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Introduction

Statistical Mechanics provides a set of ideas which allow us to understand
macroscopic phenomena starting from a microscopical description of the sys-
tem. In the case of equilibrium systems this program is established on a firm
basis. The probability distribution P (S) of a macroscopic state S at equilib-
rium at a certain temperature T = β−1 is given, in terms of the Hamiltonian of
the system H(S), by the Boltzmann-Gibbs distribution, i.e., P (S) ∼ e−βH(S).
This general statement has been proven very successful in the study of phase
transitions. However, the reason for which we say that we are able to study
phase transitions even if they are very complicated problems, in which more
than one scale is involved, is because simplifications occur due the prominent
importance of collective behaviours which dominates over the irrelevant effects
induced by genuine microscopic physics. Thanks to this simplification, which
is called universality, simple toy models are able to predict with great accu-
racy the values of observables that characterize the algebraic singularities that
the system shows approaching the critical point, such as critical exponents.
It happens that this universality characterizes also behaviors out of equilibrium
whenever collective behavior dictated by a closeness to the critical point emerge.

For non-equilibrium systems a general description of probability distribution
of the macroscopic system S, similar to Boltzmann-Gibbs one, has not been
achieved. Furthermore, since they are everywhere in nature, they are even
more intriguing. We observe essentially two different classes of non-equilibrium
systems in nature: those which are forced by an external constant perturbation
and those which are somehow prepared in a non-equilibrium initial state, which
are known as relaxation phenomena. In this work we will focus on the last
class of physical phenomena. It happens that, for example, universal behaviors
shows up if a magnetic object is suddenly cooled (i.e., it undergoes a quench)
from a high-temperature state right to the critical point of its second-order
phase transition. What is more intriguing is the fact that, in this case, the
relaxation dynamics never ends. During this never ending relaxation process
the fluctuation-dissipation theorem does not hold at any time. It happens that
an observable, the so-called fluctuation-dissipation ratio (FDR) can be used
to detect if the equilibration time is infinite or not; moreover, it turns out
that this is a universal quantity in the long-time limit. Since it is a universal
quantity, has been studied for years with all the theoretical tools that statistical
mechanics provides, such as lattice and field-theoretical approach and Monte-

1



Carlo simulations.
Since exact solutions have been found for only few of the problems which

arise in these contexts, a method called renormalization group has been in-
troduced for dealing with problems that have multiple scales of length. The
renormalization group (RG) is not a descriptive theory of nature but a general
method for constructing theories. The RG theory consists of a set of concepts
and methods which can be used to understand phenomena in many different
fields of physics, ranging from quantum field theory over classical statistical
mechanics to non-equilibrium phenomena, either classical and quantum.

In the past twenty years, an analytic implementation of the renormalization
group ideas, the so-called functional (or exact) renormalization group (fRG) has
produced a number of predictions in critical equilibrium systems as well as for
critical non-equilibrium one.

In this thesis we present calculation of the FDR in the long-time limit for
the case of a critical quench of the purely relaxational model by means of the
fRG technique, task that has not been achieved to date. The closest attempt is
Ref. [35] in which a genuine non-equilibrium critical exponent, known as initial-
slip exponent, has been calculated.

Our original contributions are the following:

(i) correction of a mistake done in the calculation of Ref. [35], in order to
obtain the critical initial-slip exponent, which is discussed around Fig. 4.3.
In addition we clarify the physical interpretation of the equation which
gives the anomalous dimension of the boundary (in time) order-parameter
field. This field represents the non-equilibrium initial condition necessary
to implement the dynamics induced by the temperature quench. All these
results will be crucial in order to achieve our purpose, i.e. to calculate the
fluctuation-dissipation ratio in the long-time limit.

(ii) calculation of the critical initial slip exponent by means of a long-time anal-
ysis of the system, rather than the short-time one introduced in Ref. [35].

(iii) general analytical expression, given by Eq.-(5.35), for the asymptotic value
of the fluctuation-dissipation ratio in the so-called local potential approxi-
mation of the flow equation for the effective action given by the Wetterich
equation (see Sec. 5.1). We have considered three increasing accuracy
within the local potential approach which led us to the results for the
fluctuation-dissipation ratio in Fig. 5.1.

φm,k 6= 0
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The chapters of this thesis are organized as follows:
1: We introduce the FDR, the main observable which we are interested in.

We review the results which state that indeed it is a universal quantity
in the long-time limit, for the case of purely relaxational dynamics. We
discuss the general class of field theories which are used in order to describe
the universal behavior of relaxational models. We review the state of the
art for what concerns the calculation of the FDR in the long-time limit.

2: We introduce the central theoretical quantity for the fRG technique, i.e.
the effective action. We detail its definition and properties.

3: We describe the fRG technique in its equilibrium formulation. We show
how one can obtain information about the critical point, such as the static
critical exponents.

4: We review the recent literature, particularly Ref. [35], which is the first
analysis of the purely relaxational model with the fRG technique in which
the critical initial-slip exponent has been calculated; in addition, it is our
starting point for the calculation of the FDR.

5: We generalize the technique developed in Ref. [35] in order to calculate
the FDR analytically.

Chapters 1, 2 and 3 are mainly introductory and short reviews of well-established
background material. Chapter 4 is, instead, a review of very recent literature.
The last section of Chapter 4, as well as the whole Chapter 5 present original
material.
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Chapter 1

Critical relaxational phenomena
and the field theoretical approach

In this first chapter we give a short introduction to the main concepts and
tools that are used in order to study critical relaxational phenomena, mainly
from a field-theoretical perspective. Our focus is on those systems which evolve
with a non-stationary dynamics. We introduce the fluctuation-dissipation ratio
(FDR), which is an observable that gauge the distance from a stationary situ-
ation. We introduce the model of relaxational dynamics that we are interested
in, i.e. the so-called purely relaxational (or A) model and its field-theoretical
implementation, to characterize the dynamics of an order parameter field. We
show how to calculate the FDR for the case of a critical quench of model A in
the Gaussian solution. We review the very important concept of universality
in the context of critical phenomena and we report the results which state that
the FDR is indeed a universal observable in the renormalization group sense.
In the last section we give a state of the art for what concern the determination
of the fluctuation-dissipation ratio in its long-time limit, for a critical quench of
the purely relaxational model.

The presentation of this chapter is inspired by Refs.[8, 6, 9] which contain
all the additional details.

This chapter is organized as follows:
Sec. 1.1: We describe the relaxational dynamics of an order parameter field via a

suitable Langevin equation. We define the FDR, i.e. the observable which
we are mainly interested in in this thesis work.

Sec. 1.2: We introduce the purely relaxational model. We investigate the solution
of the model within the Gaussian approximation, in order to set the frame-
work and to have a first at the FDR for the case of a critical quench.

Sec. 1.3: We introduce the response function formalism, which gives a field-theoretical
action starting from a Langevin equation. We discuss the implementation
of the conditions which give rise to a critical quench of model A and we
solve the corresponding Gaussian solution.
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Sec. 1.4: After a brief recap of equilibrium critical phenomena and the concepts that
arise in this context, we report the results that proved the universality of
the FDR in the long-time limit.

Sec. 1.5: We review the state of the art concerning the determination of non-
equilibrium universal quantities predicted by the purely relaxational model,
focusing on the results for the FDR in the long-time limit.

1.1 Dynamics, the fluctuation-dissipation theo-
rem and the fluctuation-dissipation ratio

1.1.1 Dynamics and observables

Let us consider a system in contact with a thermal bath at a given temper-
ature T . In principle the dynamics of the system is specified by its microscopic
Hamiltonian, either classical or quantum, via the evolution equations for the
density matrix and phase-space density, respectively. However, this fully micro-
scopic approach is rarely viable for actual real statistical systems. A description
of the dynamics in terms of mesoscopic variables is, in some cases, preferable,
since it focuses directly on those quantities that are expected to determine the
dynamical properties at length and time scales that are much larger than the
microscopic ones (at atomic or molecular level) but still small compared to
macroscopic one set by the dimension of the sample. Mesoscopic variables (or
observables), such as the local magnetization density in magnetic systems are
obtained by averaging the corresponding microscopic quantities on mesoscopic
length and time scales. This averaging is usually referred to as coarse-graining.

A viable approach to dynamics, which was first successfully applied to the
Brownian motion, consists of a description which takes advantage of the separa-
tion between the typical time scale of fast (microscopic) and slow (mesoscopic)
dynamical processes, clearly emerging in some cases. It is natural to assume
that the dynamics of the mesoscopic observables can be described as the result
of an effective slow deterministic drift towards a stationary state (equilibrium
or not) and of a stochastic force that sums up the effect of the fast microscopic
fluctuations. Of course, this description fails to reproduce the dynamics tak-
ing place at microscopic time and length scales. Hence, when the macroscopic
physics is crucially related to some microscopic events such a mesoscopic de-
scription is not expected to describe the relevant physical processes. We will
strictly consider systems and phenomena for which the mesoscopic description
is feasible. This is the case, for example, when one considers the dynamics of
the order parameter field close to a second-order phase transition at which it
is known that because of the critical slowing down the dynamics occurs on a
mesoscopic time scale.

Let us assume that the mesoscopic properties of the system are described
by a classical field φ, which represents, e.y., the coarse-grained local magnetiza-
tion field for the example of the magnetic system. In terms of φ, the effective
Hamiltonian is given by H[φ]. The previous heuristic considerations motivate

8



the assumption that the dynamics of the system is described by the Langevin
equation

∂tφ(x, t) = −D δH[φ]

δφ(x, t)
+ η(x, t), (1.1)

where η is a white noise, whose first and second moment are respectively given
by

〈η(x, t)〉 = 0, 〈η(x, t)η(x′, t′)〉 = 2N δ(d)(x− x′)δ(t− t′), (1.2)

where D and N are either constants or a differential operators depending on
the specific model which we are considering. x and t represents, respectively,
the d-dimensional spatial coordinates and the time.

From the Langevin equation (1.1) it is possible to derive the Fokker-Planck
equation for the probability density P [φ(x), t] of finding the system in a field con-
figuration φ(x) at time t. The stationary distribution for which ∂tP [φ(x), t] = 0
is the Gibbs one PG ∼ e−βH[φ] if and only if the Einstein relation N = βD is
satisfied. If the system is ergodic, in the long-time limit, P [φ(x), t] will be given
by PG, independently of the initial condition of the system.

We would like to find an observable which can distinguish a stationary dy-
namics (translationally invariant in time) from a genuine non-equilibrium dy-
namics (not invariant under time translations). Local time observable such as
〈φ(x, t)〉 are not interesting in this sense because they reach an asymptotic value
in the long-time limit, from which it is no longer possible to extract information
about the system’s dynamics. The two-times observables which we are going to
consider are in the following given by:

(i) the correlation function of the mesoscopic variable φ(x) is given by

Cx−x′(t, s) = 〈φ(x, t)φ(x′, s)〉, (1.3)

and it is related to the relaxation of spontaneous (thermal) fluctuations
of the local magnetization density field φ.

(ii) the response function is a way to characterize the response of the system
to an external perturbation. In the following we assume that the per-
turbation is given by an external field h(x) that couples linearly to the
field φ(x) at the level of the Hamiltonian H: Hh[φ] = H[φ]−

∫
x
φ(x)h(x).

In the case of magnetic systems this external field plays the role of the
magnetic field. The linear response function Rx−x′(t, s) is then defined by

Rx−x′(t, s) =
δ〈φ(x, t)〉h
δh(x′, s)

∣∣∣
h=0

, (1.4)

where we indicate by 〈.〉h the mean value over the stochastic dynamics
induced by the Langevin equation (1.1) with the effective Hamiltonian
Hh. Note that because of causality Rx−x′(t, s) = 0 if s > t.

One can easily derive the following identity by using the definition of the two-
time functions and Eq. (1.1):

2TRx−x′(t, s) = (∂s − ∂t)Cx−x′(t, s)−Ax−x′(t, s), (1.5)
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where we have defined the asymmetry function Ax−x′(t, s) via

Ax−x′(t, s) = 〈φ(x, t)D
δH[φ]

δφ(x′, s)
〉 − 〈D δH[φ]

δφ(x, t)
φ(x′, s)〉. (1.6)

We see that the two-time functions are not independent from each other.

1.1.2 Fluctuation-dissipation theorem and its violation:
definition of fluctuation-dissipation ratio

When the system equilibrates, the relation between the two-time functions,
given by Eq. (1.5), assumes a simpler form. In fact the time-translational in-
variance (TTI) implies that the correlation and response functions satisfy
Cx−x′(t, s) = Cx−x′(t − s, 0) and Rx−x′(t, s) = Rx−x′(t − s, 0). Accordingly,
(∂t − ∂s)Cx−x′(t, s) = −2∂sCx−x′(t, s). Moreover, equilibrium is characterized
by time-reversal symmetry (TRS), which implies that the correlation function of
two observable O1(t) and O2(t) satisfies 〈O1(t)O2(s)〉 = 〈O1(s)O2(t)〉, so that
the asymmetry vanishes. Taking into account these observations, one concludes
from Eq. (1.5) that

Rx(t, s) = β∂sCx(t, s), (1.7)

which is just one formulation of the fluctuation-dissipation theorem (FDT). Note
that the FDT holds also if C is replaced by the connected correlation function,
since, due to TTI, 〈φx(t)〉 is independent of time in equilibrium.

In generic dynamical situation both the assumptions, i.e. TTI and TRS,
are not realistic and instead of the relationship between Rx and Cx determined
by the fluctuation-dissipation theorem, given by Eq. (1.5), the following more
general relation holds between these two-time functions:

Rx(t, s) = Xx(t, s)∂sCx(t, s), (1.8)

where we have introduced the fluctuation dissipation ratio (FDR), given by

Xx(t, s) =
TRx(t, s)

∂sCx(t, s)
. (1.9)

Whenever s is larger than the equilibration time teq of the system, the dynam-
ics satisfies time-reversal symmetry and time-translational invariance so that
Eq. (1.7) Xx(t, s) = 1.

The asymptotic value of the FDR, given by

X∞ = lim
s→∞

lim
t→∞

Xx=0(t, s), (1.10)

is a suitable quantity for the description of systems with slow dynamics, i.e.,
those systems whose relaxational dynamics persists for extremely long times. In
fact, X∞ = 1 whenever teq < ∞, i.e., the fluctuation-dissipation ratio is equal
to one if the system reaches a stationary state; X∞ 6= 1, instead, is the signal
of an ever lasting non-equilibrium dynamics.
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Assuming that the system under study is translationally invariant, we con-
sider in what follows the response function Rq(t, s) and the correlation function
Cq(t, s) in Fourier space. Within it, it is natural and convenient to define the
fluctuation-dissipation ratio as

Xq(t, s) =
TRq(t, s)

∂sCq(t, s)
, (1.11)

which, however, is not the Fourier transform of Xx(t, s). Nevertheless, the
following relation is verified

X∞x=0 = X∞q=0 = X∞, (1.12)

where X∞q=0 is defined from Xq in analogy with X∞ in Eq. (1.10). For more
information in this interesting very last equality we invite the interested reader
to look at Ref. [8].

1.2 The purely relaxational model and its Gaus-
sian solution

We introduce the representative of a large class of models whose purpose
is to describe relaxational phenomena at a coarse-grained level in the context
of unfrustrated statistical systems. The purely relaxational model (model A in
the classification of Hohenberg and Halperin, given in Ref. [7]) is given by the
Langevin equation presented in Eq. (1.1) in which D = D and N = N , i.e., are
constants. We choose the deterministic drift present in the Langevin equation
to be in the class of Z2-invariant Hamiltonians. In this case the Hamiltonian of
the system is given by the Landau-Ginzburg effective Hamiltonian, which has
been a powerful tool for the study of the ferromagnetic phase transition, see
Ref. [2]. The effective Hamiltonian H(φ) is given, with the introduction of a
magnetic field h, by

HGL =

∫
ddx

[
1

2
(∇φ(x))2 +

r

2
φ2(x) +

g

4!
φ4(x)− h(x)φ(x)

]
, (1.13)

where g > 0 in order to have a stable Hamiltonian for r < 0 and r is related to
the temperature. In particular, within the mean field approximation (MF), r is
the shift from the critical temperature Tc of the model : r ∼ (T − TC), while g
is an interaction term which stems from the neighbor interaction of the lattice
Ising model from which the field theory, given by Eq. (1.13), arises. The first
term on the r.h.s. accounts for an energy penalty for configurations that exhibit
domain walls or spatial inhomogeneities.

The purely relaxational model has been proven to be very useful in order
to study the following physical phenomenon. Consider an Ising ferromagnet in
equilibrium at temperature T0 greater than its critical temperature TC of the
second-order phase transition. Then, at time t0 put the ferromagnet in contact
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with a thermal bath at temperature T < T0. In general the ferromagnet will
undergo two distinct regimes: the first (A) is a genuine non-equilibrium one
for t < teq(T ), where teq(T ) is the equilibration time of the system; the second
(B) is a stationary regime for t � teq(T ). In some cases regime (B) is never
reached because teq = ∞, for example if the ferromagnet is quenched to its
critical temperature.

Let us discuss the case g = 0, for which it is possible to study only the regime
in which r ≥ 0. The correlation length ξ is an observable which describe how
microscopic variables, such as spin and density, at different positions are related.
It is a well known fact that it diverges upon approaching the critical point of a
second-order phase transition as ξ ∼ r−ν , thus describing a scale-free system at
criticality. The parameter ν is one of the so-called critical exponent. Because of
the divergence of the correlation length, we expect that the equilibration time
teq(TC) will diverge for a quench at the critical point, while it remains finite
whenever the quench is at a temperature higher than the critical one, as we see
in a moment from the solution of the Gaussian model, corresponding to setting
g = 0. In momentum space the Langevin equation given by Eq. (1.1) becomes

∂tφq(t) = −Dωqφq(t) + ηq(t), (1.14)

where ωq = (q2 + r). Note that if a magnetic field linearly coupled to the order
parameter field φ is introduced, the equation becomes

[∂t +D(q2 + r)]φq(t) = ηq(t) +Dhq(t). (1.15)

Using the definition of the response function, if we consider first the evolution
of 〈φq(t)〉 and then we differentiate functionally with respect to the magnetic
field h, as in Eq. (1.4), we obtain

[∂t +Dωq]R0,q(t, s) = Dδ(t− s). (1.16)

The solution is immediately given by

R0,q(t, s) = Dϑ(t− s)e−Dωq(t−s) = DG0,q(t− s), (1.17)

where ϑ(t) is the Heaviside step-function. In the following we will refer toG0,q as
the propagator associated with the Gaussian Langevin equation in momentum
space. Taking advantage of the propagator’s properties we could easily write
down the solution for the field with h = 0, which is the fundamental ingredient
we need for the calculation of the correlation function:

φq(t) = φq(t9)G0,q(t, t0) +

∫ ∞
t0

dt′G0,q(t, t′)ηq(t′), (1.18)

where φq(t0) is the boundary field φx(t0) in Fourier space, which represent the
initial condition at time t0 = 0 where we do the temperature quench. From this
solution, we calculate the correlation function according to the definition

〈φq(t)φ−q(s)〉 =|φq(0)|2G0,q(t, 0)G0,q(s, 0) +

+ 2D

∫ ∞
0

dt′G0,q(t, t′)G0,q(s, t′).
(1.19)
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We are interested in an initial microscopic state which corresponds to high-
temperature macroscopic state. The initial condition is therefore itself a random
variable, and the dynamical quantities which we are interested in are mediated
over this initial condition and over the stochastic dynamics induced by the noise
term. Let us take an initial state which is prepared with a small value of the
magnetization, identified by the following properties:〈φ0(x)〉ic = a(x),

〈[φ0(x)− a(x)][φ0(x′)− a(x′)]〉ic = ∆−1δ(d)(x− x′).
(1.20)

In the last equation 〈·〉ic means the average over the probability distribution of
the initial condition and ∆ may be a constant or a local differential operator in
space.

Consider now the correlation of the order parameter φ averaged over the
noise η and the initial condition, i.e., C0,q(t, s) = 〈φq(t)φ−q(s)〉η,ic. We obtain

C0,q(t, s) =
D

ωq

[
e−Dωq|t−s| − e−Dωq(t+s)

(
1− ωq

∆

)]
. (1.21)

Let us analyze the two relevant limiting cases:
(i) Note that if ∆ = ωq then the initial condition are equilibrium one, and

C0,q(t, s) = Ceq
0,q(t − s) = e−Dωq|t−s|

q2+r . This last equation can indeed
be directly retrieved from the Ginzburg-Landau Hamiltonian, given by
Eq. (1.13), as the inverse of the double functional derivative of H with
respect to the coarse-grained order parameter field φ.

(ii) Suppose that the system is prepared in a very defined state, which means
∆� 1. In the limit ∆−1 → 0 we obtain the Dirichlet correlator, given by

C0,q(t, s) = CD
0,q(t, s) =

D

ωq

[
e−Dωq|t−s| − e−Dωq(t+s)

]
, (1.22)

which is such that CD
0,q(t, 0) = 0, i.e., the correlation with the initial

state vanishes. In this case, the differential equation which the correlation
function must satisfy is given by

[∂s +Dωq]C0,q(t, s) = 2DG0,q(t, s) = 2R0,q(t, s). (1.23)

Using Eq. (1.21) for the correlation function, the FDR is :

X0,q(t, s) =
R0,q(t, s)

∂sC0,q(t, s)
=

1

1 + e2ωqs(1− ωq∆−1)
. (1.24)

We see again that we can set the initial condition in such a way that X0,q(t, s)
is equal to 1 at all times, i.e., ωq = ∆. This choice would corresponds to
sampling the initial condition from the equilibrium distribution of the Gaussian
model described by the effective Hamiltonian given in Eq. (1.13) with g = 0.
If, instead, the initial condition is not an equilibrium one we have two different
cases:
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(1) for r > 0, X∞ = 1 for every value of q and for q = 0 we obtain teq(Tc) ∼
r−1 ∼ ξ2, thus retrieving the mean field result ν = 1/2.

(2) for r = 0, i.e., at the Gaussian critical point, for every q 6= 0 we obtain
again equilibrium after an equilibration time given by teq

0 (TC) ∼ q−2. For
q = 0 the long-time limit becomes X∞0 = 1/2 6= 1, indicating that the
zero mode does not equilibrate.

We introduce the dynamic critical exponent z by means of the relation

teq(TC) ∼ q−z. (1.25)

In the Gaussian case we have found that z = 2, as expected for a diffusion
process. Note that upon approaching a critical point the typical time scale of
dynamics of the fluctuations around the equilibrium state diverges as ∼ ξz (crit-
ical slowing down). This provides the natural separation between the relevant
slow evolution due to the developing collective behavior and the fast one related
to microscopic processes. This separation makes the mesoscopic description of
the dynamics a particularly viable approach to the problem.

1.3 From a Langevin equation to a dynamical
field theory

1.3.1 Construction of the dynamical action

Thanks to universality we can study in a successful way the critical regime
of a ferromagnet starting from the Landau-Ginzburg effective Hamiltonian, as
we have seen in the previous Section. Analogously, we expect that universal
behaviors typical of non-equilibrium systems can be described in terms of a
dynamical field theory. The procedure to obtain the dynamical action from the
Langevin equation has been outlined by Janssen-De Dominicis-Peliti (JDP), see
for a pedagogical introduction the Ref. [8].

The starting point is to define what kind of observables we are interested
in. Let us take a generic observable O[φ], function of the coarse-grained field
φ introduced previously. Accordingly, when the dynamics of φ is realized by a
Lengevin equation such as Eq. (1.1), we know that the interesting observable is
the average of O[φ], given by

〈O〉 =

∫
[dη]O[φη]PG[η] =

∫
[dφ]O[φ]

{∫
[dη]δ(φ− φη)PG[η]

}
, (1.26)

where PG[η] is the Gaussian probability associated to the white noise η intro-
duced previously, and φη is the solution of the Langevin equation for a given
realization of the noise and for a given initial condition φ(t0) = φ0 assigned at
time t0 = 0. Recall the following properties of the Dirac delta:

δ(φ− φζ) = δ(∂t −F − ζ) det

[
∂t −

δF
δφ

]
, (1.27)
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where F = −DδH/δφ. At this point one expresses the functional Dirac delta
introducing an auxiliary field φ̃: δ(γ) =

∫
[dφ̃] exp{

∫
dtddx φ̃γ}. The integral of

the noise can be carried out and gives

〈O〉 =

∫
[dφ][dφ̃]Oe−St0 [φ,φ̃], (1.28)

where the JDP action is given by

St0 [φ, φ̃] =

∫ ∞
t0

∫
ddx{φ̃(∂tφ−F [φ])−Dφ̃2}. (1.29)

The dynamic functional St0 is the starting point for a field theory approach to
the dynamics prescribed by a Langevin equation. We remark that in Eq. (1.30)
the term corresponding to the determinant is missing. To be properly evaluated,
it requires a discretization of the Langevin equation and eventually its expression
depends on the chosen discretization. Nevertheless the result of the computation
of averages is actually independent of the particular choice which can be made
in such a way to render the determinant equal to one. In turn, this implies that
Rx−x′(t, t) ∼ 〈φ(x, t)ζ(x′, t)〉 = 0, corresponding to the so-called Îto prescription
in stochastic calculus.

Note that φ̃ has a clear physical meaning. This is understood if we add a
magnetic field to the effective HamiltonianH which couples linearly to φ, so that
Hh = H−

∫
ddxhφ. This imply that the linear response function of observable

O with respect to the field h is given by

δ〈O〉
δh(x, s)

= 〈φ̃(s)DO〉, (1.30)

for this reason φ̃(x, s) is called response field. In particular the response function
for the order parameter reads

Rx−x′(t, s) =
δ〈φ(x, t)〉h
δh(x′, s)

∣∣∣∣∣
h=0

= β〈φ̃(x′, s)Dφ(x, t)〉. (1.31)

Note that, accordingly to what is done for the Langevin equation, we have to
set the initial condition in order to properly describe a relaxational process.
This can be done adding a boundary term Hb[φ0] in the action, which will be
discussed in the following.

1.3.2 Gaussian solution for the purely relaxational model

We turn now to the Gaussian solution of the purely relaxational model intro-
duced in previous Section by means of the dynamical action obtained following
the JDP procedure. Remember that in this case the deterministic drift given
by H in Eq. (1.29) is chosen as the Landau-Ginzburg Hamiltonian given by
Eq. (1.13). In this case the dynamical action becomes:

St0 [φ, φ̃] =

∫
t0

dt

∫
q

{φ̃ [∂t +Dωqφ]−Dφ̃2}+ Sb[φ0], (1.32)

15



where we have introduced the boundary action Sb[φ0], whose purposes is to im-
plement the high-temperature initial state from which the relaxational dynamics
starts. The boundary effective Hamiltonian is given by

Sb[φ0] = −∆

2

∫
ddx (φ0 − a)

2
. (1.33)

To find the classical equations of motion we introduce the currents j, j̃ linearly
coupled respectively with the fields φ and φ̃. The classical equation of motions,
which does not take into account for the effect of fluctuations, for the field φ
and φ̃ are respectively given by

δSt0
δφ̃

= 0→ j̃ + 2Dφ̃ = [∂t +Dωq]φ,

δSt0
δφ

= 0→ j = [−∂t +Dωq]φ̃+ δ(t)[−φ̃0 + ∆(φ0 − a)].

(1.34)

In the last equations, fields and currents must be identified with the correspond-
ing Fourier modes q and evaluated ad time t. Furthermore in order to obtain
the second equation in Eq. (1.34) we have integrated by parts the term φ̃∂tφ
in the dynamical action St0 given by Eq. (1.32), and we have set φ̃(t) → 0 for
t → ∞. Accordingly we see that φ̃0 must satisfy an initial condition given by
φ̃0 = ∆(φ0 − a).

We can differentiate the equation of motion for the response field, i.e., the
second equation in Eq. (1.34), with respect to j, obtaining

[∂t +Dωq]Gq(t, s) = δ(t− s). (1.35)

We can use this very last equation to write down the solution for the coarse-
grained order parameter field φ and for the response field, respectively, as

φ(t) = Gq(t, t0)φ0 +

∫ ∞
t0

Gq(t, t′)[j̃(t′) + 2Dφ̃(t′)]dt′ =

=

∫ ∞
t0

Gq(t, t′)[j̃(t′) + 2Dφ̃(t′) + [a−∆−1φ̃(t)]δ(t)],

φ̃(t) = Gq(t, t0)φ̃0 +

∫ ∞
t0

Gq(t′, t)j(t′)dt′.

(1.36)

Deriving the first equation in Eq. (1.36) with respect to j we obtain

Cq(t, s) = Gq(t, t0)Gq(s, t0)∆−1 + 2D

∫
t0

Gq(t, t′)Gq(s, t′)dt′, (1.37)

that is the same expression found earlier, i.e. Eq. (1.19), by means of the
solution of the Langevin equation (if we choose t0) from which the result for the
fluctuation-dissipation ratio, given by Eq. (1.24) follows as before.
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1.4 Universality in critical relaxational phenom-
ena

1.4.1 second-order phase transition, a brief reminder

The main purpose of the study of critical phenomena is to extract informa-
tion about the universal observables which arises in this context, such as critical
exponents. These are pure numbers that characterize the particular class of field
theories with given dimensionality, symmetry and range of the interaction, i.e.
belonging to the same universality class. The critical exponents, such as the
dynamical critical exponent z introduced in the previous Section, characterize
non analyticities in thermodynamic quantities. To treat efficiently, i.e. taking
into account the effect of fluctuations, the net-divergences which appears in a
naive perturbative treatment a regularization scheme is mandatory. In statis-
tical field theory we have to remind ourselves that the net-divergences that we
care about are those in the infrared- and not those in the ultraviolet- regime
that are naturally not present because of the cutoff Λ imposed by the lattice
from which the field theory arises via suitable coarse-graining procedures.

The classical Wilsonian program for studying the critical regime is to write
down the perturbative beta-functions for the relevant couplings which appear
in the Landau-Ginzburg Hamiltonian and from them extract the critical expo-
nents. We will not go into the details of perturbative renormalization group
(pRG) techniques in this thesis, but we refer the reader to Refs.[5, 6]. The
β-functions dictate how the couplings gets renormalized by the very effect of
fluctuations. The relevant couplings are defined phenomenologically as follows.
For the ferromagnetic transition we know experimentally that we have just to
set two external parameters in order to fine-tune the system at criticality. These
control parameters are of course the magnetic field h and the temperature T
which have to be precisely fine tuned respectively at h = 0 and T = Tc, in
order to hit the critical point at which the second-order phase transition occurs.
The mathematical description of the system should respect this feature so that
tuning only two parameters we must have a description of the critical state. In
the renormalization group language we say that the Wilson-Fisher fixed point
has only two relevant parameters.

The success of the Wilsonian program is to find in d = 4 − ε a fixed point
of the perturbative β-functions of the Ginzburg-Landau action which has only
two relevant parameters (t, h) and for which g is irrelevant but assume a non-
zero value at the fixed point, resulting in a strongly interacting, scale free1 field
theory in the infrared which describes the Ising universality class. The critical
exponents are then calculated with ε as the expansion parameter and, in the
simplest case, at the end of the calculation which is carried at fixed order in
power of ε, it is possible to extract the critical exponent in dimension d = 3 by
extrapolating the solution for ε→ 1.

1Remember that, experimentally, we observe magnetization clusters of all size at the critical
point of the ferromagnetic second-order phase transition.
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Let us summarize the picture of the critical points that a pRG treatment of
the Landau-Ginzburg model at order ε gives, varying the dimensionality of the
system. First of all, the Gaussian fixed point coincides with the Wilson-Fisher
one in dimension larger than 4. In 4 spatial dimensions, the interaction term g
is marginal, and this give rise to logarithmic deviation from the Gaussian fixed
point. In dimension less than 4, g is relevant in the vicinity of the Gaussian
fixed point, but, since (r, h) are always relevant, this means that the Gaussian
fixed point is not anymore the critical one. This picture is presented in Fig. 1.1.

Figure 1.1: Wilsonian flow of the parameters r and g at first order in ε. This
picture is taken from Ref. [5].

The Wilson-Fisher fixed point is characterized by anomalous dimensions re-
lated to the field φ and consequently the naive scaling analysis conducted at the
level of the Landau-Ginzburg effective Hamiltonian gives wrong predictions.
These anomalous dimension effects are due to the fact that the second-order
phase transition problem is a multi-scale problem: the first scale is the cor-
relation length ξ, which diverges at the critical point; the second scale is the
ultraviolet cutoff Λ ∼ 1/a used to regularize the theory. The dependence of
the observables from the cutoff in the vicinity of the fixed point gives rise to
simple power-law dependence, thus introducing an anomalous dimension to the
equilibrium correlation function of the theory. As an example of naive dimen-
sional analysis, consider the correlation function in equilibrium situation and in
the Gaussian approximation. One can see, starting from the Landau-Ginzburg
Hamiltonian, that it satisfies a Laplace equation whose solution is given by

C(q) =
1

q2 + r
, (1.38)

so that one would expect by dimensional analysis to find

χ =

∫
ddx C(x) = C(q = 0) = ξ2 ∼ r−2ν . (1.39)
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This very last scaling relation is not satisfied by actual experiments, suggesting
that the correct scaling form for the correlation function is, instead, given by

C(x) =
1

x
f(x/ξ, a/ξ). (1.40)

It turns out that for a/ξ < 1, although the function f is not independent on this
ratio, it nevertheless exhibits a simple power-law dependence, proportional to
(a/ξ)η, where η is a small but nonzero exponent, defining the so-called anoma-
lous dimension. As a consequence, the dependence of the susceptibility on the
correlation length has the form

χ ∼ aηξ2−η. (1.41)

The fundamental reason for the emergence of these anomalous dimension effects
is given by the fact that critical behavior is dominated by fluctuations, and these
fluctuations take place at all length scales, all the way down to the microscopic
distance a. Taking into account these effects we make the following Ansatz for
the two-point correlation function,

C(q) = |q|−2+ηĈ±(qξ), ξ = ξ±|r|−ν . (1.42)

Near Tc, we know that χ ∼ limq→0 |q|−2+ηĈ(qξ); as q → 0, the leading terms
in the scaling function must cancel the singular prefactor, and therefore

χ ∼ ξ2−η ∼ |t|−ν(2−η) = |r|−γ , which implies γ = ν(2− η). (1.43)

Within the Gaussian approximation, η = 0 and ν = 1/2.
We conclude and summarize this subsection by emphasizing the fact that

it is an experimental fact that naive dimensional analysis gives wrong results
for the critical exponents. This is because of the presence of anomalous effects
that arises from the fact that the second-order phase transition problem is a
multi-scale problem.

1.4.2 Critical quench of the purely relaxational model

It is possible to fully exploit universality in order to characterize within a
field-theoretical approach the non-equilibrium critical relaxation. This approach
allows a systematic analysis of several aspects of these relaxation phenomena and
yields analytic predictions for scaling functions, exponents, and amplitude ratios
which characterize the scaling behavior of correlation and response functions at
large times, within different universality classes and dynamics.

The renormalization group analysis of the purely relaxational model predicts
the following behaviors after a quench to T = Tc (see Ref. [8] for their detailed
derivation):

(i) The dynamical critical exponent z which describe the diverging linear
relaxation time in the vicinity of the critical point is the same in stationary
and in non-equilibrium situation.
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(ii) Only one new independent universal exponent is needed in order to fully
characterize the scaling behavior of the two-time functions, i.e. the so-
called critical initial-slip exponent θ. The resulting scaling form for the
response and correlation functions are respectively given by:

Rq=0(t, s) = AR(t− s)a(t/s)θFR(s/t), (1.44)

Cq=0(t, s) = ACs(t− s)a(t/s)θFC(s/t), (1.45)

where a = (2− η− z)/z. The non-universal amplitudes AR,C are fixed by
imposing that the universal scaling functions satisfy FR,C(0) = 1. From
the previous equations it follows that

∂sCq=0(t, s) = A∂C(t− s)a(t/s)θF∂C(s/t), (1.46)

where, again, F∂C(0) = 1 and A∂C = AC(1 − θ). Note that the s/t
time dependence of the two-point functions at zero momentum, given
in Eqs. (1.44) and (1.45), is breaking the time-translational invariance.
Furthermore the decay as a function of t is slower for larger s. This
phenomenon is usually referred to as aging: older samples respond more
slowly. The time s is called the ”age” of the system or also waiting time,
being the time elapsed since the preparation of the system.

(iii) The asymptotic value of the fluctuation-dissipation ratio, i.e., X∞ is a
universal observable and follows as an amplitude ratio.
For the asymptotic value of the fluctuation-dissipation ratio at q = 0, the
general scaling behaviour is given by:

Xq=0(t, s) =
Rq=0(t, s)

∂sCq=0(t, s)
=

ARFR(s/t)

A∂CF∂C(s/t)
. (1.47)

Note that Xq=0 it is a function of the ratio s/t and not of s and t separately.
The asymptotic value of the FDR is given by

X∞ = lim
s→∞

lim
t→∞

Rq=0(t, s)

∂sCq=0(t, s)
=

= lim
s/t→0

Xq=0(s/t) =
AR
A∂C

=
AR

AC(1− θ)
.

(1.48)

Some very important remarks:
• The critical initial slip exponent θ together with the non-universal ampli-

tudes (AR and AC) of the two-time functions completely characterize the
FDR. From the RG analysis it turns out that

θ = −η0

z
, (1.49)

where η0 is the anomalous dimension of the boundary field φ0 = φ(t = 0).
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• X∞ is a universal quantity because it is the ratio between two quantities
with the same scaling dimensions (which, separately are not universal).
The fact that the FDR in the aging limit depends on non-universal am-
plitudes like AR and AC rather than only on universal critical exponents
makes the calculation quite more complicate than those that are made in
order to predict usual universal quantities (critical exponents) which are
simply connected with the eigenvalues of the linearized RG equations. In
fact, for the calculations of the FDR, the determination of the two-times
functions is mandatory in order to extract these non-universal amplitudes.

1.5 The fluctuation-dissipation ratio in the long-
time limit: available estimates for the purely
relaxational model

We present here the state of the art concerning the determination of the
universal non-equilibrium quantities which characterize the purely relaxational
dynamics of an unfrustrated Ising magnet.

Let us review the basics of the Monte Carlo (MC) technique, remembering
that the results for universal observables obtained with this technique should be
compared with the field-theoretical, either perturbative renormalization group
(pRG), discussed previously, or functional renormalization group (fRG), pre-
sented in the following. In fact, the coarse-grained continuum dynamics de-
scribed by the Langevin equation (1.1) is expected to be in the same universal-
ity class as lattice models with O(N) symmetry, short-range interactions and
spin-flip dynamics, see Ref. [13]. One of the simplest non-trivial lattice models
displaying slow dynamics after a quench to the critical point is a lattice spin
model in d dimension with O(N) symmetry, which evolves according to a purely
dissipative dynamics. In the simplest instance its Hamiltonian is given on the
lattice by

H = −
∑
〈ij〉

si · sj, (1.50)

where si is a N -component spin located at the lattice site i, with si
2 = 1. Here

and in the following the symbol 〈ij〉 means that the sum runs on all nearest-
neighbor pairs of lattice sites. When N = 1 the Hamiltonian given in Eq. (1.50)
describes the Ising universality class. A purely dissipative dynamics for the
lattice model given by Eq. (1.50) proceeds by elementary moves that consists of
attempted random changes in the direction of the spin sj (spin-flip sampling).
The transition rates can be arbitrarily chosen provided that the detailed-balance
condition is satisfied. For analytical studies the most suited is the Glauber
dynamics, explained in Ref. [13], which allows some exact solution. Given its
relative simplicity, this lattice model is most studied and best understood. The
physically relevant cases with finite N and d = 2, 3 are not analytically solvable
and have been intensively investigated by means of Monte Carlo simulations.
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MC: Two-dimensional Ising model. The most accurate determination of
the critical exponent z is z = 2.1665(5) (this number is obtained by means of
equilibrium MC, since the exponent z is the same in and out of equilibrium). The
most accurate value of the non-equilibrium critical exponent θ is given by θ =
0.383(3). Concerning the FDR, earlier investigations indicate X∞ = 0.26(1),
and the subsequent more accurate estimate are given by X∞ = 0.340(5) and
X∞ = 0.33(2). For the reference to the original works see the review in Ref. [8].

MC: Three-dimensional Ising universality class. The most accurate value
for the static critical exponents are given by β = 0.325(1), ν = 0.630(1), and
z = 2.024(6) recently reported in Ref. [19]. The critical initial-slip exponent θ
in the review in Ref. [8], dating back to 2002, was θ = 0.14(1), but a recent
and accurate estimates give θ = 0.135(3) (see Ref. [22]). Regarding the FDR
a preliminary analysis, dating back to 2000 (given in Ref. [11] without demon-
stration of the data), gives X∞ ∼ 0.40, while the more recent estimate gives
X∞ = 0.380(12) and X∞ = 0.391(12) (see Ref. [19]), respectively obtained by
means of a heat-bath updating rule and by an application of random probing
magnetic fields with small amplitude in the simulation process.

pRG: Two-loop calculation. The program of calculating the universal two-
times functions, the associated non-universal amplitudes and the corresponding
FDR has been worked out up to two loops in the ε-expansion in Ref. [17]. The
analytic calculation is rather involved and therefore we summarize here only the
results. The obtained exponents z and θ agree with the already known two-loop
expression2. We give here the result for θ:

θ =
ε

12

[
1 + ε

(
8

27
+

2 log 2

3

)]
+O(ε3), (1.51)

where ε = 4 − d in d < 4 while θ = 0 in d > 4. The scaling of the response
function is characterized by the non-universal amplitude (for d < 4)

AR = 1 + ε2
3(N + 2)

8(N + 8)2
C +O(ε3), (1.52)

where C is a numerical factor that we do not report here. In terms of AR, A∂C ,
and θ, the long-time limit of the critical FDR is obtained via Eq. (1.48):

(X∞)−1

2
= 1 + ε

N + 2

4(N + 8)
+ ε2

N + 2

(N + 8)2

[
N + 2

8
+

3(3N + 14)

4(N + 8)
+ c

]
+O(ε3),

(1.53)
where c has an analytic expression which renders c = −0.0415...

fRG: local potential approximation. Recently Ref. [35] address for the first
time the problem of calculating genuine universal non-equilibrium exponents
using the fRG technique. We postpone to Chapter 3 the presentation of the
general technique of the fRG, and to Chapter 4 the analysis of Ref. [35]. The
extrapolation of the results related to the best approximation of fRG equations

2Note that in Ref. [22] a three-loop results for θ is given. We do not report it here since it
is in strong agreement with the result reported in the very same article via MC technique.
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Figure 1.2: Available estimates of the critical initial-slip exponent as a function
of the spatial dimensionality d. The MC results are indicted by the various
symbols with error bars: the black ones are reported in Ref. [8], while the
magenta one is the recent estimate of Ref. [22]. The pRG results are indicated
by the black dash-dotted and solid lines, respectively at order ε and ε2. The best
fRG result to date is the solid turquoise line, obtained within a local potential
approximation in Ref. [35]. Inset: magnification of the main plot for d ' 3.

for critical initial-slip exponent θ reported in Ref. [35] in d = 3 is given by
θfRG ∼ 0.1326. No predictions for X∞ using the fRG technique are given in
literature to date, and providing them is the objective of this thesis.

Let us comment on all these estimates and compare them. They are reported
in Figs.(1.2) and (1.3), respectively for the critical initial-slip exponent θ and
for the asymptotic value of the FDR, indicated by X∞. We can see from the
figures that the recent MC predictions for θ and X∞ (obtained in Ref. [22, 19]),
indicated by magenta symbols with error bars, are not in agreement with per-
turbative field-theoretical calculations, indicated by black lines. In particular,
for the FDR in d = 3 the recent MC estimates give X∞MC = 0.380(13) and
0.391(2) which do not agree with X∞ε2 = 0.429(6) (estimates for d = 3 of the
lower solid line, i.e. of the lower Padé approximant), which has been calculated
with the ε-expansion up to two loops.
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Figure 1.3: Available estimates of the asymptotic value of the FDR as a function
of the spatial dimensionality of the system d. The MC results follows the same
graphical picture as the results reported in Fig. 1.2. The black dash-dotted and
solid lines are pRG results respectively at order ε and ε2, for which we have
plotted also the corresponding Padé approximant. No fRG results are available
for X∞ in literature. Inset: magnification of the main plot for d ' 3.

This work is meant to study how to investigate X∞ with a different proce-
dure from the perturbative one, the only analytic approach used so far, and, in
particular, by using the functional renormalization group. We anticipate here
that one of the main difficulty of fRG is that the time translational invariance
of the dynamics is broken by the temperature quench.
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Chapter 2

From the effective Hamiltonian
to the effective action

The bare actions, such as the Landau-Ginzburg effective Hamiltonian or the
Janssen-De Dominicis-Peliti action, do not have a direct connection with the
macroscopic behaviour. The quantity that takes into account the effects of fluc-
tuation, thus describing correctly the physics at a macroscopic level, is given by
the effective action. This is indeed the quantity that the functional renormal-
ization group technique described in the next chapter aims to calculate. This
chapter is devoted to the introduction of the concept of effective action (EA).
We highlight in what follows how from the knowledge of the effective action
related to some specific model one has access to the full two-point functions as
well as to any other Green functions of the theory.

The presentation of this chapter is inspired by Refs.[23, 6, 29] which contain
all the additional details.

This chapter is organized as follows:
Sec. 2.1: We introduce the concept of EA, stressing how from the knowledge of it

one has access to the full two-point functions of the theory considered. We
show how from the EA, neglecting the effect of fluctuations, one obtains
the mean-field approximation.

Sec. 2.2: We briefly show how the effects of fluctuation change qualitatively and
quantitatively the mean-field picture, thanks to the one-loop approxima-
tion of the EA.

Sec. 2.3: We analyze the distinct scales that occur in the computation of the effec-
tive action.
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2.1 The effective action

2.1.1 The Landau-Gibbs thermodynamic potential

Landau unified the mean-field approximations used to describe the second-
order phase transition by means of the following ansatz for the Gibbs potential

Γ(M) = V
(r

2
M2 +

g

4!
M4 −Mh

)
, (2.1)

where g > 0, in order to have a potential bounded from below, M is the order
parameter of the second-order phase transition and V is the volume of the
system under study. We know from undergraduate thermodynamics that the
minimum of the Gibbs potential (denoted by M̄(T, h) = M̄(h)) represents the
equilibrium thermodynamic state at given experimental condition specified by
the temperature T and the homogeneous field h. In the case of ferromagnetic
systems M̄ is the average magnetization and h is the applied magnetic field.
We know that this ansatz for the Gibbs potential is qualitatively correct, in the
sense that it admits a second-order phase transition from a disordered state, in
which M̄ is zero, to an ordered state, in which M̄ acquires a non-zero value,
which correspond to a symmetry-breaking state. This phase transition occurs
at the critical point r = 0, h = 0 for the model described by Eq. (2.1).

The susceptibility χ, defined as χ = ∂M/∂h, is given by the Landau-Gibbs
potential in Eq. (2.1), in terms of its derivative with respect to the order pa-
rameter M evaluated at the equilibrium configuration, i.e. M = M̄(h):

χ−1(M) =
δh

δM

∣∣∣∣
M=M̄(h)

=
δ2Γ

δM2

∣∣∣∣
M=M̄(h)

. (2.2)

We obtain from the very last equations that

χ(h) =
1

r + g
2M̄

2(h)
. (2.3)

In this way, we have found the equation that allows us to calculate the suscep-
tibility directly from the Landau-Gibbs potential.

In the following we will show how this very simple procedure in order to
obtain information on the two-point functions of the theory, such as the suscep-
tibility considered here, is easily generalized in order to calculate any observables
starting from a field-theoretical description of the system.

2.1.2 Definition and basic properties of the effective action

Consider a field theory defined by the following partition function:

Z[j] =

∫
Dφ(x) e−S[φ(x)]−

∫
x
j(x)φ(x), (2.4)

where we have inserted an external source j(x) and S is the bare action (or
the effective Hamiltonian H) of the microscopic theory. From this partition
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function we define the generating functional of connected Green’s functions as
W [j] = lnZ[j]; as the name suggests, it allows the computation of all Green’s
functions in a very simple way: in order to calculate the connected n-point
Green function it is sufficient to take the n-th functional derivatives of W [j]
with respect to j(x) and then evaluate it in the physical configuration given by
vanishing source, i.e. j = 0. In the following, we identify the n-th functional
derivative ofW [j] with respect to j in a compact notation such that, for example,
the first and second derivatives are given by Wj and Wjj . The first two physical
Green functions of the theory are therefore given by:Wj

∣∣
j=0

= 〈φ(x)〉j=0 = Φ0(x),

Wjj

∣∣
j=0

= 〈φ(x)φ(y)〉j=0 − 〈φ(x)〉〈φ(y)〉j=0 = Gc(x, y).
(2.5)

The very last equation is saying that the first and the second functional deriva-
tives of the generating functional W evaluated in the physical configuration
without source, i.e. with j = 0, correspond respectively to the expectation
value of the field and to the connected correlation function of the theory.

From W [j] we define the effective action (EA) by means of a Legendre trans-
form:

Γ[Φ] = −W [j] +

∫
x

Φ(x)j(x), (2.6)

where Φ = Φ(x) = 〈φ(x)〉j = Wj(x). This important quantity is the generat-
ing functional of the vertex functions (see Ref. [23]). From the very last two
equations we derive the following identity

ΓΦ[Φ] = j(x), (2.7)

where again we have used the compact notation in order to indicate functional
derivatives with respect to Φ in the l.h.s.. This equation shows how the physical
expectation values Φ0(x) of the field Φ(x) corresponds to a stationary point of
the effective action,

ΓΦ[Φ0] = 0, (2.8)

coherently with the standard thermodynamic picture implemented by the Landau-
Gibbs potential, described in the previous sub-section.

For the connected two-point function of the theory we obtain:

Gc(x, y) = Wjj(x, y)|j=0 =

(
δj(x)

δφ(y)

)−1
∣∣∣∣∣
j=0

= Γ−1
ΦΦ(x, y)

∣∣
Φ=Φ0

, (2.9)

which should be compared with Eq. (2.2) in order to see the continuity of the
framework outlined here with the standard thermodynamic one which is used
in the mean-field description made by Landau.

In full generality, the equation of motion for the two-point function of the
theory is given by∫

ddy
[
Gc(x, y)ΓΦΦ(y, z)|Φ=Φ0

]
= δd(x− z), (2.10)

which is obtained from Eq. (2.9).
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2.1.3 The Dyson equation for the two-point function

The general equation of motion for the two-point function, given by Eq. (2.10),
can be simplified in Fourier space (assuming that the physical system under
study is translationally invariant in space), and it yields:

Gc(k) =
1

ΓΦΦ(k)|Φ=Φ0

. (2.11)

Note that we can write down the following formal identity:

ΓΦΦ(k)|Φ=Φ0
= G0(k)−1 − Σ(k), (2.12)

in which we have separated the Gaussian contribution, i.e., G0(k), from the
interacting one, given by the so-called self energy , indicated by Σ(k). Taking
advantage of the very last equation, the connected correlation function Gc(k) is
now given by

Gc(k) = [G0(k)−1 − Σ(k)]−1. (2.13)

This very last equation can be recast in the form of an integral equation for Gc

Gc = G0 −G0ΣGc, (2.14)

which is called the Dyson equation for the two-point function. In the last equa-
tion we have not specified the variables and the ’product’ operations between
the terms in the r.h.s.. This is because Eq. (2.14) can be indeed obtained also
in real space.

In what follow we will consider a non-equilibrium systems which are space-
translational invariant in space, but which are not invariant under time transla-
tions, which implies that there are no simplification in the time sector and the
Dyson equation will be then very useful.

In general, we can make the following statement: if one has access to the
self energy Σ, and of course on the bare Hamiltonian (which gives G0), one is
able to calculate the two-point function of the theory from Eq. (2.14).

2.2 Approximations of the effective action

Note that the definition of the effective action, given by Eq. (2.6), can be
rewritten as:

e−Γ[Φ]+
∫
ddx j(x)Φ(x) =

∫
Dφ(x) e−S[φ]+

∫
ddx j(x)φ(x). (2.15)

We expand the field around its minimum configuration Φ defined as Φ = Φ(x) =
〈φ(x)〉j . With the change of variable φ→ Φ + χ′, we obtain

e−Γ[Φ] =

∫
Dχ′(x) exp

[
−S[Φ + χ′] +

∫
x

j(x)χ′(x)

]
, (2.16)
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which is the starting point for perturbation analysis at the level of effective
action, in which one aim at accounting for the effects of fluctuations, encoded
in the field χ′, in a systematic way. In this section we review how fluctua-
tions drastically changes the picture described by the tree level (or mean-field)
approximation, detailed before.

2.2.1 Tree-level approximation of the effective action for
systems in and out of equilibrium

The lowest order of approximation, called tree-level approximation, we ob-
tain, corresponding to the saddle-point approximation applied to Eq. (2.16),
one finds the following important relationship:

Γtree[Φ] = S[Φ]. (2.17)

This shows that the zeroth-order approximation of the effective action, corre-
sponding to neglecting the fluctuations, renders the bare action S evaluated on
its minimum.

For the relevant case of the bare Landau-Ginzburg Hamiltonian Eq. (2.17)
gives

Γtree[Φ] = H[Φ] =
1

2!

∫
ddx[(∇Φ)2 + rΦ2] +

g

4!

∫
ddx Φ4, (2.18)

because, in this case, H = S. Since the equilibrium configuration Φ has to
minimize the effective action it has to be homogeneous, i.e., Φ(x) = Φ0 and we
obtain the Landau-Gibbs potential introduced in the previous section, given by
Eq. (2.1), with the following identification: Φ0 = M .

Now we discuss what happens in the case of model A. The bare action St0
for model A is given in Eq. (1.29). Within the tree-level approximation, using
Eq. (2.17), we obtain the following expression for the effective action:

Γtree[Φ] = ϑ(t− t0)

∫
x

∫
t0

dt φ̃
(
∂tφ−D∇2φ+DUφ(φ)−Dφ̃

)
, (2.19)

where U(φ) = rφ2/2! + gφ4/4! and Uφ its derivative with respect to φ. In this

case Φ is the doublet of fields Φ = (φ, φ̃). The minimum (physical) configura-
tions of this doublet of fields is given by Φ0 = (0, φm).

Let us retrieve the equations of motion for the Gaussian non-equilibrium
two-point functions, i.e., R and C. The equation of motion for the two-point
function is given by Eq. (2.10), and involves the correlation function Gc and the
quantity ΓΦΦ. In these case both ΓΦΦ and Gc are matrix, given by

Γ̂ΦΦ[Φ] =

[
0 Γφ̃φ

Γφφ̃ Γφφ

]
and Ĝc =

[
Cq(t, s) Rq(t, s)
Rq(s, t) 0

]
. (2.20)

Correspondingly, the double derivative of the tree-level effective action with
respect to Φ evaluated in its minimum configuration is given by

Γ̂tree,ΦΦ

∣∣∣
Φ0

=

[
0 −∂t −D∇2 +DUφφ|φ0

∂t −D∇2 +DUφφ|φ0
−2D

]
, (2.21)
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and the equations of motions are thus given by
(
−∂s +Dq2 +DUφφ|φ0

)
Rq(t, s) = δ(t− s),(

∂s +Dq2 +DUφφ|φ0

)
Cq(t, s) = 2DRq(s, t),

(2.22)

where the locality in time of the bare action in Eq. (2.19) implies the cancellation
of the time integrals while the space integrals are properly evaluated in Fourier
space. If one focuses on the high-temperature regime, in which Gaussian ap-
proximation holds, one obtains φ0 = 0 and Uφφ|φ0=0 = r, thus retrieving again
the Gaussian equations of motion for the response and correlation functions
obtained in previous chapter, i.e., Eqs. (1.16) and (1.19).

2.2.2 One-loop approximation of the equilibrium effective
action

In order to implement the one-loop approximation of the effective action
we expand the bare action S[Φ + χ′] present in the r.h.s. of Eq. (2.16) to the
second-order in the fluctuations χ′, neglecting higher-order terms. After the
Gaussian integration over the fluctuation field χ′ one eventually obtains:

Γ1−loop[Φ] = S[Φ] +
1

2
Tr ln ŜΦΦ[Φ], (2.23)

in which the trace of the logarithm of a matrix the matrix ŜΦΦ = δ2S[Φ]/δΦδΦ
is given by the sum of the logarithm of its eigenvalues. Thus, for the case of the
Landau-Ginzburg Hamiltonian, the following equation for the effective action
holds:

Γ1−loop[Φ] =

∫
ddx

[
1

2
(∇Φ)2 +

1

2
rΦ2 +

g

4!
Φ4

]
+

+ Tr ln
[
−∇2 + r +

g

2
Φ2
]
.

(2.24)

Expanding the trace of the ln in the very last equation in powers of Φ around
the minimum Φ0 in the high-temperature regime, i.e. Φ0 = 0, we obtain

Tr log
[
−∇2 + r +

g

2
Φ2
]

= Tr log[−∇2+r]+Tr log

[
1 +

1

−∇2 + r
g

Φ2

2

]
, (2.25)

where the second term on the r.h.s. is explicitly given by

Tr log

[
1 +

1

−∇2 + r
g

Φ2

2

]
=

∞∑
n=1

(
−g

2

)n 1

n
Tr

(
1

−∇2 + r
Φ2

)n
. (2.26)

By means of the identification G0 = 1/(−∇2 + r), the effective action at 1-loop
is thus given by

Γ1−loop[Φ] = Γtree[Φ] + Tr log(−∇2 + r) +

∞∑
n=1

(
−g

2

)n 1

n
Tr(G0Φ2)n. (2.27)
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The terms summed by the series on the r.h.s. of this equation are conveniently
identified with the so-called Feynman diagrams illustrated in Fig. 2.1. We see

+

Figure 2.1: These are the diagrams which contribute, in a 1 loop approximation,
to the effective action. The lines which forms the loops are gaussian correlation
functions G0, while the vertex are given by the bare coupling costant g.

that the 1-loop approximation of the effective action contains all the diagrams
with one loop and all numbers of bare vertex of the Landau-Ginzburg theory. In
the following we will see that the second diagram, which has two un-amputated
legs, corresponds to a shift of the critical temperature. This is because it is
a local contribution (the legs of the diagram are attached to the same point).
The second diagram will give a shift of the fourth powers of the derivative of Γ
with respect to Φ, i.e., the coupling constant g. The other contribution will give
rise to renormalization of higher-order coupling constant, for example λ for the
coupling of the Φ6 term (and so on), which are irrelevant in the renormalization
group sense.

2.2.3 Infrared divergences and the shift of the critical tem-
perature

We present here how, from the analysis of the two-point function, the one-
loop approximation can induce qualitative changes in our description of the
critical point, such as a shift in the critical temperature with respect to the
critical temperature of the Gaussian model. In the case of a constant background
field Φ = φ and via a Fourier transform one concludes that the effective action,
given by Eq. (2.24), simplifies to

Γ1−loop(φ) =
1

2
r2
0φ

2 +
1

4!
g0φ

4 +
1

2

∫
q

log
(
q2 + r0 +

g0

2
φ2
)
, (2.28)

note that we have add the subscript 0 in order to indicate the bare couplings.
In the absence of some sort of cutoff this integral over q is divergent because of

high momenta contributions are not bounded, i.e. ultraviolet divergences. As it
was pointed out before, one can always imagine to be considering the discretized
version of the model where there is a natural momentum cut-off of the order of
Λ = 1/a where a is the lattice space. We will suppose that such a regulator exists
even if not specifying it explicitly for notation simplicity. Moreover, we will show
now that in some cases the system can have low momentum divergences, i.e.
infrared divergences. These divergences are much more difficult to treat and

31



they will be at the heart of our concerns here, because they are actually the
origin of critical behavior.

At this order, the expression for the relation between the magnetization and
the external magnetic field becomes:

j =
∂Γ1−loop

∂φ
= r0φ+

1

3!
g0φ

3 +
g0

2
φ

∫
q

1

q2 + r0 + g0
φ2

2

, (2.29)

and the susceptibility

χ−1 =
∂j

∂φ

∣∣∣
j=0

= r0 +
g0

2

∫
q

1

q2 + r0
. (2.30)

One observes that the terms that came from the one-loop correction to the
mean-field approximation are suppressed by a factor of the coupling constant
g0. This property is true also at higher orders of the expansion around the
mean-field approximation: each new term includes high powers of g0.

The second-order phase transition takes place at the temperature where the
magnetic susceptibility diverges. Then r(T = TC) = χ−1(T = Tc) = 0. At first
sight this is problematic, because at that temperature r0 must be negative in
order to compensate for the second (positive) term of the r.h.s. of Eq. (2.30),
but then the integrand has a pole and is not well defined. This is an artifact
of the approximation, because we can replace in that term r0 by r because the
correction would be of order g2

0 :

r =
∂j

∂φ

∣∣∣
j=0

= r0 +
g0

2

∫
q

1

q2 + r
. (2.31)

At T = Tc, then one finds:

0 = r0,c +
g0

2

∫
q

1

q2
, (2.32)

where we have defined r0,c = r0(T = Tc). Subtracting Eq. (2.32) from Eq. (2.31)
one arrives at

r = r0 − r0,c −
g0

2
r

∫
q

1

q2(q2 + r)
. (2.33)

Depending on the dimensionality d, two different cases arise:
• If d > 4 the integral is dominated by the ultraviolet range of wave-numbers
q but is regular when T ∼ TC . If the integral has a cut-off at q ∼ Λ, one
finds

χ−1 = r0 − r0,c − Cg0rΛ
d−4, (2.34)

where C is a numerical constant. In this case, corrections to mean-field
expression is regular and is small as long as g0Λd−4 � 1. The critical
exponents (such as γ) are the same as their mean-field approximation, at
least in a finite neighborhood of g0 = 0.
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• If d < 4 the ultraviolet behavior is sub-leading (one can safely take the
limit Λ→∞), but the integral is dominated (and divergent) when T → TC
(or, equivalently r → 0). In that case,

χ−1 = r0 − r0,c − rC ′g0r
(d−4)/2, (2.35)

where C ′ is another numerical constant. It is clear that the mean-field
approximation can only be a good approximation as long as g0r

(d−4)/2 �
1. In particular, the critical regime r ∼ 0 can not be approached by a
direct expansion around the mean-field. Note that this calculations lead
to a better result for the critical exponent related to the susceptibility
compared to the mean-field one. In fact from Eq. (2.35) for r → 0 one
finds (with the identification χ−1 = r):

r ∼ (r0 − r0,c)
2/(d−2) → χ ∼ |T − Tc|−2/(d−2), (2.36)

where we have used the identification r0 − r0,c = ∆r0 ∼ T − Tc.
Let us note at this point that the renormalization of rc shifts towards smaller
values compared to the Gaussian critical one the value of the critical temperature
of the model. This is due to the fact that fluctuations tend to favor disorder
rather than order, so that we have to set to lower value the temperature in order
to hit the critical point.

In this section we have introduced several important concept: the physical
parameter, such as r, are those defined by some physical situation (such as
the vanishing of the susceptibility define r). While the bare parameter (such
as r0) which enters into the microscopic effective Hamiltonian are not directly
connected with physical properties. Taking into account fluctuations the bare
parameter gets dressed by the fluctuations, thus leading to physical parameter
r different from the bare one. In the language of quantum field theory ∆r0 is
the bare mass and r is the renormalized mass.

2.3 Scales of the second-order phase transitions

Before considering the strategy which allows one to avoid the difficulties of
the perturbative expansion near a second-order phase transition, it is important
to recognize the very origin of these difficulties. The reason is that all the wave
numbers contribute significantly to the loop corrections to the mean-field if the
system approaches a critical regime. It is difficult to control an approximation
when many degrees of freedom with very different typical wave number scales
interact in a significant way. All the momenta from the microscopic scale Λ−1

to the macroscopic r−1/2 = ξ one contribute almost in the same way in the
one-loop correction to mean-field approximations. The problem becomes more
severe when the microscopic coupling g0 is ’large’.

Let us analyze the distinct scales that occur in the computation of the ef-
fective action when starting from the microscopic interaction encoded in H.
We will consider the example of the Landau-Ginzburg Hamiltonian. By con-
struction, when looking at the theory at the scale Λ we are not sensitive to the
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Figure 2.2: Scales in the Landau-Ginzburg model.

effects that arise from smaller momenta. Therefore, at this scale, we can identify
the effective action ΓΛ with the Hamiltonian of the system, i.e., ΓΛ = H. As
already emphasized, we want to determine the macroscopic theory, described
by the effective action Γ from the microscopic dynamics. In the course of the
computation we encounter particular scales that will dominate and which will
make the properties of the system change qualitatively. We will now sketch the
distinct scales and outline their effects.

The relevant scales are set by Λ, the couplings in the action (mass and cou-
pling constant) and, for finite-size system, the inverse L−1 of the size of the
system L. For an illustration of the hierarchy of scales in momentum space see
Fig. 2.2. Note that the identity Γ = H holds only at the mean-field approxi-
mation and the different scales remain being given by the bare parameters, r0

and g0 only at this approximation (since, as we have seen in the one-loop com-
putation of the susceptibility the bare mass r0 gets renormalized to r). Beyond
mean-field approximation they have to be read off from the effective action.
Notice also that bringing the system close to criticality requires to fine tune the
bare parameters since, otherwise, the renormalized mass is of the order of the
large ultraviolet scale.

With the finite scale Λ we have defined the resolution of our system in the
ultraviolet. For many systems, all bare length scales are given in terms of Λ
which is the fundamental ultra-violet scales and, in these cases, all microscopic

scales are of order Λ, e.g., g
1/(4−d)
0 .

In order to avoid considering finite-size effects we take in the following L→
∞. Below Λ, the first smaller scale in momentum space is the Ginzburg scale.

For the theory at hand it is defined by the coupling, g
1/(4−d)
0 . As we aim at

studying critical physics, the mass, which is the next distinct scale, has to be
small compared to the other scales. Accordingly, it must be well separated from
the Ginzburg scale. Note that only in the limit g0 → ∞ and Λ → ∞ we can
have a scale invariant theory for T → Tc for all momenta.

The behaviour of the system is qualitatively different in the regions given in
Fig. 2.2. As an example, we study Γφφ(p), where we have assumed to evaluate it
in a constant field configuration and hence, because of translational invariance,
the correlator depends only on the absolute value of one momentum p. With
reference to Fig. 2.2:
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• Within region 3, g
1/(4−d)
0 < p� Λ, the mass scale is negligible and, thus,

the system is dominated by the scale g
1/(4−d)
0 . In this domain no univer-

sal scaling behaviour related to critical physics emerges and perturbation
theory works well.

• Within region 2, r � p � g
1/(4−d)
0 , we find (close-to-)critical behaviour:

compared to the value of the momentum, the mass is negligible, and, at
the same time, the Ginzburg scale is large. As a result, the propagator
exhibits a scaling according to its anomalous dimension. In the critical
domain mean field fails because of the contributions of fluctuations on all
scales belonging to this region add up coherently and their effects become
strong. Perturbation theory re-summed by means of the renormalization
group predicts the correct scaling behaviour for the two-point function
with an accurate determination of η if computed at large orders (at least
three loops).

• Within region 1, p � r and, even though close to criticality, the system
looks weakly correlated: the comparatively large mass suppresses devia-
tions from mean-field and non-analyticities do not emerge. As a conse-
quence mean-field theory (with possible perturbative corrections) works
well. In a certain sense, mean-field theory is tailored for this regime. Ob-
viously, if r → 0, this region vanishes and Landau’s idea of mean-field
theory is no longer accurate.
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Chapter 3

Introduction to the functional
renormalization group

In this chapter we introduce the exact renormalization group equation for the
effective action given by the functional-renormalization group (fRG) technique,
based on the so-called Wetterich equation. We begin our exposition of the
fRG for the case of equilibrium phenomena, leaving to the next chapter the
generalization to non-equilibrium phenomena.

The presentation of this chapter is inspired by Refs.[24, 29], which contain
all the additional details.

This chapter is organized as follows:
Sec. 3.1: We introduce the Wetterich equation, given by Eq. (3.9), which is an exact

renormalization-group equation for the effective action.
Sec. 3.2: We analyze the infinite tower of coupled equations for the Green’s func-

tions that stems from the Wetterich equation. In this way, we introduce
the fact that a truncation procedure is required, in order to be able to
close this set of equations.

Sec. 3.3: We discuss the most common and simple truncation procedure, i.e., the
so-called local potential approximation (LPA) of the flow equations for
the Green functions. We will use this approximation in our approach to
non-equilibrium phenomena exposed in chapter 4 and 5.

3.1 Exact renormalization-group equation for the
effective action

3.1.1 The general idea

Critical phenomena are determined by the infrared singularities, i.e., collec-
tive behaviours, emerging from r → 0, or, equivalently, ξ → ∞ or T → Tc.
There are different ways to regularize the non-analyticities that show up in this
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procedure. The first possibility is to consider a non-vanishing mass: we bring
the system out of criticality, and then study the behaviour approaching the crit-
ical limit. This amounts at analyzing the change of the model with respect to a
change in the mass. In a differential formulation, i.e., by taking the derivative
∂
∂r of the Green’s functions of the theory, this leads to the Callan-Symanzik
renormalization-group equation. Another possibility is to put the system in a
finite box of spatial extent L <∞. By means of a scaling analysis with respect
to L one can thus identify the behaviour as the system approaches the critical
limit, i.e., L→∞. This procedure is most conveniently applied in lattice Monte
Carlo simulations.

The third way to regularize the infrared non-analyticities is realized in the
functional renormalization group. The rough idea is to sum over the fluctuations
existing on all wave vector k between the ultraviolet Λ and the infrared one
k = 0, a better way than perturbatively. To this aim, we construct a family of
models that interpolate smoothly and in the most convenient way between Λ
and 01. As we will see later, the fRG has the form of an evolution equation with
respect to a momentum scale k, which we introduce as an artificial scale. The
initial condition is set in the ultraviolet, corresponding to k = Λ, where Γ|Λ = H
and H is the effective Hamiltonian (or action) of the microscopic model. By
slightly lowering the scale k by an amount dk we sum over fluctuations between
Λ and Λ− dk. These fluctuations modify the effective action and, by iterating
this step we finally reach the limit k → 0, where all fluctuation on all scales have
been taken into account. We are left with the (full) effective action, Γk=0 = Γ.
In summary, at a finite scale k, the running effective action Γk is a precursor of
the effective action Γ satisfying Γk=Λ = H,

Γk=0 = Γ.
(3.1)

Due to this interpolation, the fRG equation is also known as a flow equation:
the effective action flows through the momentum interval. The trajectory in
this interpolation between k = Λ and k = 0 depends on the details of the way
fluctuations are summed over (i.e., on the choice of the regulator function) as we
will see below. However, the limits in Eq. (3.1) are unique (see Fig. 3.1.1). This
method of considering only part of the interval in Fig. 2.2 in each step relates to
Wilson’s idea of integrating fluctuations momentum shell by momentum shell.

In order to clarify the idea of the fRG, we construct a deformation, Zk, of
the partition function of the original microscopic model, given by Z in Eq. (2.4),
by adding a term, ∆Hk[φ], to the effective Hamiltonian H. Accordingly, Zk is
given by

Zk[j] =

∫
Dφ(x) e−H[φ]−∆Hk[φ]+

∫
x
j(x)φ(x). (3.2)

1Note that the fRG provides an exact equation for the effective action. However, in prac-
tical applications approximations are inevitable. Hence, the ’most convenient’ way of regular-
ization has to be chosen with respect to a given truncation scheme.
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Figure 3.1: Sketch of the possible space of effective actions (horizontal axis) as
a function of the cutoff scale k. In the exact fRG equation Eq. (3.9) the choice
of the regulator Rk affects the path of the flow from the microscopic theory H
at scale k = Λ to the (full) effective action Γ but not its endpoints. This will no
longer be the case when approximations are made, and the dependence of Γ on
Rk becomes in turn a good indicator of the error provoked by the approximation
being made. We indicate the RG flow dependence on the regulator choice, with
or without (dotted lines) approximation. This image is taken from Ref. [24]

The deformation ∆Hk can be chosen to be quadratic in the fields. In principle,
also terms of higher-order in the fields would be possible. However, the quadratic
term is the easiest one: in this case the fRG equation has one-loop structure, as
we will see below. Thus, we define

∆Hk[φ] =
1

2

∫
q

φ(q)Rk(q)φ(−q), (3.3)

where the so-called regulator Rk can be chosen arbitrarily as long as it does not
contradict the condition, reported in Eq. (3.1), imposed on Γk. We choose the
regulator as a momentum-dependent mass-like term that drives the system away
from criticality when k > 0. In the language of quantum field theory, the term in
factor of φ2 in the action is the mass, and a massive particle interacts at a short
range with other particles. The regulator can be seen in this case as an extra
”mass term” which adds a large mass to modes of the fields with wave-vector
|q| < k. The interactions of these particles with the others can thus be neglected:
the fluctuations of these modes are now frozen. Now that we have some intuition
about the regulator term Rk(q), let us summarize the characteristics it must
have: (i) it should leave (almost) unaltered the fluctuations at scale |q| ≥ k in
order to freeze the fluctuations at scale smaller than k. In particular, at k = Λ,
all the fluctuations must be frozen, such that the model is described by its
microscopic action, i.e., Rk=0(q) = 0. (ii) The regulator term Rk(q) must have
some regularity (at least it has to be continuous), because we will see later that
its derivatives play a role in the exact differential flow equation. This properties
are met by taking the regulator of a shape similar to Fig. 3.2. The fluctuation
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Figure 3.2: Typical shape of the cutoff function Rk(q2).

modes with wavelength q of the order of k are called fast modes, in analogy with
Brownian motion. Slow modes with q � k instead are frozen by the regulator.
For k ∼ Λ the regulator is of the order of Λ2 for every q and the fluctuation are
frozen. In the following we will use the so-called Litim regulator, given by

Rk(q) = (k2 − q2)ϑ(k2 − q2). (3.4)

This regulator is quite convenient (especially at the lowest-order approxima-
tions) since it allows the analytical computation of the momentum integral in
the renormalization-group flow. It has been also demonstrated that it is an
optimized cutoff, in the sense that it reduces spurious effects, see Ref. [26].

3.1.2 The Wetterich equation

We show how to construct the modified effective action Γk from Zk, given in
Eq. (3.2), in such a way that it satisfies the limiting behaviour of the renormalization-
group flow, given by Eq. (3.1). Starting from the modified partition function
Zk of the modified model, we define, as usual,

Wk = lnZk, (3.5)

and its Legendre transform

ΓLegk [φ] +Wk[h] =

∫
x

j φ. (3.6)
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However, we define Γk using the following modified Legendre transform

Γk[φ] +Wk[j] =

∫
x

jφ−∆Hk[φ], (3.7)

or, equivalently,
Γk[φ] = ΓLegk [φ]−∆Hk[φ]. (3.8)

This modification is necessary in order for Γk to satisfy the limiting conditions
given in Eq. (3.1). Indeed, at k = 0 no difference has been made: Γ0 = ΓLeg0 = Γ

since ∆H0 vanishes; while at k = Λ, it is easy to see that ΓLegΛ [φ] ∼ H[φ] +
∆HΛ[φ], because at this scale the mean-field approximation is almost exact,
thanks to the regulator ∆Hk which presents a mass r ∼ Λ large enough to
suppress all fluctuations; therefore, only after subtracting ∆HΛ[φ] one has ΓΛ ∼
H, as desired.

Now we state, without proof, the cornerstone of the fRG approach, i.e., the
Wetterich equation. The interested reader can find simple proof in, for example,
Ref. [24]. The Wetterich equation, i.e., the exact renormalization group equation
for the effective action, is given by

∂kΓk[φ] =
1

2

∫
x,y

∂kR(x, y)
(

Γ
(2)
k [φ] + Rk

)−1

(x, y), (3.9)

where

Γ
(2)
k [φ](x, y) =

δ2Γk
δφ(x)δφ(y)

∣∣∣
φ
, (3.10)

is the propagator of the modified effective action Γk. (Γ
(2)
k [φ] + Rk)−1 is the

inverse of Γ
(2)
k (x, y) + Rk(x, y) in the sense of integral kernel linear operator.

Note that:

• The Wetterich equation, like any renormalization-group equation, must
be interpreted as a dynamical system: the role of time is played here by k
which runs from Λ to 0. As all dynamical systems, it should be initialized
with an initial condition, in this case given by H = ΓΛ.

• Equation (3.9) is a partial functional integro-differential equation (PDE),
in the sense that Γk[φ] = Γ[k;φ] depends on two variables. As a result,
one has to deal with difficulties intrinsic to PDE. Even worse, the right
hand side of Eq. (3.9) is non-linear and is functional in the field variable.
Nevertheless, it is better posed in mathematical terms than a path-integral
on the continuum.

• When the background field φ is uniform the (running) effective action
Γk[φ(x) = φ] = Γk(φ) became an effective potential Uk(φ) (up to a volume
factor) and the r.h.s. of Eq. (3.9) Fourier transforms into an integral over

a single momentum. In O(N = 1) case where Γ
(2)
k (q, φ) is a scalar, the

inverse of Γ
(2)
k (q, φ) + Rk(q) boils down to 1/(Γ

(2)
k (q, φ) + Rk(q)) and

∂kUk(φ) = ∂kΓk[φ(x) = φ] =
1

2

∫
q

∂kRk(q)

Γ
(2)
k (q, φ) + Rk(q)

. (3.11)
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The integrand is under control because of the presence of ∂kRk(q) in the
numerator and of Rk(q) in the denominator: only the region where q ∼ k
is really contributing. This implements Wilson’s renormalization-group
idea of momentum shell integration of fluctuations.

• If we replace, in the right hand side of Eq. (3.11), Γ
(2)
k (q, φ) by its mean-

field approximation, given by H(2)(φ) + Rk, then we simplify the flow
equation for the effective action as

∂kΓk =
1

2
∂kTr ln

(
H(2) + Rk

)
. (3.12)

As a consequence, the flow becomes a total derivative and we can (trivially)
integrate between 0 and Λ:

Γ−H =
1

2
Tr ln

(
H(2)

)
+ const. (3.13)

This is the equation for the one-loop effective action founded earlier. We
see that the crudest approximation that we could make on the Wetterich’s
equation nevertheless gives exact one-loop results. This procedure could
be iterated to retrieve perturbation theory to all orders, as explained in
Ref. [25]. It is remarkable that substituting in Eq. (3.12) the bare inverse

propagator H(2) + Rk by the full inverse functional propagator Γ
(2)
k + Rk

turns this one-loop equation into the exact flow equation.

3.2 Exact renormalization-group equation for the
n-point functions

3.2.1 Infinite hierarchy of coupled equations

In this section we show how the exact flow equation for the effective action,
given by Eq. (3.9) can be used in order to obtain the flow equations for all
the vertices, and thus for all the connected-correlation functions, of the theory.
In order to simplify the notation, note that the Wetterich equation, given by
Eq. (3.9), can be written as

∂kΓk[φ] =
1

2

∫
x,y

∂kRk(x, y)Gk(x, y), (3.14)

where:
Gk(x, y) = (Γ

(2)
k [φ] + Rk)−1(x, y) (3.15)

is the modified propagator in presence of the cutoff term Rk.
Starting from the Wetterich equation given in Eq. (3.14) one obtains, by

functionally differantiate it with respect to the field φ(x):

∂kΓ
(1)
k (x) = ∂k

δΓk(φ)

δφ(x)
= −1

2
Tr

(
∂kRkGk

δΓ
(2)
k

δφ(x)
Gk

)
, (3.16)
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where we have not indicated the spatial dependences of Rk, Gk and Γ
(2)
k in the

r.h.s., and Tr stands for the integral over these implicit spatial dependences. It
is possible to graphically represent Eq. (3.16) by means of a suitable Feynman
diagram given by

∂kΓ
(1)
k [φ] = −1

2
. (3.17)

Here the straight lines inside the loop are the modified propagators Gk, given by
Eq. (3.15), the black blob is the cutoff term ∂kRk while the dashed blob is the

3-particle-irreducible (3PI) vertex function, given by δΓ
(2)
k /δφ(x) = Γ

(3)
k (x, y, z).

The exiting line is the only un-amputated leg of the 3PI vertex which enters

into the flow of the 1PI vertex, i.e., Γ
(1)
k .

If we take a further derivative with respect to the field φ of the exact flow
equation for the 1PI vertex function, given by Eq. (3.16), we obtain the following
flow equation for the flow of the 2PI vertex:

∂kΓ
(2)
k (x, y) = ∂k

δ2Γk[φ]

δφ(x)δφ(y)
=

= −1

2
Tr

[
∂kRkGk

δ2Γ
(2)
k

δφ(x)δφ(y)
Gk

]
+ Tr

[
∂kRkGk

δΓ
(2)
k

δφ(x)
Gk

δΓ
(2)
k

δφ(y)
Gk

]
,

(3.18)

which has the following graphical representation, according to the convention
explained above,

∂kΓ
(2)
k [φ](x, y) = − 1

2
. (3.19)

In particular, the dashed blob with four legs is the 4PI vertex function, given

by Γ
(4)
k .

The flow equations for the n-point functions, such as Eq. (3.19), provide an
infinite hierarchy of coupled equations. The coupling among these equations
occurs in two ways, upwards and downwards. In fact, upwards, the equation for

Γ
(n)
k involves Γ

(n+1)
k and Γ

(n+2)
k . While, downwards, all the flow equations in-

volve Γ
(2)
k which is coupled successively to all the equations above it. A number

of approximation procedures have been introduced in the last twenty years in
order to solve the Wetterich equation. Various approximation have been imple-
mented in order to close the infinite tower of coupled equations: local potential
approximation (LPA), that we detail in the following section, the derivative ex-
pansion (see Refs. [24, 30]) and Blaizot-Mendez-Wschebor approximation [34],
as well as many others. In this work we introduce and use only the local poten-
tial approximation.

42



3.2.2 The case of uniform background field

If we evaluate ∂kΓ
(1)
k [φ] on a uniform field configuration, i.e., φ(x) = φ, the

momentum is conserved at each vertex of the diagram and for each modified
propagator in Eq. (3.17). Accordingly, Eq. (3.17) does not vanish only at zero

momentum and in Fourier space, where Γ
(1)
k [φ](x) → Γ

(1)
k (p, φ), we obtain the

following expression for the flow equation of the 1PI vertex function

∂kΓ
(1)
k (p = 0, φ) = . (3.20)

Similarly the flow equation for ∂kΓ
(2)
k in Eq. (3.19) becomes, in the case of

uniform background fields

∂kΓ
(2)
k (p, φ) = − 1

2
, (3.21)

i.e.,

∂kΓ
(2)
k (p, φ) =

∫
q

∂kRk(q)G2
k(q, φ)×

×
[
Γ

(3)
k (p, q,−p− q;φ)Gk(q + p, φ)Γ

(3)
k (−p, p+ q,−q;φ)+

−1

2
Γ

(4)
k (p,−p, q,−q;φ)

]
.

(3.22)

There exist also a consistency condition, that we illustrate here, between

Γ
(2)
k (q, φ) and the effective potential, i.e., Uk(φ): in fact we have Γ

(2)
k (p = 0, φ) =

U
(2)
k (φ) = mk(φ)[2]. The identification in the very last equation, i.e., that mk =

U
(2)
k is due to the fact that the local part of Γ

(2)
k (q, φ) is the mass term of the

modified propagator Gk as one can see from Eqs.(3.11) and (3.15). Accordingly,
mk can be calculated by taking the second derivative with respect to φ of the
flow equation for the effective potential:

∂kmk(φ) = ∂kΓ
(2)
k (0, φ) =

∫
q

∂kRk(q)G
(2)
k (q, φ)×

×

Gk(q, φ)

(
∂Γ

(2)
k (q, φ)

∂φ

)2

− 1

2

∂2Γ
(2)
k (q, φ)

∂φ2

 . (3.23)

2I.e. the effective potential could be defined as the local part of the effective action.
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Equation (3.23) is the flow of the effective modified mass term in a uniform
background field configuration and is coupled to the momentum-dependent part
Γk(q, φ) which is coupled to the 3PI and the 4PI vertex function by Eq. (3.22).

The modified version of Eq. (3.23) for non-equilibrium phenomena will be
crucial for our purpose of calculating the fluctuation dissipation ratio (FDR).
In fact, the FDR is given by an amplitude ratio and in order to have access to
these amplitudes one needs to calculate the two-point functions of the theory,
i.e., the responses and correlation functions of the purely relaxational model.
In that case, the mass mk(φ) will acquire a time dependence induced by the
temperature quench.

3.3 The local potential approximation

3.3.1 Flow equation for the effective potential

The underlying idea of the local potential approximation is that for the study
of critical phenomena we are mostly interested in the long-distance physics, that
is the |q| → 0 region of the correlation functions with wave vector q. Thus, we
keep only the lowest orders of the expansion of Γk in ∇φ while we keep all orders
in the field φ

Γk(φ) =

∫
ddx

[
1

2
(∇φ)2 + Uk(φ)

]
+O(∇4). (3.24)

All we can learn about the model at this level of approximation is contained
in the effective potential Uk(φ). It should be clear that the most important
information about of collective behavior and the critical behavior are hidden
in the effective potential Uk=0 of the theory that, accordingly, needs to be
computed as accurately as possible.

Note that if Uk is not truncated in a field expansion the RG equation of Γk
becomes an infinite set of coupled partial differential equations for the coupling
which parametrizes it. The initial condition (at scale Λ) for the effective ac-
tion flow is given by the effective Hamiltonian H of the model. Furthermore,
contrarily to perturbation theory where only the renormalizable couplings are
retained in the renormalized action, all powers of the fields appear, in general, in
the ansatz for Γk. There is no longer distinction, at this level, between relevant
and irrelevant couplings (this is in fact a complication of the fRG with respect
to the perturbative renormalization group technique).

Within the local potential approximation for the effective action, given by
Eq. (3.24), the two-point function, obtained by differentiating Γk[φ] twice with
respect to φ, and letting φ be constant, is given by

Γ
(2)
k (q, φ)

LPA−−−→ Γ
(2)
k (q, φ) = q2 +mk(φ). (3.25)

The corresponding propagator is simply a massive propagator, with a φ-dependent
mass given by mk(φ). The flow equation for the effective potential Uk(φ), as well
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as the flow for the effective modified mass mk(φ), given in Eq. (3.23), become
closed equations. In particular, the former reads:

k∂kUk(φ) =
1

2

∫
q

k∂kRk

q2 + Rk(q) +mk(φ)
. (3.26)

With the choice of the Litim optimized cutoff

Rk(q2) = (k2 − q2)ϑ(k2 − q2), (3.27)

the calculation of the momentum integral in Eq. (3.26) is straightforward and
one easily finds

k∂kUk(φ) =
4ad
d

kd+2

k2 +mk(φ)
, (3.28)

where ad = 2/[Γ(d/2)(4π)d/2] (Γ(x) is here the gamma function) is a numerical
factor stemming from the angular integral implicit in

∫
q
.

3.3.2 Analysis of critical points and the dimensionless ef-
fective potential

In order to characterize critical points it is interesting to work with the
dimensionless version Ũk of Uk, in the following, since, at this point, the long-
distance physics (compared to Λ−1) is scaleless. This means that the potential,
properly rescaled by powers of k, should be k-independent at T = Tc and for
sufficiently small k: it must be a fixed potential Ũ∗(φ̃), such that

k∂kŨ
∗(φ̃) = 0. (3.29)

(in general we will denote by the subscript ∗ any quantity which is evaluated
at a fixed point). In our formalism, k is the analogue of the inverse running
lattice spacing and, to find a fixed point, we must therefore ”de-dimension” all
dimensional quantities thanks to k. This is equivalent to measuring all lengths
in units of the running ”lattice spacing” k−1. We have

[Γk] = k0 →

[φ] = k
d−2
2 ,

[Uk] = kd,
(3.30)

where with the simbol [·] we mean the dimension of the quantity inside the
bracket, expressed in powers of k. We define the dimensionless variables by

x̃ = kx, φ̃(x) = k
2−d
2 φ(x),

Ũk(φ̃(x̃)) = k−dUk(φ(x)) and m̃k(φ̃) = k−2mk(φ).
(3.31)

In order to derive the RG equation for the dimensionless effective potential
Ũk we must keep in mind that the derivative k∂k in Eq. (3.28) is computed at
fixed φ. We want while to compute it at fixed φ̃, finding

k∂kŨk(φ̃) = −dŨk(φ̃) + (d− 2)Ũ
(1)
k (φ̃) +

4ad
d

1

1 + m̃k(φ̃)
. (3.32)
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We clearly see from this equation that the flow of Ũk consists of tow contribu-
tions, one that comes from the dimensions of Uk and φ (the first and second
term on the r.h.s. of Eq. (3.32))and one that comes from the dynamics of the
model (the last term on the r.h.s.). This RG equation for Ũk is a rather simple
partial differential equation that can be easily integrated numerically.

The effective potential Uk has another very important property: it is the
generating functional of the β-functions, i.e. the flow equation, for all of the
couplings introduced in it. In fact, if we decide for example to expand Ũk in
even powers of the field, accordingly to the Z2 symmetry of the theory, we
obtain:

Uk(φ) =

Ntr∑
n=1

gk,2n
2n(2n)!

(
φ2 − φ2

m,k

)2n
, (3.33)

where we have truncated the series at n = Ntr and φm,k, i.e., the so-called
running homogeneous background field is defined as

δUk
δ(φ2)

∣∣∣
φ=φm,k

= 0. (3.34)

From this equation we have access to all the β-function for the couplings gk,2n
by the following formula:

k∂kgk,2n = k∂k
2n(2n)!

(2n)!

(
∂n

∂(φ2)n
Uk(φ)

) ∣∣∣
φ=φm,k

. (3.35)

Equations (3.33), (3.34) and (3.35) holds also for the dimensionless version of
the effective potential Ũk(φ̃), if we insert in them the dimension-less version of
the couplings gk,2n and of the fields φ and φ̃, respectively given by g̃k,2n, φ̃ and

φ̃m,k.

3.3.3 Critical point of the Z2 universality class: vanishing
background field-approximation

We are now in the position to discuss the critical behaviour of the Ising
model and to look for fixed points. We discuss the symmetry-breaking in the
Ising model at the lowest possible level of approximation: we expand the local
potential Uk around a vanishing background field, i.e., we set φm,k = 0 and we
choose Ntr = 2 in Eq. (3.35). Accordingly, Uk is given by

Uk(φ) =
rk
2
φ2 +

gk
4!
φ4. (3.36)

The β-functions for the couplings r̃k and g̃k are easily obtained via Eqs.(3.36)
and (3.35), and (3.32), together with the condition φ̃m,k = 0. The result is given
by 

k∂kr̃k = −2r̃k −
g̃k

(1 + r̃2
k)2

,

k∂kg̃k = (d− 4)g̃k + 6
g̃2
k

(1 + r̃2
k)3

,

(3.37)
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where we absorbed the term ad/d in Eq. (3.32), into the definition of g̃k. Note
that during the calculation one has to use in Eq. (3.32) the following relation:

mk(φ)|φ=0 = rk, (3.38)

together with U (1)(φ)|φ=0 = 0. A fixed point is a solution of k∂kŨ
∗
k = 0.

Accordingly the fixed point is a solution (r̃∗, g̃∗) of Eq. (3.37) with vanishing
l.h.s. in both equations. The solutions for d ≥ 3:

Gaussian:

{̃̃
r∗ = 0,

g̃∗ = 0,
(3.39)

Wilson-Fisher:


˜̃r∗ = − 4− d

16− d
,

g̃∗ = 288
4− d

(16− d)3
.

(3.40)

In order to test the stability properties of the Wilson-Fisher fixed point and
to extract universal quantities, one has to linearize the flow equations for the
dimensionless couplings around the Wilson-Fisher fixed point: for example, the
largest negative eigenvalue lmax of the stability matrix is related to the correla-
tion length exponent ν by:

ν = − 1

lmax
. (3.41)

It can be shown [24] that the critical exponent νLPA for the Ising model in
spatial dimension d = 3 is calculated to be νLPA = 0.65(1), within the full
functional LPA approach (i.e. by taking the limit Ntr →∞ in Eq. (3.33)), that
is in rather good agreement with the numerical value ν = 0.630(1) reported in
Chapter 1. LPA qualitatively and quantitatively describes the critical behavior
very well even if it is the the simplest approximation in the class of derivative
expansions approximations (see Ref. [24] for the details on this last class of
approximations and their accurate predictions of static critical exponents).

Within the vanishing background-field approximation of LPA, there is no
renormalization of the derivative term of the microscopic action, and, accord-
ingly, the exponent η vanishes, i.e., ηLPA = 0. We postpone the discussion of
how to obtain non-vanishing anomalous dimension η to the following chapter.
In some way, we have to consider contribution to the derivatives terms which
comes from (spatial and temporal) non-local terms in the effective action. From
ν and η all the other static exponents can be calculated thanks to well known
scaling relations between exponents [6].
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Chapter 4

Critical exponents of the purely
relaxational model: a functional
renormalization-group approach

In this chapter we introduce a recent approach for studying genuine non-
equilibrium phenomena by means of the functional renormalization-group tech-
nique (fRG), exposed in its equilibrium version in the previous chapter. In
Ref. [35] the case of critical relaxational model was analyzed. There, it was
shown how to calculate non-equilibrium, as well as static, universal exponents;
this method has been applied to the case of a critical quench of the purely re-
laxational model, providing the predictions for the critical initial-slip exponent
θ shown in Fig. 1.2.

In this chapter we present a review of the approach introduced in Ref. [35]
and, in addition, we correct a mistake done in the calculation of the dynamical
exponent θ, which is discussed around Fig. 4.3. We also clarify the physi-
cal interpretation of the equation which gives the anomalous dimension of the
boundary (in time) order-parameter field. We recall from Sec. 1.3.2, that this
field represents the non-equilibrium initial condition necessary to implement the
dynamics induced by the temperature quench. All the results presented in this
chapter will be crucial in order to achieve our purpose, i.e., to calculate the
fluctuation-dissipation ratio in the long-time limit, which is done in the next
chapter.
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The chapter is organized as follows:
Sec. 4.1: We generalize the exact renormalization-group equation for the effective

action to the case of purely relaxational dynamics in the presence of the
quench, which breaks time-translational invariance.

Sec. 4.2: We implement the LPA approximation within a vanishing background
field approximation. This will lead to predictions of the critical initial-slip
exponent θ.

Sec. 4.3: We introduce the non-vanishing background field implementation of the
LPA. We show how this choice lead to a non-local contribution to the effec-
tive action, which is eventually responsible for a non-vanishing anomalous
dimension, yields to more accurate predictions for θ. At the end of Sec. 4.3
we discuss our original results in this context.

4.1 Functional renormalization-group for non-
equilibrium systems

Let us introduce the functional renormalization-group equation for the ef-
fective action for the case of critical non-equilibrium systems. For the purely
relaxational model, the microscopic dynamical action is given by Eq. (1.29). In
order to implement the temperature quench we have to add the boundary term
Sb, as described in Sec. 1.3. The resulting microscopic dynamical action is given
by

S[φ, φ̃] = Sb[φ0] +

∫
r

∫ ∞
t0

dt φ̃

(
∂tφ+ Ω

δH
δφ
− ΩT φ̃

)
, (4.1)

where we assume that the quench is made at time t0
1. The boundary action Sb

depends on the field φ(r, t0) = φ0.
In order to implement the fRG, as explained in the previous chapter, it is

necessary to supplement the action S with a cutoff function Rk(q), and to derive
the one-particle irreducible effective action Γk[φ, φ̃] as the Legendre transform of
the generating function associated to Sk, as detailed in the previous section. The
properties that the cutoff function Rk(q) has to satisfy in order to implement the
fRG technique have been detailed in the previous section. Rk(q) is introduced
as a quadratic term in the modified action Sk[Φ], where Φ = (φ, φ̃), given by

Sk[Φ] = S[Φ] + ∆Sk[Φ], (4.2)

with

∆Sk[Φ] =

∫
t,r

[
Φtσ̂Φ

]
Rk/2, where σ̂ =

(
0 1
1 0

)
, (4.3)

with the Pauli matrix σ̂ acting in the two-dimensional space of the variables φ
and φ̃, encoded in the doublet Φ = (φ, φ̃).

1The stationary properties of this model are recovered in the limit t0 →∞, which yields a
time-translational invariant action.
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The flow equation for Γk upon varying the coarse-graining scale k is given
by [35]:

∂kΓk[Φ] =
1

2

∫
x,x′

Tr
[
ϑ(t− t0)Ĝk[Φ](x, x′)σ̂

]
∂kRk(x− x′), (4.4)

where, in order to simplify the notation, we defined x = (r, t),
∫
x

=
∫
ddr

∫∞
t0
dt.

The matrix Ĝk in Eq. (4.4) is defined as

Ĝk[Φ](x, x′) =
[
Γ̂

(2)
k [Φ] + Rkσ̂

]−1

(x, x′), (4.5)

where the inverse on the r.h.s. is taken with respect to both spatial and temporal

variables, as well as to the internal matrix structure. The kernel Γ̂
(2)
k is the

second variation of the effective action Γk with respect to the fields, i.e.,

Γ̂
(2)
k [Φ](x, x′) =


δ2Γk

δφ(x)φ(x′)

δ2Γk

δφ̃(x)φ(x′)

δ2Γk

δφ(x)φ̃(x′)

δ2Γk

δφ̃(x)φ̃(x′)

 . (4.6)

Note that now it becomes clear why σ̂ enters in the cutoff function in Eq. (4.3).

In fact, the only entries of Γ
(2)
k in which the operator−∇2 intervenes, responsible

of the divergences which need to be cured by the cutoff, are the non-diagonal
ones.

While Eq. (4.4) is exact, it is generally not possible to solve it, as we have
discussed in the previous chapter. Accordingly, one has to resort to approxima-
tion scheme which render Eq. (4.4) amenable to analytic calculations. A first
step in this direction is to provide an Ansatz for the form of the effective action
Γk which, once inserted into Eq. (4.4), results in a set of coupled non-linear dif-
ferential equations for the couplings which parametrize it. In fact, any coupling
gn,lφ

nφ̃l/(n!l!) (with n and l positive integers) appearing in Γk corresponds to
a term of its vertex expansion, as

gl,nk =
δl+nΓk

δφ̃lδφn

∣∣∣∣
φ̃=0,φ=φm

, (4.7)

where the derivatives of Γk are evaluated on some homogeneous field configura-
tions φ̃ = 0 and φ = φm. The background field φm, is typically chosen as the
minimum of the effective action Γk. Finally, in order to derive the RG equations
for the couplings appearing in the effective potential Uk, one has to take the
derivative with respect to k on both sides of the Wetterich equation in Eq. (4.4)
and one finds

dgl,nk
dk

=
δl+n

δφnφ̃l
1

2

∫
x

Tr

[
ϑ(t− t0)Gk(x, x)

dRk

dk
σ

] ∣∣∣
φ̃=0
φ=φm

+

+
δl+n+1Γk

δφn+1φ̃l

∣∣∣
φ̃=0
φ=φm

dφm
dk

,

(4.8)
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from which one can evaluate the flow equation for the couplings gn,l, once the
derivative of the field φm is calculated. We conclude this section with this
important remark: A very peculiar and important property of non-equilibrium
system is that the effective action and the couplings which parametrize it not
only depend on the scale k but also on time, as we shall see. This is due to the
fact that the generalized propagator Ĝk which enters the r.h.s. of the Wetterich
equation is generically time dependent.

4.2 The local potential approximation

The ansatz for the modified effective action Γk that we will consider in the
following is given by

Γk[φ, φ̃] = ϑ(t− t0)

∫
x

∫ ∞
t0

dt φ̃

(
Zk∂tφ−Kk∇2φ+

∂Uk
∂φ
−Dkφ̃

)
+

+ Γ0,k[φ0, φ̃0],

(4.9)

where field-independent factors Zk,Kk and Dk account for possible renormaliza-
tions of the derivatives and of the Markovian noise, while the generic potential
Uk(φ) is a Z2-symmetric local polynomial of the order parameter φ.

The boundary action Γ0,k[φ0, φ̃0] which accounts for the initial conditions is
given by

Γ0,k =

∫
r

(
−
Z2

0,k

2τ0,k
φ̃2 + Z0,kφ̃0φ0 + Z0,kh0φ̃0

)
. (4.10)

Note that this form of Γ0,k is completely determined by the fact that it should
reproduce the Gaussian non-equilibrium correlator, up to terms that are irrel-
evant in RG sense, as discussed in Ref. [35]. The factor Z0,k accounts for a

possible renormalization of the initial response field φ̃0 [and will give rise to
the critical initial slip exponent θ, through Eq. 1.49]. Finally, the presence of a
non-vanishing initial field h0 induces a non-trivial evolution of the magnetiza-
tion M(t) = 〈φ(t)〉, but it does not generate new additional critical exponents,
and therefore in the rest of this work we will assume h0 = 0 without loss of
generality.

The coupling constants and the parameters which enters in the first line in
the r.h.s. of Eq. (4.10) are the so-called bulk coupling constants and parameters,
respectively. The constants which enters into Γ0,k i.e., Z0,k and τ0,k are, instead,
the boundary parameters.

The kernel Γ̂
(2)
k [Φ] + Rkσ̂ in Eq. (4.5) can be re-expressed formally by sep-

arating the field-independent part Ĝ−1
0,k from the field-dependent part Σ̂k[Φ],

i.e.,

Γ̂
(2)
k [Φ] + Rkσ̂ = Ĝ−1

0,k − Σ̂k[Φ], (4.11)

such that, using Eq. (4.5) in the l.h.s., one obtains

Ĝk[Φ] =
(
Ĝ−1

0,k − Σ̂k[Φ]
)
. (4.12)
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It is important to realize that Eq. (4.12) is a Dyson equation for the modified
propagator Ĝk[Φ], such as Eqs. (2.14) obtained in equilibrium. As we have seen

in that case, starting from Ĝ0,k and Σ̂0,k one has access, through Γ̂
(2)
k , to the

two-time functions of the theory.
Note that, since we assumed Γ0,k to be quadratic in the fields φ and φ̃, its

presence is completely encoded in the function Ĝ−1
0,k. Considering the quadratic

part of the local ansatz for the effective action one can calculate the Gaussian
generalized propagator Ĝk as (the details are given in Ref. [35])

Ĝ0,k(q, t, t′) =

(
C0,k(q, t, t′) R0,k(q, t, t′)
R0,k(q, t′, t) 0

)
, (4.13)

where C0,k, R0,k are modified non-equilibrium Gaussian response and correlation
functions, with a dispersion relation ωq replaced by the regularized one ωk,q,
given by:

ωk,q = Kkq
2 + rk(φm) +Kk(k2 − q2)ϑ(k2 − q2), (4.14)

where rk(φm) is defined as

rk(φm) =
δ2Uk
δφδφ

∣∣∣∣
φ=φm,k

. (4.15)

Furthermore, taking into account the parameters Kk, Dk, Zk the Gaussian equa-
tions of motion for the response and the correlation functions are given by,

(Zk∂t + ωk,q)R0,k(q, t, s) = δ(t− s), (4.16)

and
(Zk∂t + ωk,q)C0,k(q, t, s) = 2DkR0,k(q, t, s). (4.17)

Noting the similarity of the previous equations with Eqs. (2.22) and (1.35) one
concludes that the modified response and correlation functions are given by the
following modified Gaussian two-time functions

R0,k(q, t, s) = ϑ(t− s)e−(ωk,q/Zk)(t−s)/Zk, (4.18)

C0,k(q, t, s) =
Dk

Z2
k(ωk,q/Zk)

[
e−(ωk,q/Zk)|t−s| − e−(ωk,q/Zk)(t+s)

]
. (4.19)

For the local ansatz given in Eq. (4.9), the field-dependent self energy Σ̂k[Φ] =
Σ̂k(x, x′) reads:

Σ̂k(x, x′) = Σ̂k(x)δ(x− x′), (4.20)

where the delta function δ(x−x′) = δ(t−t′)δ(d)(r− r′) appears as a consequence
of the locality in space and time of the potential Uk, and where the function
Σ̂k(x) is defined as

Σ̂k(x) = −ϑ(t− t0)

φ̃(x)
∂3Uk
∂φ3

(x)
∂2Uk
∂φ2

(x)

∂2Uk
∂φ2

(x) 0

 . (4.21)
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Equation (4.12) is more useful for our purposes if it is rephrased explicitly as a
Dyson equation for the full propagator Ĝk[Φ] = Ĝk(x, x′),

Ĝk(x, x′) = Ĝ0,k(x, x′) +

∫
y

Ĝ0,k(x, y)Σ̂k(y)Ĝk(y, x′), (4.22)

with Σ̂k and Ĝk are Φ-dependent.
Inserting the Dyson equation for the propagator in the Wetterich equation,

the latter can be cast in the form

∂kΓk[Φ] =

+∞∑
n=1

∆Γn,k, (4.23)

where the functions ∆Γn,k[Φ] are defined as

∆Γn,k[Φ] =
1

2

∫
x,y1,.,yn

Tr
[
Ĝ0,k(x, y1)Σ̂k[Φ](y1)Ĝ0,k(y1, y2) ×

×Σ̂k[Φ](y2)...Σ̂k[Φ](yn)Ĝ0,k(yn, x)
dRk

dk
σ̂

]
.

(4.24)

As a first approximation, we introduce here the ansatz for the local potential
Uk expanded till the quartic power of the field φ, i.e.,

Uk(φ) =
rk
2
φ2 +

gk
4!
φ4. (4.25)

In this case, the field-dependent function Σ̂k(x), implicitly defined in Eq. (4.12),
reads

Σ̂k(t) = −ϑ(t− t0)gk

[
φ̃φ φ2

2
φ2

2 0

]
. (4.26)

Accordingly, since this Σ̂k appears n times in the convolution which defines
∆Γn,k, it follows that ∆Γn,k contains products of 2n possibly different fields.
Because of the ansatz, also the l.h.s. of Eq. (4.23) is a polynomial of the fields,
and therefore each term on the l.h.s. is uniquely matched by a term of the
expansion on the r.h.s.. Accordingly, in order to derive the RG equation for the
coupling of a term involving a product of 2n fields, it is sufficient to evaluate
the corresponding ∆Γn,k. Note that this line of argument applies also to the
time-translational invariant case, and, moreover, it can be easily generalized to
the case in which the potential contains powers of φ of higher order than those
in the ansatz proposed here.

We note here that, in the following, we are going to consider the lowest-order
calculations in LPA and, in doing analytical calculations, the following form for
the cutoff function will be extremely useful

Rk(x− x′) Fourier−−−−−→ Rk(q2)δ(t− t′),
where Rk(q2) = Kk(k2 − q2)ϑ(k2 − q2).

(4.27)
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4.3 Truncation for vanishing background field

4.3.1 Derivation of the renormalization-group equations
for the bulk couplings

The only non-irrelevant terms which are renormalized within this scheme
are those proportional to quadratic and quartic powers of the fields φ and φ̃,
i.e., those associated with the post-quench parameter rk, the boundary field
renormalization Z0,k and the coupling gk. As discussed before, the renormaliza-
tion of the quadratic terms is determined by the contribution ∆Γ1,k while the
renormalization of the quartic one by the contribution ∆Γ2,k.

Let us detail the computation of ∆Γ1,k: starting from Eq. (4.24), one finds,
for n = 1, the following expression

∆Γ1,k =

=
1

2

∫
t,t′,r,r′

Tr
[
Ĝ0,k(r− r′, t, t′) Σ̂k(t′, r′)Ĝ0,k(r′ − r, t′, t)σ̂

]
∂kRk(r− r′)

=
1

2

∫
t,t′,q,r′

Tr
[
Ĝ0,k(q, t, t′) Σ̂k(t′, r′)Ĝ0,k(q, t′, t)σ̂

]
∂kRk(q2)

= kd+1 ad
d

∫
t,t′,r′

Tr
[
Ĝ0,k(k, t, t′) Σ̂k(t′, r′)Ĝ0,k(k, t′, t)σ̂

]
, (4.28)

where ad = 2/[Γ(d/2)(4π)d/2], with d the spatial dimensionality and Γ(x) the
gamma function. In the second equality of Eq. (4.28) one expresses Ĝ0,k(r, t, t′)

in terms of its Fourier transforms Ĝ0,k(q, t, t′) and then calculates the integral
over the spatial coordinates r. In the third equality, instead, after performing
the integration over angular variables (which generates the factor ad), the in-
tegral over momenta q becomes trivial since the function Rk is such that (see
Eq. (4.27))

dRk(q2)

dk
= 2k ϑ(k2 − q2), (4.29)

i.e., it restricts the integration domain to 0 ≤ q ≤ k, within which Ĝ0,k(q, t, t′) is

constant and equal to Ĝ0,k(k, t, t′) as a consequence of the modified dispersion
relation in Eq. (4.14). Similarly, ωk,q is replaced by ωk,q≤k = ωk,k = ωq=k (see
Eq. (4.14)). Note that, since Kk is not renormalized within this approximation,
it does not contribute to Eq. (4.29) and, for simplicity, we set Kk = 1. Further-
more, the mass rk(φm) which enters in the modified dispersion relation ωk,q,
given by Eq. (4.14), for the case of vanishing background field configuration,
i.e., φm,k = 0, is simply given by rk introduced in the ansatz for the effective
potential Uk, here given by Eq. (4.25). Finally, by using the definitions (4.13)
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and (4.26), one evaluates the trace in Eq. (4.28), finding

∆Γ1 = −2kd+1 ad
d
gk

∫
r′

∫ +∞

t0

dt′ φ̃(r′, t′)φ(r′, t′)

×
∫ +∞

t0

dtRk(k, t′, t)Ck(k, t′, t)

= −kd+1 ad
d

gkD

ω2
k

∫
r

∫ +∞

t0

dt′ φ̃(t′, r)φ(t′, r)

× [1− fr,k(t′ − t0)] , (4.30)

where in the last equality the integral over time t was calculated. Furthermore,
ωk = ωq=k and Dk = D in vanishing background field configuration. fr,k(t) in
Eq. (4.30) is given by

fr,k(t) = e−2ωkt

[
1 + 2ωkt

(
1− ωk

Dτ0,k

)]
, (4.31)

and it corresponds to the time-dependent part of the result of the integration
over t in the first equality of Eq. (4.30). Note that the terms proportional to φ2

contained in Σ̂k, do not appear in the final result (as required by causality, see
Ref. [6]) since they are multiplied by a factor ϑ(t− t′)ϑ(t′ − t) = 0.

The flow for rk can be simply obtained by comparison, as explained above,
thus yielding the following β-function

drk(t)

dk
= −kd+1 ad

d

gkD

(k2 + rk)2
[1− fτ,k(t− t0)]. (4.32)

We consider now the renormalization of the quartic term, which can be read
off from ∆Γ2,k. Note that, in this case, one has to deal with the fact that ∆Γ2,k

depends on two times, contrary to ∆Γ1,k which is local in time. A localization
procedure is used 2, which eventually yields

∆Γ2 =
3

2
kd+1 ad

d

g2
kD

2

ω4
k

∫
r

∫ +∞

t0

dtφ̃2(t)φ2(t)[1− fD,k(t− t0)]

+ kd+1 ad
d

g2
kD

2

ω3
k

∫
r

∫ +∞

t0

dtφ̃(t)φ3(t)[1− fg,k(t− t0)].

(4.35)

2The localization procedure, that we introduce for simplicity for the case of a non-local
effective action which is quadratic in the fields, proceeds as follows. Starting from a non-local
Γk (which arises in the r.h.s. of the Wetterich equation) of the type

Γk =

∫
t
φ̃(t)φ(t)Σ̂1,k(t) +

∫
t,t′

φ̃(t)φ(t′)Σ̂2,k(t, t′), (4.33)

following [35] we make the following expansion φ(t′) = φ(t) + φ̇(t)(t′ − t) + O((t − t′)2), so
that one obtains

Γk ∼
∫
t
φ̃(t)φ(t)

(
Σ̂1,k(t) +

∫
t′

Σ̂2,k(t, t′)

)
+

∫
t
φ̃(t)φ̇(t)

∫
t′

(t′ − t)Σ̂2,k(t, t′). (4.34)

The first contribution on the r.h.s. of this last equation, proportional to φ̃(t)φ(t), is local in
time. The contribution proportional to φ̃(t)φ̇(t), instead, is responsible for the emergence of
a power-law behaviour of Zk near k ∼ 0: Zk = k−ηZ .
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where fg,k and fD,k are, similarly to fr,k, exponentially decaying functions upon
increasing the time t and therefore they do not contribute to the renormalization
of the couplings at long times. These integrals provide a contribution propor-
tional to φ̃2φ2; however, this operator is irrelevant for d > 2 and it can be
neglected, since our truncation includes only relevant couplings. On the other
hand, the term proportional to φ̃φ3 renormalizes the relevant coupling gk. In
fact, by applying the Wetterich equation for the coupling constants, given in

Eq. (4.8), specialized to the case of the quartic coupling gk ∼ Γ
(1,3)
k |Φ=0, one

finds
dgk
dk

= 6kd+1 ad
d

g2
kD

(k2 + rk)3
[1− fg,k(t)] , (4.36)

where the analytic expression of fg,k, unimportant to our purposes, can be found
in Ref. [35].

4.3.2 Analysis of the interacting fixed point

Since fr,k(t) and fg,k(t) vanish exponentially fast upon increasing the time
t, their contributions to the renormalization of the time-independent parameter
rk and gk can be neglected if we are interested only in the limit t→∞ and not
on its dynamics.

In order to study the flow of rk and gk it is convenient to introduce the
corresponding dimensionless quantities

r̃k = rk/k
2, g̃k = gkDk

d−4ad/d. (4.37)

Their flow equations in the long-time limit [where the functions fr,k(t) and
fg,k(t) vanishes exponentially fast, see Eq. (4.31)] are given by

k
dr̃k
dk

= −2r̃k −
g̃k

(1 + r̃k)2
,

k
dg̃k
dk

= g̃k

[
(4− d) + 6

g̃k
(1 + r̃k)3

]
.

(4.38)

These equations can be evaluated with arbitrary d because of their non-perturbative
nature. To retrieve known results in ε expansion, let us evaluate them with
d = 4 − ε. If we do this one can easily see that Eq. (4.38) admits two fixed
points: the Gaussian one (r̃∗G, g̃

∗
G) = (0, 0) and the Wilson-Fisher one, which at

the leading order in ε, reads (r̃∗WF , g̃
∗
WF ) = (−ε/12, ε/6) +O(ε2). By linearizing

the dimensionless fRG equation one finds that the Gaussian fixed-point is stable
only for ε < 0, while the Wilson-Fisher one is stable only for ε > 0. The latter
has an unstable direction (related to temperature), and from the inverse of the
negative eigenvalue of the associated stability matrix, one derives the critical
exponent ν, which reads ν = 1/2 + ε/12 +O(ε2), i.e., it is the same as in equi-
librium [5]. As a check we compare the previous flow Eqs.(4.38) for the bulk
coupling, with those obtained earlier in the context of the equilibrium theory,
given by Eq. (3.37), finding that they actually coincide.
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Since τ0,k does not receive any correction from the renormalization, its flow
equation is simply determined by its canonical dimension and thus

k∂k τ̃0,k = −2τ̃0,k. (4.39)

Accordingly, τ̃0,k has only one stable fixed point τ̃∗0 = +∞, in the infrared regime
(i.e., for k → 0). Close to this fixed point, any possible term in the boundary
action Γ0 (except for φ̃0φ0, as we show in the next section) is irrelevant for
d > 2, and therefore the ansatz given by Eq. (4.10) is consistent.

4.3.3 Analysis of initial-slip exponent θ in the short-time
limit

In order to find the critical initial-slip exponent we could3 focus, as explained
in Ref. [35], on the short-time limit of the β-function of the mass in the dis-
ordered state rk, which is given in Eq. (4.32). At short times, the function
fr,k(t) provides contributions containing fields of the temporal boundary, thus
renormalizing the boundary action Γ0,k. In fact, the formal identity∫ +∞

t0

dt g(t)e−c(t−t0) =

∞∑
n=0

1

cn+1

dng

dtn

∣∣∣
t=t0

, (4.40)

with c > 0 and g(t) an arbitrary smooth function, can be used in order to
express the part of the integral involving fr(t) on the r.h.s. of Eq. (4.30), as∫ +∞

t0

dt φ̃(t)φ(t)fr,k(t− t0) =

∞∑
n=0

cn,k(τ0,k)

(2ωk)n+1
Z0,n,k

dn

dtn

[
φ̃(t)φ(t)

] ∣∣∣
t=t0

, (4.41)

with

cn,k(τ0,k) = (n+ 2)− (n+ 1)ωk
Dτ0,k

, (4.42)

where additional numerical factors Z0,n,k have been introduced in order to ac-
count for possible renormalization of the boundary operators, with Z0,n,k=1 in
the non-renormalized theory. Most of the terms in the sum renormalizes irrel-
evant (in the renormalization group sense) operators which were not included
into the original ansatz for the boundary action and therefore one can neglect
them. The only relevant term corresponds to n = 0: again from comparison the
β-function for the coupling Z0,k = Z0,0,k it has been obtained , i.e.,

dZ0,k

dk
= kd+1 ad

d

gkD

(k2 + rk)2

[
1− k2 + rk

2Dτ0,k

]
Z0,k. (4.43)

The anomalous dimension η0 is defined by

η0 = − k

Z0,k

dZ0,k

dk
. (4.44)

3We will show that this is not the only way to predict θ within the LPA of the fRG equation.
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Accordingly, its value at the Wilson-Fisher fixed point is given by

η∗0 = − g̃∗WF

(1 + r̃∗WF )3
, (4.45)

where we have used Eqs. (4.37), which define the dimensionless couplings r̃k, g̃k
and we have evaluate them at the WF fixed point, taking into account that
τ̃∗0 = +∞ as shown in Sec. 4.3.2.

Being this approximation a local approximation in space and time, no bulk
anomalous dimension arise for t 6= 0, thus we find η∗K = η∗Z = η∗D = 0. Accord-
ingly, using the scaling equation

z = 2− ηK + ηZ , (4.46)

one finds z = 2 for the case of the vanishing background field implementation
of the LPA.

The initial-slip exponent θ is obtained by the scaling relation given by
Eq. (1.49), and is therefore given by

θ = −η
∗
0

z
=

g∗WF

2(1 + r̃∗WF )3
. (4.47)

We note that, using the coordinates of the WF fixed point at order ε given in
Eq. (3.40), one finds

θ =
ε

12
+O(ε2), (4.48)

which agrees up to the first order in ε with the result obtained in the standard
ε-expansion [18], reported in Eq. (1.51).

4.4 Truncation for non-vanishing background field

In this section we discuss the results of an improved ansatz for the potential
Uk in the effective action, namely

Uk =
gk
4!

(φ2 − φ2
m,k)2 +

λk
6!

(φ2 − φ2
m,k)3. (4.49)

Because it corresponds to an expansion around a finite homogeneous value
φm,k this choice has the advantage to capture the leading divergences of two
loops corrections in a calculation which is technically carried at one-loop, as
typical of background field methods, and thus it allows us to calculate, for
instance, the renormalization of the factors Zk,Kk and Dk. In fact, the presence
of a background field φm,k reduces two loop-diagrams to one-loop ones in which
an internal classical line (corresponding to a correlation function C0,k, where
has been replaced by the insertion of two expectation values φm,k, as shown
in Figs. 4.1 and 4.2 where straight lines stand for the field φ while wavy lines
for the response field φ̃. For instance, the renormalization of Zk and Kk comes
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C0
g0 g0

C0

R0

fRG−−−→ gk gk

φm,k φm,kC0,k

R0,k

, (4.50)

Figure 4.1: Diagram S, which gives contribution to Zk and Kk. The wavy lines
indicate response fields φ̃, while the solid lines indicate the order parmeter fields
φ. The diagram on the left is the one which is encountered in perturbative two-
loops calculation (see Ref. [17]), while the diagram on the right is the non-local
contribution added to the two-time functions by the non-vanishing background
field LPA, corresponding to replacing one of the two C0 on the left with two
φm,k on the right.

,

C0
g0 g0

C0

C0

fRG−−−→ gk gk

φm,k φm,kC0,k

C0,k

. (4.51)

Figure 4.2: Diagram (D), which gives contribution to Dk. Note that with wavy
lines we have indicated response field φ̃, while with the solid lines we have
indicated the order parmeter fiele φ. The diagram on the left is the one which
is encountered in perturbative two-loops calculation (see Ref. [17]), while the
diagram on the right is the non-local contribution added to the noise term in
the effective action by the non-vanishing background field LPA, corresponding
to replacing one of the two C0 on the left with two φm,k on the right.

,

from the diagram S in Fig. 4.1 while the renormalization of the noise strength
Dk comes from the diagram D in Fig. 4.2.

Furthermore, we added a sextic interaction λk, which is marginal for d = 3
and therefore it is expected to contribute with sizable corrections to the value
of the critical exponents only upon approaching d = 3. In fact, upon including
this term, the effective action contains all the non-irrelevant operators in d = 3.

4.4.1 Analysis of bulk flow equations

We report here the result for the β−functions of the bulk couplings, referring
to Ref. [35] for further details.

Let us point out, however, that there are two differences with respect to the
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case of vanishing background field approximation discussed in Sec. 4.3. First
of all, since the factor Kk is renormalized within the ansatz discussed here, the
derivative with respect to k of the regulator Rk(q), defined in Eq. (4.27), has
also to account for the dependence of the renormalization factor Kk on k, as

∂kRk(q) =
Kk

k
ϑ(k2 − q2)[2k2 − ηK(k2 − q2)], (4.52)

where we made use of the definition of ηK given in Eq. (4.61). In fact, since the
factor Kk depends on k within this approximation, the derivative with respect
to k produces a contribution proportional to ηK .

Then we cast the equation for the function Ĝk into a Dyson equation, as
Eq. (4.22). By taking the second variation of the effective action Γk in Eq. (4.9)
evaluated with (φ̃, φ) = (0, φm,k). the field-dependent function Σ̂k defined as
(we assume t0 = 0 for simplicity):

Σ̂k(x) = −gkϑ(t)

(
ρ̃(x) ρ(x)− ρm,k

ρ(x)− ρm,k 0

)
, (4.53)

where we define

ρ =
φ2

2
, ρ̃ = φ̃φ, ρm,k =

φ2
m,k

2
. (4.54)

Ĝ0,k is defined according to Eqs.(4.13) and (4.14) but with the post-quench
parameter rk(φm,k) = δ2Uk/δφδφ|φ=φm,k given by

mk =
2

3
ρm,kgk. (4.55)

The use of Z2 invariants ρ = φ2/2 and ρ̃ = φφ̃ is customary in the context of
fRG and it helps simplifying the notation in what follows.

The form of Σ̂k in Eq. (4.53) allows us to express the r.h.s. of the fRG
equation (4.23) as a power series of ρ − ρm,k: this provides, together with
the vertex expansion given by Eq. (4.7), a way to unambiguously identify the
renormalization of the terms appearing in the potential Uk in Eq. (4.49). In
fact, ρm,k and the couplings gk and λk are identified as

0 =
dUk
dρ

∣∣∣
ρ=ρm,k

,
gk
3

=
d2Uk
dρ2

∣∣∣
ρ=ρm,k

,
λk
15

=
d3Uk
dρ3

∣∣∣
ρ=ρm,k

, (4.56)

where the first condition actually defines ρm,k as the minimum of the potential.
In terms of the effective action Γk the previous equations become

δΓk
δρ̃

∣∣∣
ρ̃=0,ρ=ρm,k

= 0,
gk
3

=
δ2Γk
δρ̃δρ

∣∣∣
ρ̃=0,ρ=ρm,k

,
λk
15

=
δ3Γk
δρ̃δρ2

∣∣∣
ρ̃=0,ρ=ρm,k

. (4.57)

By taking a total derivative with respect to k of each equality one finds

δ

δρ̃

∂Γk
∂k

∣∣∣
ρ̃=0,ρ=ρm,k

+
δ2Γk
δρ̃δρ

∣∣∣
ρ̃=0,ρ=ρm,k

dρm,k
dk

= 0, (4.58)
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1

3

dgk
dk

=
δ2

δρ̃δρ

∂Γk
∂k

∣∣∣
ρ̃=0,ρ=ρm,k

+
δ3Γk
δρ̃δ3ρ

∣∣∣
ρ̃=0,ρ=ρm,k

dρm,k
dk

, (4.59)

1

15

dλk
dk

=
δ3

δρ̃δρ2

∂Γk
∂k

∣∣∣
ρ̃=0,ρ=ρm,k

+
δ4Γk
δρ̃δ3ρ

∣∣∣
ρ̃=0,ρ=ρm,k

dρm,k
dk

, (4.60)

which, after replacing ∂Γk/∂k with the fRG equation thanks to the Dyson equa-
tion, together with the LPA ansatz for Γk given by Eqs.(4.9) and (4.49), render
the flow equations for ρm,k, gk and λk.

The flow equations for the coefficients Kk, Zk, Dk can be conveniently ex-
pressed in terms of the corresponding anomalous dimensions ηD, ηZ and ηK ,
defined as :

ηD = − k

Dk

dDk

dk
, ηZ = − k

Zk

dZk
dk

, ηK = − k

Kk

dKk

dk
. (4.61)

First of all, we note that ηD = ηZ : this is a consequence of detailed balance (see
[6]), which characterizes the equilibrium dynamics of model A. In fact, while
the short-time dynamics after the quench violates detailed balance inasmuch
time-translational invariance is broken, in the long-time limit detailed balance
is restored.

Following Ref. [35], we introduce dimensionless couplings as

m̃k =
1

3

ρ2
m,kgk

Kkk2
, g̃k =

ad
d

Dk

ZkK2
k

g̃k
k4−d , λ̃k =

ad
d

D2
k

Z2
kK

3
k

λk
5k6−2d

. (4.62)

Let us note that the explicit form of the flow equations for the bulk coupling
comes from a calculation analogous to the one discussed in the previous section.
In particular, the flow of mk takes contributions from both the flow equation
for ρm,k and gk. Similarly, the renormalization of Z0,k is determined by the

contribution localized at t = 0 of the coefficient of the quadratic term φ̃φ in
the effective action, given by Eq. (4.9), equipped with the potential Uk given in
Eq. (4.49).

The results for the flow equations of the dimensionless bulk couplings, given
in Ref. [35], are the following:

k
dm̃k

dk
= (−2 + ηk)m̃k +

(
1− ηK

d+ 2

)
×

× 2g̃k
(1 + m̃k)2

1 +
3

2

(
m̃kλ̃k
g̃2
k

)2

+
3m̃k

1 + m̃k

(
1 +

m̃kλ̃k
g̃2
k

)2
 , (4.63)

k
dg̃k
dk

=gk

d− 4 + 2ηK +

(
1− ηK

d+ 2

)
6g̃k

(1 + m̃k)3

(
1 +

m̃kλ̃k
g̃2
k

)2
+

(
1− ηK

d+ 2

)
λ̃k

(1 + m̃k)2

(
−2 + 3

m̃kλ̃k
g̃2
k

)
,

(4.64)
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k
dλ̃k
dk

= λ̃k

[
2d− 6 + 3ηK + 30

(
1− ηK

d+ 2

)
g̃k

(1 + m̃k)3

(
1 +

m̃kλ̃k
g̃2
k

)]
+

− 18

(
1− ηK

d+ 2

)
g̃2
k

(1 + m̃k)4

(
1 +

m̃kλ̃k
g̃2
k

)
.

(4.65)

The anomalous dimensions which emerge in the vicinity of the critical point
turn out to be, instead (see Ref. [35] for details)

ηK =
3m̃∗g̃∗

(1 + m̃∗)4

(
1 +

m̃∗λ̃∗

g̃∗2

)2

, (4.66)

ηZ = ηD =

(
1− ηK

d+ 2

)
9m̃∗g̃∗

2(1 + m̃∗)4

(
1 +

m̃∗λ̃∗

g̃∗2

)2

. (4.67)

The take-home message is that, in the case of the expansion for Uk given
by Eq. (4.49) bulk anomalous dimensions arise, and they are explicitly given by
Eqs. (4.66) and (4.67).

4.4.2 Analysis of the critical initial-slip exponent: correc-
tion to Ref. [35]

In this section we reconsider the calculation of θ done in Ref. [35] by ac-
counting for non-vanishing background field in the implementation of the LPA.

The equations which define the anomalous dimension η0 of the boundary
field φ0 are given by: η0 = −k dZ0

dk ,

k dZ0

dk =
(
k d
dk rk

) ∣∣∣
t=0

,
(4.68)

where rk is the mass in the high-temperature state, defined as before in Eq. (4.25),
which is given by

rk =
δ2Uk[φ]

δφ2

∣∣∣
φ=φphys=0

= −gk
3!
φ2
m,k +

λk
5!
φ4
m,k. (4.69)

This last equation has been obtained by using the ansatz for Uk given by
Eq. (4.49).

However, we point out that in Ref. [35] the term proportional to λk in
Eq. (4.69) has not been included into the calculation of the β-function for the
mass rk. This mistake affects the predictions of the critical-initial slip exponent,
obtained through a short-time limit of the flow of the mass rk. Note that in the
case λk = 0 the analysis done in Ref. [35] is correct, since the term in Eq. (4.69)
proportional to λk is vanishing in this approximation. Their result is given by

η0 = −
(

1− η

d+ 2

)
g̃∗

(1 + m̃∗)3

[
1 +

9m̃∗

2(1 + m̃∗)

]
. (4.70)
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The correct flow equation for η0 with the sextic ansatz given by Eq. (4.49)
is obtained through the analysis of the short-time behaviour of the β-function
of rk, as explained in the previous Sec. 4.3.3. The result for the case of non-
vanishing background field φm,k 6= 0, according to the definitions of η0 and rk
given, respectively, in Eqs. (4.68) and (4.69), is given by4

η0 = −
(

1− ηK
d+ 2

)
g̃∗

(1 + m̃∗)3
×

×

[(
1 +

m̃∗λ̃∗

g̃∗2

)(
1− 3

2

m̃∗λ̃∗

g̃∗2

)
−

(
1− 3

2

m̃∗λ̃∗

g̃∗2

)
m̃∗λ̃∗

g̃∗2
+

+
9m̃∗

2(1 + m̃∗)

(
1 +

m̃∗λ̃∗

g̃∗2

)(
1− 11

4

m̃∗λ̃∗

g̃∗2

)
+

+
27

2

m̃∗2

(1 + m̃∗2)2

(
1 +

m̃∗λ̃∗

g̃∗2

)3
 .

(4.71)

where all the fixed-point values g̃∗, m̃∗ and λ̃∗ are those of the Wilson-Fisher
fixed point.

The procedure to follow in order to obtain the prediction of the critical
initial-slip exponent θ in generic dimension d is the following:

1. In order to find the Wilson-Fisher fixed point one should set to zero the
l.h.s. of Eqs. (4.63),(4.64),4.65) and solve the equations obtained for fixed
d, obtaining the coordinates (m̃∗WF(d), g̃∗WF(d), λ̃∗WF(d)).

2. With the knowledge of the coordinates of the fixed point one should cal-
culate the anomalous dimension ηK , ηD using Eqs. (4.66),(4.67) and then
η0 using Eq. (4.71).

3. With the knowledge of ηK , ηZ and η0 one is in the position to determine
the dynamical critical exponent z and subsequently the critical initial-slip
exponent θ, according to

z = 2− ηK + ηZ , θ = −η0

z
. (4.72)

The result of this analysis is given in Fig. 4.3. There, we have added to the
lines reported in Fig. 1.2 three red lines, which constitute one of the two main
results of the present study and which correspond to three approximations of
increasing accuracy. In particular, from the less to the more accurate, they are
obtained as follows:

(i) The red dot-dashed line has been obtained with a vanishing background,
as explained in the previous section. Remember that, in this case, we
have obtained the coordinate of the fixed point (r̃∗WF(d), g̃∗WF(d)) using

4The details of the calculation which leads to Eq. (4.71) can be found in Ref. [35], remem-
bering Eqs. (4.68) and (4.69).

63



d

 θ

d
 θ

2 2.5 3 3.5 4

0.4

0.3

0.2

0.1

0.15

0.14

0.13

2.96 3 3.04

Figure 4.3: Estimates of the Critical initial-slip exponent θ as a function of the
spatial dimensionality d of the system. The black lines are the predictions based
on perturbative renormalization-group calculations and the dots with error bars
corresponds to the results of Monte Carlo simulations, while the turquoise line
is the prediction of Ref. [35] based on an incomplete fRG analysis. These results
were already presented in Fig. 1.2. The additional three red lines indicate our
results for θ obtained on the basis of the fRG technique in LPA approximation:
the dot-dashed line is the result of the vanishing background field approximation
(see Sec. 4.3), while the dashed and the solid red lines are the predictions of
the non-vanishing background field approximation (see Sec. 4.4), respectively
for the case of vanishing and non-vanishing sextic coupling λk in the ansatz for
the effective potential Uk given by Eq. (4.49). Note that the solid red line is the
correction to the calculation done in Ref. [35], reported as the solid turquoise
line. Inset: magnification of the main plot for d ' 3.

Eq. (4.38) for fixed d, and then we have calculated θ using Eqs. (4.45) and
(4.47).

(ii) The red dashed line has been obtained with the non-vanishing background
field approximation outlined here, but setting λ̃∗WF = 0, i.e., considering
the ansatz for Uk given in Eq. (4.49) with λk = 0. η0 in this case is given
by Eq. (4.70).
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(iii) The solid red line, instead, is our best approximation, which has been
found via an expansion of Uk around its ordered minimum configuration,
including the term of 6th order in the power of the fields, i.e., here we
have consistently considered λk 6= 0 which led us to Eq. (4.71). This
result has to be compared with that represented by the turquoise solid line
corresponding to the prediction presented in Ref. [35], which, however is
not fully correct, as it does not account for all the terms proportional to
λk in Eq. (4.69). The difference between these two predictions is of about
the 2%, in d = 3, but the prediction presented in this work (solid red line)
turns out to be in better agreement with the recent MC data of Ref. [19]
than the prediction of Ref. [35], as shown by the inset.

As pointed out in Ref. [35], the fRG results that can be obtained with the
sextic ansatz for the effective potential are in remarkable agreement with the
two-loop expansion for d & 3.2, while increasing discrepancies emerge at smaller
values of d. In particular, for d ≤ 3 additional stable fixed points appears in
the solution of Eqs.(4.63),(4.64) and (4.65) beyond the Wilson-Fisher one, while
for d ≤ 2.5 the latter disappears. This is not surprising, since for d < 3 new
relevant terms are allowed, and therefore the sextic potential is no longer an
appropriate ansatz and additional terms have to be introduced. In particular,
the number of relevant operators diverges as d approaches 2: one should indeed
recall that in d = 2 any term of the form φ̃φ2n+1, with positive integer n, is
relevant in the RG sense and therefore the correct truncation for the effective
action requires considering a full functional ansatz for the potential, beyond the
polynomial expansion used in this work (see Ref. [24] where it is shown how to
deal with this issue within th standard equilibrium approach to fRG).

We mention here that, in our opinion, a full-functional LPA approach in non-
equilibrium situations is non-trivial because of the different time-dependence
which affects in a different manner the different bulk couplings. This is shown
by the fact that the functions fr,k, fg,k and fD,k do not have the same time
dependencies, as explicitely shown in Ref. [35]. The reason for this complication
is merely that higher-order couplings gets renormalized by higher orders ∆Γn.
In doing the calculations one should retain all the time-dependent terms present
in the β-function of the disordered mass rk in order to properly obtain the short-
time limit of it, with the method exposed in this chapter, and, consequently,
θ.
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Chapter 5

Calculation of the
fluctuation-dissipation ratio: a
functional renormalization-group
approach

This chapter, which contains original material, presents the calculation of
the two-time functions, i.e., the response R and the correlation C functions,
and the calculation of the asymptotic value X∞ of the fluctuation-dissipation
ratio, introduced in Chapter 1, with a functional renormalization-group (fRG)
approach. The analysis is conducted within the local potential approximation
(LPA) of the fRG technique, introduced in Sec. 3.3 for the case of equilibrium
systems and in Sec. 4.2 for the case of non-equilibrium ones.

This chapter contains the following original results:
• Calculation of the critical initial-slip exponent θ by means of a long-

time analysis of the system, rather than the short-time one introduced
in Ref. [35].

• General analytical expression, given by Eq. (5.35), of the asymptotic value
of the fluctuation-dissipation ratio within the LPA approximation of the
flow equation for the effective action. We have considered three approxi-
mation of increasing accuracy within the local potential approach which
led us to the results for the fluctuation-dissipation ratio summarized in
Fig. 5.1.

The chapter is organized as follows:
Sec. 5.1: We discuss how to obtain within the LPA approximation the full two-

time functions R and C and, with this information, how to calculate the
asymptotic value of the FDR.

Sec. 5.2: We detail our strategy for the implementation of LPA with vanishing
background field, introduced in Sec. 4.3.
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Sec. 5.3: We detail our strategy for the case of non-vanishing background field,
introduced in Sec. 4.4.

Sec. 5.4: We discuss our predictions for the asymptotic value of the fluctuation-
dissipation ratio, comparing them with those available in the literature.

5.1 Two-time quantities in the local potential
approximation

The first step in order to calculate the fluctuation-dissipation ratio is the
calculation of the two-time functions, as discussed in Sec. 1.4.2. Let us focus
first on the response function R. From the knowledge of the effective action
Γ we know that using Eq. (2.10) one has access on the two-point functions of
the theory. Taking into account Eqs. (4.6) and (4.13), one concludes that the
equation of motion for the response function R for the case of a homogeneous
system in space but with a dynamics which breaks time-translational invariance
is given by ∫

t′
Γ(1,1)
q [Φ](t, t′)

∣∣∣
Φphys

Rq(t
′, s) = δ(s− t), (5.1)

where

Γ(1,1) =
δ2Γ

δφδφ̃
and Φphys = (φ̃phys = 0, φphys). (5.2)

In the l.h.s. of Eq. (5.1), Γ(1,1) is evaluated on a physical configuration of fields
given by Φphys. In particular, in the following we choose a high-temperature,
i.e., φphys = 0. Remember from Sec. 1.4.2 that in order to calculate X∞ we are
interested in the q = 0 mode of the two-point functions, because this is the only
mode which does not reach equilibrium in the aging limit for a quench to the
critical point, as explained in Sec. 1.2. In the following, we no longer indicate
the subscript q, but we assume that the the quantities are all evaluated at zero
momenta, i.e., with q = 0.

Our functional renormalization-group approach to the problem of solving
Eq. (5.1) is discussed within the LPA approximation for the case of equilibrium
and non-equilibrium systems in chapters 3 and 4, respectively. We recall here
that the LPA approximations means that we retain only contributions to the
effective action which fit into the following Ansatz:

Γk =

∫
r

∫ ∞
t0

dt φ̃

(
Zk∂tφ−Kk∇2φ+

δUk(φ)

δφ
−Dkφ̃

)
, (5.3)

where Uk is the local (in space and time) potential, and φ̃, φ are real fields which
depends on the space and time coordinates, i.e., φ̃ = φ̃(r, t) and φ = φ(r, t).

Consider the case, discussed in Sec. 4.2, in which we expand the potential
Uk around a vanishing background field. Let us write again this Ansatz here:

Uk(φ) =
rk
2
φ2 +

gk
4!
φ4. (5.4)
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The first thing to realize in order to simplify Eq. (5.1) is that Γ
(1,1)
k within

the LPA approximation, when evaluated in the physical configuration of the
fields Φphys, is given by

Γ
(1,1)
k |Φphys(t, s) = [∂t + rk(t)] δ(t− s), with rk =

δ2Uk(φ)

δφ2

∣∣∣
Φphys

, (5.5)

where, according to the fact that within the Ansatz proposed for Uk given in
Eq. (5.4), no anomalous dimension related to Zk arises, as discussed in Sec. 4.3,
i.e., Zk = 1. In this case, the equation of motion for the running response
function Rk is given by

[∂t + rk(t)]Rk(t, s) = δ(t− s). (5.6)

From similar considerations one obtains the following equation of motion for
the running correlation function Ck

[∂t + rk(t)]Ck(t, s) = 2DR(t, s), (5.7)

where we have taken advantage of the simplification Dk = D = 1 discussed
in Sec. 4.3 for the case of the vanishing background field approximation of the
effective potential Uk.

Remember from Sec. 4.3.1, in particular from Eq. (4.32), that the modified
mass rk(t) becomes time-dependent as soon as the Wetterich equation makes it
flow from scale k = Λ, where it is given by rk=Λ = rΛ, to scale k = 0, where
it is given by rk=0 = r, because of the explicit time dependence contained
in the Gaussian non-equilibrium propagators which enters in the r.h.s. of the
Wetterich equation. From the β-function of the mass rk we can find r simply by
integrating over the momenta k from a scale k = Λ to k = 0. Remember that
this β-function should be equipped with an initial condition for rΛ. The choice
of rΛ is dictated by the fact that, in order to implement the critical quench, one
should obtain a physical mass r(t) which vanishes in the long time limit; in this
way, in fact, in the long-time limit one recovers a scale-free theory which can
describe the system at criticality.

Given r(t) we can solve the equation of motion for the physical response
function R (at q = 0):

[∂t + r(t)]R(t, s) = δ(t− s), (5.8)

as
R(t, s) = θ(t− s)e−

∫ t
s
r(t). (5.9)

Similarly, for C one obtains

[∂t + r(t)]C(t, s) = 2DR(t, s), (5.10)

whose solution is given by

C(t, s) = 2D

∫ ∞
0

dτ R(t, τ)R(s, τ), (5.11)
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where we have set t0 = 0.

Let us summarize what we have found so far: Once r(t) has been calculated,
the response and correlation functions are completely fixed within the LPA
approximation. For the case of vanishing background field approximation of
Uk, the two-time functions are in fact given by Eqs. (5.9) and (5.11).

Now that we know how to calculate the two-time functions R and C in a local
potential approximation, let us now analyze the strategy which we will follow for
the determination of the asymptotic value of the fluctuation-dissipation ratio,
i.e., of X∞. From the general renormalization-group analysis, presented in
Sec. 1.4.2, we know that the fluctuation-dissipation ratio in the long-time limit
is given by

X∞ =
AR

AC(1− θ)
, (5.12)

where the non-universal amplitudes AR and AC have been defined in Sec. 1.4.2.
We have seen in Chap. 4 that the critical initial-slip exponent θ can be

retrieved from the analysis of the β-function of the anomalous dimension η0 of
the boundary field φ0. We will show in the following that this is not the only
way to obtain predictions for θ as one could understand now: in fact, from the
explicit form of Eq. (5.9) in the long-time limit one recovers the general scaling
function for R given by Eq. (1.44), and, by comparison, one can obtain θ.

However, the task that remain to us is the calculation of the ratio AR/AC .
Note that from scaling relations given in Eqs.(1.44) and (1.45) we realize that
simplifications occurs for the calculation of the amplitude ratio AR/AC in the
case of LPA approximation:

AR
AC

= lim
s→∞

lim
t→∞

sR(t, s)

C(t, s)
= lim
s→∞

s

2
∫ s

0
dτ [R(s, τ)]2

, (5.13)

where in last equality we have used Eqs. (5.9) and (5.11) and the simplification
that can be done to re-express the response function, i.e., that

R(t, s) = R(t, τ)R(τ, s), with t > τ > s, (5.14)

which holds in LPA approximation as one can prove easily from Eq. (5.9).
As we will prove in the following, the last limit in Eq. (5.13) can be evaluated

analytically within the LPA approximation. The result is given by:

AR
AC

=
1− 2θ

2
, (5.15)

so that the formula forX∞, given by Eq. (5.12), simplifies in LPA approximation
to

X∞ =
1

2
− θ

2(1− θ)
. (5.16)

In the following section we detail the calculation of r(t) for the case of a
critical quench and the proof of Eq. (5.16) for the Ansatz given by Eq. (5.4) for
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the local effective potential Uk. This case is simpler than that of non-vanishing
background field, in which the Ansatz for the effective potential Uk is given by
Eq. (4.49), mainly because of the presence of the anomalous dimension which
has to be taken into account properly. We treat the case of non-vanishing
background field approximations in Sec. 5.3 below.

Let us conclude this section with the following remark: the formula given in
Eq. (5.16) for the long-time limit of the fluctuation-dissipation ratio holds within
the LPA approximation for the case of vanishing and non-vanishing background
field approximations of the effective potential Uk. This can be understood now
on the basis that even in the improved Ansatz given by Eq. (4.49), Γk is still local
in time in a pure LPA truncation (by the very definition of it given by Eq. (5.3)).
Accordingly, similar simplifications to the one which lead to Eqs. (5.9),(5.11),
and (5.16) can be used, as we show in Sec. 5.3.

5.2 The case of vanishing background field

5.2.1 Calculation of the time-dependent mass

Let us now discuss how we can retrieve r(t) within the φm = 0 approximation
for Uk, given in Eq. (5.4). The flow equation for the mass rk(t) is given by
Eq. (4.32), which we report here:

drk(t)

dk
= −kd+1 ad

d

gkD

(k2 + rk)2
[1− fr,k(t)] . (5.17)

Let us list the three prescriptions that we use in order to obtain the physical
mass, i.e., r(t) = rk=0(t), from Eq. (5.17) for the case of a critical quench.

1. A priori, in the r.h.s. of the last equation we should allow a time depen-
dence of the variables rk and gk. Below we use the following approxima-
tion (that in Ref. [31] leads to good predictions in a different context): we
neglect the implicit time dependence on the r.h.s. of Eq. (5.17), i.e., we
replace the mass rk(t) and the coupling constant gk(t) with their long-time
limits rk(t→∞) = rk and gk(t→∞) = gk.

2. Our choice in order to integrate Eq. (5.17) over k is to approximate the
r.h.s. by evaluating the couplings rk and gk at the Wilson-Fisher fixed
point, found in Sec. 4.3.2, through the analysis of the β function in the
long-time limit, i.e., we set in the r.h.s. of Eq. (5.17)

r̃∗WF = rk/k
2, and g̃∗WF = gkDk

d−4ad/d. (5.18)

Once these equations are taken into account, Eq. (5.17) becomes

drk(t)

dk
=− k g̃∗WF

(1 + r̃∗WF )2
×

×
{

1− e−2k2t(1+τ∗WF )
[
1 + 2k2t(1 + τ∗WF )

]}, (5.19)
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where we have evaluated fr,k(t), given by Eq. (4.31), at the Wilson-Fisher
fixed point. Note that the coordinates of the Wilson-Fisher fixed point in
the parameters space given by (r∗WF , g

∗
WF ) depend parametrically on the

spatial dimensionality of the system d via Eq. (4.38).
3. Let us now integrate the β-function for rk, obtaining∫ 0

Λ

drk(t)

dk
dk = r(t)− rΛ. (5.20)

The bare parameter rΛ has to be properly fine tuned in order to implement
the critical temperature quench: the physical mass r(t) has to satisfy
limt→∞ r(t) = 0 in order to obtain a scale-free propagator in the long-
time limit. In formula:

rΛ : lim
t→∞

r(t) = 0. (5.21)

Evaluating the integral
∫ 0

Λ
on the l.h.s. of Eq. (5.20) by means of Eq. (5.19)

and the prescription given in Eq. (5.21) for the bare parameter rΛ one obtains
the following result for the physical mass r(t):

r(t) = −1

t

g̃∗WF

2(1 + r̃∗WF )3

{
1− e−2Λ2(1+r̃∗WF )t

[
1 + Λ2(1 + r̃∗WF )t

]}
. (5.22)

We note here that the precise value of the parameter rΛ corresponds to a negative
shift of the critical temperature, accordingly to what we have seen for the case
of the one-loop approximation in the end of Sec. 2.2.2.

In particular, the mass given by Eq. (5.22) in the aging (or long-time) regime,
(i.e. tΛ2 � 1, thus neglecting the exponential in the round brackets), simplifies
to

rag(t) = −(1/t)ΘLPA, (5.23)

where ΘLPA is a numerical factor given by

ΘLPA =
g̃∗WF

2(1 + r̃∗WF )3
. (5.24)

We have anticipated, using the notation ΘLPA that the response function
is, in fact, given in the aging limit, i.e., t� s� Λ−2, by

Rag(t, s) = ϑ(t− s)
(
t

s

)ΘLPA

, (5.25)

where we have used Eq. (5.9) and we replaced the mass r(t) with its aging limit
given by Eq. (5.23).

The amplitude AR and the critical exponent θ are obtained through a com-
parison with the scaling function for R given in Eq. (1.44). This leads to

AR = 1, θ = ΘLPA. (5.26)

Note that our results for ΘLPA agrees with the ones obtained in Ref. [35], in
particular with Eqs. (4.45) and (4.47). Furthermore, the prediction for the
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universal amplitude AR does not differ from the Gaussian one, as one can see
from Eq. (1.17). This is typical of local approximations, since, as one can
see from Eq. (1.52), only non-local contributions (which arises in two-loops
calculations, i.e., at order ε2 in perturbative calculations) shift the value of AR
from 1.

Let us highlight a difference from the previous short-time analysis, used in
Ref.[35] and detailed in Sec. 4.3.3, in order to calculate θ: we do not need to
investigate the renormalization of the boundary term Z0, nor we have to invoke
the scaling relation θ = −η0/z, in order to compute the critical initial-slip
exponent θ. This happens because we have shown how one can compute the
response function in the aging limit, and thus obtain θ by means of a comparison
with its scaling form given by Eq. (1.44).

Now we are able to calculate the correlation function C, from Eq. (5.11).
Unlike the response function R, C depends on the whole history of dynamics
from the time in which we do the quench, i.e., t0 = 0. In fact, assuming t > s
we obtain from Eq. (5.11) that

C(t, s) = 2R(t, s)

∫ s

0

dτ [R(s, τ)]2, (5.27)

where we have used Eq. (5.14).
Note that replacing R with Rag is allowed only if the observation times t, s

are much longer than Λ−2, so it seems not permitted in the r.h.s. of the last
equation, because the integration interval is τ ∈ [0, s]. However, in the aging
limit, simplification occurs and the exponential decaying part of time-dependent
mass in Eq. (5.22), which depends on the microscopic scale Λ ∼ 1/a (where a
is the spacing of the underlying lattice model) does not add any contribution,
as proven in Appendix A.

Even more simplifications occur in the ε-expansion version of Eq. (5.27), as
we discuss in the next section.

5.2.2 Comparison with the results of the first-order ε-
expansion

In order to retrieve known results in ε-expansion we do an expansion in
ε = 4 − d of the response function inside the integral in Eq. (5.27), so that we
obtain ∫ s

0

dτR2(s, τ) =

∫ s

0

dτ

[
1− 2

∫ s

τ

dt r(t) +O(ε2)

]
= s (1 + g̃∗WF ) +O(ε2), if Λ2s� 1,

= s(1 + 2θ) +O(ε2)

, (5.28)

where in the second equality we have expanded r(t) given by Eq. (5.22) up to the
first order in ε and in the last equality we have used the fact that at this order
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θ = g∗WF /2 +O(ε2): in fact we found in Sec. 4.2.2 that the Wilson-Fisher fixed
point is given by (r̃∗WF , g̃

∗
WF ) = (−ε/12, ε/6) at first order in the ε-expansion

and from Eq. (4.48) we know that θ = ε/12 +O(ε).
Inserting Eq. (5.28) in Eq. (5.27), one finds

Cag(t, s) = 2(1 + 2θ)s

(
t

s

)θ
, (5.29)

where we have used the result for the response function in the aging limit given
by Eq. (5.23). By comparison of Eq. (5.29) with the scaling formula for C in the
aging limit, given by Eq. (1.45), we obtain the following non-universal amplitude
for the correlation function:

AC = 2(1 + 2θ) +O(ε2). (5.30)

We are now in the position to retrieve the FDR at first order in ε, since
we have calculated the amplitudes, i.e., AR and AC , and the critical initial-slip
exponent θ. The result follows from Eq. (5.12) and it is given by:

X∞ =
1

2

(
1− ε

12

)
+O(ε2), (5.31)

which perfectly agrees with the one-loop perturbative predictions, reported in
Eq. (1.53) (note that the comparison should be done with N = 1, in order to
evaluate the perturbative result for the Ising universality class discussed here).

5.2.3 Calculation of the fluctuation-dissipation ratio in the
long-time limit

While the aging limit for the response function is easily taken in Eq. (5.9)
via Eq. (5.23) finding Eq. (5.25), as we have seen in previous sections, this
procedure is more subtle for the correlation function given by Eq. (5.27), and
the details are given in Appendix A. The major result of the analysis reported
in Appendix A is that, in order to compute the integral in Eq. (5.27) in the
aging limit, one can replace the time-dependent mass r(t) given in Eq. (5.22)
with its aging limit, i.e., with

r(t)→ rag(t) = −θLPA
t

. (5.32)

Note that this is telling us that the microscopic details, such as Λ ∼ 1/a, do not
contribute to the correlation function in the aging limit.

In this case, the integral in Eq. (5.27), can be computed analytically and
gives

Cag(t, s) =
2

1− 2θ
s

(
t

s

)θ
. (5.33)

73



By comparison of this result with the scaling form for the correlation func-
tion, given by Eq. (1.45), one concludes that

AC =
2

1− 2θ
. (5.34)

The fluctuation-dissipation ratio in the aging limit, given by Eq. (5.12), is
therefore given by

X∞ =
1

2
− θ

2(1− θ)
, (5.35)

where in the last equality we have used the results obtained in LPA approx-
imation for the non-universal amplitudes of the two-time functions given by
Eqs. (5.26) and (5.33). Note here that if Eq. (5.35) is expanded in power of ε
one retrieve Eq. (5.31) at first order in ε, as it should.

5.3 The case of non-vanishing background field

In this section we detail our result for the asymptotic value of the FDR by
means of a non-vanishing homogeneous background field approximation, intro-
duced in Sec. 4.4, in which the Ansatz for Uk is given by Eq. (4.49).

Remember from the discussion in Sec. 4.4 that this Ansatz adds contribution
non-local in time in the self energy in Γ

(1,1)
k and in the noise Dk, thus allowing

us to retrieve the anomalous dimensions ηD, ηZ and ηK as one can see from
Eqs. (4.67) and (4.66).

We follow the same strategy as that outlined in Sec. 5.1 in order to de-
termine R and C: we make an Ansatz for the effective action of the form
given by Eq. (4.9), where the running parameter Zk,Kk, Dk are field and time-
independent. The only time-dependent quantity in the Ansatz is given by the
mass rk (i.e., by the local part of the self energy). Remember from Sec. 4.4.2
that, in this approximation, the physical mass for a system in its high-temperature
regime is given by Eq. (4.69).

5.3.1 Two-time quantities in the presence of non-vanishing
anomalous dimension

The main difference with respect to the case of vanishing background field
approximation, described in Sec. 5.2, is the presence of the parameters Zk, Dk

and Kk, which are expected to result into anomalous dimensions. Taking them
into account, the equations of motion for the two-time functions at scale k
(evaluated at zero momentum) and in the disordered phase, previously given by
Eqs. (5.6) and (5.7), are now given by

[Zk∂t + rk(t)]Rk(t, s) = δ(t− s), (5.36)

[Zk∂t + rk(t)]Ck(t, s) = 2DkRk(t, s). (5.37)

74



Since Zk is independent of time, in the LPA approximation we are dealing
with (as described in Sec. 4.4) we can manipulate the equations of motion in
order to find (

∂t +
rk(t)

Zk

)
R̃k(t, s) = δ(t− s), (5.38)(

∂t +
rk
Zk

)
C̃k(t, s) = 2

Dk

Zk
R̃k(t, s), (5.39)

where we have defined the reduced two-time functions:

R̃k(t, s) = ZkRk(t, s), and C̃k(t, s) = ZkCk(t, s). (5.40)

The solutions of Eqs. (5.38) and (5.39) for the reduced running two-time
functions are respectively given by

R̃k(t, s) = θ(t− s)e−
∫ t
s
dτ

rk(τ)

Zk , (5.41)

C̃k(t, s) = 2
Dk

Zk

∫ ∞
0

dτ R̃k(t, τ)R̃k(s, τ). (5.42)

Now we can see that the amplitude ratio at scale k is given by

AR,k
AR,k

= lim
s→∞

lim
t→∞

sRk(t, s)

Ck(t, s)
=
sR̃k(t, s)

C̃k(t, s)
=

= lim
s→∞

lim
t→∞

sR̃k(t, s)

2DkZk

∫ s
0
dτ R̃k(t, τ)R̃k(s, τ)

= lim
s→∞

s

2DkZk

∫ s
0
dτ [Rk(s, τ)]2

,

(5.43)

where we have Eq. (5.14) in the last equality. We see that the ratio between
the two-time functions in this approximation is again just given as a function
of s1. This last result for the amplitude ratio should be compared with the
one obtained in the previous Section, i.e. Eq. (5.13), where we have used the
so-called φm = 0 approximation for the effective potential Uk.

Let us discuss in more detail the analysis which we have make so far to derive
Eq. (5.43):
• The overall constant Zk which appears in the definition of the reduced

two-time functions defined in Eqs.(5.36) and (5.37) does not appear in the
final formula for the amplitude ratio being a ratio of the two. Moreover,
the ratio Dk/Zk is equal to one since their β-functions and initial condition
are the same (see Ref. [35] for the explicit form of these β-function and
remember that the initial condition are set to be Zk = Dk = 1).

1This is true also for the case of the one-loop perturbative calculation and the reason is
that in both cases the self energy is local in time.
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• The only quantity which has to be computed in order to determine the
response and correlation functions at scale k = 0 is the β-function for the
reduced mass, given by rk/Zk, as one can see from Eqs. (5.41) and (5.42).
We use the adjective reduced in order to distinguish the mass rk from the
one which plays the same role in the equation for the reduced two-time
functions, i.e., rk/Zk.

5.3.2 Flow equation for the reduced mass

We have seen that in order to solve the equation of motion for the reduced
response function, given by Eq. (5.41), one should compute the reduced mass,
given by rk/Zk.

In order to simplify the flow equation for the reduced mass rk/Zk one can
proceed as follows. The exact relation which links the flow equation for the
mass and the one for the reduced mass:

Zk∂k

(
rk(t)

Zk

)
= ∂krk(t)− rk(t)

1

Zk
∂kZk, (5.44)

in which the r.h.s. is merely the derivative of the l.h.s. Note that the second
term on the r.h.s. gives ∼ −rk(t)ηZ [by the very definition of the anomalous
dimension related to the parameter Zk, given by Eq. (4.61)] in the infrared
regime, i.e., k → 0. Furthermore it amounts to a renormalization of the critical
temperature, being in the r.h.s. of the flow equation of rk/Zk

2. From now on
we drop this term: this correspond to a specific choice of the bare mass such
that in the limit of long times the mass at scale k = 0 vanishes. With this
simplification, one obtains the following flow equation for the reduced mass

∂k

(
rk(t)

Zk

)
=

1

Zk
∂krk(t). (5.45)

This equation implies that what is needed in order to determine the flow
equation for the reduced running mass rk/Zk is simply the flow equation for the
running mass rk, which is defined in Eq. (4.69), properly rescaled by Zk. We
will not go into the full details of the calculation here, referring the interested
reader to Appendix B.

We summarize here the main steps which one should follow in order to
determine the flow equation for the physical mass rk(t).

1. The physical mass rk depends upon the bulk parameters φ2
m,k, gk and

λk. This means that the flow equation for rk depends on those bulk
parameters listed above, defined in Eqs. (4.56) and (4.4.1); which are
given by Eqs. (4.63,4.64) and (4.65).

2. Once the flow equations for the bulk couplings are obtained (remember
that for the case of gk and λk a localization procedure is necessary, since

2Consistently with our truncation procedure on the local Ansatz for the effective action
(in which we retain only the explicit time-dependent contribution given by the Gaussian
correlation functions which appears in the r.h.s. of the Wetterich equation, see Sec. 5.1).
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the terms ∆Γk,2 and ∆Γk,3 [defined in Eq. (4.24)] depend respectively on
two and three times. The integration over time yields eventually the func-
tions fr,k, fg,k, and fλ,k, in a similar way to what happened in Eqs.(5.22)
and (4.31).

3. The final step is to integrate the β-function for the mass with the prescrip-
tions, given in Sec. 5.1, appropriate for a critical quench of the model.

In the end, one finds an equation for the reduced mass rk/Zk at scale k = 0
which is very similar to the one obtained in the previous section, i.e., Eq. (5.22).
We report here the result in a compact notation:

rk
Zk

∣∣∣
k=0

= −θ
t

[1− fr(Λzt)] , (5.46)

where the precise form of fr can be found in Appendix B (for the case of the
Ansatz given in Eq. (4.49) with λk = 0). The precise form of θ, as we proof
in Appendix B, coincides with the one obtained in Sec. 4.4.2 by means of the
relation θ = −η0/z, i.e., it allows to properly take into account the effect of the
anomalous dimensions (remember that z = 2− ηZ + ηK).

Since the reduced physical mass is given by Eq. (5.46) we can use the result
of Appendix A, which states that the asymptotic fluctuation-dissipation ratio
in this case is given by Eq. (5.35).

5.4 Predictions of the asymptotic value of the
fluctuation-dissipation ratio

In this section we analyze our results for the asymptotic value X∞ of the
fluctuation-dissipation ratio. We remark here the important finding which is
encoded in Eq. (5.35): in order to calculate X∞ one simply insert in it the
prediction of the critical initial-slip exponent θ, discussed in Secs. 4.3 and 4.4,
given respectively by Eqs. (4.47), (4.71) and (4.72).

As one can see from Fig. 4.3, we have found three approximation for θ (re-
ported in red) of increasing accuracy. The details of previous findings have been
given in Fig. 1.2. The corresponding three approximations for the asymptotic
fluctuation-dissipation ratio X∞ are reported in Fig.5.1 with red lines. Note
that, in order to facilitate the comparison, we have used the same line style
for the same approximation used (the red solid line in Fig. 4.3 corresponds to
the red solid line in Fig. 5.1 and so on.). Previously available results presented
in the literature and reported also in Fig. 5.1 have been already discussed in
Fig. 1.3.
Let us list our predictions here:

(i) The dot-dashed line is the one which has been found for the expansion of
the effective potential Uk around a vanishing background field configura-
tion given by Eq. (5.4).
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(ii) The dashed line is obtained through the determination of θ given by the
expansion of Uk around a non-vanishing homogeneous background field
φm, given by Eq. (4.49), where we set λk = 0.

(iii) The solid red line is the best approximation obtained in this thesis and it
relies on the ansatz given in Eq. (4.49).

d

X
∞

d

X
∞

2.5 3.5 432
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0.4

0.3

0.2

0.1

0.42

0.4

0.38

3 3.12.9

Figure 5.1: X∞ as a function of the spatial dimensionality d of the system.
Red lines correspond to our predictions within LPA approximation of the fRG
technique. The dot-dashed line is obtained by means of a vanishing background
field approximation of the effective potential Uk given in Eq. (5.4). The dashed
and the solid red lines are, instead, obtained by means of the non-vanishing
background field approximation for Uk given in Eq. (4.49), respectively, for the
case of λk = 0 and λk 6= 0. Black and magenta lines and symbols with error bars
are those reported in the literature so far and they have presented in detail in
Fig. 1.3 (they are a combination of one and two-loops perturbative calculation,
and of the results of Monte Carlo simulation). Inset: magnification of the main
plot for d ' 3.

The remarkable systematic improvements of fRG results with respect to the
previous perturbative renormalization-group (pRG) if compared to the recent
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MC predictions (reported Fig. 5.1 with magenta symbols with error bars) needs
to be explained. This improvement, in our opinion, is due to two peculiarities
which concern the non-perturbative nature of the fRG technique. In fact,

(1) The β-functions for the bulk couplings (either given by Eq. (4.38) for
φm = 0 or by Eq. (4.63),(4.64) and (4.65) for φm 6= 0) can be evaluated for
arbitrary dimension d. The Wilson-Fisher fixed point is more accurately
found3 than the one obtained through the analytical continuation ε→ 1 in
perturbative calculation. This reflects into a more precise determination of
θ and therefore of X∞, given respectively by Eqs. (5.24) and (4.71),(4.72)
and (5.16).

(2) The amplitude of the response function is AR = 1 in LPA approximation
and therefore gives the same result as the one obtained by means of pRG
calculation at order ε, given in Eq. (1.52), where we set to zero the contri-
bution proportional to ε2. The fRG calculation in LPA underestimate this
contribution if compared to the pRG results4 at order ε2. Instead we see
that the fRG permits a more precise determination of the non-universal
amplitude of the correlation function, given by AC , if compared to the
perturbative renormalization-group result at order ε. For a comparison of
analytical formula between pRG at order ε and fRG in LPA approximation
see Tab. 5.15.

pRG at order ε fRG in LPA

θ
ε

12
+O(ε2)

g̃∗WF

2(1 + r̃∗WF )3

AR 1 +O(ε2) 1

AC 2(1 + 2θ) +O(ε2)
2

1− 2θ

X∞
1

2
(1− θ) +O(ε2)

1

2
− θ

2(1− θ)

Table 5.1: Difference between perturbative treatment and non-perturbative cal-
culation in LPA approximation.

3This is an à posteriori statement, in the sense that we do not have a rigorous proof of it.
4This consideration is due to the fact that the contribution at order ε2 for the amplitude

AR arises once that non-local in time contribution are taken into account by the two-loop
calculation for the determination of the self energy .

5Note that the prediction for θ in the fRG column is the result for the vanishing background
approximation of Uk detailed in Sec. 4.3. We report here this result since the comparison
with the pRG prediction at order ε is easier. Our final formula for θ, given by a non-vanishing
background field approximation for Uk reported in Eq. (4.49), is given by Eqs. (4.71) and
(4.72).
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Conclusions and future
perspective

In this thesis we have calculated the asymptotic value of the fluctuation-
dissipation ratio for the purely relaxational model of critical dynamics by means
of the functional renormalization-group technique, extending its domain of ap-
plication compared to that already explored in the literature. We have solved
the problem in a local potential approximation for the flow equation of the
modified effective action. Our primary result is the fact that the asymptotic
value of the fluctuation-dissipation ratio, which is a universal observable in the
renormalization-group sense, within the local potential approximation discussed
in this work is simply given by

X∞ =
1

2
− θ

2(1− θ)
, (5.47)

where θ is the critical initial-slip exponent. It is remarkable that this equation
is valid for all the approximation that can be done for a local potential Uk.

Since the proof of Eq. (5.47) relies on the calculation of the two-time func-
tions some remarkable facts have been found established, i.e.:
• In this work, instead of relying on the short-time expansion (given in

Ref. [35] and reported in Sec. 4.3), we have shown how one can obtain θ
simply by comparing the result of the calculation of the two-time functions
in the aging limit with their general scaling form given by Eqs. (1.44) and
(1.45).

• We clarify the physical interpretation of the equation which gives the
anomalous dimension of the boundary (in time) order-parameter field and
the physical mass for a high-temperature state, see Sec. 4.4.

• The definition of the physical mass, and of η0, which arises from the dis-
cussion presented in Sec. 4.4 led us to highlight a mistake in the calculation
that has been reported in Ref. [35], in order to obtain the result for η0

and for the critical initial-slip exponent θ, since they are simply related
by θ = −η0/z. The calculation that we have done in order to properly fix
this mistake has leads us to a correction of the order of the 2% prediction
of θ given in Ref. [35]. The prediction presented in this work turns out
to be in better agreement with the recent MC data of Ref. [19] than the
prediction of Ref. [35].
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For what concerns possible improvement of this work they can take, in our
perspective, three possible different directions: (A) the first is the natural im-
provement of the calculation done in this thesis. In fact we have discussed how
to deal with an ansatz for the effective potential truncated at the third order
in an expansion in powers of (φ2 − φ2

m). The natural improvement is to add
to the ansatz given by Eq. (4.49) higher-order terms in powers of (φ2 − φ2

m),
i.e., for example, g8,k(φ2 − φ2

m)4, and to properly calculate θ generalizing in
a straightforward way the procedure outlined in Chapter 4 and 5 in order to
take into account the new bulk coupling constant, such as g8,k. (B) The second
direction of research is to go beyond the local potential approximation in order
to take into account non-local contribution in the self-energy and in the noise
term. One thing that is expected to qualitatively change once this non-local
contribution have been taken into account is the fact that the non-universal
amplitude AR of the response function will be no longer equal to 1, since as one
can see from the two-loops perturbative calculation done in Ref. [17], these non-
local contributions adds a term proportional to ε2 to AR. A careful analysis of
the mode-coupling approximation, which has been done in the context of glassy
materials by Bouchaud, Cugliandolo et al. in Ref. [36], will give some fruitful
insight in order to generalize the local potential approximation in such a way to
take into account non-local contributions in time at the level of the ansatz which
has to be done for the effective action Γk in order to close the infinite hierarchy
of equations generated by the Wetterich equation. (C) The third direction of
research is to apply the framework discussed here for the analysis of X∞ and θ
to other models of relaxational dynamics (for a complete review of these model
see, e.g, Ref. [8]).

81



Appendices

82



Appendix A

Aging limit of the correlation
function in local potential
approximation

A.1 Proof of Eq. (5.16)

In this appendix we detail the calculations that led us to our final formula
for X∞, given by Eq. (5.16). Remember from Sec. 5.1, that we have to compute
the limit in Eq. 5.13 for the case of a critical quench of the model. This amount
to study the following quantity:

lim
s→∞

∫ s

0

dt′ R(s, t′)2, (A.1)

where
R(s, t′) = e−

∫ s
t′ dt

′′ r(t′′). (A.2)

The LPA prediction for the mass r(t) for the case of a critical quench of the
model is given by Eq. (5.22), which can be rewritten as

r(t) = −θ
t

[1− fr(Λzt)] , (A.3)

where fr is a function which decays exponentially fast as t grows (as one can
see explicitly from Eq. (5.22)). Let us simplify the integral in Eq. (A.1), taking
advantage of Eqs. (A.2) and (A.3):∫ s

0

dt′ R(s, t′)2 =

∫ s

0

dt′
( s
t′

)2θ

exp

(
−2θ

∫ s

t′

dt′′

t′′
fr(Λ

zt′′)

)
. (A.4)

With the change of variables t′ = sτ we obtain∫ s

0

dt′ R(s, t′)2 = s

∫ 1

0

dτ τ−2θ exp

(
−2θ

∫ s

sτ

dt′′

t′′
fr(Λ

zt′′)

)
. (A.5)
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Now setting t′′ = xs we obtain∫ s

0

dt′R(s, t′)2 = s

∫ 1

0

dτ τ−2θexp

(
−2θ

∫ 1

τ

dx

x
fr(Λ

zxs)

)
. (A.6)

Remember that the aging limit is reached when A = Λzs → ∞. Breaking the
integral in τ we obtain∫ s

0

dt′R(s, t′)2 = s

∫ 1

A−1

dτ τ−2θexp

(
−2θ

∫ 1

τ

dx

x
fr(Ax)

)
+

+ s

∫ A−1

0

dτ τ−2θexp

(
−2θ

∫ 1

τ

dx

x
fr(Ax)

)
.

(A.7)

The integral in the first line is convergent and the limit A → ∞ can be safely
taken. This integral is given in the aging limit by∫ 1

0

dτ τ−2θ =
1

1− 2θ
. (A.8)

Let us analyze the integral in the last line of Eq. A.7. Again we break the
integral in x and we obtain for it the following expression

exp

(
−2θ

∫ 1

A−1

dx

x
fr(Ax)

)∫ Λ−1

0

dτ τ−2θexp

(
−2θ

∫ A−1

τ

dx

x
fr(Ax)

)
. (A.9)

With the change of variable y = Ax last equation simplify to

exp

(
−2θ

∫ A

1

dy

y
fr(y)

)∫ Λ−1

0

dτ τ−2θexp

(
−2θ

∫ A−1

τ

dx

x
fr(Ax)

)
. (A.10)

The exponential in front of the integral in τ is a convergent quantity, so let us
focus on the integral in τ itself. With the change of variable u = Aτ we obtain

A−1+2θ

∫ 1

0

du u−2θexp

(
−2θ

∫ 1/A

u/A

dx

x
fr(Ax)

)
, (A.11)

and as long as −1 + 2θ < 0 this integral gives zero contribution in the aging
limit A = Λzs→∞ to the limit given by Eq. (A.2).

In summary we have obtained

lim
s→∞

∫ s

0

dt′R(s, t′)2 ∼ s

1− 2θ
, (A.12)

which when it is inserted in Eq. 5.13 gives

AR
AC

=
1− 2θ

2
, (A.13)

and in the end we obtain from Eq. (5.12)

X∞ =
1

2
− θ

2(1− θ)
. (A.14)

As promised we have obtained Eq. 5.16 reported in the main text.
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Appendix B

Flow equations in the presence of
anomalous dimension

In this appendix we give a rather detailed description of the calculations
necessary in order to find the flow equation of the disordered mass, given by
Eq. (4.69). Since the inclusion of the term proportional to λk only makes the
calculations a bit more lengthy but do not adds any relevant complications we
detail here the calculations for an Ansatz given by Eq. (4.49) in which we set
λk = 0. In this case the physical mass is given by :

rk =
δ2Uk(φ)

δφ2

∣∣∣
φ=φphys=0

= −gk
3!
φ2
m,k = −1

2
mk, (B.1)

where mk is the mass in the ordered phase, i.e.

mk =
δ2Uk(φ)

δφ2

∣∣∣
φ=φm,k

. (B.2)

This simplification as we have said does not hide any relevant complications, and
allows us to detail in the simplest way how the effect of anomalous dimensions
lead us to a form of the physical mass (at scale k = 0) given by Eq. (A.3), in
which θ is precisely given by θ = −η0/z obtained with the short-time expansion
introduced in Ref. [35], i.e., it allows to properly take into account the effect of
the anomalous dimensions (remember that z = 2− ηZ + ηK).

B.0.1 Calculation of the β-function for mk(t) in the pres-
ence of anomalous dimension

From the definition of the mass in the ordered phase, given in Eq. (4.55), we
know that its flow equation with respect to the scale k introduced by the cutoff
Rk is given by

k∂kmk = k∂k

(
2

3
ρm,kgk

)
=

2

3
gkk∂kρm,k +

2

3
ρm,kk∂kgk, (B.3)
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where ρm,k = φ2
m,k/2.

We would like to note that this last equation follows from the more general
flow equation for the self energy in the ordered phase:

k∂kΣm,k =
(
k∂kΓ

(1,1)
k

) ∣∣∣
φm,k

+

(
δ

δρ
Γ

(1,1)
k

) ∣∣∣
φm,k

k∂kρm,k, (B.4)

where
Σm,k = Γ

(1,1)
k

∣∣∣
φm,k

. (B.5)

∂kΣm,k, as we have seen in chap. 4.3, contains a contribution non local in time
which has to be properly localized. This contribution is the first one in the r.h.s.
of Eq. (B.4), which is given explicitly by

k∂kΓ
(1,1)
k = −1

2

∫
Gk

δ2Γ
(2)
k

δφ̃δφ
GkṘkσ +

∫
Gk

δΓ
(2)
k

δφ̃
Gk

δΓ
(2)
k

δφ
GkṘkσ, (B.6)

where the second term in the r.h.s. is the one which depends on two times and
have used the sort-hand notation in which the integral

∫
denotes the integrals

over momenta and time, and the trace over the internal matrix structure.. We
remind here that one should be careful because, in order to be consistent with
the local potential approximation, we should extract the local in time part of
Σm,k. We represent the localization procedure by a proper operator L, in such
a way to write

L(Σm,k) = mk. (B.7)

Note that the procedure which defines the operator L has been already intro-
duced in Ref. [35] in order to find the flow of the mass mk and it has been
presented in this work in Sec. 4.2.1. In what follows we detail the action of L.

Evaluating Eq. (B.6) in the ordered homogeneous (in time and space) back-
ground configuration Φk = (φ̃b, φb) = (0, φm,k) we obtain

k∂kΓ
(1,1)
k

∣∣∣
Φ

=− 1

2
U (4)(φ)

∣∣∣
φm

∫
G0
k

[
1 0
0 0

]
G0
kṘkσ +

+

(
U (3)(φ)

∣∣∣
φm

)2 ∫
G0
k

[
1 0
0 0

]
G0
k

[
0 1
1 0

]
G0
kṘkσ,

(B.8)

where the second term is the one which depends on two times. Remember that

G0
k(t, s) =

[
C0,k(t, s) R0,k(t, s)
R0,k(s, t) 0

]
, (B.9)

is the inverse of the Hessian (Γ
(2)
k + Rkσ) obtained from the Ansatz for Γk and

taking into account the presence of the cutoff term Rk in the modified action.
Because of the cutoff function Rk we have to evaluate G0

k with the modified
dispersion relation ωk = Kkk

2 +mk. The two point function are thus given by

Rk(t, s) =
1

Zk
θ(t− s)e−

ωk
Zk

(t−s)
, (B.10)

86



Ck(t, s) =
Dk

Z2
k

1

(ωk/Zk)

[
e−(ωk/Zk)|t−s| − e−(ωk/Zk)(t+s)

]
. (B.11)

In this way we have unpackaged the flow equation for the mass in the ordered
configuration.

In what follows we take into account all the terms which has to be properly
computed in order to explicitly compute the r.h.s. of Eq. (B.3) via Eqs. (B.4)
and (B.7).

For what concerns the flow of the minimum ρm,k we find from Eq. (4.64)

k∂kρm =
−3

gkφm,k

(
k∂k

δU(φ)

δφ

) ∣∣∣
φm,k

= − 3

gkφm,k

(
k∂k

δΓk

δφ̃

) ∣∣∣
φm,k

,

(B.12)

and

k∂k
δΓk

δφ̃
= −1

2

∫
Gk

δΓ
(2)
k

δφ̃
GkṘkσ. (B.13)

Evaluating the very last equation in the constant in time background field Φk
we obtain(

k∂k
δΓk

δφ̃

) ∣∣∣
Φk

= −1

2
U

(3)
k (φ)

∣∣∣
φm,k

∫
G0
k

[
1 0
0 0

]
G0
kṘkσ. (B.14)

Taking into account Eqs.(B.8,B.12,B.14) the formula for k∂kΣm,k given by
Eq. (B.4) simplifies to

k∂kΣm,k =

=

−1

2
U

(4)
k (φ)

∣∣∣∣
φm

+
3

2

(
[U

(3)
k (φ)|φm,k ]2

gkφ2
m,k

)∣∣∣∣∣
φm

∫ G0
k

[
1 0
0 0

]
G0
kṘk +

+

(
U

(3)
k (φ)

∣∣∣
φm

)2 ∫
G0
k

[
1 0
0 0

]
G0
k

[
0 1
1 0

]
G0
kṘkσ.

(B.15)

Evaluating the factors in front of the integrals using the Ansatz for the local
potential given by Uk = gk(φ− φ2

m,k)2, we obtain

k∂kΣm,k = gk

[∫
G0
k

[
1 0
0 0

]
G0
kṘkσ+

+3mk

∫
G0
k

[
1 0
0 0

]
G0
k

[
0 1
1 0

]
G0
kṘkσ

]
,

(B.16)

which is the β-function for the self energy in the ordered phase, obtained from
Eq. (B.4). In the next section we will do the integrals in Eq. (B.16) and we
analyze the contribution of Eq. (B.4) to the flow of its local part, i.e., mk (see
Eq. (B.7)).
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B.0.2 Integrals and projection on the local ansatz for the
effective action

At this point we evaluate the trace and the integrals which appears in Eq. (B.16):
(i) The first term inside the square braket is given by∫

G0
k

[
1 0
0 0

]
G0
kṘkσ = Tr

∫
q,t1

G0
k(t1, t)

[
1 0
0 0

]
G0
k(t, t1)Ṙkσ. (B.17)

(ii) The second term in the square bracket is given by∫
G0
k

[
1 0
0 0

]
G0
k

[
0 1
1 0

]
G0
kṘkσ

= Tr

∫
q,t1

G0
k(t1, t)

[
1 0
0 0

]
G0
k(t, s)

[
0 1
1 0

]
G0
k(s, t1)Ṙkσ.

(B.18)

We evaluate the trace of the (i) and (ii) terms given above as
(i) The first term gives

Tr

(
G0
k(t1, t)

[
1 0
0 0

]
G0
k(t, t1)σ

)
= 2R0,k(t, t1)C0,k(t, t1). (B.19)

(ii) The second term gives

Tr

(
G0
k

[
1 0
0 0

]
G0
k

[
0 1
1 0

]
G0
kσ

)
= C0,k(t, t1)R0,k(t, s)R0,k(s, t1) +

+R0,k(t, s)C0,k(s, t1)R0,k(t, t1) + C0,k(t, s)R0,k(t, t1)R0,k(t1, s).

(B.20)

At this point one should properly compute the integrals over momentum
and times in Eqs.(B.17) and (B.18). Equation (B.17) imply that we have to
integrate Eq. (B.19) over momentum q and over the t1 time coordinate. Also
Eq. (B.20) needs to be integrated over the momentum q as shown in Eq. (B.20).
Furthermore since it represents the non-local in time contribution needs to be
properly projected on its local part: Eq. (B.18) needs to be integrated over the
time s, according to the localization procedure exposed in Ref. [35] (reviewed
in Sec. 4.3). It is this very extra-integration over time that it is implemented
by the localization operator L which we have introduced before.

The integral over q thanks to the Litim cutoff is easily computed and it is
given by ∫

q

k∂kRk = 2
ad
d
Kkk

d+2

(
1− ηk

d+ 2

)
. (B.21)

The integrals over time of the contributions (i) and (ii) are respectively given
by (taking into account the localization procedure for the term (ii))

2

∫ t

0

Rk(t, t1)Ck(t, t1)dt1 =
Dk

Zkω2
k

(
1− e−(ωk/Zk)t(1 + 2

ωk
Zk
t)

)
, (B.22)
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and∫ ∞
0

ds

∫ ∞
0

dt1

(
Ck(t, t1)Rk(t, s)Rk(s, t1) +Rk(t, s)Ck(s, t1)Rk(t, t1)+

+ Ck(t, s)Rk(t, t1)Rk(t1, s)
)

=

=
Dk

Zkω3
k

{
1− e−2ωkt/Zk

[
1 + 2

ωk
Zk
t

(
1 + 2

ωk
Zk
t

)]}
.

(B.23)

We are now ready to give the final result for the flow over k of the local part
of the self energy, i.e. L(Σm,k)(t) = mk(t):

k∂kmk(t) = 2kd+2Kk
ad
d

gkDk

Zkω2
k

(
1− ηk

d+ 2

)
×

×
{[

1− e−(ωk/Zk)t

(
1 + 2

ωk
Zk
t

)]
+

+3
mk

ωk

[
1− e−2ωk/Zk

(
1 + 2

ωk
Zk
t

(
1 + 2

ωk
Zk
t

))]}
=

= 2
kd−2Kk

(1 + mk
k2Zk

)2

ad
d

gkDk

ZkK2
k

(
1− ηk

d+ 2

)
×

×
{[

1− e−2t(k2Kk/Zk)
(

1+
mk
Zkk

2

)(
1 + 2t(k2Kk/Zk)

(
1 +

mk

Zkk2

))]
+

+ 3
mk

Kkk2(1 + mk
k2Zk

)

[
1− e−2t(k2Kk/Zk)(1+

mk
Zkk

2 )×

×
(

1 + 2t
(
k2Kk/Zk

)(
1 +

mk

Zkk2

)[
1 + 2t

(
k2Kk/Zk

)(
1 +

mk

Zkk2

)])]}
,

(B.24)

where in the last equality we have simply used ωk = Kkk
2(1 +mk/k

2Kk).

B.0.3 Evaluation of the flow equation of the mass for the
case of a critical quench

Passing now to dimensionless variables for the flowing parameters gk,mk, i.e.
using the first two equations reported in Eq. (4.62), we obtain

k∂kmk(t) = 2Kkk
2 g̃k

(1 + m̃k)2

(
1− η

d+ 2

)
×

×
[
(1− f1,k(t)) + 3

m̃k

1 + m̃k
(1− f2,k(t))

]
.

(B.25)

Note that in the long-time limit (in which the functions f1,k and f2,k vanish
exponentially) we obtain the same β-function for the mass found in Ref. [35] in
the λk = 0 approximation.
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Remember that in order to solve the equation of motion for the two-time
function in the presence of anomalous dimensions (given by Eqs.(5.38) and
(5.39)) we have introduced the reduced mass given by rk/Zk. In Sec. 5.3.2
we have proven that the renormalization-group flow of the reduced mass is sim-
ply related to the flow of the physical mass rk by Eq. (5.45). Taking advantage
of that relation we obtain the β-function of the reduced mass in the ordered
phase mk as

k∂k
mk(t)

Zk
= 2

Kkk
2

Zk

g̃k
(1 + m̃k)2

(
1− η

d+ 2

)
×

×
[
(1− f1,k(t)) + 3

m̃k

1 + m̃k
(1− f2,k(t))

] (B.26)

Now we want to integrate this equation in the vicinity of the WF fixed point.
In order to do so we choose, as explained in Sec. 5.2, to evaluate the coupling
constant and the parameters Zk and Kk at the WF fixed point, i.e.,

g̃k → g̃∗, m̃k → m̃∗,

Kk = k−ηK and Zk = k−ηZ .
(B.27)

Evaluating Eq. (B.26) with the prescription given by Eq. (B.27), one obtains

k∂k
mk(t)

Zk

∣∣∣
WF

= 2kz
g̃∗

(1 + m̃∗)2

(
1− ηK

d+ 2

)
×

×
[
(1− f∗1,k(t)) + 3

m̃∗

1 + m̃∗
(1− f∗2,k(t))

]
.

(B.28)

Now we integrate this equation over the scale k between the arbitrary scale Λ
at which one defines the bare Hamiltonian (and its bare parameters) and we
precisely fine tune bare mass in order to have a physical mass at scale k =
0 which vanishes in the long-time limit. This choice of the bare parameter
corresponds to set the system at the critical temperature of its second-order
phase transition. The result is given by

mk(t)

Zk

∣∣∣
k=0

=

(
1− ηK

d+ 2

)
2

z

g̃∗

(1 + m̃∗)3t
×

×
[
(1− F ∗1,k(t)) +

3m̃∗

2(1 + m̃∗)

[
(3− F ∗2,k(t))

]
.

(B.29)

Now we should find the reduced physical mass in the disordered phase in
order to solve the equations of motion for the two-point functions in the presence
of anomalous dimensions effects. Note that the simple relation between the
physical mass in the disordered phase and the ordered mass is given in Eq. (B.1),
which holds in the λk = 0 approximation which we are dealing with here. This
means that the reduced physical mass is given in terms of the reduced mass in
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the ordered phase simply by

rk(t)

Zk

∣∣∣
k=0

= −1

2

mk(t)

Zk

∣∣∣
k=0

= −
(

1− ηK
d+ 2

)
1

z

g̃∗

(1 + m̃∗)3t
×

×
{[

1− F ∗1,k(t)
]

+
3m̃∗

2(1 + m̃∗)

[
3− F ∗2,k(t)

]}
.

(B.30)

Some final remarks:
1. Equation (B.30), if it is evaluated in the long-time limit will give a form

of rag(t) of the type given in Eq. (5.23), from which one can extract θ
as explained in Chap. 5 and realize that it is the same result found by
means of the short-time limit approach given in Ref. [35] (for comparison
see Eq. (4.70) and (4.72)).

2. The proof given in Appendix A, which holds strictly speaking only for the
form of the mass given in Eq. (A.3), can be generalized in a straightforward
way in order to take into account the more general structure given by
Eq. (B.30).
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