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Abstract

The performance of the Large Hadron Collider (LHC) at CERN and its
minimum crossing angle are limited by long-range beam-beam collisions. A
wire compensators can mitigate part of the long-range effects and may allow
for smaller crossing angles, or higher beam intensity.

A prototype long-range wire compensator should be installed in the
LHC by 2014/15. The originally reserved position for the wire compen-
sator (named BBC) seems not available in this first step, we need so to test
other possibilities.

The performed tests consider various longitudinal and transverse loca-
tions, different wire shapes, different optics configuration and trying several
crossing angles between the beam.

Simulation are done with the weak-strong code BBtrack developed by
U. Dorda.

New postprocessing tools were used to analyse tune footprints and par-
ticle stability In particular for particle stability was implemented a new
method for the Lyapunov coefficient calculation.
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Introduction

On 4 July 2012 ATLAS (A Toroidal LHC Apparatus) and CMS (Compact
Muon Solenoid), the main experiments in the LHC (Large Hadron Collider)
at CERN (Conseil Européen pour la Recherche Nucléaire) announced that
they have observed a new particle compatible with the Higgs boson.

These promising results are preliminary and need to be confirmed with
further analysis but also by increasing the statistics of events.

For this reason, and also hoping to find other new particles, it is impor-
tant that LHC operates with the full energy (7 TeV per beam) and that
it and that it reaches the highest possible luminosity, well in excess of the
design values of L = 1034 cm−2 s−1 1.

In the frame of the luminosity upgrade it is important to take into ac-
count the negative effects due to the electromagnetic interactions between
the two beam before and after the collision points, the so called beam-beam
effects that limit the collider performance.

Wire compensators can mitigate part of the long-range effects and may
allow for smaller crossing angles or higher beam intensity.

A prototype long-range wire compensator should be installed in the LHC
by 2014/15.

In this thesis I will report my studies on the possible wire compensa-
tion solutions, i.e. the analysis of the different longitudinal and transversal
locations, on the possible electric current values, and of the different wire
shapes.

The simulations were performed with bbtrack, a code developed by U.
Dorda that track particles in conditions of weak-strong analysis: the pro-
gram analyse the interaction between a single particle and the entire coun-
terrotating beam; hence I analysed the different possibilities considering the
tune and the dynamical aperture. During the analysis of the dynamical
aperture we implemented a new criterion to evaluate the Lyapunov coeffi-
cient. We verified that this criterion is stable when we increase the number
of turns (we performed tests up to 1 million turns).

1To set these values into perspective we note that in this year (2012) LHC has op-
erated with beam energies of 4 TeV, and reached a maximum luminosity value of 0.68
1034 cm−2 s−1
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If we use for the compensator the nominal values, i.e. longitudinal po-
sition of 105 m from the Interaction points 1 and 5 (Ip1 and Ip5 for short)
(where the experiments ATLAS and CMS are located), transversal position
equal to 9.5 σ (where σ denotes the rms beam size) and current 177 A,
LHC wire compensators should allow for a reduction of the crossing angle
by the equivalent of at least 1-2 σ while maintaining the same stable region
in phase space, or, alternatively, for a substantial increase in beam current
(e.g. by a factor of 2) at constant crossing angle.

This solution will not be available for the 2014/2015 shutdown. Our
simulations predict satisfying results also for a wire located in the shadow
of the tertiary collimator (TCT, 147 m from Interaction Points 1 and 5),
if we use a modified optics based on the ATS scheme and taylored for this
scope by S. Fartoukh [10], or if we keep the nominal optics and move the
wire position near interaction point 1 by about 300 m from the present TCT
position (namely passing from 147 m before the IP1 to 150 m after the IP).

The solutions analyzed in this thesis will guide the installation of a pro-
totype wire compensator in the LHC for operation from 2015 onwards.

I presented part of this work in a poster at the IPAC’12 Conference
(International Particle Accelerator Conference). It was referred to by the
CERN Director of Accelerators and Technology, Dr. S. Myers, in his opening
plenary talk.
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The Accelerators

1.1 Introduction

A particle accelerator is a device that uses an electromagnetic field ( ~E, ~B)
to accelerate and guide charged particles ([2, 34]); the Lorentz force on a
particle with charge e is

~F = e
(
~E + ~v × ~B

)
(1.1)

with

~E = −∇V − ∂ ~A

∂t
(1.2)

~B = ∇× ~A (1.3)

where V denotes the electrostatic potential and ~A the magnetic vector po-
tential.

One of the first accelerators was built by Ernest Walton and John Cock-
croft, enouraged by Ernest Rutheford, to split the atom. Their success
marked the beginning of a new field of subatomic research.

At present the large hadron collider (LHC) at CERB ( fig.: 1.1) aims to
answer some of the fundamental open questions in physics,

• does the Higgs boson exist? If yes, the masses of the elementary par-
ticles can be be explained by the Higgs mechanism via electroweak
symmetry breaking, otherwise physicists have to consider Higgs-less
model alternatives.

• Is supersymmetry realised in nature? If so, all known particles have
supersymmetric partners.

• Do extra dimensions exist, as supposed by string theory?

• What is the nature of the dark matter?

5



6 1. THE ACCELERATORS

Figure 1.1: The CERN accelerator complex

On July 4th 2012, CERN has announced the probable discovery of the
Higgs boson. As emphasized by Rolf Heuer, current Director General of
CERN, this is a historic milestone but only the beginning: more data have to
be accumulated (implying a lot more work for the LHC) before the discovery
can be considered certain. However, these events allow us to be optimistic.

Figure 1.2 shows some slides presented in the official CERN conference
on July 4th 2012.

The CMS picture (left image) shows the observed probability (local p-
value) that the background-only hypothesis would yield the same or more
events as are seen in the CMS data, as a function of the SM Higgs boson
mass for the five decay channels considered. The solid black line shows the
combined local p-value for all channels.

The ATLAS picture (right image) shows the combined upper limit on
the Standard Model Higgs boson production cross section divided by the
Standard Model expectation as a function of the Higgs mass is indicated by
the solid line. This is a 95% CL limit using the CLs method in in the low
mass range. The dotted line shows the median expected limit in the absence
of a signal and the green and yellow bands reflect the corresponding 68%
and 95% confidence line expected without a Higgs particle.

Although the particle physics community is the original field of science
interested in particle accelerators, today accelerators are useful in a lot of
other fields. As suggested by Chao (see [4] ) we can recognize the following
applications:

• in the medical field, for example for cancer therapy and radiology,
sterilization, or isotope production,

• in the industial area, where we can cite electron microscope, photo-
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Figure 1.2: On the left: CMS Image from CERN Higgs Seminar, on the Right:
ATLAS Image from CERN Higgs Seminar (4 July 2012).

electron-microscope, ion implantation for semiconductors, or for sur-
face metal alloy, lithography, radiation treatment of material, non-
destructive detection of material damages/defects, radiography, food
sterilization, and nuclear waste treatment.

In addition in the scientific field, accelerators are useful not only for high
energy and nuclear physics, but also for

• chemistry,

• material science,

• biology, and

• energy production (inertial fusion).

1.1.1 Accelerator classification

According the target we can classify the accelerators as

• fixed target accelerators

• colliders

On the other hand, considering the method used to accelerate particles,
accelerators can be divided into two main categories:

Linear Accelerators (linac) accelerate particles in a straight line; they
are used for fixed-target experiments, as injectors for circular acceler-
ators, or as linear colliders.

Circular Accelerators where particles move in a circle until they reach
sufficient energy
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In circular accelerators, particles pass through the accelerating units
many times with an increasing magnetic field, thus acquiring energy at each
passage; for this reason, a linac would have to be extremely long to have the
equivalent final energy of a circular accelerator.

Figure 1.3: The LHC performance on 07/07/2012. The graphics shows the beam
intensity (total number of protons) for the two counterrotating beams (line red and
blue) and the beam energy (black line)

For a circular collider we can identify

• an injection period, when the beam is put into the accelerator in mul-
tiple bunches

• an acceleration period, when the beam is accelerated by using the
magnetic fields of dipoles and quadrupoles

• a stable beam phase, in which the beams are mantained in the accel-
erator (storage ring function) and collide (collider function).

More details are illustrated in the Figure 1.3.

I this thesis we are studying the LHC (Large Hadron Collider), that is
a circular collider, in the collision period.

1.2 Circular accelerators

1.2.1 Hamiltonian and Hill equation

Proposition 1 (Hamiltonian for an accelerator). The Hamiltonian for a
particle with charge e and mass m0 in the electromagnetic potential (V, ~A)
is given by

H = c

√(
~p− e ~A(~q, t)

)2
+m2

0c
2 + eV (qk, t) (1.4)

where ~p is the momentum conjugated to ~q which is related to the me-
chanical momentum m0~v by

~p = m0~v + q ~A
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Figure 1.4: orbit in a circular accelerator [22]

For any kind of accelerator we can identify a design orbit on which the
particles should move and a deviation from this orbit.

Definition 1 (Design Orbit). With design orbit, or reference orbit we in-
dicate the ideal orbit where an ideal particle should move (see fig. 1.4)

Proposition 2. Consider a particle travelling along the design orbit with
momentum ~p, if we indicate with ρ(s) the radius of curvature (bending ra-
dius) of design orbit in the point s, and with B0 the magnetic field orthogonal
to the trajectory one can easily demonstrate that

B0ρ =
p

e
(1.5)

where B0ρ is called the beam magnetic rigidity

It is convenient to choose a coordinate system connected to the design
orbit, the Frenet-Serret coordinate system.

Definition 2 (Frenet-Serret coordinate system). The Frenet-Serret coordi-
nate system is composed of the triple (x, y, s), where

• s is the motion along the design orbit,

ŝ(s) =
d~r0(s)

ds
(1.6)

(~r0 is the position vector along the orbit)

• x is the displacement from the design orbit in radial direction

x̂(s) = −ρ(s)
dŝ(s)

ds
(1.7)
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• y is the displacement in the direction perpendicular to s and x

ŷ(s) = x̂(s)× ŷ(s) (1.8)

The traiectory for a given particle can be written as

~r(s) = ~r0(s) + xx̂(s) + yŷ(s) (1.9)

In this system the canonical momentum components are

ps =

(
1 +

x

ρ

)
~p · ŝ (1.10)

px = ~p · x̂
py = ~p · ŷ (1.11)

and the magnetic vector potential components are

As =

(
1 +

x

ρ

)
~A · ŝ (1.12)

Ax = ~A · x̂
Ay = ~A · ŷ (1.13)

Proposition 3 (Hamiltonian in Frenet-Serret coordinate system). Using
the curvilinear coordinate system we can write the hamiltonian as

H = eV + c

m2c2 +

(
ps − eAs

1 + x
ρ

)2

+ (px − eAx)2 + (py − eAy)2

1/2

(1.14)

In this equation the independent variable is the time t, but since a circu-
lar accelerator is periodic in the curvilinear position s, it is convenient to use
this as independent variable. From now on we will indicate the derivative
respect to the s variable with a prime index and the one respect to the time
with an overdot, i.e.

x′ =
∂x

∂s

ẋ =
∂x

∂t

With the change of variable t→ s the new Hamiltonian is
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Proposition 4 (Hamiltonian in a circular accelerator (t→ s)).

H̃ = −ps

= −eAs −
(

1 +
x

ρ

)(
1

c2
(H − eV )2 −m2c2 − (px − eAx)2 − (py − eAy)2

)1/2

(1.15)

Staring from (1.15) and applying some simplifications.

We take V = 0 and ∂ ~A
∂t = 0 (good approximation in the stable beam

period).
We ignore the end fields of our lattice elements and we assume that the

magnetic field is only transverse, so that Ax = Ay = 0 (good approximation
in big accelerators like LHC). Then we obtain

Bx =
∂As
∂y

By = −∂As
∂x

We notice that

1

c2

(
H2 −m0c

4
)

= m0c
2
(
γ2 − 1

)
= ~p · ~p

and that since the beam is moving at relativistic velocity in the s direction
the momentum components in the transverse plane are small compared to
the total momentum, i.e. px,y � p

We assume that the radial deviation from the reference orbit is infinites-
imal compared to the radius of curvature x << ρ.

Using the multipole expansion of the magnetic potential

As =
∑
n

An (x+ iy)n (1.16)

and ignore the terms greater than the quadrupoles.

By = −B0 +
∂By
∂x

x = −B0 +B1x (1.17)

Bx =
∂By
∂x

y = B1y

and considering separately the two transverse directions, we obtain

H =
p2
z

2
+Kz(s)

z2

2
z = x or y (1.18)
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Kx =
1

ρ2
−K1 (1.19)

Ky = K1

K1 = effective focusing function

K1(s) =
B1(s)

Bρ
(1.20)

Proposition 5 (Hill’s equation). The solution of (1.18) is Hill’s equation

z′′ +Kz(s)z = 0 (z = x or y) (1.21)

In a circular accelerator the coefficient Ky in the equation (1.21) is pe-
riodic

K(s+ L) = K(s)

The solution of Hill’s equation, is a kind of quasi harmonic oscillation, with
amplitude and phase dependent on the position s in the ring.

Proposition 6 (Solution of the Hill equation). We can write the solution
as [30]

z(s) =
√
ε
√
β(s) cos (ψ(s) + φ) (1.22)

where

ε is the single particle emittance, costant at a given energy

β(s) is the betatron function, a periodic function given by focusing proper-
ties of the lattice (i.e. quadrupoles)

ψ(s) is the phase advance

φ is the initial phase

The β and ε parameters are related by the equation of the ellipse (often
called the Courant and Snyder invariant)

γ(s)z2 + 2α(s)yy′ + β(s)y′
2

= ε (1.23)

We can define also a beam emittance as

εrms =
〈z2〉
βz

=
〈ε〉
2

(1.24)

It is useful to define also the normalized emittance

εn = γβε (1.25)

where in this case β and γ are the relativistic values: β = v/c and γ =
(1− β2)−1/2

Starting from the equation (1.22) we can define a really important quan-
tity for the accelerator, the tune.
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Figure 1.5: The Courant Snyder parameter in the phase space

Definition 3 (Tune). The tune is the number of oscillations per turn in a
given transverse direction (x or z), and can be obtained from

Qz =
1

2π

∮
1

βz(s)
ds z = x or y (1.26)

Proof. It is enough to notice that inserting (1.22) in the equation (1.21) we
find

ψ(s) =

∫ s

0

1

β(s)
ds (1.27)

again checking the equation (1.22) we understand that when ψ(s) = 2π
the particle has completed a transverse oscillation and we derive easily our
proposition.

Proposition 7 (Hamiltonian in action-angle variable). With suitable canon-
ical transformations we can write the system Hamiltonian as

Hz =
Qz
R
Jz (1.28)

where Qz is the tune in the z direction (z = x or z = y), R is the accelerator
radius, the action variable Jy is half the single particle emittance (see [24]
for more details)

2J = ε (1.29)
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Note that we easily derive

εrms = 〈J〉 (1.30)

Figure 1.6: Particle trajectory in the phase space (J, ψ)

We notice that the Hamiltonian is independent of s or t, and that, if
we plot the phase space trajectory using the coordinates (ψ, J) with ψ =
(Q/R)s from

z =
√

2Jβ cosψ (1.31)

the trajectory of the particle is a circle of radius J .

We can observee the nonlinear components of the motion in the accel-
erator as distortion of this circle and amplitude dependent change in the
tune.

1.2.2 Deviation from ideal orbit

Not all particles have the same orbit and the same momentum; this causes
a spread in particle position and in tune Q among the beam particles

Proposition 8 (Inhomogeneus equation of motion). Taking into account
the beam spread the equation of motion (1.32) becomes (see [18])

z′′ +Kz(s)z =
1

ρ

∆p

p
(z = x or y) (1.32)

The general solution is given by

z = zh + zi

where

z′′h +Kz(s)zh = 0

z′′i +Kz(s)zi =
1

ρ

∆p

p
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Definition 4 (Dispersion). We define dispersion the spread in position
caused by the momentum offset

D(s) =
yi(s)

∆p
p

(1.33)

As a nonvanishing dispersion causes an increased beam size, D must be
matched to zero at the IP in order to avoid luminosity loss.

If we consider the spread in tune we can define the chromaticity.

Definition 5 (Chromaticity). We define as chromaticity the variation of
tune with respect to the variation of momentum, mathematically

∆Q = Q′
∆p

p0
(1.34)

with the constant Q′ called the chromaticity.

We can easily understand the meaning of chromaticity thinking of the
formula for the strength of a quadrupole. Remembering the (1.5)

K =
1

Bρ
g =

e

p
g

where

g =
∂By
∂x

=
∂Bx
∂y

We get

∆K =
∂K

∂p
∆p

= −eg
p0

∆p

p0
=

= −K0
∆p

p0

Proposition 9. We can calculate the chromaticity using the formula

Q′ =
1

4π

∮
K(s)β(s)ds (1.35)

1.2.3 Non linearities and resonances

Let
H = H0 +H1 (1.36)

where H0 is the unperturbed Hamiltonian. Using the coordinate system
represented by the triple (x, y, θ) where

θ =
s

R
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we can write

H0 =
1

2

(
K1(θ)x2 +K2(θ)y2 + p2

x + p2
y

)
Proposition 10. H1 depends on the angular coordinate θ in an oscillatory
way, where the frequency of oscillation is given by

(j − k)Qx + (l −m)Qy + q (1.37)

Specifically one can express it, as

H1 =
∑
n

n∑
j,k,l,m=0

j+k+l+m=n

∞∑
q−∞

h
(n)
j,k,l,m,qa

j
1ā
k
1a
l
2ā
m
2 e

i((j−k)Qx+(l−m)Qy+q)θ (1.38)

Proof. We can write the general solution as

x = a1ue
iQxθ + ā1ūe

−iQxθ (1.39)

y = a2ve
iQyθ + ā2v̄e

−iQyθ

where ū designates the complex conjugate of u and

a1 = i
(
(ū′ − iQxū)x− ūpx

)
e−iQxθ (1.40)

a2 = i
(
(v̄′ − iQyū)z − v̄py

)
e−iQyθ

From (1.39) we derive

px = a1

(
u′ + iQxu

)
eiQxθ + ā1

(
ū′ − iQxū

)
e−iQxθ (1.41)

py = a2

(
v′ + iQyv

)
eiQyθ + ā2

(
v̄′ − iQyv̄

)
e−iQyθ

For small perturbation we can write H1 as

H1 =
∑
n

n∑
J,K,L,M=0

J+K+L+M=n

b
(n)
J,K,L,M (θ)xJpKx y

LpMy (1.42)

Inserting (1.39), (1.41) and (1.40) in (1.42) we obtain

H1 =
∑
n

n∑
j,k,l,m=0

j+k+l+m=n

h
(n)
j,k,l,m(θ)aj1ā

k
1a
l
2ā
m
2 exp (i ((j − k)Qx + (l −m)Qz) θ)

(1.43)

where j + k = J +K, l +m = L+M and

h
(n)
j,k,l,m(θ) ≈ b(n)

J,K,L,M
(j+k)

√
βx
2R

(l+m)

√
βy
2R

exp (i ((j − k)Qx + (l −m)Qy) θ)
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Taking into account the periodicity of the circular accelerator we can
make a Fourier expansion

h
(n)
j,k,l,m(θ) =

∞∑
q−∞

h
(n)
j,k,l,m,qe

iqθ

where

h
(n)
j,k,l,m,q =

1

2π

∫ 2π

0
h

(n)
j,k,l,m(θ)e−iqθdθ

Therefore we can write

H1 =
∑
n

n∑
j,k,l,m=0

j+k+l+m=n

∞∑
q−∞

h
(n)
j,k,l,m,qa

j
1ā
k
1a
l
2ā
m
2 e

i((j−k)Qx+(l−m)Qy+q)θ

As supposed.

Figure 1.7: resonance lines of order 1 to 6 in the tune region [0, 0.5]× [0, 0.5] and
the fractional value of the LHC nominal tune (black ’X’)

For small perturbations the significant contributions take place only at
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low frequency. With this assumption we can obtain

H1 =
∑
ν

∑
q+s=ν

h
(2ν)
qqss0 (a1ā1)q (a2ā2)s + (1.44)

+ κ aj1 ā
k
1 a

l
2 ā

m
2 ei(nxQx+nyQy−p)θ+

+ κ̄ āj1 a
k
1 ā

l
2 a

m
2 e−i(nxQx+nyQy−p)θ

Where

j − k = ±nx (1.45)

l −m = ±ny
q = ∓p

nx, ny, p ∈ Z The coefficients h
(2ν)
qqss0 can stabilize the resonances on the other

hand κ = hjklm−p are excitation coefficients and create instabilities.
When the transverse tune satisfy the resonance condition

nxQx + nyQy = p (1.46)

the effect of a perturbation becomes important, the amplitude of the motion
may grow rapidly and the particle can be lost.

This is why in the circular accelerators we try to have a tune far away
from any integer and fractional values. In addition if we define as order of
resonance

N = |nx|+ |nz| (1.47)

we see that the destabilizing effects are more important for smaller resonance
order, so that it is better to stay away from resonance lines of lower order.
The picture 1.7 gives an idea of the resonance line where lines with red colors
correspond to a smaller resonance order (so are more critic) than the ones
with blue colors. In our tests we worked with two LHC optics for both the
fractional part of tune was [0.31, 0.32], in the figure 1.7 a black ’x’ mark this
point.

1.2.4 Intuitive description of Resonances

Suppose that a particle has the tune Qz = A + 1/n where A ∈ Z from the
tune definition we can easily derive that after n turns the particle will be at
the same point.

Let we think that in a given point s1 there is a machine imperfection
that gives a transversal kick to our particle in a given direction. It is evident
that after N turns the particle has received N/n kicks in the same direction
potentially not compensated, this should cause the particle loss.

This give us an intuitive feeling for the reason why resonances order of
lower order (smaller n) are more dangerous respect to the ones of higher
order.



1.3. COLLIDERS 19

1.3 Colliders

In a beam beam collision we are interested to

• the center of mass energy available

• the number of events (particle-particle scattering)

1.3.1 Energy

With regard to the available energy we note that the collision between two
beams provides more energy than sending a single beam on a stationary
target (see [16])1.

Let us consider two particles with mass m1 and m2 and energy E1 and
E2 , the the center of mass energy available in the collision is

E2
cm =

(
p2

1 + p2
2

)2
= (E1 + E2)2 − (~p1 + ~p2)2

where pi is the quadrimomentum

p2
i = E2 − ~p2 = m2

For a p-p collider ~p1 = −~p2 so

E2
cm = (E1 + E2)2

for a fixed target accelerator ~p2 = 0, and we have

E2
cm =

(
m2

1 +m2
2 + 2m2E1,lab

)
If we consider a beam energy of 7 TeV (this is the nominal LHC energy,

for proton proton collision we have

ECM coll = 14 TeV

ECM fix = 0.1 TeV

1.3.2 Luminosity

The luminosity measures the ability of a collider to produce interactions.
Mathematically we can define it as follows.

Definition 6 (Luminosity). The luminosity is the number of wanted events
Nevents per unit of time t of cross section σevents

L =
dNevents

dt

1

σevents
(1.48)

1for simplicity we adopt natural units with c=1
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The luminosity depends on the energy at the center of mass of the col-
lision and it is a relativistic invariant [33].

Proposition 11. Let us consider a multibunch beam 2 with nb bunches,
and let us indicate with f the revolution frequency of the beam. We can
write the luminosity L as

L = nbf LSC

where LSC is the single crossing luminosity.

Also the single crossing luminosity is a relativistic invariant. If we indi-
cate with

• Ni the number of particles in the bunch of beam i ( i = 1, 2)

• ~vi the bunch velocity

• ρi the particles distribution in the bunch

we can write

LSC = R(~v1, ~v2)

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

N1N2ρ1(x, z, s, t)ρ2(x, z, s, t)dxdzdsdt

where

R(~v1, ~v2) =
1

c

√
c2‖~v1 − ~v2‖2 − ‖~v1 × ~v2‖2

Suppose to have two Gaussian beams

ρi(x, y, s, t) =
1

(2π)3/2σx iσy iσs i
exp

(
− x2

2σ2
x i

− y2

2σ2
y i

− (s− vit)2

2σ2
s i

)
(1.49)

where the σ are the standard deviation of the distribution, in the trans-
verse direction we have

σz =
√
εzβz z = x or y (1.50)

ε is the emittance and β the betatron function as derived in (1.22)
We can obtain

L =
N1N2f nb

2π
√
σ2
x 1 + σ2

x 2

√
σ2
y 1 + σ2

y 2

In particular if we have two equals beam, i.e. σz 1 = σz 2 = σz , z= x, y
and N1 = N2 = N we can write

L =
N2f nb
4πσxσy

(1.51)
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Figure 1.8: Schematic view of beam beam collision, for two beams with a crossing
angle of θ

1.3.3 Crossing angle

In a collider in general two counterrotating bunches cross each other with
a crossing angle θ, as shown in Figure 3.2. This is not only motivated by
technical reasons but also allows one to contain destructive effects on the
beam, the so-called long range beam beam effects that are the subject of
the next chapter.

On the other hand the crossing angle reduces the luminosity.

Proposition 12. Let us consider two beams that cross in the plane z (z = x
or y) with an angle of θ. The luminosity becomes

L =
N2f nb
4πσxσz

F̃G(θ, σy, σs) z = x or y (1.52)

where F̃G(θ, σy, σs) is the luminosity reduction factor and can be written as

F̃G(θ, σz, σs) =
σz (sec (θ) + 1)√

2
√

cos (θ) (σ2
z − σ2

s) + σ2
z + σ2

s

In particular for small crossing angle θ � 1

F̃G(θ, σz, σs) ≈
1√

1 + θ2
PA

where θPA is the Piwinski Angle

θPA =
θσs
2σz

(1.53)

Proposition 13. Let us indicate with ∆in the inner normalized separation

∆in = θ

√
β∗z
εz

(1.54)

where β∗ is the value of the betatron function at the interaction point. We
can write

θPA =
∆inσs
2β∗z

(1.55)

2this is the case for LHC, SPS, and so on
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2

Beam Beam Interaction and
Wire Compensation

2.1 Beam beam interaction

Figure 2.1: Schematic view of Head On and Long Range effects, for two beams
with a crossing angle of θ and a bunch spacing of δ/2 (courtesy of U. Dorda [6])

In a collider we have two charged beams that cross each other. This
produces two effects:

HO the head-on beam beam interaction, which occurs when the counterro-
tating bunches cross each other with their center transversely aligned
(without offset and without crossing angle).

LRBBI long-range beam beam interaction, which occurs at a transverse
offset large compared with the beam size.

The distortion of one beam caused by the electromagnetic forces exerted
by the other beam, is an effect unwanted but unavoidable. We can partially
compensate the long-range beam beam ffect that is the most problematic.

To understand the beam beam effect it is easiest to start from the HO.
In the analysis we can consider the interaction of a single particle of one

23
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beam with the electromagnetic field generated by the other beam. This is
the so called weak-strong point of view.

2.1.1 Head On

Proposition 14. The transverse force exerted on a particle with velocity
~v1 from a counter-rotating bunch that moves with velocity ~v2 is

F⊥ = (1 + β1β2) eE⊥ (2.1)

Where βi is the relativistic function: βi = vi
c

Proof. Obviously F⊥ is a Lorentz Force

F = e
(
~E + ~v1 × ~B

)
We need to find ~E and ~B. We notice that in the rest frame the magnetic
field is zero. Applying the transformation we have

Es = E′s Bs = 0

E⊥ = γ2E
′
⊥ B⊥ = −γ2

c2
~v2 × ~E′

where the primed quantity refers to the rest frame, we obtain

F⊥ = (1 + β1β2) eγ2E
′
⊥ = (1 + β1β2) eE⊥ (2.2)

Proposition 15 (Gaussian Beam beam ). Let us consider a Gaussian beam
distribution

ρ(x, y, s) =
Ne

(2π)3/2σxσyσs
exp

(
− x2

2σ2
x

− y2

2σ2
y

− s2

2σ2
s

)
since σs � σz (z = x, y) we can consider a bidimensional gaussian distribu-
tion in the plane x− y ([19])

ρ(x, y) =
ne

(2π)3/2σxσz
exp

(
− x2

2σ2
x

− y2

2σ2
y

)
where n is the line density. The potential V that satisfies the equation

∇2V =
ρ

ε0

with this distribution function is (see [20, 1, 14, 19])

V (x, y, σx, σy) =
ne

4πε0

∫ ∞
0

exp
(
− x2

2σ2
x+q
− z2

2σ2
y+q

)
√

2σ2
x + q

√
2σ2

y + q
(2.3)



2.1. BEAM BEAM INTERACTION 25

If we indicate with erf(z) the complex error function

w(z) = e−z
2

(
1 +

2i√
π

∫ z

0
eζ

2
dζ

)
(2.4)

we can write

Ex − iEy =− ∂V

∂x
+ i

∂V

∂y

=− ine

2ε0

√
2π
(
σ2
x − σ2

y

) ·
·
(
w(a+ ib)− exp

(
−(a+ ib)2 +

(
ac+ i

b

c

))
w

(
ac+ i

b

c

))
where

a =
x√

2
(
σ2
x − σ2

y

)
b =

y√
2
(
σ2
x − σ2

y

)
c =

σy
σx

hence [1]

Ex =
ine

2ε0

√
2π
(
σ2
x − σ2

y

) ·
· =

w
 x+ iy√

2
(
σ2
x − σ2

y

)
− exp

(
− x2

2σ2
x

+
y2

2σ2
y

)
w

 xσzσx + iy σxσz√
2
(
σ2
x − σ2

y

)
·

Ey =
ine

2ε0

√
2π
(
σ2
x − σ2

y

)
· <

w
 x+ iy√

2
(
σ2
x − σ2

y

)
− exp

(
− x2

2σ2
x

+
y2

2σ2
y

)
w

 x
σy
σx

+ iy σxσy√
2
(
σ2
x − σ2

y

)


And for the force, thinking that the particle and the bunch have the
same velocity (β1 = β2 = β)

Fx − iFy = −e
(
1 + β2

)
(Ex − iEy)

In particular for a round beam we have
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Figure 2.2: Head on force for a round Gaussian beam in arbitrary units

Proposition 16 (Head On force for a Gaussian round beam).

Fx =
−ne2

(
1 + β2

)
2πε0

x

r2

(
1− exp

(
r2

2σ2

))
(2.5)

Fy =
−ne2

(
1 + β2

)
2πε0

y

r2

(
1− exp

(
r2

2σ2

))
where r =

√
x2 + y2

The dependence is shown in Figure 2.2

Proposition 17 (Beam beam kick). Using the newton law from the force
we obtain the deflection of the particle for head-on beam beam effect

∆x′ =
−eNr0

γ

x

r2

(
1− exp

(
r2

2σ2

))
(2.6)

∆y′ =
−eNr0

γ

y

r2

(
1− exp

(
r2

2σ2

))
where r0 is the classical particle radius

r0 =
e2

4πε0mc2

Proof. To simplify consider radial coordinates and the radial force. We can
write the force as

Fr(r) = −
ne2

(
1 + β2

)
2πε0r

(
1− exp

(
− r2

2σ2

))
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To obtain the total force we have to multiply by the longitudinal distribution
density. Supposing that we have a Gaussian shape with a width of σs and
that the bunch is moving in the negative s direction with speed v, we have

Fr(r, s, t) = −
Ne2

(
1 + β2

)
(2π)3/2ε0σs

1

r

(
1− exp

(
− r2

2σ2

))
exp

(
−(s+ vt)2

2σ2
s

)
Using the Newton law

mcβγ∆r′ =

∫ +∞

−∞
Fr(r, s, t)dt

we obtain

∆r′ =
−eNr0

γ

1

r

(
1− exp

(
r2

2σ2

))

From the deflection we can easily derive the linear tune shift

Proposition 18 (Linear tune shift). The linear tune shift is given, for an
elliptic beam by

ξz =
Nr0β

∗
z

2πγσy (σx + σz)

where z = x or y. For a round beam

ξz =
Nr0β

∗
z

4πγσ2
z

Proof. For simplicity we consider here only the round case. The tune shift
for the elliptic case is obtained in a similar way.

We notice that the tune shift in the transverse direction z (with z = x
or y) due to the beam beam head-on effect is given by

∆Qz =
1

4π

∫
βz(s)Kz(s)ds

where, supported by what we have derived in the section 2.1.1 we can write

Kz =
1 + β2

Bρv

∂Ez
∂z

=
1 + β2

mc2β2γ

∂Ez
∂z

Remembering what we found in (2.2) we can write

∆Qz ∝
∂Fz
∂z

(2.7)
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Figure 2.3: Head on force and its derivative for a round Gaussian beam (courtesy
of U. Dorda [6])

Figure 2.3 shows the behaviour of the force derivative. As we see better
in the Chapter 3 the head-on beam-beam collision causes a tune spread
dependent on the particle position.

For r � σ and β → 1 we can consider the linear kick

∆r′ ≈ eNr0

γσ2
r

Let define f the focal length of the linear kick

1

f
=

∆r′

r
≈ eNr0

γσ2

the linear tune shift is simply obtained as

ξ =
1

4π

β∗

f
≈ eNr0β

∗

4πγσ2

where β∗ indicate the betatron function at the interaction point.

The head-on collisions happen at the Interaction point (IP). In our sim-
ulation we considered only the IP1 (s=0 m) and IP5 (13329.29 m) in the
LHC, where the ATLAS and CMS experiments are located.
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Figure 2.4: Interaction Points in LHC

2.1.2 Long Range

We speak of long-range collision when we have a transverse offset large
compared with the beam size.

We can obtain the formulas for long-range starting from the ones found
for the head-on and applying the transformation z → z + d where z is the
coordinate of the separation (x or y) and d is the separation length.

Suppose for example to have a horizontal crossing angle, the equations
(2.6) become

∆x′ =
−eNr0

γ

x+ d

r2

(
1− exp

(
r2

2σ2

))
(2.8)

∆y′ =
−eNr0

γ

y

r2

(
1− exp

(
r2

2σ2

))
where

r =

√
(x+ d)2 + y2

And for the tune shift we have [6]

∆Qx =
2Nr0

4πγεxr2

(
1− exp

(
r2

2σ2

)(
1 + r2

))
(2.9)

∆Qy =
2Nr0

4πγεyr2

(
1− exp

(
r2

2σ2

))
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We notice that the long-range effects break the symmetry between the two
planes. Choosing alternate crossing planes (HV), as actually is done in LHC
helps in reducing the long-range effect [25, 13].

We notice [15, 14]) that

∆QHO ∝
N

εn

∆Qlr ∝ −
N

d2
=

Nεn
θ2β∗γ

where εn is the normalised beam emittance defined in (1.25)
Therefore for the head-on point of view it is advantageous to increase

the transverse emittance, and we can also reduce β∗ to increase luminosity
without any effect on the tune shift.

The situation changes for the long-range where the effect depends on β∗,
and it is advantageous to decrease the transverse emittance. We also see
that the dependence on the separation is quadratical. A small reduction in
the crossing angle causes a big effect on the tune shift.

Could be interesting to follow the approach of [26] to understand better
the dependence of long-range interaction on the crossing angle.

We can try to lump together the long-ranges, supposing that they occur
at a betatron phase advance close to π/2 with respect to the IP. This allows
us to express the kick as a change in the coordinate ∆z instead of the slope
∆z′.

Proposition 19. Let us indicate with npar the number of long-range en-
counter (parasitic collision), and with θc the crossing angle between the
beam. For a horizontal crossing angle we can write

∆x = −npar
2r0N

γ

(
x′ + θc
θ2
t

(
1− exp

(
− θ2

t

2σ2
x′

))
− 1

θc

(
1− exp

(
− θ2

c

2σ2
x′

)))
∆y = −npar

2r0N

γ

y′

θ2
t

(
1− exp

(
− θ2

t

2σ2
y′

))
where

θy =

√
(x′ + θc)

2 + y′2

and σx′,y′ is the rms beam divergence at the IP.

2.1.3 Resonances

If we add the beam-beam effects the Hamiltonian (1.28) with small manip-
ulation becomes [38, 27, 22])

H(Jx, Jy, ψx, ψy, θ) = Q0xJx +Q0 yJy + V (Jx, Jy, ψx, ψy)
∑
p

eipθ

2π
(2.10)
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where Q0 is the unperturbed tune and V is the beam beam potential.

V =
1

2π

∑
Km,n(Jx, Jy)e

−j(mψx+nψy−lθ)

with

Km,n =
Nr0

(2π)2γ

∫∫ − exp
(
−βxJx cos2 φx

2σ2
x+t

− βyJy cos2 φy
2σ2

y+t

)
√

2σ2
x + t

√
2σ2

y + t
ej(mφx+nφy)dφxdφydt

For the head-on we can write

V (J, ψ) =
8πξσ2

β

(
−Ei

(
− r2

2σ2
y

)
+ ln

(
r2

2σ2
y

))
with r =

√
x2z2. where Ei is the exponential integral

Ei(u) =

∫ u

−∞

eu
′

u′
du′

If we consider the long-range beam beam potential in one direction can
be written as

V (J, ψ) =− r0Nnpar
γ

(
−Ei

(
−(y′ + θc)

2

2σ2
y′

)

+ ln

(
(y′ + θc)

2

2σ2
y′

)
− 2y′

θc

(
1− exp

(
− θ2

c

2σ2
y′

)))
When the tune is near a resonance line we can approximate the Hamil-

tonian as

H(Jx, Jy, ψx, ψz, θ) = Q0xJx +Q0 yJy + g(Jx, Jy) + h cos (mψx + nψy − lθ)

The beam beam head-on interaction produces non linear resonances at

mQx + nQy = l

with m and n even. The long-range beam beam interactions also produce
resonances with m and n odd.

2.2 Wire Compensation

2.2.1 Principles of the wire compensation

To compensate the long-range effect we need a non-linear lens that can be
assimilated to a separated beam. If the separation is large enough the long-
range forces scale with 1/r, this can be simulated by a wire parallel to the
beam like the one shown in Figure 2.5.
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Figure 2.5: Schematic view of the wire correction (courtesy of U. Dorda [6])

Suppose to have a thin wire long lw with a DC current Iw located in the
horizontal plane the change in IP coordinates is

∆x =
µ0Iwlw
2π(Bρ)

(
x′ + θc,w ± φx x

β∗x

θ2
t,w

− 1

θcw

)

∆x′ = −(±)φx
∆x

β∗x

∆y =
µ0Iwlw
2π(Bρ)

(
y′ +±φy y

β∗y

θ2
t,w

− 1

θcw

)

∆y′ = −(±)φy
∆y

β∗y

where θc,w is the angle at the IP representing the transverse distance between
the beam and the wire,

θt,w =

√(
x′ + θc,w ± φx

x

β∗x

)2

+ +

(
y′ +±φy

y

β∗y

)2

an the ± sign depends on the wire position with respect to the IP side.
With some manpulation we can obtain for a wire positioned in (xw, zw)

∆x′ =
µ0Iwlw
2π(Bρ)

(
x− xw
r2

+
xw
d2

)
∆y′ =

µ0Iwlw
2π(Bρ)

(
y − yw
r2

+
yw
d2

)
where

d =
√
x2
w + y2

w

We can use this formula to compare the long-range kick with the wire
kick, as shown in the Figure 2.6. For large distance the two effects are
identical.
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Figure 2.6: Schematic view of the beam beam kick and possible wire compensation

To calculate the tune shift we start as usual from

∆Qz = ± 1

4π

∫
βz(s)∆Kz(s)ds

with

∆Kz(s) =
1

Bρ

∂Bw z
∂z

where Bw z is the magnetic field generated by the wire. For a DC wire with
current Iw located in the vertical plane (0, yw) We have

Bwx(0, y) =
µ0Iw

2π (yw − y)

hence
∂Bwx
∂y

∣∣∣∣
(0,0)

=
µ0

2πy2
w

=
∂Bw y
∂x

∣∣∣∣
(0,0)

Assuming that the betatron function is constant along the wire’s length,
lw, and neglecting the fringe field effect of the wire, we obtain

∆Qz = ±µ0Iwlwβz
8π2Bρz2

w

(2.11)

If we consider a wire located in a generic point (xw, yw) with some cal-
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culation we can write the tune shift as

∆Qx = − µ0Iwlw
2π(Bρ)

βx
4π

(
− dx2

w

(dx2
w + dy2

w)2

)
(2.12)

∆Qy = − µ0Iwlw
2π(Bρ)

βy
4π

(
− dx2

w

(dx2
w + dy2

w)2

)

2.2.2 Wire longitudinal position

Equation (2.12) shows that the tune shift caused by the wire compensator
depends on the betatron function. As we want compensate in the same way
the tune shift in both the x and z plane, a requirement for the s position is

βx(s) ≈ βy(s) (2.13)

Suppose that this is not possible, 1 and that we have two wire locations
to use, we obtain the best results where

βx(s1)

βy(s1)
≈ βy(s2)

βx(s2)
(2.14)

We also need to choose a location where the betatron phase advance
between the LR collision points and the wire is as small as possible [6].

position IP IP dist βx βy ∆µx ∆µy
[m] [m] [m] [2 π] [2 π]

BBC IP1 104.9 1738.1 1734.8 0.25 0.25
IP5 104.9 1739.2 1734.9 0.25 0.25

TCT opt β IP1 149.7 559.4 1566.9 -0.26 0.26
IP5 -147.3 1575.7 606.8 -0.26 -0.26

Table 2.1: Optics parameters at the BBC location and at the TCT opt β with
the nominal optics (β∗ = 0.55 m).

If we use the nominal LHC optics 2 a good solution proposed by Koutchouk
[11] was to put the wire at 105 m after IP1 and IP5. This location is called
the BBC (Beam Beam Compensator). For technical reason ([32]) this loca-
tion is not immediately available. To install a prototype for test pourposes
we have found another location, a location at 150 m after IP1 and at 148
m before IP5. We called this location TCT opt β because we find it start-
ing from a TCT (Tertiary Collimator) location (147 m before each IP) and
moving one of the two wires to the other side of the Ip to obtain a better
result.

Table 2.1 shows the optics values for these two possible solutions. Beta-
tron function and phase advance from the nearest IP. Our tests involved a
lot of other different solution, more details are shown in Chapter 4

1this is what is happening at the moment in LHC
2See 3.1 for more details
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2.2.3 Wire Transverse position and current

Figure 2.7: Beam separation for nominal LHC (courtesy of Guido Sterbini [33])

The transverse position of the wire should be equal to the average dis-
tance at the long-range collisions. For nominal LHC we can considere 16
Long range collision at each IP side with an average distance of 9.5 σ (see
figure 2.7).

The optimum current is obtained by equating the effects of the sum of
npar long-range kick and the effect of the wire kick. We can write

Iopt =
nparceNb

lw
(2.15)

where Nb is the number of particles per opposite bunch. For the nominal
LHC Nb = 1.15 1011, Using this value we find that the optimum wire current
for a 1 m long wire is Iopt = 176.8 A [28].

The wire must be positioned in the shadow of a collimator this forces us
to move the basic transverse position from 9.5σ to 11σ. From (2.12) that

∆Qz ∝
Iw
z2
w

and to obtain the same tune shift therefore we need to scale the current
quadratically and we obtain Iscal = 237.0 A.
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3

Simulation Tools and
Concepts

3.1 MADX and LHC Optics

To calculate the optics parameters for the LHC we used the MAD-X (Me-
thodical Accelerator Design) program [17, ?].

More in details we define in the input files the properties of the machine,
the crossing angle and the offset between the two beams at the IPs, the
energy (7 TeV), the type of particles (protons) and the number of particles
for each beam (1.15 1011), we add markers in the points we are interested
to, hence for these points we use MAD-X to obtain the parameters (the
Courant Snider parameters, β, α and γ and so on) and the rotation map
between two points.

All these values are furnished as input to the bbtrack program using a
personal script that automatically produces the conversion between the two
formats.

We tested two different optics:

• The nominal LHC Optics (with β∗ = 0.55 m)

• A modified optics (with β6∗ = 0.60 m, courtesy of S. Fartoukh)

Optics β∗x β∗y Qx Qy σx σy
[m] [m] [10−5 m] [10−5 m]

Nominal LHC Optics 0.55 0.55 64.31 59.32 1.6627 1.6627
Modified LHC Optics 0.60 0.60 62.31 60.32 1.7366 1.7366

Table 3.1: Main Optics parameters, computed with MAD-X .

The modified optics was based on the ATS scheme [10] and taylored by
S. Fartoukh so as to give optimized compensator performance with a wire

37
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Figure 3.1: Wire locations (top), and β functions for the nominal (center) and
for the modified optics (bottom).

placed at the TCT (2012). The main optics values for the nominal optics
and modified are summarized in the Table 3.1.

For both the optics we have

• Energy: 7 TeV

• Relativistic Lorentz factor γ = 7460

• Proton current (i.e. number of proton considered in the ”strong beam”)
= 1.15 1011

As visible in Figure 3.1 and in the Table 3.2, the values of betatron
functions are equal at the BBC location with the nominal optics, and almost
equal for the modified optics and the TCT positions.

We will show in the Chapter 4 that the BBC locations give us still better
results. This is because the values of the β functions are greater in BBC
location with nominal optics than at TCT location with the modified optics.

In our tests we also tried some other locations searching for a good com-
promise between technical requirements and compensations. These positions
are indicated in Figure 3.1.
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position Optics IP IP dist βx βy
[m] [m] [m]

BBC Nom IP1 104.9 1738.1 1734.8
IP5 104.9 1739.2 1734.9

Q5 Nom IP1 199.0 105.9 503.0
IP5 199.0 105.9 503.0

TCT Nom IP1 -146.9 1577.2 614.9
IP5 -147.3 1575.7 606.8

TCT opt β Nom IP1 149.7 559.4 1566.9
IP5 -147.3 1575.7 606.8

TCT opt β 2 Nom IP1 -146.9 1577.2 614.9
IP5 149.5 563.2 1567.6

BBC Mod IP1 104.9 1914.9 1142.1
IP5 104.9 1915.9 1142.4

TCT Mod IP1 -146.9 801.0 802.5
IP5 -147.3 798.0 794.1

Table 3.2: Optics parameters for all tested locations, Nominal LHC Optics
(”Nom”) and the modified optics (”Mod”) ([29]).

3.2 Tune Footprint Analysis

As we have seen it is important that the particles tune doesn’t touch reso-
nance lines with low order, it means that the tune doesn’t satisfy the con-
dition

nxQx + nyQy = p

where
N = |nx|+ |ny|

is the resonance order.
In our tests we plot resonance until the order 9 but we can see that the

dangerous effects are visibles until the resonance order 5 [35].
Since the tune shift effects are more visible for particles with big ampli-

tude we modify a Gaussian distribution to have more particles with a radius
between 4 and 6.5 σ.

We track each particles using the bbtrack code for 50.000 turns and
calculate the tune using the fast fourier transform (FFT) method, we plot
the results with the resonance lines checking whenthe tuen footprint touches
one resonance line (see fig.: 3.3).
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Figure 3.2: Particle distribution used for the Tune tests

Figure 3.3: The Figure shows the tune footprint for the Head On test with the
resonance lines until the order 9

3.3 Stability Analysis

Examining the size and location of the tune footprint allows to understand
the causes of the instabilities but it does not provide a quantitative values.

We could think to examine the particle loss, i.e. the particles exceeding
a certain amplitude, but with simulation we can simulate a maximum of 1
milion of turns. If we think that the LHC is long 27 km and that the protons
move with a velocity near to the speed of light (300.000 km/s), we can model
at the best of our possibilities the fist 9 seconds of the experiment, evidently
this criterion turns out not to be sufficiently sensitive.

We decide to choose the Lyapunov exponent as stability criterion. This
tends to overestimate the impact of the resonances but it still shows the best
agreement with experimental data.

From a theoretical point of view we can define the Lyapunov exponent
in the following way [31].
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Definition 7 (Lyapunov exponent). Let us indicate with d(N) the trans-
verse distance between two particles at the turn N taken in the longitudinal
position s, we define the Lyapunov exponent as

λ = lim
N→∞

lim
d(0)→0

1

N
log

d(N)

d(0)
(3.1)

The Lyapunov exponent describes the rate of divergence of the nearby
trajectories in the phase space. If we have a regular motion the distance
between two nearby trajectories grows linearly when averaged over long
periods of rime

d(N) ∝ N

On the other hand, if we are in the chaotic situation we have an exponential
growth of the distance

d(N) ∝ eλN

where λ is the Lyapunov exponent.

Figure 3.4: Test of stability for Head On in IP1 and IP5. Figure reports the
particles initial distribution normalized, colored following the criterion of the first
turn of instability, the dark blue indicates a sTable particle. In the left plot the
bbtrack criterion is used here, some sTable particles are indicated as unstable. In
the right plot the new criterion is used here, as expected we don’t have any unstable
particles.

For this kind of test it is more useful to track an uniform distribution of
particles between 0 and a given maximum radius (in the most part of our
tests 8 σ). We tracked the particles for at least 300.000 turns, as shown in
the fig.: 3.4 we plot the initial distribution and colored the particles following
the first turn of instability.

In the bbtrack code the Lyapunov exponent is calculated in the following
way.
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Two particles with an initial offset of 10−8 m are tracked. At each turn
the program calculates the normalized 4D distance between the two particles
dn(i) where the subscript n stand for ”normalized” and i indicate the turn

dn(i)2 =(xn 1(i)− xn 2(i))2 + (x′n 1(i)− x′n 2(i))2+

+(yn 1(i)− yn 2(i))2 + (y′n 1(i)− y′n 2(i))2
(3.2)

the normalized coordinates are calculated with the formulas

zn =
z

σy
(3.3)

z′n = z′
√
βz
εz

+ z
αz
σz

(3.4)

(z = x or y).

A particle is set as unstable if the difference between the normalized
distance at the given turn and the initial normalized distance is greater
than K times the normalized distance at the half the turn

dn(i)− dn(0)

2dn(i/2)
> K (3.5)

The suggested value for the key parameter was 3.

Figure 3.5: On the top left it is indicated the stability plot for the Head On test
using the bbtrack criterion to calculate the Lyapunov coefficient. We notice that
some particles are indicated as unstables when, if we check the normalized distance
plot (top right and bottom), we don’t see an exponential behaviour.

This method sometimes give us false unstables as shown in the fig.: 3.5.
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We found a good agreement with the plot information if we use the
following criterion:

λ[j](new) =

〈
dr[

j
2 : j]

〉
−
〈
dr[0 : j2 ]

〉
〈dr[j/4 : 3j/4]〉

, (3.6)

with 〈dr[m1 : m2]〉 denoting the average value of d between turns m1 and
m2.

Figure 3.6: Normalized distance for a sTable particle (line 1) and an unstable one
(line 2) in function of the turn i. The bbtrack program sets also the first particle
as unstable, the new criterion correctly recognizes the first case as sTable and the
second one as unstable.

With the new Lyapunov criterion the top case in Fig. 3.6 is correctly
identified as sTable, the bottom case as unstable.

We verified that the results are sTable when we increase the number of
turns as shown in fig.: 3.7.
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Figure 3.7: On the left: Stability analysis for 600.000 turns , on the Right:
Stability analysis for 1.000.000 turns.

3.4 BBTrack code and add on

We can simulate the beam-beam effects in two way:

Weak-strong simulations where we test the behaviour of a single par-
ticle that interacts with the entire counterrotating bunch (incoherent
effects). This implicitly assumes that the opposing bunch (strong) is
not to be modified by the interaction with the particle (weak).

Strong-strong simulations where is studied the effect of the two beams
moving relative to each other (σ and π modes).

We use the bbtrack code developed by U. Dorda to make our simulations
[5].

Almost no accelerator (Tevatron, RHIC, SPS, HERA) has been limited
by the strong-strong beam-beam interaction as the associated coherent mo-
tion is either Landau damped or can be suppressed by a transverse feedback
system. Only in dedicated experiments coherent modes could deliberately
be excited.

Therefore we use a weak-strong simulation program: BBTrack, a Fortran
90 program developed by U. Dorda [5].

In BBTrack every action which is performed once every turn is referred
to as a kick. This includes real kicks to the beam, e.g. a kick due to a wire,
but also analyst steps, e.g: writing the current position to a file.

To generate manually the code for each of our tests seems not efficient,
we developed for this some python scripts that produces, starting from the
MAD-X outputs and some other input informations (for example the wire
position), the correct BBtrack input files (input parameter and particles
distributions). With python and in particular using the potential of pylab
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library we develop a series of tools for postprocessing analysis, as already
mentioned lyapunov and tune calculation, plot generation, the calculation
of the minimum radius where we found a particle instability and of the
dynamical aperture radius 1.

The use of a database MySQL where the python scripts insert automati-
cally the postprocessing informations allows, in many cases, a faster analysis
and comparison of our results.

1We define as dynamical aperture radius the last radius where the number of sTable
particles is greater than the number of unstable ones
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4

Main Simulation Results

4.1 Introduction

We analyse the following scenarios with different wire positions:

HO (Head On) 2 head-on collisions at IPs1 and 5

HOLR (Head On Long Range) 2 HO collisions plus 16 LR collisions at
each side of the IP1 and IP5

BBC (Beam Beam Compensator] HOLR plus a wire at 105 m after IP1
and IP5

TCT (Tertiary Collimator Target) HOLR plus a wire at 147 m before IP1
and IP5

TCT opt β HOLR plus a wire at 150 m after IP1 and 147 m before IP5

TCT opt β 2 HOLR plus a wire at 147 m before IP1 and 150 m after IP5

Q5 (Quadrupole 5) HOLR plus a wire at 199 m after IP1 and IP5

We simulate the case of a wire with a distance equal to the average long-
range distance (9.5 σ for the nominal crossing angle) as well as with a bigger
distance, namely 16% larger (11 σ for the nominal crossing angle).

When we simulate a change of crossing angle between the beam we ob-
viously need to also move the wire. For example for a crossing angle of 6.3
σ we have a first distance of 6.3 σ and a second distance of 7.3 σ.

For distance 2 we tested the nominal current (177 A) and a value quadrat-
ically scaled with the distance (237 A).

4.2 Head-on and head-on long-range

If we ignore the long-range effects and suppose that our particles suffer only
of the head-on effect in IP1 and IP5 we see that all the particles remain

47
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Figure 4.1: Test of stability for head-
on in IP1 and IP5. Initial particles dis-
tribution normalized. The particles are
all stable after 300.000 turns

Figure 4.2: Test of stability for head-on
in IP1 and IP5 + 16 long-range at each
head-on side. Initial particles distribu-
tion normalized. The turn when particle
become unstable is identified by the col-
ors.

Figure 4.3: Tune footprint for head-on
in IP1 and IP5. Particles do not touch
any resonance line

Figure 4.4: Tune footprint for Head On
in IP1 and IP5 + 16 Long Range at each
Head on side.

stable (see Figure 4.1) , and the tune does not touch any resonance line (see
Figure 4.3).

To reach or at least to approximate this same behaviour when we have
the long-range effect and the wire compensation is our goal.

When we add the long-range effects some of the particle become unstable.
As emphasized in 2.1.2 the effect is more important for particles with bigger
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amplitude.

As we can see in Figure 4.2 the 5% of particles become unstable and the
radius of minimum instability is 2.8 σ.

If we observe the tune we see that we pass from a closed to an open um-
brella. Some of the particles that start at bigger amplitude touch resonance
lines of order 2, 7 or 9 (see 4.4).

Figure 4.5: Test of stability for Long Range with nominal Optics and Different
Crossing Angle: 12 σ (top left) , 8 σ (top right) 7.1 σ (bottom left), 6.3 σ (bottom
right)

The effect depends directly on the crossing angle, as we can see in Figure
4.5 where we report the results for a crossing angle of 12 σ, 8 σ, 7.1 σ and 6.3
σ. For smaller crossing angle we considered smaller distibution to compare
the results with the one obtained when we insert the wire compensator. In
this latter case in fact we have to remove particles that pass too close to the
wire.

In Table 4.1 we indicate the percentage of unstable particles and the
minimum radius of instability to have a feeling of the behaviour. We remark,
on the other hand, that it is more important to get an idea of the distribution
of unstable particles given as the figure.
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Crossing Angle Unstables Particles Minimum Radius
[σ] [%] [σ]

12 0.6 3.2
9.5 5.7 2.8
8 15.6 4.7

7.1 22.3 3.5
6.3 20.5 4.1

Table 4.1: Summary of the stability test for long-range, using the nominal LHC
optics and performing the tests for differents crossing angles.

Figure 4.6: Tune footprint for Long Range with nominal Optics and Different
Angle: 12 σ (top left) , 8 σ (top right) 7.1 σ (bottom left), 6.3 σ (bottom right)

As visible from the Figure 4.6 also if we consider a crossing angle bigger
than the nominal one (9.5 σ) some of the particles touch resonance lines.

Table 4.2 and Figures 4.8 and 4.7 show us that the results for the modified
optics 1 are similar to those obtained using the nominal one. Figure 4.7 and
4.8, report the results for the tests made with the following crossing angles

1see Table 3.2 for the optics parameters
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Figure 4.7: Test of stability for Long Range with modified Optics and Different
Crossing Angle: 12 σ , 11 σ , 10 σ , 9.5 σ (first row) 9 σ , 8 σ , 7.1 σ , 6.3 σ (second
row)

Crossing Angle Unstables Particles Minimum Radius
[σ] [%] [σ]

12 0.9 5.0
11 1.2 5.1
10 3.8 3.4
9.5 5.3 3.2
9 11.7 4.1
8 22.1 4.2

7.1 28.0 3.8
6.3 24.1 3.3

Table 4.2: Summary of the stability test for long-range, using modified LHC optics
and performing the tests for differents crossing angles.

12 σ , 11 σ , 10 σ , 9.5 σ 9 σ , 8 σ , 7.1 σ and 6.3 σ .
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Figure 4.8: Tune footprint for Long Range with modified Optics and Different
Crossing Angles: 12 σ , 11 σ , 10 σ , 9.5 σ (first row) 9 σ , 8 σ , 7.1 σ , 6.3 σ
(second row)

4.3 BBC wire position Nominal Optics

4.3.1 Tests with the Nominal Crossing Angle

IP IP dist βx βy σx σy
[m] [m] [m] [10−3 m] [10−3 m]

IP1 105 1738.1 1734.8 0.94 0.94
IP5 105 1739.2 1734.9 0.94 0.94

Table 4.3: Summary of the optics parameter at the BBC location.

As shown in Table 4.3 when we consider LHC with the nominal optics we
have in BBC location after IP1 βx = 1738.1 m , βy = 1734.8 m and for IP5 βx
= 1739.2 m , βy = 1734.9 m. These big and almost equal values for betatron
function allow us to obtain a very good compensation if we put the wire at
a distance equal to the average long-range distance, 9.5 σ. Seeing that in
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this point the rms beam size, σ, at the wire position is σ = 0.000934 m the
transverse wire position in IP1 (vertical crossing) is [0,-0.00888] m and in
IP5 [-0.00888,0] m.

Figure 4.9: Tune footprint for BBC with nominal Optics, nominal crossing angle
(9.5 σ) and different transverse position and current: 9.5 σ 177 A (top right), 11 σ
177 A (bottom left) , 11 σ 237 A (bottom right) . The first plot (top left) shows
the Head On long-range to allow a faster comparison.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 5.7 2.8

9.5 177 2.2 4.8
11 177 0.8 5.4
11 237 0.5 4.7

Table 4.4: Summary of the stability test for BBC, using the nominal LHC optics
and performing the tests for differents transverse positions and current values, with
nominal crossing angle.

Comparing Figure 4.9 with Figure 4.3 we notice that the tune footprint
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Figure 4.10: Test of stability for BBC with nominal Optics, nominal crossing
angle (9.5 σ) and different transverse position and current: 9.5 σ 177 A (top right),
11 σ 177 A (bottom left) , 11 σ 237 A (bottom right) . The first plot (top left)
shows the Head On long-range to allow a faster comparison.

for the wire compensator at 9.5 σ with a current of 177 A (top right in
Figure 4.9) is almost identical to the tune footprint for head-on.

For technical requirements we need to move the wire at 11 σ (in IP1,
for example, this means to a transverse distance of [0 ,-0.01028] m ). Doing
this we tried both the nominal current (177 A) and a scaled one (237 A).
The corresponding tune footprints are good enough: only a small number
of particles touch a resonance line of order 9 (not so dangerous). The result
for the stability is even better than the one for the nominal case (see Table
4.4).
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4.3.2 Test of different crossing angles

Figure 4.11: Tune footprint for BBC with nominal Optics and crossing angle of:
12 σ (row 1), 8 σ (row 2), 7.1 σ (row 3), 6.3 σ (row 4). The first column shows
tests for a wire at the average long-range distance, with current 177 A, the second
column the wire at scaled distance with current 177 A and the third column the
wire at scaled distance and current (237 A)

When we reduce the crossing angle the effects of beam beam become
more dangerous and the compensation cannot give us an optimal result.
However we can see also in this case the benefit of the wire compensator as
shown in Figure 4.12 and 4.11.
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Figure 4.12: Test of stability for BBC with nominal Optics and crossing angle
of: 12 σ (row 1), 8 σ (row 2), 7.1 σ (row 3), 6.3 σ (row 4). The first column shows
tests for a wire at the average long-range distance, with current 177 A, the second
column the wire at scaled distance with current 177 A and the third column the
wire at scaled distance and current (237 A) .

Looking the Tables 4.5, 4.4, 4.6, 4.7 and 4.8 we can notice that the wire
compensator can decrease the percentage of unstable particles by a factor 2
to 6 (for the nominal crossing angle) with respect to the head-on long-range
case.
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Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 0.6 3.2

12 177 0.2 4.7
14 177 0.2 5.2
14 237 0.3 5.1

Table 4.5: Summary of the stability test for BBC, using the nominal LHC op-
tics and performing the tests for differents transverse positions and current values,
crossing angle 12 σ.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 15.6 4.7

8 177 8.6 4.5
9.2 177 6.3 5.4
9.2 237 6.0 4.8

Table 4.6: Summary of the stability test for BBC, using the nominal LHC op-
tics and performing the tests for differents transverse positions and current values,
crossing angle 8 σ.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 22.3 3.5

7.1 177 9.8 4.8
8.25 177 12.3 5.1
8.25 237 12.6 4.5

Table 4.7: Summary of the stability test for BBC, using the nominal LHC op-
tics and performing the tests for differents transverse positions and current values,
crossing angle 7.1 σ.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 20.5 4.1

6.3 177 8.7 2.8
7.3 177 17.4 4.6
7.3 237 15.2 4.2

Table 4.8: Summary of the stability test for BBC, using the nominal LHC op-
tics and performing the tests for differents transverse positions and current values,
crossing angle 7.1 σ.

Figure 4.13 demonstrate that adding the wire allows us to reduce the
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Figure 4.13: Test Stability BBC location, Nominal Optics: particles distribution
at 9.5 σ with a wire compensator at 11 σ 237 A is almost equal to the particle
distribution at 12 σ without compensator (first row) particles distribution at 7.1 σ
with a wire compensator at 7.1 σ 177 A is almost equal to the particle distribution
at 9.5 σ without compensator (second row).

angle from 12 to 9.5 σ or from 9.5 to 7.1 σ without significant changes in
the stability region.
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4.4 TCT wire position Nominal Optics

4.4.1 Tests with the Nominal Crossing Angle

IP IP dist βx βy σx σy
[m] [m] [m] [10−3 m] [10−3 m]

IP1 -147 1577.2 614.9 0.89 0.56
IP5 -147 1575.7 606.8 0.89 0.56

Table 4.9: Summary of the optics parameter at the TCT location.

For technical reasons the wire cannot be installed at the BBC location
during the technical stop of 2014/2015. The proposed alternatives were the
TCT location (147 m before the IPs 1 and 5) or the Q5 location (199 m
after the IPs 1 and 5).

As we can see in Table 4.9 at the TCT location the betatron function is

• lower than in the BBC points

• asymmetric ( βx is 2.6 times the βy value!)

• with the same aymmetry in both IPs

From the asymmetry of the β function and remembering that

σz =
√
βzεz z = x or y (4.1)

we derive that σ has asymmetric values in the two directions and that the
transverse wire position is different in the two IPs: for the nominal crossing
angle in IP1 the wire is located at [0.0 ,-0.0053] m and in IP5 at [-0.0084,
0.0] m.

It is evident from the figure 4.14 that the tune results for TCT location
are worse than the ones of BBC case, we emphasize in particular that for
9.5 σ 177 A and 11 σ 237 A the tune twists.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 5.7 2.8

9.5 177 4.2 5.2
11 177 1.8 4.8
11 237 2.5 3.9

Table 4.10: Summary of the stability test for the TCT, using the nominal LHC
optics and performing the tests for differents transverse locations and current values,
with nominal crossing angle.
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Figure 4.14: Tune footprint for TCT with nominal Optics, nominal crossing angle
(9.5 σ) and different transverse position and current: 9.5 σ 177 A (top right), 11 σ
177 A (bottom left) , 11 σ 237 A (bottom right).

If with a wire at BBC location we can reach the 0.5 % of unstable
particles, for the TCT location our best result is 1.8 %: the maximum gain
in terms of stable particles degrades from a factor 6 to a factor 3!
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Figure 4.15: Test of stability for TCT with nominal Optics, nominal crossing
angle (9.5 σ) and different transverse position and current: 9.5 σ 177 A (top right),
11 σ 177 A (bottom left) , 11 σ 237 A (bottom right).

4.4.2 Test of different crossing angles

Figure 4.16 shows that when we reduce the crossing angle to 7.1 σ or 6.3 σ
the central tune comes dangerously close to the resonance line of order 2. If
the wire distance is the average long-range distance (7.1 σ, for the crossing
angle 7.1 σ and 6.3 σ, for the crossing angle 6.3 σ) with current 177 A or is
the scaled distance (8.25 σ, for the crossing angle 7.1 σ and 7.3 σ, for the
crossing angle 6.3 σ ) the central tune touches the resonance lines and the
destructive effects for the tune are evident.

This is visible also checking the stability: if we observe the tables 4.11
and 4.14 we see that we go from a maximum gain of 0.6 % to the worst case
where we do not have any gain respect the head-on long-range case.
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Figure 4.16: Tune footprint for TCT with nominal Optics and crossing angle of:
7.1 σ (row 1), 6.3 σ (row 2). The first column shows tests for a wire at the average
long-range distance, with current 177 A, the second column the wire at scaled
distance with current 177 A and the third column the wire at scaled distance and
current (237 A) .

Figure 4.17: Test of stability for TCT with nominal Optics and crossing angle of:
7.1 σ (row 1), 6.3 σ (row 2).
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Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 22.3 3.5

7.1 177 15.4 1.5
8.25 177 20.3 4.1
8.25 237 17.9 1.4

Table 4.11: Summary of the stability test for TCT, using the nominal LHC
optics and performing the tests for differents transverse positions and current values,
crossing angle 7.1 σ.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 20.5 4.1

6.3 177 15.0 3.1
7.3 177 14.2 4.2
7.3 237 19.0 3.2

Table 4.12: Summary of the stability test for TCT, using the nominal LHC
optics and performing the tests for differents transverse positions and current values,
crossing angle 7.1 σ.

4.4.3 Central tune moved back

As emphasized in the previous section the fact that the central tune is near,
or in the worst cases touches the resonance line causes very bad results. We
tried so, to simulate the case when the central tune is moved back to the
original value. In IP1 this means

∆Qx = − r0 Iw lw βx
2 π γ e c d2

∆Qy =
r0 Iw lw βy
2 π γ e c d2

(4.2)

where r0 is the classical proton radius (1.5 10−18 m), c is the velocity of light
(2.99 108 ms−1) , e is the proton charge (1.602 10−19 C ), γ is the relativistic
γ (for nominal LHC 7460.52), Iw is the wire current, lw is the wire length
(in our tests 1 m) βu is the β at the wire position (u = x, y) d is the wire
y-distance.

The values for IP 5 are obtained by reversing the signs and by setting d
= wire x-distance instead of wire y-distance.

Comparing the Figure 4.16 and 4.18, it is evident that we obtain an
improvement but if we compare these results with the one in Figure 4.12 it
is clear that this case does not reach the same quality of compensation as
with the correspondent BBC location options.

The analisys of stability leads us to the same conclusions.
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Figure 4.18: Tune footprint for TCT with nominal Optics and crossing angle of:
7.1 σ (row 1), 6.3 σ (row 2). Central tune moved back to the original value.

Figure 4.19: Test of stability for TCT with nominal Optics and crossing angle of:
7.1 σ (row 1), 6.3 σ (row 2). Central tune moved back to the original value.
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Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 22.3 3.5

7.1 177 12.6 4.3
8.25 177 17.7 3.6
8.25 237 18.2 2.7

Table 4.13: Summary of the stability test for TCT, using the nominal LHC
optics and performing the tests for differents transverse positions and current values,
crossing angle 7.1 σ. Central tune moved back to the original value.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 20.5 4.1

6.3 177 16.6 3.0
7.3 177 13.6 3.6
7.3 237 16.7 3.3

Table 4.14: Summary of the stability test for TCT, using the nominal LHC
optics and performing the tests for differents transverse positions and current values,
crossing angle 7.1 σ.Central tune moved back to the original value.
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4.5 TCT opt β wire position Nominal Optics

4.5.1 Tests with the Nominal Crossing Angle

If we use the nominal LHC optics TCT locations with βx ≈ 1580 m and βy ≈
610 m in both the IPs does not seem a good choice for the wire compensator,
but we can try to move one of two wire to obtain

βx(s1)

βy(s1)
≈ βy(s5)

βx(s5)

Where we have indicated with s1 the longitudinal wire position near to the
IP1 and with s5 the longitudinal wire position near to the IP1 and with We
find two possible solutions:

TCT opt β move the wire in IP1 150 m after the IP

TCT opt β 2 move the wire in IP5 150 m after the IP

Where ’opt’ stand for optimized.
For both the IPs after 150 m we have βx ≈ 560 m and βy ≈ 1570 m.

The TCT opt β location has the bigger β value in the crossing direction,
this situation leads to better results.

IP IP dist βx βy σx σy
[m] [m] [m] [10−3 m] [10−3 m]

IP1 150 559.4 1566.9 0.53 0.89
IP5 -147 1575.7 606.8 0.56 0.89

Table 4.15: Summary of the optics parameter at the TCT opt β location.

Table 4.15 shows the optics parameters for the TCT opt β, the physical
location for the wire is again symmetric, more in details we have in IP1 the
wire located in [0.0 ,-0.0084] m and in IP5 in [-0.0084, 0.0] m.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 5.7 2.8

9.5 177 2.4 3.7
11 177 3.4 5.6
11 237 2.6 3.7

Table 4.16: Summary of the stability test for TCT opt β , using the nominal
LHC optics and performing the tests for differents transverse positions and current
values, with nominal crossing angle.

The footprint results are similar to the one obtained for a wire at the
BBC longitudinal location and with a transverse position of 11 σ, also if we
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Figure 4.20: Tune footprint for TCT opt β with nominal Optics, nominal crossing
angle (9.5 σ) and different transverse position and current.

haven’t reached the best (that we have seen for the wire at BBC at 9.5 σ)
we can consider this solution good enough: the tune footprint touches only
a resonance line of order 9.

If we analyse the stability we notice that in the better case the percentage
of unstables particles is the half of the onefor head-on long-range simulation.
Changing the current or the wire position we can otherwise improve the
minimum radius at which we see the first instability obtaining a radius
double respect to the head-on long-range case.
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Figure 4.21: Test of stability for TCT opt β with nominal Optics, nominal crossing
angle (9.5 σ) and different transverse position and current.

4.5.2 Test of different crossing angles

Changing the crossing angle we can see that even in the worst case a wire
compensator in the TCT opt β location gives us a gain both for the tune
footprint point of view and for stability point of view.

In the stability analysis we notice that the number of unstable particles
is reduced at least to the half of the ones without the wire.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 0.6 3.2

12 177 0.2 4.6
14 177 0.3 4.4
14 237 0.5 4.0

Table 4.17: Summary of the stability test for TCT opt β, using the nominal
LHC optics and performing the tests for differents transverse positions and current
values, crossing angle 12 σ.



4.5. TCT OPT β WIRE POSITION NOMINAL OPTICS 69

Figure 4.22: Tune footprint for TCT opt β with nominal Optics and crossing
angle of: 12 σ (row 1), 8 σ (row 2), 7.1 σ (row 3), 6.3 σ (row 4).

In addition as emphasized in the Figure 4.24 we can obtain with a cross-
ing angle of 9.5 σ and a wire at TCT opt β location, a distribution almost
equal to the one for 12 σ without wire compensator, or for a crossing angle of
7.1 σ a distribution similar to the one at 8 σ without the wire compensator.
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Figure 4.23: Test of stability for TCT opt β with nominal Optics and crossing
angle of: 12 σ (row 1), 8 σ (row 2), 7.1 σ (row 3), 6.3 σ (row 4).
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Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 15.6 4.7

8 177 8.8 3.3
9.2 177 13.3 2.5
9.2 237 10.8 3.7

Table 4.18: Summary of the stability test for TCT opt β, using the nominal
LHC optics and performing the tests for differents transverse positions and current
values, crossing angle 8 σ.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 22.3 3.5

7.1 177 11.1 4.0
8.25 177 20.3 3.5
8.25 237 16.8 3.8

Table 4.19: Summary of the stability test for TCT opt β, using the nominal
LHC optics and performing the tests for differents transverse positions and current
values, crossing angle 7.1 σ.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 20.5 4.1

6.3 177 11.2 3.0
7.3 177 21.1 3.7
7.3 237 20.3 4.0

Table 4.20: Summary of the stability test for TCT opt β, using the nominal
LHC optics and performing the tests for differents transverse positions and current
values, crossing angle 6.3 σ.
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Figure 4.24: Test Stability BBC location, Nominal Optics: particles distribution
at 9.5 σ with a wire compensator at 9.5 σ 177 A is almost equals with a particles
distribution at 12 σ without compensator (first row) particles distribution at 7.1 σ
with a wire compensator at 7.1 σ 177 A is almost equals with a particles distribution
at 8 σ without compensator (second row).



4.6. TCT WIRE POSITION MODIFIED OPTICS 73

4.6 TCT wire position Modified Optics

4.6.1 Tests with the Nominal Crossing Angle

IP IP dist βx βy σx σy
[m] [m] [m] [10−3 m] [10−3 m]

IP1 -147 801.0 802.5 0.63 0.63
IP5 -147 798.0 794.1 0.63 0.63

Table 4.21: Summary of the optics parameter at the TCT location for Modified
Optics.

To improve the TCT solution and thinking that a different optics is in
analysis for LHC S. Fartoukh produce for us a new optics where the betatron
function has equal values in the two directions (x and y) and in the two IPs
(1 and 5). The optics values for this optics are shown in Table 4.21

Figure 4.25: Tune footprint for TCT with modified Optics, nominal crossing
angle (9.5 σ) and different transverse position and current.

With a wire located at 9.5 σ with a current of 177 A we have a footprint
almost equal to the one for the Head on (and for the one with the same
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Figure 4.26: Test of stability for TCT with modified Optics, nominal crossing
angle (9.5 σ) and different transverse position and current.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 5.3 3.2

9.5 177 6.2 4.0
11 177 2.1 2.8
11 237 2.6 4.5

Table 4.22: Summary of the stability test for TCT, using modified LHC optics
and performing the tests for differents transverse positions and current values, with
nominal crossing angle.

transverse position and current but at BBC location and with nominal LHC
optics).

If we examine instead the stability we see that the improvement is smaller
than the expected and for 9.5 σ with a current of 177 A, we have a situation
even worse of the one of head-on long-range with a big percentage of unstable
particles at a radius of 8 σ. However if we consider the wire at 11 σ there
appear to be some benefit.
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4.6.2 Test of different crossing angles

Figure 4.27: Tune footprint for TCT with modified Optics and crossing angle of:
11 σ (row 1), 10 σ (row 2), 9 σ (row 3).

Changing the crossing angle we can see that the gain is better for big
crossing angle (until 9 σ we reduce the number of unstable particles to half
the value that we have without the wire), for angle smaller than 8 σ we have
a smaller gain.

We see in figure 4.13 that the particles distribution at 9.5 σ with a wire
compensator located at 11 σ with a current of 177 A is almost equals with a
particles distribution at 11 σ without the compensator, particles distribution
at 8 σ with a wire compensator at 9.24 σ with a current of 237 A is almost
equals with a particles distribution at 9 σ without compensator.
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Figure 4.28: Tune footprint for TCT with modified Optics and crossing angle of:
8 σ (row 1), 7.1 σ (row 2), 6.3 σ (row 3).

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 1.2 5.1

11 177 0.3 4.5
12.7 177 0.5 4.7
12.7 237 0.8 4.3

Table 4.23: Summary of the stability test for TCT, using modified LHC optics
and performing the tests for differents transverse positions and current values, with
crossing angle 11 σ .
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Figure 4.29: Test of stability for TCT with modified Optics and crossing angle
of: 11 σ (row 1), 10 σ (row 2), 9 σ (row 3).

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 3.8 3.4

10 177 1.3 4.4
11.6 177 1.8 4.5
11.6 237 1.0 4.5

Table 4.24: Summary of the stability test for TCT, using modified LHC optics
and performing the tests for differents transverse positions and current values, with
crossing angle 10 σ .
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Figure 4.30: Test of stability for TCT with modified Optics and crossing angle
of: 8 σ (row 1), 7.1 σ (row 2), 6.3 σ (row 3).

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 11.7 4.1

9 177 7.5 5.5
10.3 177 5.2 4.6
10.3 237 4.4 4.8

Table 4.25: Summary of the stability test for TCT, using modified LHC optics
and performing the tests for differents transverse positions and current values, with
crossing angle 9 σ .
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Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 22 4.2

8 177 17.4 2.6
9.2 177 16.1 4.5
9.2 237 14.2 3.1

Table 4.26: Summary of the stability test for TCT, using modified LHC optics
and performing the tests for differents transverse positions and current values, with
crossing angle 8 σ .

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 28.0 3.8

7.1 177 16.0 4.3
8.25 177 21.0 4.3
8.25 237 18.4 4.3

Table 4.27: Summary of the stability test for TCT, using modified LHC optics
and performing the tests for differents transverse positions and current values, with
crossing angle 7.1 σ .

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 24.1 3.3

6.3 177 14.2 3.3
8.25 177 17.0 3.6
8.25 237 14.2 3.6

Table 4.28: Summary of the stability test for TCT, using modified LHC optics
and performing the tests for differents transverse positions and current values, with
crossing angle 6.3 σ .
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Figure 4.31: Test Stability TCT location, modified Optics: particles distribution
at 9.5 σ with a wire compensator at 11 σ 177 A is almost equals with a particles
distribution at 11 σ without compensator (first row), particles distribution at 9 σ
with a wire compensator at 10.3 σ 237 A is almost equals with a particles distribu-
tion at 9.5 σ without compensator (second row), particles distribution at 8 σ with
a wire compensator at 9.24 σ 237 A is almost equals with a particles distribution
at 9 σ without compensator (third row).
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Additional Simulation
Results

5.1 Q5 wire position Nominal Optics

IP IP dist βx βy σx σy
[m] [m] [m] [10−3 m] [10−3 m]

IP1 199 105.9 503.0 0.23 0.50
IP5 199 105.9 503.0 0.23 0.50

Table 5.1: Summary of the optics parameter at the Q5 location for nominal
Optics.

The two proposed alternative for the wire compensator were the TCT
location (150 m before the IPs) and the Q5 location (199 m after the IPs).

As shown in the Table 5.1 in the Q5 location we have again an asymmetry
of βs with the same kind of asymmetry in IP1 and IP5 (in this case βx lower
than βy). In addition in the Q5 location the β are really smaller with respect
to the value in BBC location (for nominal optics β ≈ 1700 m) or in the TCT
one (for nominal optics βx ≈ 1600 m and βx ≈ 600 m), not surprisingly, this
location does not give us good results.

For the stability point of view in some cases the results are even worse
than the case without wire.

As we did for some of the TCT tests we tried to improve the results
by moving back the central tune using the formula (4.2), but, in this case,
without encouraging results.
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Figure 5.1: Tune footprint for Q5 position with nominal Optics. Line 2 reports
the value if we move back the central tune.

Figure 5.2: Test of stability for Q5 position with nominal Optics. Line 2 reports
the value if we move back the central stab.
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Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 5.7 2.8

9.5 177 14.6 2.4
11 177 6.5 5.8
11 237 14.0 2.5

Table 5.2: Summary of the stability test for Q5 , using nominal LHC optics and
making the tests for different transverse positions and current values, with nominal
crossing angle.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 5.7 2.8

9.5 177 13.6 5.5
11 177 2.2 5.5
11 237 9.7 3.1

Table 5.3: Summary of the stability test for Q5 , using nominal LHC optics and
making the tests for different transverse positions and current values, with nominal
crossing angle. Central Tune Moved Back
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5.2 TCT opt β 2 wire position Nominal Optics

IP IP dist βx βy σx σy
[m] [m] [m] [10−3 m] [10−3 m]

IP1 -147 1575.2 614.9 0.89 0.56
IP5 150 563.2 1567.6 0.53 0.88

Table 5.4: Summary of the optics parameter at the TCT opt β 2 location for
nominal Optics.

We can change the TCT configuration moving the wire in IP5 instead
of the one in IP1. We have obtained a mirrored situation, but in this case
the β is smaller in the crossing angle direction. As expected this test is not
a good solution.

Figure 5.3: Tune footprint for TCT opt β 2 position with nominal Optics.

Figure 5.4: Test of stability for TCT opt β 2 position with nominal Optics.
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Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 5.7 2.8

9.5 177 9.6 3.7
11 177 1.3 5.3
11 237 3.5 4.7

Table 5.5: Summary of the stability test for TCT opt β 2 , using nominal LHC
optics and making the tests for different transverse positions and current values,
with nominal crossing angle.

5.3 BBC wire position Modified Optics

IP IP dist βx βy σx σy
[m] [m] [m] [10−3 m] [10−3 m]

IP1 105 1914.9 1142.1 0.98 0.75
IP5 105 1915.9 1142.4 0.98 0.75

Table 5.6: Summary of the optics parameter at the BBC location for modified
Optics.

It could be interesting to check the effect of the wire compensator in the
nominal location if we use the modified optics. As shown in the Table 5.6
in this case we have, as in the TCT location with nominal optics, the βx
greater than the βy in both planea, but with a smaller difference and with
a large value of β.

This configuration is not the best that we have studied, but gives results
good enough for a possible use.

Figure 5.5: Tune footprint for BBC position with modified Optics.
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Figure 5.6: Test of stability for BBC position with modified Optics.

Transverse position Current Unstables Particles Minimum Radius
[σ] A [%] [σ]

HoLr 5.3 2.8

9.5 177 1.5 6.0
11 177 1.8 5.6
11 237 0.9 4.6

Table 5.7: Summary of the stability test for TCT, using modified LHC optics and
making the tests for different transverse positions and current values, with nominal
crossing angle.

5.4 Wire shape test

Until now we have always considered a pencil like wire, but this should not
be the real situation, it has been requested to study the case of a square
wire with 1 mm side.

The simulation program bbtrack does not allow us to set the wire shape,
so we approximate the square wire with 4 pencil like wires positioned at the
corner of square. For example in IP1 we replace the wire in [0.0 , -8.9] mm
with the four wires [-0.05 , -8.9] mm, [0.05 , -8.9] mm, [-0.05 , -9.9] mm and
[0.05 , -9.9] mm,

Percentage Unstables [%]

Test 177 A 9.5 σ 177 A 11 σ 7 237 A 11 σ

Pencil like Wire 0.2 0.2 0.3
Square Wire 0.1 1.1 0.9

Table 5.8: Test of stabilityility comparison between pencil like wire and square
wire for number of unstable particles.

The tests demonstrate that the wire shape does not much affect our
results. In some cases from the stability point of view the results seems even
better than the one obtained with a pencil like wire.
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Figure 5.7: Tune footprint comparison between pencil like wire (first row) and
square wire (second row).

Figure 5.8: Test of stabilityility comparison between pencil like wire (first row)
and square wire (second row).
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Conclusions

The design of the Large Hadron Collider (LHC) at CERN involved many
technical challenges.

To reach high energy and high luminosity it is important to compensate
the negative effects due to the electromagnetic interactions between the two
beam before and after the main collision points, the so-called long-range
beam-beam effects.

This possible limitation to the collider performance can be partially mit-
igated with a DC wire compensator.

The best compensation is obtained when the β functions have the same
value in the transverse planes, and when the betatron phase advance between
the LR collision points and the wire is as small as possible.

For the nominal LHC optics we find that the original “BBC” location
(105 m after the Ips 1 and 5) best satisfies these requirements, but this
location would not be available for the 2014 shutdown.

In this thesis we have, therefore, examined several other possible config-
urations of LHC long-range wire compensation for an initial demonstration
experiment with different wire locations, both for the nominal LHC optics
and for a modified optics.

We have simulated the efficiency of the wire compensation for the various
configurations using the weak-strong simulation program BBTrack, written
in Fortran90 [6].

Several scripts were developed during this year for post-processing anal-
ysis, but also to simplify and speed up the input preparation and tracking.

In particular, for the post-processing a new method automatically detect
a nonzero Lyapunov coefficient was implemented, and used in the stability
analysis.

Comparison of the betatron tune footprints suggests that the best com-
pensation is obtained when the wire has a distance from the beam equal
to the average long range distance, which for nominal crossing angle means
9.5σ.
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On the other hand if we consider the Lyapunov stability it seems better
to move the wire at 11σ. This distance would also facilitate the technical
realization of the compensator.

Our simulations show that the wire can give a good compensation also
for reduced crossing angles.

Suitably placed LHC wire compensators should allow for a reduction of
the crossing angle by the equivalent of at least 1-2 σ, while maintaining the
same stable region in phase space, or, alternatively, for a substantial increase
in beam current (e.g. by a factor of 2) at constant crossing angle.

Compensation effects are also important for the proposed location inside
a tertiary collimator (TCT) and the modified optics, which could be studied
experimentally in the LHC from about 2015 onward, as well as for a modified
TCT location (obtained by moving the wire in Ip1 from before the IP to 150
m after the Ip, which implies adding a new TCT) with the nominal LHC
optics.

The nominal TCT location, the Q5 location and another modified TCT
locations (where we move the wire in Ip5 instead of the one in Ip1 to a loca-
tion 150 m after the Ip) are not suitable solutions, since in the simulations
they either do not yield any improvement or give results even worse than
obtained without any compensator (the Q5 case for example).

Finally, our simulations have also demonstrated that the exact shape of
the wire (round or square) has little effect on the compensation quality.



7

Acknowledgments

I want to express my sincere gratitude to my supervisors Dr. F. Zimmer-
mann and Prof. S. Caracciolo for their precious presence, the confidence in
my work and for the contagious enthusiasm.

This work would not have been possible without the support of many
experts who share with me their knowledge. Among others I would like
to aknowledge Dr. B. Holzer, Dr. E. Metral that explained clearly and
patiently the basic of the accelerator physics. The constant help of Dr. E.
Laface in various fields from physics to programming was incommensurable.
I am grateful to Dr.G. Sterbini that helps me to understand the beam beam
phenomena and the wire compensation and to Dr. R. de Maria who teaches
me the way to use and love the python scripting language. Thanks to Dr.
E. Benedetto, Dr. C. Zannini, Dr. G. Iadarola, Dr. M. Martino, P. Grillo,
Dr. G. Lacagnina, Dr. A. Patella for the fruitful discussions in a lot of the
physics, mathematics and programming fields.

I want to thanks Dr. U. Dorda for the introduction to the BBTrack
program and Dr. F. Schmidt for helping me to understand the Lyapunov
coefficient understanding.

I would like to express my gratefulness to my family that understood my
decision to leave a secure job in the bank to try to follow my dreams.

91



92 7. ACKNOWLEDGMENTS



Bibliography

[1] M. Bassetti and G. A. Erskine. Closed expression for the electrical field
of a two-dimensional gaussian charge. oai:cds.cern.ch:122227. Technical
Report CERN-ISR-TH-80-06. ISR-TH-80-06, CERN, Geneva, 1980.

[2] P. J. Bryant. A brief history and review of accelerators. 1993.

[3] CERN. Lhc Beam-Beam compensation using wires and electron lenses,
2007.

[4] A. Chao and M. Wang. Lecture notes on accelerator physics. In Accel-
erator Physics, USPAS 2007, 2007.

[5] U. Dorda. Bbtrack - a weak-strong long-range beam beam interac-
tion simulation code, 2008. http://ab-abp-bbtrack.web.cern.ch/ab-abp-
bbtrack.

[6] U. Dorda. Compensation of long-range beam-beam interaction at the
CERN LHC. PhD thesis, CERN, 2008.

[7] U. Dorda and Frank Zimmermann. Simulation of lhc long-range beam-
beam compensation with dc and pulsed wires. Technical Report CARE-
Conf-06-026-HHH. CARE-Conf-2006-026-HHH, CARE, 2006.

[8] U. Dorda and Frank Zimmermann. Simulations of long-range
beam-beam interaction and wire compensation with bbtrack.
oai:cds.cern.ch:971862. (CERN-AB-2006-043):4 p, Jul 2006. revised
version submitted on 2006-08-21 16:53:18.

[9] U. Dorda and Frank Zimmermann. Long-range beam-beam compensa-
tion with wires. page 3 p, 2007.

[10] S Fartoukh. An achromatic telescopic squeezing (ats) scheme for the
lhc upgrade. oai:cds.cern.ch:1382077. (CERN-ATS-2011-161):3 p, Sep
2011.

[11] C. Fischer and J.-P. Koutchouk. Reservations for beam-beam compen-
sators in ir1 and ir5. (LHC Engineering Change Order), 2004.

93



94 BIBLIOGRAPHY

[12] G. Guignard. A general treatment of resonances in accelerators. page
72 p, Geneva, 1978. CERN, CERN. CERN, Geneva, 1977 - 1978.

[13] W. Herr. Features and implications of different lhc crossing schemes.
oai:cds.cern.ch:604005. Technical Report LHC-Project-Report-628.
CERN-LHC-Project-Report-628, CERN, Geneva, Feb 2003.

[14] W. Herr. Beam-beam interactions. 2006.

[15] W. Herr. Lhc beam-beam. lhc beam-beam effects- review and outlook.
2010.

[16] W. Herr and B. Muratori. Concept of luminosity. 2006.

[17] W. Herr and F. Schmidt. A mad-x primer. CERN-AB-2004-027-ABP,
2004.

[18] B. J. Holzer. Lattice design in high-energy particle accelerators. 2006.

[19] E. Keil. Beam-beam interactions in p-p storage rings. 1977.

[20] S. Kheifetes. Three dimensional potential for gaussian bunch. Desy
Petra 119, 1976.

[21] J.P. Koutchouk. Correction of the long-range beam-beam effect in lhc
using electro-magnetic lenses. oai:cds.cern.ch:513685. (CERN-SL-2001-
048-BI):4 p, Jul 2001.

[22] S.Y. Lee. Accelerator Physics (Second Edition). World Scientific Pub-
lishing, 2004.

[23] H. Mais and C. Mari. Introduction to beam-beam effects. 1994.

[24] B. W. St. L. Montague. Basic hamiltonian mechanics. 1995.

[25] D. Neuffer and S. Peggs. Beam-beam tune shifts and spreads in the ssc
- head on, long range, and pacman conditions. (SSC-63), 1966.

[26] Y. Papaphilippou and Frank Zimmermann. Weak-strong beam-beam
simulations for the large hadron collider. Phys. Rev. Spec. Top. Accel.
Beams, 2(10):104001, 1999.

[27] Y. Papaphilippou and Frank Zimmermann. Diffusive aperture due
to long-range beam-beam interaction. oai:cds.cern.ch:462632. (LHC-
Project-Report-402. CERN-LHC-Project-Report-402):4 p, Aug 2000.

[28] T. L. Rijoff, R. Steinhagen, and Frank Zimmermann. Simulation studies
for lhc long-range beam-beam compensators. oai:cds.cern.ch:1450938.
(CERN-ATS-2012-074):3 p, May 2012.



BIBLIOGRAPHY 95

[29] T. L. Rijoff and Frank Zimmermann. Simulations on beam beam com-
pensation with wire. Presented at CERN ICE Meeting, November 2011,
2011.
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