppie di punti che sono “mutually closest” e
le rimuoviamo; ripetiamo indefinitamente. Se applichiamo questo algo-
ritmo al GPM, chiameremo la configurazione otteneuta πst; è quindi vera
la seguente disuguaglianza:

HP (πopt) ≤ HP (πst) .

Abbiamo implementato lo StableMarriage algorithm che trova la soluzione
in tempi polinomiali O(N2).

Il Box algorithm è un algoritmo del tipo “divide and conquer”. Con-
siste nel dividere il quadrato di lato L del GMP in quadrati di lato 1 e
unire tutte le possibili coppie di punti di griglia e di Poisson presenti nel
quadrato di lato 1 e rimuoverle; si uniscono le coppie di quadrati adia-
centi a formare un rettangolo e si uniscono tutte le possibili coppie di punti
di griglia e di Poisson presenti nel rettangolo e si rimuovono; si ripete il
secondo step ora descritto fino a che tutti i punti sono stati accoppiati.
Chiameremo la configurazione otteneuta πbox; è quindi vera la seguente
disuguaglianza:

HP (πopt) ≤ HP (πst) ≤ HP (πbox) .
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É stata trovata una stima per eccesso di 〈HP (πbox)〉P e quindi di 〈HP (πopt)〉P ,
per un sistema con N punti di griglia; si evidenziano comportamenti dif-
ferenti in funzione della densità ρ:

〈HP (πopt,N)〉P . 〈HP (πst,N)〉P .

{

N if ρ 6= 1
N lnN if ρ = 1

N → ∞ . (5.13)

Sono quindi state fatte simulazioni numeriche con lo Stable Marriage
algorithm e con l’Hungarian algorithmper valutare gli andamenti di 〈HP (πst,N)〉P
e di 〈HP (πopt,N)〉P al crescere di N, al variare di ρ. I risultati sono ripor-
tati in figura 5.10. Sono stati visti i due regimi, in accordo con la (5.13),
e si può affermare che per ρ = 1 l’energia è una quantità superestensiva.
Questo comportamento particolare in ρ = 1, messo in luce dalle simu-
lazioni, fa pensare ad una cirticità del GPM per tale valore.
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Figure 5.10: Sinistra: plot di
〈HP (N)〉P

N vs N per ρ = 17/16. Destra: plot di
〈HP (N)〉P

N vs N per ρ = 1.

Capitolo 3

Abbiamo ipotizzato criticità per il GMP a ρ = 1; lo studio dei fenomeni
critici è una delle sfide della meccanica statistica; il comportamento di un
sistema al punto critico è caratterizzato dal divergere della lunghezza di
correlazione e non può essere facilmente approssimato da un sistema di
piccola taglia. Il Finite Size Scaling (FSS) è un ottimo metodo per estrap-
olare risultati nel limite termodinamico ottenuti da simulazioni (o esperi-
menti) su sistemi finiti.
In questo capitolo viene prima data una concisa trattazione del FSS,

viene quindi definita una funzione di correlazione per il GPM; viene rica-
vata la lunghezza di correlazione da simulazioni numeriche e si verifica se
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questa rispetta le predizioni del FSS.

Consideriamo un sistema di taglia L controllato da un parametro as-
similabile alla temperatura T, sia t = (T − Tc)/Tc. Sappiamo che per
t → 0 la lunghezza di correlazione ξ∞ diverga: ξ∞ ∼ |t|−ν; sia OL(t)
un’osservabile del sistema a taglia L, che si comporti per |t| → 0 come
O∞(t) ∼ |t|−xO . Possiamo scirvere OL(t) come una funzione di ξ∞(t) e L:

OL(t) ≈ fO(ξ∞(t), L) .

Non svilupperemo qui la trattazione del FSS, ma ne esporremo solo i risul-
tati; un primo risultato, che prende il nome di Asymptotic FSS, consiste
nella relazione:

OL(t) ≈ LxO/νGO(tL1/ν) ; (5.14)

un secondo risultato, che prende il nome di Correlation Lenght FSS, con-
siste nella relazione:

OαL(t)

OL(t)
≈ FO

(

ξL(t)

L

)

. (5.15)

Introduciamo quindi una funzione di correlazione per il GPM; data
una instance di punti di Poisson e trovato il marriage ottimale, possiamo
associare ad ogni punto di griglia con coordinate ~x un vettore ~ϕ(~x) appli-
cato in ~x che termina nel punto di Poisson accoppiato. Introduciamo nel
GPM condizioni al bordo toroidali e definiamo la funzione di correlazione:

GL(~r) = ∑
~x

〈 ~ϕ(~x) · ~ϕ(~x+~r)

|~ϕ(~x)||~ϕ(~x+~r)| 〉P ,

e la funzione di correlazione Wall-to-Wall:

GW,L(y) = ∑
x

GL(x, y)̇

Se scegliamo come osservabile OL la funzione di correlazione ξL, le re-
lazioni (5.14) e (5.15) diventano:

ξL(t)

L
≈ Gξ(tL

1/ν) (5.16)

e (ponendo α = 2)

ξ2L(t)

ξL(t)
≈ Fξ

(

ξL(t)

L

)

. (5.17)
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Il nostro metodo di indagine è stato: abbiamo effettuato simulazioni
numeriche a differenti taglie L e differenti ρ (nel nostro caso t = ρ − 1) e
abbiamo estrapolato la lunghezza di correlazione ξL(t). Quindi, se è vero
che il GPM è critico a ρ = 1, deve esistere un valore di ν tale che le coppie
di punti (ξL(t)/L, tL

1/ν) collassano su una curva. Vediamo ad esempio
che prendendo ν = 5/4, o valori prossimi a questo, la relazione di scaling
(5.16) è verificata, figura 5.11 (sinistra). Per quanto riguarda la relazione di
scaling 5.17, abbiamo fatto simulazioni a L = 20, 22 e abbiamo estrapolato

la lunghezza di correlazione; plottando
ξ2L(t)
ξL(t)

vs
ξL(t)
L , vediamo che i punti

cadono con una buona approssimazione su una curva, figura 5.11 (destra).
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Capitolo 4

In questo capitolo vengono inizialmente presentati i principali risultati
riguardo le mappe conformi, come il Riemann mapping theorem e la for-
mula di Schwarz-Christoffel. Viene quinidi mostrato come sia possiblie
generare alberi spanning (grafi connessi che non contengano loop) con
vertici i punti di griglia del GMP sfruttando l’algoritmo ungherese. Si è
quindi interessati a testare se tali alberi presentano invarianza conforme.

Il test utilizzato per testare l’invarianza conforme degli alberi è stato
proposto da D. B. Wilson; consideriamo un albero spanning sui punti di
griglia; ci sarà un unico cammino che connette tre punti agli angoli del
quadrato, chiameremo punto triplo l’unico punto dove questi cammini si
incontrano. Il test utilizzato è il segunte: è stata trovata la distribuzione del
punto triplo nel quadrato; questa è stata quindi mappata con una mappa
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conforme nel cerchio; se gli alberi presentano invarianza conforme, allora
la distribuzione del punto triplo mappata nel cerchio deve essere invari-
ante sotto rotazioni di 120◦; se questa non lo è non c’è motivo di credere
che gli alberi siano invarianti conformi. Vediamo in figura 5.12 (sinistra) la
distribuzione del punto triplo mappata nel cerchio, e (destra) la differenza
di tale distribuzione con se stessa ruotata di 120◦ (rosso significa differenza
positiva e blu negativa). Da questi risultati è difficile affermare se ci sia o
meno invarianza conforme.
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Figure 5.12: Sinistra: distribuzione del punto trioplo mappata nel cerchio.
Destra: differenza della precedente distribuzione con se stessa ruotata di
120◦ (rosso significa differenza positiva e blu negativa.

Capitolo 5

In questo capitolo viene introdotta la teoria conosciuta con il nome si Stochas-
tic Loewner Evolution (SLE); tale teoria permette di descrivere mediante
una semplice equazione differenziale stocastica le famiglie di curve del
semi-piano complesso che presentano invarianza conforme; tali famiglie
dipendono da un unico parametro κ, che interviene nell’equazione dif-
ferenziale, e possono quindi essere catalogate in base a questo. Vediamo
in figura 5.13 alcuni esempi di curve in funzione di κ. Diversi modelli di
meccaninca statistica al punto critico generano curve che si suppone go-
dano di invarianza conforme e che quindi possano essere descritte medi-
ante SLE. Anche se questa rimane, allo stato attuale, solo una congettura
per molti modelli, dimostrazioni rigorose sono state trovate per il Loop
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Figure 5.13: Esempi di SLE per diversi valori di κ: sinistra: κ ≤ 4, centro:
4 < κ < 8 e destra: k ≥ 8.

Erased Random Walk da O. Schramm. Viene quindi dato un dettagliato
esempio riguardo come il modello di percolazione al punto critico genera
curve che potrebbero essere descritte da una SLE con κ = 6.
Viene quindi illustrato come anche il GPM al valore critico di ρ = 1

genera dei cammini sui punti di griglia. Si è quindi testato se tali cammini
possono essere descritti mediante delle SLE. Per fare questo si è trovata
(mediante simulazioni) la left passage probability per i punti del qudrato,
ovvero la probabilità che un cammino passi a sinistra di un dato punto.
Questa è stata quindi confrontata con quella ricavata analiticamente per
una SLE; in figura 5.14 vengono messe a confronto le linee di livello di tale
probabilità per il GPM e per una SLE con κ = 4. Sembra esserci un discreto
accordo.

Figure 5.14: Confronto fra le linee di livello della left passage probability
per il GPM (nero) e per una SLE con κ = 4 (blu).



Bibliography
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[7] A. Schrijver, On the history of combinatorial optimization (till 1960),
“Handbook of Discrete Optimization” (K. Aardal, G.L. Nemhauser,
R. Weismantel, eds.), Elsevier, Amsterdam, 2005, pp. 1–68.

[8] H. Kuhn, The Hungarian Method for the assignment problem, Naval Re-
search Logistics Quarterly, 2:83-97, 1955.

[9] L. Lovász, M. D. Plummer,Matching theory, North-Holland, 1986.

[10] D. E. Knuth, The Stanford GraphBase: A Platform for the Combinatorial
computing, Addison-Wesley, (1993).



78 BIBLIOGRAPHY
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