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Mi è parso che in realtà il calcolo significhi molto poco e comunque non abbia affatto tutta l’importanza
che gli attribuiscono molti giocatori. Certi se ne stanno seduti davanti a pezzi di carta rigata, segnano

tutti i colpi, li contano, ne deducono le probabilità, fanno i loro calcoli e alla fine puntano e perdono
proprio come noi, semplici mortali che giochiamo senza calcolare niente.

F. Dostoevskij, Il giocatore
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Introduction

This Thesis aims to study study Spin Glass systems in order to characterize the
phase transitions they exhibits with a topological approach.

Benchmark models of Spin Glasses are the Sherrington-Kirkpatrick model [1, 2]
and the Hopfield model [3], the last one being originally introduced in the context
of associative neural networks.

The Hopfield model is a spin model originally proposed in 1982 by John Hop-
field as a simple toy model describing the behavior of memory in the human brain.
Each boolean spin interacts with all the others through coupling constants defined
starting from a set of p configurations, quenched randomly chosen variables, called
memories. In the original paper, Hopfield defined an asynchronous dynamics where
one randomly chosen neuron changes his state at each time step according to the
variation of energy. In the thermodynamic limit, varying α, the ratio between the
number of memories and the total number of spins, the model exhibits a peculiar
behavior with two phase transitions corresponding to critical values αcrit1 and αcrit2.
For α < αcrit1 the system shows a retrieving phase where memories are minima of
the free energy and attractors of the dynamics. For α > αcrit2, there is a Spin
Glass phase: there is a total collapse of the capabilities of the memory. The only
ground state is the Spin Glass state. Replica symmetry is broken and as a conse-
quence each state has the fine structure of a full ultrametric tree. In addition for
αcrit1 ≤ α ≤ αcrit2 the ground state is the Spin Glass state but the retrieval is still
efficient [4].

In the last decade topological aspects of real glasses have been elucidated through
numerical simulations for small systems. In particular the Inherent Structure Ap-
proach [5] allows to model complex systems as networks: it combines the techniques
of networks analysis to the usual techniques of complex systems theory in order to
outline the global structure of potential energy landscapes. This method has been
exhaustively used to investigate topological properties of classical particles inter-
acting through Lennard-Jones potential [6]. For such kind of continuous systems,
the potential energy landscape is a multi-dimensional configuration space where the
potential energy is a function of the positions of all the atoms. The landscape of a
system with many atoms will have a complex topography with higher-dimensional
minima, saddles and barriers. According to this approach the landscape can be par-
titioned into basins of attraction surrounding each minima. Local minima can thus
be organized in a graph (where they are represented as the vertices) and connected
whenever a first order saddle-point exists connecting any couple of them. Inter-
estingly this graph has the property to be small-world and with power-law degree
distribution. The emergence of this complex network is probably an hallmark of the

vii



viii Introduction

complex nature of the glassy phase.
In discrete models of Spin Glass, such as Sherrington-Kirkpatrick or Hopfield,

this topological approach is non-trivial to be generalized, lacking a well-defined no-
tion of metric. In this thesis we try to overcome this problem in order to characterize
phase transition through topological properties. The main idea is to define a syn-
chronous dynamics on the discrete phase space of spin configurations. This space
can be organized as a network where each configuration is a vertex directly con-
nected to another one according to a deterministic dynamics. This step gives rise
to a new class of Random Boolean networks, generalizing the ones introduced by
Kauffman in the context of gene regulation and evolution [7].

This approach allows to define univocally a topology on the phase space which
can be characterized through topological properties arising from such networks like
the number of incoming connections of each node, the indegree or the Google Rank,
a parameter describing the weight of each node compared to the entire network.

The main results are related to the Hopfield model with a zero temperature
synchronous dynamics. This dynamics, according to the method inspired from the
Inherent Structure Approach, generates the class of Random Boolean Hopfield Net-
works. For this kind of networks the distribution of the indegree shows clearly
different properties varying the number of the initial memories of the system. In the
phase characterized by a few number of memories the distribution exhibits a coex-
istence of a compact distribution and a peak. This kind of outlier is called Dragon
King [8]: according to Sornette the presence of Dragon Kings in complex systems
reveals the existence of mechanisms of self-organization that otherwise is not pos-
sible to observe from the distribution of the other events and could be associated
to phase transitions. In this particular Random Boolean Network, the peak in the
distribution of indegree is a consequence of a condensation of configurations which
converge to a limited number of configurations, which results to be memories. In
this particular case, Dragon King is present only at this stage and is reabsorbed by
increasing the memories until it disappears completely in the full Spin Glass phase
where the indegree distribution exhibits only a power law.

The number of configurations grows as 2N and an exact enumeration of states
is not realistic. Then it is necessary to introduce a new topological observable: the
Google Rank.

The Google Rank has been developed in order to quantify numerically the relative
importance of an element of network within the network itself in the context of web
searching. A surfer is placed on a randomly chosen vertex of the network. Then
its position is changed according to the following dynamics: for d times the surfer
jumps to the neighboring vertex according to the synchronous spin dynamics. Then
the surfer gets bored and starts again from a randomly selected vertex.

Even the Google Rank suggests the presence of a collective behavior characterized
by the phase transition described so far. Again, in the ordered phase, the rank
plot exhibits a distinct plateau consisting of configurations corresponding to the
memories, and a compact distribution. This plateau is directly linked to the Dragon
King in the distribution of indegree. Instead it shows a power law in the spin-glass
phase.

It is important to underline how these topological considerations are sufficient
to characterize qualitatively the phase transition in the contest of Random Boolean
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Networks as a concrete alternative to the standard approach using overlap between
configurations and local magnetization as order parameters. We will present strong
evidences of the presence of a phase transition in the context of networks theory:
Random Boolean Hopfield Networks exhibit a transition from compact networks in
the regime of few memories to scale free networks in the Spin Glass phase. This
transition will be characterized in terms of the distributions of connectivities: the
properties of such systems change substantially varying α, the rate between the
number of memories p and of spins N . The collective behavior originating from
Hopfield model emerges clearly also in this approach of network analysis: transitions
from compact distributions to power law distributions which are present both for
indegrees and for Google Ranks are fundamental mainstay of this work. Dragon
Kings in indegree distributions and plateaus obtained with Google Rank complete
the description of the few memories phase: networks condenses to a regime where
the most of configurations converges to a limited number of configurations, the
memories. Memories are definitively the attractors of the dynamics and coincide
to the absolute minima of the Hamiltonian. The resulting scale-free topology of
the Spin Glass phase in Boolean Hopfield Networks suggests a reflection on global
optimization, the task of locating the global minimum. In the Spin Glass phase
attractors are also the minima of the Hopfield Hamiltonian and searching the global
minimum is a NP-hard problem. As we will see, scale-free networks suggest that the
correlation between the minimum of the Hamiltonian and the highest indegree as a
possible inspiration for approach NP-hard problems.

In particular the thesis begins with an introduction to complex systems with
a focus on power law distributions and on the concept of Dragon King. Then an
exhaustive review of the properties of Random Boolean networks is reported: the
main analytical results are presented and numerical results are replicated. The
next chapter is dedicated to the general theory of Spin Glass, in particular of the
Sherrington Kirkpatrick model with the replica approach by Parisi. Moreover the
Hopfield model is widely discussed: the statistical mechanics properties, investigated
by Amit, Gutfreund and Sompolinsky in the context of Spin Glass theory with the
replicas approach, are deeply analyzed. The last chapter of the thesis is devoted to
the topological characterization of Spin Glass transition in the Hopfield model. The
distribution of indegree is obtained through an exact enumeration of states only for
small systems (N ≤ 30) for computational reasons while the Google Rank has been
performed for bigger systems (up to N = 500).





Chapter 1

Complex Systems

1.1 What is a complex system?

Nowadays physics is able to describe a large number of phenomena with precision
and simplicity. In many cases properties of individual elements can be exhaustively
described but these results have a negligible role in predicting the behavior of large
scale interconnected systems. In general the collective behavior of the interacting
parts of a system cannot be inferred as a simple combination of the properties of the
parts but arise as an emergent property of the system. This is the case of complex
systems [9, 10].

The founding principle of the complex systems theory is well summarized by a
famous quote from Aristotle taken from his Metaphysica: ”the whole is more than
the sum of its parts”.

There is a large collection of real complex systems which cross the physical, bio-
logical and social worlds: interacting atoms or molecules, cars in traffic, interacting
species in an ecosystem, the World Wide Web, interacting genes or cells, the neurons
that make up the brain as we will see later in details.

In these examples and more in general in these disciplines, the complex systems
approach brings to remarkable progresses and showed the limits of the usual ap-
proach: decomposing a system in parts in order to understand the behavior of the
entire system in connection to the behavior of each component is no more enough to
have a complete view [11]. In other words, the study of the basic principles cannot
replace a detailed description of particular complex systems. However, universal
principles and symmetries still simplify the study of the specific case.

One of the emergent properties of complex systems is that rare events occur with
a finite non-negligible probability. Before deepening this last statement it is useful
a short remark about power law distributions.

1.2 Power Law distributions: a description for scale-free
systems

Many empirical observables converge to an expectation value. Ordinarily they
have distributions which implies a negligible probability to be far from the typical
value.

1



2 Complex Systems

In nature, there are some kind of phenomena described by distributions which
exhibits a totally different behavior which results difficult to be characterized starting
from scientific observations.

This last property can be assumed as a sign of a self-organizing mechanisms at
the origin of a hierarchy of scales in complex systems [11].

Among these distributions, power law deserves a deepening for its uncommon
mathematical properties and the surprising physical phenomena [12]. This kind of
distributions cannot be satisfactorily described only by an expectation value because
their values typically vary by several order of magnitude in their own range.

Mathematically, an observable x which obeys a power law, has a probability
distribution like

p (x) ∝ x−α,

where α is a the exponent or scaling parameter. This parameter typically varies in
the range 2 < α < 3.

Few empirical phenomena exhibit power law for all values of x. More often the
power law distribution is valid only for values greater than some minimum xmin. In
this the case only the tail of the distribution is a power law.

Assuming now x as a continuous variable, then it is possible to describe a con-
tinuous power law through a probability density:

p (x) dx = Pr (x ≤ X < x+ dx) = Cx−αdx,

where X is the observed value and C the normalization constant. The last equation
diverges as x → 0 and clearly there must be a bound xmin. Then, assuming α >
1, it is possible to evaluate the normalization constant after having integrate the
distribution:

p (x) =
α− 1

xmin

(
x

xmin

)−α
.

In the discrete case, the probability distribution is proportional to the generalized
or Hurwitz zeta function [12]:

ζ (α, xmin) =
∞∑
n=0

(n+ xmin)−α (1.1)

and the power law results:

P (x) =
ζ (α, x)

ζ (α, xmin)
(1.2)

Formulas of continuous distributions are usually simpler than those for the discrete
distributions and exhibit a common behavior with discrete power law. So the con-
tinuous approximations for the discrete power law will be used in the following
section.

Cumulative distributions with a power law form are sometimes said to follow
Zipf’s law or a Pareto distribution after two early researchers who championed
their study. Since power law Cumulative distributions imply a power law form
for the probability distributions, Zipf’s law and Pareto distribution are effectively
synonymous with power law distribution. Zipf’s distribution and Pareto distribution
differ from one another in the way the cumulative distribution is plotted - Zipf made
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Figure 1.1: Example of a power law distribution: this example shows a set
of 1 million random real number generated according to a power law probability
distribution p (x) = Cx−α with scaling parameter α = 2.5. (a) Histogram obtained
with the random data. (b) The same histogram on logarithmic scales. It is important
to underline how the noise results to be relevant in the tail of the distribution. (c)
Histogram of frequencies with a logarithmic binning. (d) A Zipf, a cumulative
histogram of the same data. This cumulative distribution is again a power law with
exponent α− 1 = 1.5. This image is reproduced from [15].

his plots with x on the horizontal axis and P (x) on the vertical one. Pareto did it
the other way around.

1.2.1 Maximum likelihood estimator

Now let us consider the correct way to fit a power law distribution. Taking the
logarithm of a power law distribution, lnp (x) = αlnx+ constant, the result will be
a straight line in a logarithmic plot.

The typical approach to this problem is to construct a histogram of the data
and to estimate the scaling parameter using the least squares linear regression on
the linear form of the logarithmic histogram.

Unfortunately this kind of procedure is subject to systematic large errors: the
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Figure 1.2: Power law and exponential distributions: this example shows a
comparison between the different behavior of cumulative distributions in case of
power law and exponential distributions for different values of parameters. The
power law distributions are plotted with continuous lines while the exponential dis-
tributions with dashed lines. The normalization is such that x ≥ xmin = 1.

assumption of linear regression implies that the dependent variable is affected by an
independent, gaussian noise at each value of the independent variable. In the case of
the power law, fitting the logarithm of a histogram, the noise is still independent but
no more gaussian. In order to have gaussian fluctuations for lnp (x), it is necessary
that p (x) has log-normal fluctuations which violate the central limit theorem.

In conclusion linear regression formulas for the error are not applicable in this
case.

An effective method to estimate the scaling parameter is then the maximum like-
lihood estimator. In order to estimate the most likely value of the scaling parameter
α for the given data, let us consider again the continuous power law distribution,

p (x) =
α− 1

xmin

(
x

xmin

)−α
,

and a set of n observations xi ≥ xmin. The probability that the data were described
by the model is proportional to

p (x|α) =
n∏
i=1

α− 1

xmin

(
x

xmin

)−α
.
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This probability is called likelihood of the given data. The data are most likely to
have been generated by the model with scaling parameter α which maximize this
function. Then we consider the logarithm of the likelihood L which presents its
maximum in the same value:

L = lnp (x|α)

= ln

n∏
i=1

α− 1

xmin

(
x

xmin

)−α
=

n∑
i=1

[
ln (α− 1)− lnxmin − αln

xi
xmin

]

= nln (α− 1)− nlnxmin − α
n∑
i=1

ln
xi
xmin

.

Let us set ∂L
∂α = 0 in order to maximize the likelihood and solve for α. The estimate

scaling parameter results:

α̂ = 1 + n

[
n∑
i=1

ln
xi
xmin

]−1
.

If the data are independent, identically distributed from a distribution with param-
eter α, then as n→∞, α̂ = α.

In order to evaluate the expected error let us rewrite the probability as

p (x|α) =

(
α− 1

xmin

)n
e−bα,

where b =
∑n

i=1 ln
(

x
xmin

)
. Assuming again that α > 1 in order to have a normaliz-

able distribution, the mean and the mean square of α are given by:

〈α〉 =

∫∞
1 e−bα (α− 1)n αdα∫∞
1 e−bα (α− 1)n dα

=
e−bb−2−n (n+ 1 + b) Γ (n+ 1)

e−bb−1−nΓ (n+ 1)

=
n+ 1 + b

b

and

〈
α2
〉

=

∫∞
1 e−bα (α− 1)n α2dα∫∞
1 e−bα (α− 1)n dα

=
e−bb−3−n

(
n2 + 3n+ b2 + 2b+ 2nb+ 2

)
Γ (n+ 1)

e−bb−1−nΓ (n+ 1)

=
n2 + 3n+ b2 + 2b+ 2nb+ 2

b2
.
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Then the variance of α results:

σ2 =
〈
α2
〉
− 〈α〉2

=
n2 + 3n+ b2 + 2b+ 2nb+ 2

b2
− (n+ 1 + b)2

b2

=
n+ 1

b2
.

In conclusion, the error on α is

σ =

√
n+ 1

b
=
√
n+ 1

[∑
i

ln
xi
xmin

]−1
=

√
n+ 1

n
(α− 1)

An analogous result can be obtained for discrete variables.

1.2.2 Scale-free invariance in power law distributions

A power law distribution is sometimes called a scale-free distribution because is
the only distribution which exhibits the property of scale invariance. This kind of
probability distribution p (x) has to satisfy the property that

p (bx) = g (b) p (x) , (1.3)

for any b. Changing the scale or the units of x by a constant factor b, the shape of
the distribution has to remain unchanged, except for a multiplicative factor.

Therefore this property can be analyzed more clearly studying the logarithm of
the likelihood L:

lnp (x) = ln

[
α− 1

xmin

(
x

xmin

)−α]
= ln

[
(α− 1)xα−1min

]
− αlnx

= lnC − αlnx.

This result shows that a rescaling x → bx only shifts the power law up or down
on a logarithmic scale. In practical terms, this means that the same principles or
processes are at work no matter what the scale of analysis.

Moreover it is possible to demonstrate that a power law distribution is the only
distribution which exhibits the scale free property. Let us consider again the equation
(1.3), setting x = 1 gives p (b) = g (b) p (1). Equation (1.3) can be written as

p (bx) =
p (b)

p (1)
p (x) .

The differentiation respect to b, setting p′ the derivate of p respect to its argument,
gives:

xp′ (bx) =
p′ (b)

p (1)
p (x) .

Now setting b = 1 gives:

x
dp

dx
=
p′ (1)

p (1)
p (x) .
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This first-order differential equation has the solution

lnp (x) =
p (1)

p′ (1)
lnx+ const.

The exponential of the solution gives

p (x) = p (1)x−α

where α = − p(1)
p′(1) . In conclusion this result asserts that the power law distribution

is only function which satisfy the scale free property.

1.3 Power Laws in complex systems: Dragon Kings and
Black Swans

There are several complex systems which are statistically characterized by power-
law distributions. The population of cities, the intensities of earthquakes, the flux
of meteorites, the area of fire or wildfire [13], relaxing times in spin glasses [14] or
scale free networks are all characterized by a power law distribution.

As seen before, a power law distribution imply that extreme events are occurring
with a finite non-negligible probability. From the opposite point of view, these
extreme events has not more considered as particular cases: belonging to the same
statistical distribution suggest that the physical process which generates them is the
same of other events. In other words, if a given event with evident properties, like a
great earthquake, belongs to a set of events described by a power law distribution,
there are no possibilities to predict such a particular event because it shares all
characteristic of other events. This concept is the foundation of the ”Black Swan
Theory” [16], which describe high impact rare events as unpredictable.

Now let us consider, as an example, the particular case of the population size of
French cities [17] (see figure 1.3).

In general, the distribution of city sizes exhibits a power law distribution and
France, is not an exception. Moreover French cities result to be a very peculiar case
because the capital, Paris, is completely out of range. The size is several order larger
than expected from the distribution of the rest of the population of cities. Sornette
called this characteristic Dragon King [8]: it is been defined as the outlier which
coexists with a power law distribution.

The rank-ordering plot of the sizes S of French cities (raised to the exponent
c=0.18), ordered by descending sizes is plotted in figure 1.3 as a function of the city
rank, in a logarithm scale.

The continuous black line is the exponential distribution exp [− (S/S0)
c]. Expo-

nential distributions, in the limit when c is much smaller than 1, degenerate into
power law distributions with finite scaling exponent.

In this case, the exponent c = 0.18 is small and can be shown that the resulting
power law has a scaling exponent α ≈ 2 (see again [8] for details).

According to Sornette paper, Paris is not only a spurious outlier which could
be ignored. Paris has historically covered a important role as organizational center
for French governments. This crucial position has implied its dragon-king status
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Figure 1.3: Rank-ordering plot of the population size of French cities as
a function of their rank: the sizes are ordered in decreasing values. For the
ordinate, the city size is raised to the power c = 0.18 and the abscissa represents
the logarithm of the rank. The continuous black line plotted is the exponential
distribution exp [− (S/S0)

c]. The arrow shows the data point for Paris which result
to have a size larger than expected. This kind of outlier is called Dragon King : it
coexists with power laws in the distributions of event sizes. Dragon-kings reveal the
existence of mechanisms of self-organization that otherwise is not possible to observe
from the distribution of the other events. This image is reproduced from [17].

observed in the statistical distribution of French city sizes. Again London exhibits
a similar dragon-king role with respect to the distribution of British city sizes. In
conclusion Sornette presents a large number of examples which suggest that the
dragon-king status emerges in general from the existence of positive feedbacks, that
amplify the role of certain events.

Dragon kings belong to a statistical set of events which have different probability
distribution from the nucleus of other events which exhibits the power law distri-
bution. This observation is a consequence of the privileged role covered by dragon
kings: their key role is due to a characteristic mechanisms of the analyzed system.
Consequently an extreme event cannot be more considered only as a particular event
which happens at a specific scale: now it is a dragon king, an outlier which emerges
between the other possible events only in its exact collective regime.

More in general, in statistical physics as in complex systems theory the properties
of different regimes and their transitions are matter of study. In fact, a large variety
of complex systems exhibits qualitative changes of regimes in their characteristics
and dynamics under the smooth variations of some order parameters or changing the
network topology. Sornette suggests that Dragon kings could cover an interesting
role in this context. The presence of a dragon king is strictly related to a collective
regime with specific properties. Since different collective organizations are in general
associated to completely different regimes, the possibility to relate the appearing of
dragon kings to a phase transition cannot be neglected. In particular, Sornette shows
as examples of phase transitions characterizable through the presence of dragon kings
the crashes of financial bubbles and the acoustic emission recorded as stress on tanks
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embarked on rockets [8].

In conclusion dragon-kings are evidences of the existence of mechanisms of self-
organization which otherwise is not possible to observe from the distribution of the
other events.

This observation involves that extreme events occur much more often than would
be predicted or expected from the observations of small, medium and even large
events. Thus, dragon kings allow to predict the presence of this kind of mechanisms.
Moreover it is possible to use this concept as a parameter characterizing different
regimes of a complex system and in order to diagnose its behavior under smooth
changes of some control variables.

1.4 Scale-free Networks: the Barabási-Albert model

In the context of complex systems there is a class of complex networks character-
ized by the existence of a high degree of self-organization. In particular we present
the Barabási-Albert model of scale-free networks [18]. This model is inspired from
the most important principles shared by real networks: the growth and the prefer-
ential attachment. Starting from a limited number of nodes, real networks usually
grow during their entire lifetime. In addition new nodes do not make edges com-
pletely random but following some rules. These observations are the basic elements
of the Barabási-Albert model. This king of networks are produced according to the
following algorithm: starting from a small number n0 of nodes, at every time step,
the network gains a new node with m edges (m ≤ n0) that connect the new nodes
with m different nodes already present in the system. These edges are not chosen
randomly: a connection between the new node and a node i depends on the degree
ki of the node i according to the following probability:

p (ki) =
ki∑
j kj

.

Consequently after t time steps, the resulting network will have n = n0+t nodes and
mt edges. Numerical simulations show that this kind of networks is scale invariant
and the probability distribution of the degree of given node i follows a power law
with scaling exponent γBA = 3. Moreover this last exponent is independent of m,
the only parameter of this model.

It is possible to characterize the scale invariance of the Barabási-Albert model
analytically with various approaches: the continuous theory by Barabási and Albert,
developed from the dynamics of the node degree, the master equation approach by
Dorogovtes, Mendes and Samukhin and the rate-equation approach by Krapivsky,
Redner and Leyvraz are methods which give satisfactory results [19].

In particular Albert and Barabási characterize numerically the average path
length of a scale-free network generated according to their model as a function of
the network size N . Barabási-Albert networks show an average path length smaller
than random graphs for any N: the heterogeneous scale-free topology results more
efficient in bringing the nodes close than an homogeneous topology such as that of
random graphs [19]. An analytical by Bollobás and Riordan [20] demonstrate that
this average path length increases approximately less than logarithmically with N,
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like l ∼ ln(N)/lnln(N). According to this result it is possible to affirm that scale-free
networks are also small-world networks in the sense that the average path length
grows less than logarithmic increasing N .



Chapter 2

Random Boolean Networks

2.1 Neural Networks

Human brains are made up of about 100 billion neurons. Each neuron is con-
nected to thousands neurons and communicates with electrochemical signals through
synapses. A neuron receives continuously signals from these connections: if the sum
of its inputs is greater than some threshold value, the neuron generates a voltage
and fires a signal. The human brain thus can be described as a biological neural
network: interconnected neurons constitute a network where electrical signals and
complicated patterns are transmitted.

Artificial Neural Networks are an statistical learning models that are inspired by
this kind of biological nervous systems, such as the brain.

The key element of these models is the information processing system: a large
number of highly interconnected processing elements, neurons, works together to
solve specific problems. These connections are weighed and can be tuned based on
experience, making neural networks adaptive to inputs and capable of learning.

In this context it is useful to introduce the model of Random Boolean Networks
which has been introduced in order to model certain properties of biological neural
networks like gene regulation in organisms.

2.2 Random Boolean Network model

Random Boolean Networks (RBNs) are models developed by Stuart Kauffman
in 1969 [7, 21] in order to describe gene regulation.

In living organisms, genes interact with each other via proteins, but since there
is a great variety of them, genetic regulation is not completely understood so far.
RBNs were originally proposed in order to overcome this kind of problem [22, 23]:
the genome thus could be described as a network of interacting genes where one gene
influences the functionality of the genes it is connected to in the network. Escherichia
Coli [24] and yeast [25, 26] are examples of biological systems whose behavior is well
described using Random Boolean Networks.

According to this model, the genome is a random dynamic network where each
gene is represented by a node and a biological relationship of activation or inhibition
between genes is indicated by an edge between two vertices.

11
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The main benefit of using Random Boolean Networks in biological systems is
the possibility to study the nature of self-organization and to analyze how a given
perturbation to a system can affect its global behavioral properties.

Mathematically a Random Boolean Network is a directed graph G = (V,E),
defined by a set V = {σ1, σ2, ..., σN} of N vertices or nodes together with a set
E = {(σi, σj)} of edges or links, which are ordered pairs of the vertices. Each element
σi admits one of the two possible boolean states, σi ∈ {0, 1} i = 1, .., N . The set
of variables which each element σi depends on in the dynamics are established by
the links between these nodes. The number of ingoing edges that a node receives is
called connectivity. In general self-connections are allowed.

A Random Boolean Network is fully specified by giving its topology and its
dynamical rules [27]. The topology of a graph is completely defined by choosing the
number N of its elements, the number of inputs Ki which each element σi receives
and specifying how the linkage and how these connectivities are assigned to each
element. The dynamical rules are boolean functions describing how states of nodes
change with time evolution.

Since each node has two possible states, the network has 2N possible configu-
rations. Thus the system has a finite state space where each configuration can be
represented as a boolean string of {σi}. The topological properties of the state space
will be deeply analyzed in the following sections.

2.3 The Topology of Random Boolean Networks

In the most general case, connectivities Ki vary from one element to another and
links are chosen according to certain distribution of probability. Consequently it is
useful to define the mean connectivity, 〈K〉, as a parameter which characterizes the
behavior of such networks:

〈K〉 =
1

N

N∑
i=1

Ki.

The dynamics of this kind of systems depends strongly on the way the edges
between nodes are been chosen. Given a node, each element of the graph, including
itself, may have the same probability of making up one of the Ki possible edges.
This is called an uniform assignment. Otherwise, all nodes can be arranged on a
regular lattice: the Ki links relative to every nodes may be chosen randomly from the
set of the nearest neighbors on the lattice. This is a lattice assignment. Obviously
various other choices are possible: for example, in a system where linkages are chosen
according to a power-law probability distribution, some nodes are linked to far-away
elements and others to neighboring elements. This is the case of scale-free networks
[28].

A Random Boolean Network such that all connectivities are chosen equal to a
fixed value K and each element has the same probability to constitute an edge, is
called Kauffman network or N −K model.

In this chapter, everywhere it is not specified, we will assume to study a Kauffman
network.

For a given number of N nodes and a given connectivity K per node, the topol-
ogy of a Kauffman network is completely defined by choosing the K edges of each
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node randomly among all nodes, included the node itself. In this case, these connec-
tions are chosen randomly and are quenched: they remain fixed during the entire
dynamics. Moreover, since each node can be linked to each other, there are N ways
to select the first edge, N − 1 ways for the second and N − K + 1 for k-th edge.
Consequently a Kauffman network can assume(

N !

(N −K) !

)N
possible configurations.

The set of all possible graphs topologically different with N and K fixed is called
the ensemble of the network. All possible topologies which are part of the ensemble
can have different degenerations and different statistical weights.

(a) (b) (c)

Figure 2.1: The ensemble of the possible topologies of Kauffman networks
for N = 2 and K = 1: the set of all possible graphs with fixed N and K which
are topologically different is the ensemble of a network. In this case there are 4
possible graphs but only 3 possible topologies: (a) and (b) appear only one time in
the ensemble and have the same statistical weights 1

4 . Whereas topology (c) has the
weight 1

2 because there are two different ways to chose which node has a self-link.
Graphs are plotted with Mathematica [63].

Let us consider as a simple case, the ensemble of Kauffman networks for N = 2

and K = 1. There are
(

2!
(2−1)!

)2
= 22 = 4 possible graphs but only 3 different

topologies are possible (this example is shown in Figure 2.1). Both topologies (a)
and (b) appear only one time and have the same statistical weights 1

4 . Whereas
topology (c) has the weight 1

2 because there are two possible graphs with such
shape: either of the two nodes can be the one with a self-link.

We now discuss another example, the Kauffman network with N = 3, K = 1.
The set of all possible topologies of this example is shown in Figure 2.2. This kind

of networks has
(

3!
(3−1)!

)3
= 33 = 27 graphs but it admits only seven different

topologies.

Topologies (a) and (f) have the weight 3
27 because they have one self-link and

either of the three nodes can be the one with it. (b), (c) and (e) have weight 6
27 .
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2.2: The ensemble of the possible topologies of Kauffman networks
for N = 3 and K = 1. In this case there are 27 possible graphs but only 7
possible topologies: (a) and (f) have the weight 3

27 because there are two possible
ways to chose which node has a self-link. (b), (c) and (e) have weight 6

27 . Topology
(d) appear one time in the ensemble and its statistical weight is 1

27 . Finally (g) is
invariant under the contemporaneous change of the direction of all the edges and
consequently has a weight of 2

27 .Graphs are plotted with Mathematica [63].

Topology (d) appear one time and its statistical weight is 1
27 . Finally (g) is invariant

under the contemporaneous change of the direction of all the edges and consequently
has a weight of 2

27 .
Moreover while the number of inputs of each node is fixed by choosing the con-

nectivity K, the number of outgoing links for each node varies between the nodes.
The mean number of outputs must be again K, since the total number of outgoing
links must be equal to the total number of ingoing links.

In particular a given node become an input of each other nodes with probability
K
N . the probability distribution of outgoing links thus is a Bernoulli distribution:

Pout (l) =

(
N

l

)(
K

N

)l (
1− K

N

)l
In the thermodynamic limit N → ∞ the probability tends to a Poisson distri-

bution:

Pout (l) =
K l

l!
e−K .

2.4 How to define a dynamics

The dynamical rules of a Random Boolean Network are a crucial topic in this
context. The value which each node assumes at time t is determined only by the
states of its K inputs {σi} at time t− 1:

σi (t) = fi (σ1 (t− 1) , σ2 (t− 1) , ..., σK (t− 1)) .
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fi is a Boolean function, fi : {0, 1}K → {0, 1}, for the ith element which depends on
K arguments. The boolean functions fi associated to each element σi are randomly
chosen between all possible functions.

Now let us consider the case of a Kauffman network in detail. In general, a given
boolean function of K arguments can take on 2K different values. It is completely
determined by giving, for each of these values of the arguments, a value to the func-
tion. Consequently there are 22

K
different boolean functions. As seen before, each

node has N !
(N−K)! possible ordered combinations for K different edges. Therefore,

given N and K, the number of all possible Kauffman networks is(
22
K N !

(N −K) !

)N
.

Note that many of these graphs will be equivalent.

Below boolean functions for some values K will be analyzed.

For K = 0, the are two possible functions, the tautology f = 1 and the contra-
diction f = 0. Together they constitute the class of the constant functions C.

Class K Class R
Input K0 K1 RI RN

0 0 1 0 1

1 0 1 1 0

Table 2.1: The Boolean functions of one argument. The first column lists
the possible states of the input, the other columns represent all possible outputs,
divided into two classes.

Instead the possible boolean functions with one argument, K = 1, are four
and are divided into two classes. Table (2.1) shows these functions. The first two
functions constitute again the class of constant functions K such that the resulting
state is independent of its input. The other two functions are the identity f (σ) = σ
and the negation f (σ) = −σ. They make up the class of reversible functions R.

Class K Class C1 Class C2 Class R
0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0

0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1

1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1

1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

Table 2.2: The Boolean functions of two arguments. The first column lists the
four possible states of the input, the other columns represent all possible outputs,
divided into four classes.

For K = 2 the situation is a bit more complicated. The are four class of these
functions. There are again two constant and two reversible functions. Moreover
there are twelve canalizing functions. A function is canalizing if at least for one of
the values of its arguments the results is fixed, independently of the values of the
other inputs. These functions are dived in two classes according to the number of
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arguments on which they depend. The class of canalizing functions C1 which depend
on only one of the arguments is made up by functions which simple copy or invert
the value of one of the inputs. The second class C2 of canalizing functions that
depend on the two arguments has only functions with three times 1 or three time a
0 in its output. All these functions are shown in table (2.2).

Every time the functions fi and the set of connectivities are chosen, a realization
of the model is been defined. Given a realization it is possible to define completely
a dynamics in order to describe exactly how all the values of each node evolve.

If all elements are updated at the same time, the dynamics is called synchronous.
Otherwise if the nodes are updated one by one it is called serial. Obviously it is
possible to choose which element has to been updated using a deterministic sequence
or with a proper random algorithm.

Moreover the realization can be fixed for all time step. The model is thus
quenched. Furthermore it is possible to change the realization after each time step.
Now the model is called annealed. Obviously intermediate choices are possible.

In Kauffman network, the system is quenched, every boolean functions fi are
been randomly chosen at t = 0 and are kept fixed during the entire dynamics. Con-
sequently the dynamics is deterministic. The last consideration gives the possibility
to deeply analyze the properties of the state space. Given an initial random state C,
the dynamics updates this state according to the dynamical rules. Since the state
space of all possible states is finite (2N ), eventually a state would be repeated. The
dynamics exhibits a deterministic behavior, so if the network is a state C1 and if it
reaches a state C2 at the next time step, then this transition will occur every time
the system is found to be in C1.

Eventually a state will be repeated. This means that the system has reached
an attractor. If these two configurations C1 and C2 are the same state, then the
attractor consists of only one state and it is called a point attractor or steady state.
Instead if these returning configurations consist of two or more different states, the
attractor is called a cycle attractor or state cycle. The entire set of states which
evolve in the same attractor is called attractor basin.

2.5 Dynamical observables: the Hamming distance and
the overlap

Now let us consider how to analyze the behavior of a generic state belong to a
Kauffman Network under the action of the dynamics.

Let us consider C0 and C̃0 two different initial configurations randomly chosen:

C0 = {σ1 (0) , σ2 (0) , ..., σN (0)} C̃0 = {σ̃1 (0) , σ̃2 (0) , ..., σ̃N (0)} ,

which differ in the values of some variables. It is possible to study how these two
configurations change through the action of the same dynamics.

It’s useful introducing the notion of a distance. For this purpose the Hamming
distance DC0,C̃0 (t) between the two configurations is defined as

DC0,C̃0 (t) =

N∑
i=1

(σi (t)− σ̃i (t))2 .
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Figure 2.3: Schematics of Kauffman Networks with N = 10 and K = 1:
each node corresponds to a configuration and each attractor basin, the set of states
which evolve to the same attractor, is colored with a different color. These network
are examples of synchronous and quenched Kauffman networks where dynamical
boolean functions are fixed and chosen with equal probability and all nodes are
updated at the same time. In this case with K = 1, the network exhibits an ordered
phase. Networks are plotted using IGraph library [64].

If the system is sufficiently chaotic, the informations could be transferred over
the entire system, thus in the limit of large N , the Hamming distance can diverge
for large time. Otherwise if the dynamics is localized, the distance will never grow
very large.

Furthermore it is possible to define a quantity which gives a measure of the num-
ber of identical spins between two configurations: the normalized overlap aC0,C̃0 (t)

between two configuration C0, C̃0 is defined as

aC0,C̃0 (t) = 1− 1

N
DC0,C̃0 (t) .

In the limit t → ∞, if the overlap is less than unity, the system remember only a
fraction of its input data.

2.6 Order and chaos: phase transition in Random Boolean
Networks

Kauffman networks, as well as others dynamical systems, exhibit different be-
haviors associated to different connectivity K. Three phases can be distinguished:
ordered, chaotic and critical.

There are several properties which can be analyzed in order to underline the
differences between these phases.

Let us plot the states of a network in a square lattice and let the dynamics acts.
As an example the dynamics of a Kauffman network with N = 64 and different



18 Random Boolean Networks

Figure 2.4: Schematics of Kauffman Networks with N = 10 and K = 2:
each node corresponds to a configuration and each attractor basin, the set of states
which evolve to the same attractor, is colored with a different color. These network
are examples of synchronous and quenched Kauffman networks where dynamical
boolean functions are fixed and chosen with equal probability and all nodes are
updated at the same time. In this case with K = 2, the network exhibits a critical
phase. Networks are plotted using IGraph library [64].

values of connectivity is shown in Figure (2.6). States with value 1 can be colored
with black and 0 states with white. It is possible to study the behavior of the
network analyzing which states change and which ones are stable.

Initial states are chosen randomly. Initially many states are changing but quickly
the dynamics stabilizes. In the chaotic regime, most of the states are changing at
each time step. In the ordered phase there are �strips �of states with only one color
stable under the action of the dynamics. The �edge of chaos �, the point where the
system exhibits the phase transition from the ordered regime to the chaotic phase,
occurs when the ordered strips with a definite color breaks into the strips with the
other color mixing with one another.

Another approach to describe these different phases is the the study of attrac-
tors and their topological properties. As seen before, for quenched systems the
evolution functions fi are independent of time. Consequently, for any configuration,
the system evolves dynamically to another configuration in a deterministic way and
eventually reaches an attractor state or an attractor cycle. The state space is di-
vided in basins of attraction each of which is related to a certain attractor. Each
initial configuration will eventually fall in one of these attractors. It is interesting
to develop a quantitative description of some observables related to the attractors,
like the number of steps the system takes before it falls into an attractor, the tran-
sient time, or which is the set of initial configurations falling into that attractor.
This approach may be analyzed either within a given realization or averaging over
realizations.

Consequently the analysis of these properties shows again the different phases
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Figure 2.5: Schematics of Kauffman Networks with N = 10 and K = 5:
each node corresponds to a configuration and each attractor basin, the set of states
which evolve to the same attractor, is colored with a different color. These network
are examples of synchronous and quenched Kauffman networks where dynamical
boolean functions are fixed and chosen with equal probability and all nodes are
updated at the same time. In this case with K = 1, the network exhibits an chaotic
phase. Networks are plotted using IGraph library [64].

of the system. The chaotic phase is characterized by very long cycles, in which the
typical cycle-lengths grow as a power of the size of the state space. In this phase,
the transient time is long and exhibit a complex topology. In contrast, the ordered
phase tends to have much shorter and simpler cycles, and also shorter transient
time which do not grow with the size of the system. The critical phase has a more
complex behavior where the number of attractor cycles grows faster than any power
law with system size [29].

A third feature of this dynamical behavior is related to the convergence or the
diverge of the trajectories in the state space. In the chaotic phase, similar states
tend to diverge. In the ordered phase, similar states tend to converge to the same
state. At the edge of chaos, nearby states tend to lie on trajectories that neither
converge nor diverge in state space. In order to describe this properties the Hammer
distance, defined in the previous section, is an useful tool.

Let us consider two different initial states randomly chosen. They have to contain
a very large number N of elements:

C = {σ1, σ2, ..., σN} C̃ = {σ̃1, σ̃2, ..., σ̃N}

The Hamming distance at time zero, DC,C̃ (0), is the number of different elements

between the two configuration C and C̃. On average, a change in a single element
will change the argument of K functions. Consequently there will be KDC,C̃ (0)
functions affected by this change. Each of these functions has the probability one
half of changing their value. Thus the Hamming distance after the first time step
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(a) (b) (c) (d) (e)

Figure 2.6: Dynamics of a Kauffman Network in different phases: Each
column represents a different Kauffman network with N = 64 and with different
connectivities Ki. A line represents the state of the network, each pixel the state
of a single node. Initial states are drawn at the top of the columns, time flows is
downwards. The dynamics is synchronous and quenched: it is defined by boolean
functions fixed and randomly chosen with equal probability and all nodes are up-
dated at the same time. (a) ordered phase, K = 1. (b) critical phase, K = 2. (c),
(d) and (e) chaotic phases with K = 3, 4, 5.

will be

DC,C̃ (1) =
K

2
DC,C̃ (0) .

If the set of connectivities and functions fi are chosen sufficiently random, then at
the next time step, the resulting elements and their functions will remain random as
well. Then the same equation can be apply again in the following time steps. Since
the fraction of changed elements remains small than the dimension of the network
and the condition of randomness continues to be valid, the Hamming distance will
continue to change by a factor of K/2:

DC,C̃ (t+ 1) =
K

2
DC,C̃ (t) .

The generic solution for time t results:

DC,C̃ (t) = DC,C̃ (0) exp[t ln(K/2)]. (2.1)

According to the last equation, for K > 2 the Hamming distance DC,C̃ (0) grows
exponentially, for K < 2 it decays exponentially, and for K = 2 there are neither ex-
ponential growth nor decay, the behavior is substantially influenced by fluctuations.

Thus the behavior of the Kauffman networks can be associated to one of three
following phases according to the value of the connectivity K:

� Ordered (K < 2), picking up a random configuration, it evolves in a few
steps to a stable configuration, an attractor, and consequently the Hamming
distance decays exponentially with time to a fixed value linked to the various
attractors of the dynamics.
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� Chaotic (K > 2), picking up a random configuration, most of the values varies
continually, the Hamming distance grows exponentially with time.

� Critical or �edge of chaos� (Kc = 2), the temporal evolution of the Hamming
distance is determined mainly by fluctuations.

In deriving equation (2.1) the functions fi are assumed to give the values 0 and
1 with the same probability p = 1/2.

Let us consider a more general model where the functions fi give a 0 and an 1
with probabilities p and 1− p respectively. The chaotic, ordered and critical phases
are also present: for a given value of p, there is again a critical value KC (p) of the
connectivity below which the system exhibits an ordered phase and above which a
chaotic phase. Consequently, for a given connectivity K ≥ 2, a critical value pC(K)
of the probability separates the chaotic and the ordered phases.

0 0.2 0.4 0.6 0.8 1

p

0

20

40

60

80

100

K Chaotic region

Figure 2.7: Phase diagram for the Kauffman model. For a Kauffman model,
the outcomes of functions fi are a 0 and an 1 with probabilities p and 1 − p re-
spectively. For each value of p, there is a critical value KC (p) of the connectivity
below which the system exhibits an ordered phase and above which a chaotic phase.
In this plot the area with the shadow corresponds to the ordered phase, whereas
the remaining region corresponds to the chaotic phase. The curve separating the
two areas is described by equation KC = 1

[2p(1−p)] . The last formula is analytically

demonstrated in section (2.6.1). This image is reproduced from [22].

In order to obtain an equation for KC (p) let us consider the behavior of the
overlap in the different phases [30]. The overlap between two states C and C̃ at
time t, aC0,C̃0 , describes the number of elements with the same value in either the
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two configurations. Then the probability that the arguments of a function fi will

be the same for either the two configurations is
[
aC0,C̃0 (t)

]K
. Consequently two

configurations C and C̃ have N
[
aC0,C̃0 (t)

]K
elements with the same inputs and

N

[[
1− [aC0,C̃0 (t)

]K]
with different inputs. The spins whose functions fi have all

identical arguments for both the configurations will be the same again at time t+ 1.
On contrary, if one or more arguments are different in the two configurations, the
spins have a probability 1

2 of having the same value and a probability 1
2 to be different

at time t+ 1 is 1/N . Therefore:

aC0,C̃0 (t+ 1) =
[
aC0,C̃0 (t)

]K
+

1

2

[
1−

[
aC0,C̃0 (t)

]K]
which gives:

aC0,C̃0 (t+ 1) =
1

2

[
1 +

[
aC0,C̃0 (t)

]K]
.

It is possible to make a generalization: if the function fi has the different out-
comes 0 and 1 weighted with probabilities p and 1 − p respectively, like a sort of
magnetization bias, then the last equation becomes [31]:

aC0,C̃0 (t+ 1) = 1− 1

KC

[
1−

[
aC0,C̃0 (t)

]K]
, (2.2)

where KC is given as a function of p:

KC =
1

[2p (1− p)]
. (2.3)

This equation will be demonstrate in a following section (2.6.1).

2.6.1 Analytical solution for criticality with the annealed approxi-
mation

Following the solution by Derrida and Pomeau [31] it will give an analytical
demonstration that the transition occurs at KC = 2. Moreover the equation (2.2)
will be obtained.

Given the functions fi the dynamics is defined:

σi (t+ 1) = fi (σi1 (t) , σi2 (t) , .., σik (t)) .

For the Kauffman network these functions are fixed at each time step.

Let us consider 2 configurations C and C̃ such that they are at distance dC,C̃ = n

at t = 0. The probability P1 (m,n) that the distance DC′,C̃′ (t) between their images

C′ and C̃′ at time t = 1 is DC′,C̃′ (t) = m.

Let us define the set I of spin which are identical in C and C̃ and D the set of
spins which are different. Set I contains N − n spins at t = 0 while D contains n
spins.
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Now the probability Q (N0) that a configuration has N0 spins such that all linked
nodes are coming from set I is a Bernoulli distribution:

Q (N0) =

(
N

N0

)[(
N − n
N

)K]N0
[

1−
(
N − n
N

)K]N−N0

where
(
N−n
N

)K
is the probability that a spin belongs to set I and

(
1− N−n

N

)K
is

the probability that a spin belongs to set D.
These N0 spins are the same in C′ and C̃′. Instead the other N − N0 spins are

different in C and C̃ and each of them has a probability 1
2 of being the same in C′ and

C̃′ and a probability 1
2 of being different. Consequently the probability P1 (m,n) is:

P1 (m,n) =

N∑
N0=0

Q (N0)

(
1

2

)N−N0
(
N −N0

m

)

Using
(
N
N0

)(
N−N0

m

)
=
(
N
m

)(
N−m
N0

)
and substituting M = N −m it results:

P1 (m,n) =
1

2N

(
N

m

)[
1−

(
1− n

N

)K]m M∑
N0=0

(
M

N0

)[
2
(

1− n

N

)K]N0
[
1−

(
1− n

N

)K]M−N0

Using the relation
∑n

k=0

(
n
k

)
pkqn−k = (p+ q)n, the final result is

P1 (m,n) =
1

2N

(
N

m

)[
1 +

(
1− n

N

)K]N−m [
1−

(
1− n

N

)K]m
This formula is the exact probability P1 (m,n) for Kauffman’s quenched model

if C and C̃ are randomly chosen at time t=0.
It is more interesting the the probability Pt (m,n) that the two configurations

C(t) and C̃(t), obtained as evolutions at time t from C and C̃, are at distance m.
In order to calculate Pt (m,n) it is necessary to take in account that for a Kauff-

man model the functions fi are fixed: the system is quenched and both the two
configurations C(t) and C̃(t), are correlated to the these functions.

P2 (m,n) 6= P annealed2 (m,n) =

N∑
q=0

P1 (m, q)P1 (q, n)

However it is possible to neglect those correlation and to evaluate Pt (m,n) in the
annealed approximation where the functions and the set of links change randomly
at every time step:

P annealedt (m,n) =
N∑

q1=0

...
N∑

qt−1=0

P1 (m, qt−1)P1 (qt−1, qt−2) · · ·P1 (q1, n)

Let us introduce the continuous variables x = n
N and y = m

N . P annealed1 (m,n) is
very peaked around a well defined value y1:

y1 =
1− (1− x)K

2
.
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In a similar way P annealedt (m,n) is peaked around a value of m = Nyt, where yt is
defined as:

yt =
1− (1− yt−1)K

2
. (2.4)

In conclusion we have demonstrate that given two configurations C and C̃ with
distance Nx, then, in the limit N →∞, the distance between their images at time
t is Nyt with probability 1.

Thus it is necessary to study the behavior of the map (2.4).
For K ≤ 2, the map has only a fixed point x = 0 which results to be attractive.

So, for every value x,

lim
t→∞

lim
N→∞

d
(
C(t)1 , C(t)2

)
N

= 0 K ≤ 2.0

For K > 2, the map has again a fixed point x = 0 which this time results to be
unstable. There is also a new fixed point y∗ which is attractive (for a numerical
value for y∗ see [31]). Therefore, for every value x:

lim
t→∞

lim
N→∞

d
(
C(t)1 , C(t)2

)
N

= y∗ K > 0.

It is also possible to calculate the mean fluctuations of y around y∗ in the limit
t → ∞ using the annealed approximation. This result can be obtained by relating
the moments of m to those with n assuming to know the probability distribution of
the distances n:

〈m〉 =
N

2

〈
1−

(
1− n

N

)K〉
〈
m2
〉

=
N

2
+
N (N − 1)

4

〈[
1−

(
1− n

N

)K]2〉
In the limits N →∞ and t→∞ the fluctuations result:〈

y2
〉
− 〈y〉2 =

〈
m2
〉
− 〈m〉2

N2
=

〈
n2
〉
− 〈n〉2

N2

=
1

N

[
1
2 − (y∗)2

]
[
1− K2

4 (1− y∗)2k−2
] .

In conclusion we have shown that the critical value KC = 2 for a Kauffman
network can be obtained analytically using the annealed approximation.

This solution obtained using the annealed approximation can be extended to a
generalization: instead of assuming that the functions fi give with the same proba-
bility the values 0 or 1, it is possibility to assign a weight p or 1− p to the outcomes
of these functions. In conclusion equation (2.4) becomes:

yt =
[
1− (1− yt−1)K

]
2p (1− p) .



Chapter 3

Spin Glass

The concept of spin glass was originally introduced to describe magnetic al-
loys which experimental exhibit a non-periodic freezing of the orientations of the
magnetic moments together with slow response and linear low- temperature heat
capacity characteristic of conventional glasses.

Spin glasses thus are systems with localized magnetic moments whose interac-
tions are characterized by quenched randomness: each pair of localized moments,
or spins, have a given a priori probability of having a ferromagnetic or an antiferro-
magnetic interaction [32].

The fundamental physical behavior of such systems do not depend heavily on
the microscopic interactions but in the competing properties between ferromagnetic
and antiferromagnetic interactions. This is the modern approach to spin glass that
began with the paper of Edward and Anderson [33]

3.1 The Sherrigton Kirkpatrick model

A benchmark for Spin Glass physics is a generalization of the Ising model. It
consists of N boolean variables σi ∈ {+1,−1}, i = 1, .., N that represent interacting
magnetic dipole moments of atomic spins. The interaction among the spins can be
ferromagnetic (Jij > 0, it tends to align spins) or anti-ferromagnetic (Jij < 0, it
tends to anti-align spins). The sign and strength of the couplings are supposed to
be chosen with a given probability distribution P (Jij). The model is described by
the Hamiltonian:

HJ [σ] = −
∑

1≤j<i≤N
Jijσiσj . (3.1)

It depends directly on the configuration of spins {σi} and on the random variables
{Jij} which are seen as parameters at first.

The model is completely defined by choosing the probability distribution P (Jij)
for the spin-spin interactions. The simplest and more realistic description is an
infinite range model defined on a complete graph whose interactions are independent
random variables gaussian distributed:

P (Jij) =
1√

2πJ2
e−

(Jij−J0)
2

2J2 .
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This is the Sherrigton-Kirkpatrick model (SK)[1]. In this model the disorder is
assumed to quenched.

3.1.1 Quenched disorder and frustration

Spin Glasses are typically systems where quenched disorder and frustration co-
exist. In order to analyze the concept of frustration Parisi, in the introduction of
[2], suggests as example the social behavior of three people.

If each person has to choose between two sides and they like each other, they
will chose the same side. Then there are two equivalent scenario and the problem
exhibits a trivial symmetry. This case is like the ferromagnetic Ising model, where
the two possible ground states are characterized by all spins aligned.

Otherwise, in the case where the three persons hate each other the situation
is no more naive. There are three scenarios where two enemy have to be on the
same side and consequently they are frustrated. This case in equivalent to the
antiferromagnetic triangular Ising model, where the spins on a triangular lattice
tend to stay anti-aligned.

The triangular antiferromagnetic displays a large number of ground states but
the free energy barriers which separates these configuration are quite low. At nonzero
temperature, the system can move easily from one free energy valley to another and
the energy landscape displays a network of many ground states connected by small
energy barriers [34].

Figure 3.1: Frustration in a system of three spins: spin glasses are typically
systems where quenched disorder and frustration coexist. In the first image there
is no frustration: the spin can find an optimal configuration and the product of
the interactions along the triangle is positive. In the second image the product of
the interactions along the triangle is negative: the system is frustrated, there is
no configurations which can exclude all the unfavorable interactions. This image is
reproduced from [34].

On the other hand, the spin glass has a more complex behavior: the Hamiltonian
3.1 exhibits again frustration, indeed it is impossible for the system to find an
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optimal configuration such that all the unfavorable interactions are excluded, even
in the ground state. The spin glass has a exponential number of low energy states
which do not correspond to the ground states. They are separated by high energy
barriers. In the thermodynamic limit these barriers diverge and at low temperature,
if the system falls in one of these valleys it is not able to go away, the ergodicity
consequently is broken.

3.1.2 Quenched, annealed averages and selfaveraging

In general in the spin glass theory the variables which describe the interactions
are assumed to quenched [35]. This means that the ”disordered” are fixed while
spins fluctuates. This condition corresponds to an experimental system where the
timescale of the disorder results to be longer than the timescale of the spin fluctu-
ations. This kind of assumption implies that each realization of the disorder is a
given sample of the system and the properties of the fluctuations of each sample
depends on the single realization.

In the case such that the timescale are comparable, the disorder is annealed.
Experimentally this situation corresponds to a system where spins and disorder
fluctuate togherher and their statistics depend on the corresponding distributions
at the same time.

Let us consider, for example, the thermodynamics of the quenched disorder.
Ideally the averages for a given sample can compute using the Boltzmann measure
in order to evaluate the equilibrium properties of this sample. Then also the averages
over the disorder distribution have to be computed. This procedures is not trivial
due to the presence of the disorder. The behavior of extensive observable, such as
free energy, do not make any problem since their densities are selfaveraging in the
thermodynamic limit, they assume the same value for each realization of disorder
which has a finite probability.

The free energy of the system, as an extensive observable, is proportional to the
volume of the system, for a spin glass system is N . In the thermodynamic, limit
N →∞, the main contribution to the free energy in a macroscopic system is affected
by the boundary which usually gives a contribution of order 1/N . Such macroscopic
system could be divided into a macroscopic number of macroscopic subsystems.
Therefore the resultant total free energy of the entire system would be the sum of
the free energy of each subsystem. If all the interactions in the system are short
range, then the contributions from the interactions between the subsystems are like
the boundary effects which can be denied in the thermodynamic limit.

Consequently, the total free energy is the sum of a macroscopic number of terms
which would be a random quenched quantity since it contains the random spin-spin
interactions as parameters next.

The sum of many random quantities can be represented as their averaged value
according to the law of large numbers. Therefore, the free energy of a macroscopic
system must be selfaveraged over the realizations of the random interactions taking
in account their statistical distribution.

Then the free energy is given by the logarithm of the partition function. So, in
order to calculate the free energy is necessary to evaluate the average of the logarithm
of the partition function over the given distribution of random Jij ’s simultaneously
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with the calculation of the partition function itself.
Given the free energy density fJ for a given disorder realization Jij :

fJ = − 1

βN
logZJ = − 1

βN
log Tr{σi} e

−βHJ [σ],

the average free energy over the disorder distribution is given by

f =

∫
dJP (J) fJ = 〈〈fJ〉〉 = − 1

βN
〈〈logZJ〉〉

where the 〈〈...〉〉 indicates the average over the distribution P (J).
For the annealed average it is necessary a simpler computation, only the average

of the partition function is required:

fan = − 1

βN
log 〈〈ZJ〉〉 = − 1

βN
log

∫
dJP (J) Tr{σi} e

−βHJ [σ].

In this case the average over the Boltzmann measure and the disorder distribution
are performed at the same time.

3.2 The replica method

In order to afford the computation of the logarithm in the quenched average it
is useful to explain the replica approach.

For a given realization with a fixed set of quenched variables Jij , the partition
function is defined as

ZJ =
∑
{s}

exp {−βHJ [s]},

and the free energy:

fJ = − 1

βN
logZJ .

As seen before the free energy is self-averaging in the thermodynamic limit and
we can calculate equivalently as 〈〈fJ〉〉.

The replica method consists in computing the average free energy as the analytic
continuation of the average of the partition function of n uncoupled replicas of the
initial system. If n is a real number, in general:

logZ = lim
n→0

Zn − 1

n

where this result is a consequence of expansion An ' 1 +n logA in the limit n→ 0.
The ”replica trick”, introduced by Parisi [2] consists in first considering n as an

integer and then taking the limit n→ 0 of the result. If n is an integer, the partition
function of n uncoupled replicas of the initial system is:

ZnJ =

 ∑
{σai }1≤i≤N

e−βH[{σi}]


n

=
∑

{σai }
1≤a≤n
1≤i≤N

e−β
∑n
a=1H[{σai }]
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i.e. it is possible to rewrite the sum over the configuration of one system to the
power n as a sum over the configurations of n replicas of the same system with the
same couplings Jij .

The free energy per spin of a system made by n uncoupled replicas is:

fn = − 1

βNn
log 〈〈ZnJ 〉〉

where 〈〈ZnJ 〉〉 is the quenched average of the partition function over the ξ’s.
Then the free energy per spin results:

lim
n→0

fn = 〈〈f〉〉 ≡ f

This result is evident considering that:

lim
n→0

fn =− 1

βN
lim
n→0

1

n
log 〈〈ZnJ 〉〉

=− 1

βN
lim
n→0

1

n
log

[∑
J

P (J)ZnJ

]

=− 1

βN
lim
n→0

1

n
log

[∑
J

P (J) (1 + n logZJ)

]

=− 1

βN

∑
J

P (J) logZJ

=− 1

βN
〈〈logZJ〉〉

= 〈〈f〉〉 .

This approach is general for spin glass systems. In particular, the SK model, which
was defined above, has been solved using the replica method and a replica symmetric
ansatz. This solution based on a saddle-point solution is approximate and it implies
a non physical result: the entropy is negative at zero temperature and it results
an unstable solution in a range of low temperature. More satisfactory solutions are
obtained taking in account the replica symmetry breaking as proposed by Parisi (for
example see [36]) or alternatively considering a mean field analysis which leads to
the TAP (Thouless-Anderson-Palmer) equation.

3.3 Phase transition

As in the usual Ising model it is possible to analyze the system using the mag-
netization as an order parameter in function of the temperature T .

For large T , the system has sufficient thermal energy to occupy any possible
configuration and exhibits a paramagnetic state where 〈m〉 → 0. The local magne-
tization would differ from zero only in presence of an external magnetic field

Decreasing the temperature T , In the low temperature phase the spins tend
to freeze in energetically favorable positions and the local magnetization can be
different from zero even with zero field. The system can exhibits a ferromagnetic
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Figure 3.2: Phase diagram for SK model: For large T the system is in the
paramagnetic phase such that 〈m〉 ∼ 0 and q ∼ 0. For low temperature the system
exhibits two phases: when J̃0/J̃ > 1 there is the ferromagnetic phase, |〈m〉 |∼ 1 and
q ∼ 0. Otherwise, when J̃0/J̃ < 1, there is the spin glass phase characterized by
conditions 〈m〉 ∼ 0 and q ∼ 1.
In the image, the diagram is plotted with normalized variables related to temperature

and to the probability distribution of interactions, P (Jij) = 1√
2πJ2

e−
(Jij−J0)

2

2J2 : J =

J̃/
√
N and J0 = J̃0/N . This image is reproduced from [37].

phase or a spin glass phase. As usual, the ferromagnetic state is characterized by
the alignment of spins, |〈m〉 |→ 1 In the spin glass state, some spins could align
locally but there is not a long range ordering. The local magnetization depends on
the specific choice of Jij and therefore the global magnetization has to be zero even
at zero temperature.

According to the phase diagram sketched in figure 3.2, for low T ,when J̃0/J̃ > 1
the system will be in the ferromagnetic phase. On the other hand in the case J̃0/J̃ <
1, the system is composed by a mixture of ferromagnetic and antiferromagnetic
interaction and it results to be energetically frustrated.

In order to characterized these phase transitions the local magnetization is not
enough.

A generic equilibrium state can be can be decomposed as the sum of other
equilibrium states with weights wα. The states which cannot be decomposed in this
way, are consequently defined as pure states. It is possible to introduce the overlap
between two states α and β:

qαβ =
1

N

∑
i

mα
i m

β
i . (3.2)

In particular, if qαα = qββ = qEA, the overlap of a state with itself, qEA is the
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self-overlap or Edward-Anderson order parameter. In the thermodynamic limit qEA
doesn’t depend on the given realization, Jij and can be used as the order parameter
to describe the phase transition from the low temperature and ferromagnetic phase,
where qEA = 0, to the low temperature and Spin Glass phase such that qEA 6= 0.

In order to describe the statistics of all possible overlap it is also useful to define
the probability distribution of overlaps:

P (q) = PJ (q) =
∑
αβ

wJαw
J
βδ (qαβ − q), (3.3)

where wαs are the weights for the decomposition of the state in pure states which
depend only on its free energy. In other words, the distribution of overlaps P (q)
is the probability of finding two state with overlap q weighting each state with its
probability of appearing in the ensemble. P (q) is the physical order parameter which
can be used for characterizing phase transitions. For example in the ferromagnetic
Ising model, under the critical temperature, the distribution shows a bifurcation: it
is one delta function at non zero magnetic field, because there is only one equilibrium
state, while it contains two delta functions at zero field.

In the SK model the situation is not naive. The ferromagnetic phase is similar
to the usual Ising model and the distribution has two delta functions. In the spin
glass phase, there are many different equilibrium states at low temperature and
the function P (q) is non trivial: between two delta functions at q = ±qmax (T )
there is a continuous curve. The qmax (T ) is the maximum possible overlap which
is the ”selfoverlap”. Since the number of minima of the free energy of the system
is macroscopic, their selfoverlap are all equal and the function P (q) exhibits the
two delta functions. The existence of the continuous curve between the two delta
functions is the result of the continuous process of fragmentation of the valleys of
the free energy into the smaller and the smaller one. In the high temperature phase
there is only one delta corresponding to q = 0 for zero magnetic field. This phase
transition is associated with the spontaneous replica symmetry breaking and an
analytical solution is been provided using Parisi’s approach [2].

Typical properties of the spin glass phase, such as the ground state energy or the
number of local minima of the Hamiltonian, are usually difficult to be investigated
analytically, even at T = 0. Often is necessary to employ numerical methods,
especially to determinate finite-size corrections (see for example [38]).

3.4 Complexity in Spin Glass Theory

In this chapter we have seen that Spin Glasses are disordered magnetic systems
which exhibit a variety of properties that are characteristic of complex systems like
quenched disorder and frustration. These systems exhibit rugged energy landscape
and many metastable states, states stable to flips of finite numbers of spins, which are
connected to the dynamical features of these systems. This property is characterized
through the complexity. The complexity Σ is the entropic contribution due to the
exponentially large number of metastable states and it is defined as the logarithm
of them, divided by the size of the system [39, 40]. In mean-field disordered models
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it can be computed by calculating the number of minima of the Thouless-Anderson-
Palmer (TAP) free energy. The TAP equations can be written as Gi = ∂F/∂mi = 0,
i = 1, . . . , N , where each Gi is a function of the N variables mi which denote the
local magnetizations, mi = 〈σi〉, at each site, where 〈...〉 denotes thermal averages.
The number of solutions of the N equations Gi = 0 is given by

Ns =

∫ 1

−1

∏
i

dmi

∏
i

δ(∂F/∂mi)|det ∂∂F/∂mi∂mj |,

where the modulus on the determinant is necessary to count each solution only
one time. Therefore, Ns corresponds to the number of physical states is justified
a posteriori. Then there is a relation which connects the number of solutions to
complexity 〈Ns〉J ∼ exp[NΣ]. The complexity is a function of temperature T : it
vanishes at the Spin Glass critical point Tc, while for T → 0 it approaches the value
0.1992. This matter is still studied [41].

The necessity of finding local minima strictly relates complexity to the problem of
global optimization. In Spin Glasses, similarly to a large class of complex systems,
finding the ground state corresponds is a NP-hard problem: the number of steps
needed to find the ground state grows faster than any power of the system size.
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Figure 3.3: Time of determine the ground state energy as a function of
the size N . Finding the ground state energy for the Sherrigton-Kirkpatrick is a
NP-hard problem: the number of steps needed to find the ground state grows faster
than any power of the system size. This plot shows the time necessary for a recursive
algorithm to evaluate the energy of each configurations and to select the minimum.

Many of global optimization methods have been developed for this kind of min-
imization problem and successfully applied to a variety of computational problems
[42]. An example is a Monte Carlo with minimization: a minimization process have
been performed starting from N2 randomly chosen initial configurations until a local
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minima has been reached. This kind of algorithm works efficiently only for limited
sizes. For example see figure (3.4).
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Figure 3.4: Plot of ln(〈eN 〉+ 〈e∞〉) as a function of lnN : For finite-size systems
the ground state energy for the Sherrigton-Kirkpatrick model depend onN as 〈eN 〉 =
〈e∞〉+ aN−ω where ω = 0.672. These results have been obtained through a Monte
Carlo with minimization: a minimization process have been performed starting from
N2 randomly chosen initial configurations until a local minima has been reached.
For system with limited sizes this algorithm results efficient. In this case it works
correctly until systems are bigger than N = 300. Indeed the last data for N = 511
departs from the expected value.





Chapter 4

The Hopfield Model

The Hopfield model was original proposed in 1982 by John Hopfield [3] as a
simple toy model in order to describe the behavior of the memory in the human
brain. Below there will be reported the main results related to this model.

The main viewpoint analyzed by Hopfield was the dynamics: indeed it is a
mathematical model aiming to describe a network functioning as an associative
memory and it exhibits the property of storing and retrieving informations even if
given data are degraded [43]. The statistical mechanics properties were developed
by Amit, Gutfreund and Sompolinsky [4] in the context of spin glass theory, in
particular with the replicas approach and the the replica symmetry breaking which
allowed a complete analysis. Moreover an exhaustive study of the dynamics is due
to Derrida [44].

The original purpose of the Hopfield model was to describe in a simple way
the interactions between two neurons through a synapse. Each neuron is an Ising
spin with two possible states, σi = 1 (active) σi = −1 (turned off). The space
of the possible configurations of N boolean spins which constitute the network is
SN = {−1,+1}N . The strength of a connections between two neurons σi and σj is
described by an interaction variable Jij . Each one of these is defined from a set of

p different configurations {ξµi }
1≤µ≤P
1≤i≤N :

Jij =

{
1
N

∑p
µ=1 ξ

µ
i ξ

µ
j ∀i 6= j,

0 ∀i = j.

According to this definition, Jij are symmetric, Jij = Jji, and every pair of neurons
is connected. Each ξµi is an independent, quenched, random variable assuming the
values +1 and −1 with probability

P (ξµi ) =
1

2
δ (ξµi − 1) +

1

2
δ (ξµi + 1) .

For a fixed value of µ, the pattern {ξµi }1≤i≤N is called a memory. The network is
designed in order to memorize p memories: each pattern ξµ results to be associated
to any configuration sufficiently close to it: ”close” usually means that between a
memory and a configuration the Hamming distance is small.

35
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The Hopfield model is described by the Hamiltonian defined on SN :

H [σ] = −1

2

N∑
i,j

Jijσiσj . (4.1)

From an historical point of view, the simplest version of this Hamiltonian with
p = 1 was originally introduced by Mattis [45] in 1976 in order to define a first
model of a disordered magnet. It differs from an Ising ferromagnet only by a simple
gauge transformation σi → σ′i = ξiσi of spins. Then Luttinger [46] analyzed the
case where p = 2 and finally Figotin and Pastur [47] develop a generalized model
with an arbitrary, but fixed, number of memories p, as a soluble model of spin glass.
Therefore, only after the paper by Hopfield, who approaches the above Hamilto-
nian as a starting point for an autoassociative memory model, the analysis become
exhaustive.

This model has the crucial property of storage and retrieval of information if the
dynamically stable configurations {σi} are correlated with the memories [48].

The retrieval process is described by a dynamics: a system describes a trajectory
in the space of 2N possible states. In general a discrete-time dynamics is defined so
that each neuron change his state in time according to

σi (t+ 1) = sign

 N∑
j

Jijσj (t)

 . (4.2)

Consequently a configuration {σi}1≤i≤N is a fixed point of this dynamics if and only
if

σi

 N∑
j

Jijσj

 ≥ 0 ∀i = 1, ...N.

This can kind of dynamics can be defined in a synchronous or asynchronous way. In
the original paper, Hopfield defined an asynchronous dynamics where a randomly
chosen neuron changes his state in time. This is nothing but a Monte Carlo dynamic
at T = 0. A more general case, a non-zero temperature process, can be defined:

σi (t+ 1) =


σi (t) with probability p+ = e

βσi(
∑N
j Jijσj)

e
βσi(

∑N
j
Jijσj)+e

−βσi(
∑N
j
Jijσj)

−σi (t) with probability p− = 1− p+

where the parameter β = 1/T determines the thermal noise intensity. In this chapter
the dynamics defined in equation (4.2) will be used.

4.1 Thermodynamics

The analysis of the thermodynamic properties of the Hopfield model is interesting
not only in the context of memory retrieval but also in statistical mechanics as a
disordered magnetic system. According to the above Hamiltonian (4.1), this model
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can be studied as a particular case of a infinite range spin glass system: it differs
from the usual Sherrington Kirkpatrick model for the probability distribution of
the quenched disorder. In this case the disorder is due to the quenched patterns
{ξµi }

1≤µ≤P
1≤i≤N and not for the spin couplings Jij themselves.

The random probability measure of a given configuration {σi}1≤i≤N in the SN
space is the Gibbs measure:

GN,β [σ] ≡ 1

ZN,β
e−βHN [σ]

where ZN,β is the partition function. Then the free energy per spin is:

fN,β ≡ −
1

βN
logZN,β.

The parameter β is the usual inverse temperature, N the size of the system. The aim
of the following analysis is to study the behavior of this model in the thermodynamic
limit, where N tends to infinity.

An useful parameter to characterize the behavior of such system is the overlap
of a state with the νth pattern:

mν =
1

N

N∑
i=1

〈σi〉 ξνi

where 〈...〉 is the thermal average. Using the last equation and the previous definition
for Jij , the average energy can be expressed as a function of the overlap:

H =− 1

2

∑
i,j

Jijσiσj = −1

2

∑
i,j

 1

N

p∑
µ=1

ξµi ξ
µ
j −

p

N
δij

σiσj

=
p

2
− N

2

p∑
µ=1

(
1

N

N∑
i=1

ξµi σi

) 1

N

N∑
j=1

ξµj σj

 .

Then the expected value of the energy results:

E = 〈H〉 =
α

2
N − N

2

p∑
µ=1

(mµ)2 .

The Hopfield model exhibits different behaviors in in two different regimes [2].
Then there are two two analytical which will be analyzed in the following pages:

� the unsaturated limit, p
N → 0 as N →∞.

In this case p is finite whereas the size of system grows to infinity. At T =
TC = 1 the system exhibits a second order phase transition, from a disordered
phase to an ordered phase. Below TC , there are 2p equilibrium states, which
are minima of the free energy. They are connected to Mattis states. Each one
of these states are correlated to one of the learned patterns {ξµi }1≤i≤N .

This regime can be studied without the replicas [48] and even the dynamics
for simultaneous synchronous updating can be solved.
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� the finite α limit, p
N → α when N →∞.

In this case there are two phase transitions increasing α. For α ≤ αcrit1 ≈ 0.05
all stored memories result to correspond to ground states of the free energy.
This is the ordered phase. For α ≥ αcrit2 ≈ 0.15 there is a so-called spin
glass phase: there is a total collapse of the capabilities of the memory. The
only ground state is the spin glass state. Replica symmetry is broken and as
a consequence each state has the fine structure of a full ultrametric tree. In
addition αcrit1 ≤ α ≤ αcrit2 the spin glass state is the ground state but the
retrieval is still efficient. In this regime the replicas approach is necessary and
only the statistical equilibrium can be analyzed.

4.2 The limit of finite p

The Hopfield model will be studied in the limit N →∞ and finite p [48].
The free energy density is given by

fβ = − 1

β
lim
N→∞

[
1

N

〈〈
log Trσ e

−βH[σ]
〉〉]

,

the 〈〈...〉〉 is the average over the distribution of patterns {ξνi }
1≤ν≤s
1≤i≤N . For a given

realization of ξ’s, the partition function can be written as

Z = Trσ e
−βH

= e−
βp
2 Trσ exp

 β

2N

p∑
µ=1

(
N∑
i=1

σiξ
µ
i

)2


= (Nβ)
p
2 e−

βp
2

∫ p∏
µ=1

dmµ

2π
exp

[
−Nβ~m

2

2
+

N∑
i=1

log
[
2cosh

(
β ~m · ~ξi

)]]
,

~m and ~ξ are the vector notation for the p components of mµ and ξµi and the last line
is obtained using the property of gaussian integral and evaluating the average over
the spins σi. For definition, p is finite, then the integral over m can be evaluated
with a saddle point approximation:

− 1

Nβ
logZ =

1

2
~m2 − 1

Nβ

N∑
i=1

log
[
2cosh

(
β ~m · ~ξi

)]
, .

By the saddle point equation,
∂ logZ

∂mµ
= 0,

the solution for the order parameter ~m is obtained:

~m =
1

N

N∑
i=1

~ξitanh
(
β ~m · ~ξi

)
.

This result depends explicitly on the given realization {ξνi }
1≤ν≤s
1≤i≤N . As discussed for

the SK model in the previous chapter, logZ is a selfaveraging observable, therefore
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the sums (1/N)
∑

i can be replaced by the averages over the patterns [49]. The
consequences are the mean field equations:

fβ =
1

2
~m2 − 1

β

〈〈
log
[
2cosh

(
β ~m · ~ξ

)]〉〉
, (4.3)

~m =
〈〈
~ξtanh

(
β ~m · ~ξ

)〉〉
. (4.4)

~m is the average overlap between the local magnetization and the ξ’s:

mµ = 〈〈〈σi〉 ξµi 〉〉

where
〈σi〉 = tanh (β ~m · ξi)

is the thermal average of the i-th spin. The properties of the solutions of equation
(4.4) depends of the correlations between the thermal averages 〈σi〉 and the quenched
patterns {ξνi }

1≤ν≤s
1≤i≤N .

4.2.1 Low temperature phase

At low temperature, the system exhibits 2p equilibrium states, which are minima
of the free energy. Now we demonstrate that they are connected to Mattis states
and correlated to one of the learned patterns {ξµi }1≤i≤N .

Let us consider the case where the distribution of ξi’s is

P ({ξµi }) =
∏
µ,i

p (ξµi )

and, seen before,

p (ξµi ) =
1

2
δ (ξµi − 1) +

1

2
δ (ξµi + 1) .

The free energy obtained above,

fβ =
1

2
~m2 − 1

β

〈〈
log
[
2cosh

(
β ~m · ~ξ

)]〉〉
,

can be expanded in powers of ~m in order to obtain:

f = −T log 2 +
1

2
(1− β) ~m2 +O

(
~m4
)

and

mµ = βmµ +
2

3
β3 (mµ)3 − β3mµ ~m

2 +O
(
~m4
)
.

These equations, above T = 1, have only one solution, the paramagnetic state
characterized by ~m = 0 and f = −T log 2. But this solution is unstable below
TC = 1: under this condition solutions with nonzero m start to appear.

Let us denote the number of nonzero components of ~m as n. From the previous
equation, permuting mµ or changing the sign of each component generates equiv-
alent solutions. It is possible to consider only the solutions such that the first n
components are positive and the others are zero without loss of generality.
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For n = 1, the remaining factors are:

f =
1

2
(m1)

2 − 1

2
log [2cosh (βm1)]

m1 = tanh (βm1) .

These are the mean field solutions for the usual Ising model. Moreover this
solution implies that the local magnetization is

〈σi〉 = ξ1i tanh (βm1) .

This state is equivalent to a ferromagnetic state under a gauge transformation σi →
σ′i = ξ1i σi of spins. Consequently, there are 2p equivalent states related to different
memories and different signs of m: there are the Mattis states. These states are the
global of free energy in the neighborhood of T = 0 and T = 1 and probably at all
T < 1. In the limit T → 0, for n = 1:

E (T = 0) = −1

2
,

~m (T = 0) = (1, 0, 0, ..., 0)

and in general, for all values of n:

E = −1

2
~m2,

~m =
〈〈
~ξsign

(
~m · ~ξ

)〉〉
.

In this phase, the equilibrium states are fully correlated to the learned patterns.
These states give the main contribute to the thermodynamic of the system but also
the solutions with n > 1 have an important role if they are the local minima of the
free energy.

Let us consider the of solutions of equations (4.3) and (4.4) such that all n
nonzero components have the same module:

~m = mn (1, 1, ..., 1, 0, 0, ..., 0) ,

where the first n components have unitary values and the others p− n components
are zeros. There are

2n
(
p

n

)
possible solutions which are equivalent to the previous solution. These states exist
for all temperature T < 1. The mean field equations for the symmetric states are
then

fn =
n

2
m2
n −

1

β
〈〈log [2cosh (βmnzn)]〉〉

mn =
1

n
〈〈zntanh (βmnzn)〉〉

where

zin =

n∑
µ=1

ξµi .
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considering the probability distribution of each ξµi , the distribution of zin is then

p (zn) =
1

2n

(
n

(zn+n)
2

)
.

(zn+n)
2 is the number of positive ξµi which contributes to zin.
It is possible to evaluate the behavior of such solutions expanding the previous

functions at T = 1 and T = 0 (see [48] for details). At T = 1 the averages give:

〈〈fn〉〉 ' −
3n (T − 1)2

4 (3n− 2)
,

m2
n '

3 (1− T )

3n− 2

T = 1 is the critical temperature for the appearance of all symmetric solutions. The
equation relative to the free energy exhibits a monotonically increasing with n. This
condition implies that for n = 1 the free energy assumes the lowest values, like the
Mattis states:

〈〈f1〉〉 ' −
3 (T − 1)2

4
,

m2
n '3 (1− T )

At T = 0 the expansion gives two different results which differ if n is even or odd.
For odd n:

〈〈f2k+1 (T = 0)〉〉 =− 2k + 1

24k+1

(
2k

2

)2

,

m2
2k+1 (T = 0) =

1

22k

(
2k

2

)
and for even n:

〈〈f2k (T = 0)〉〉 =− 2k

24k+1

(
2k

2

)2

,

m2
2k (T = 0) =

1

22k

(
2k

2

)
All the functions of the sequence fn is limited between f1 = −1

2 and f2 = −1
4 .

Moreover the sequence for even n is monotonically decreasing with k while the
sequence with odd n is monotonically increasing, both with the limiting value − 1

π
for k → ∞ which coincides with the ground state energy per spin for a gaussian
distribution of ξµ.

The difference between is evident analyzing the low temperature behavior of the
Edwards Anderson order parameter:

qn =
〈〈
〈σi〉2

〉〉
=
〈〈

tanh2 (βmnzn)
〉〉
.

If n is odd, the minimum value of |z| is 1, then

qn ' 1− 2p (zn = 1) e−2βmn → 1
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as T → 0 For even n, the parameter at T = 0 is

qn ' 1− p (zn = 0) .

The solutions are obtained as solutions of saddle point equation:

~m =
1

N

N∑
i=1

~ξitanh
(
β ~m · ~ξi

)
.

The local stability of these solutions is studied analyzing the eigenvalues of the
Hessian matrix of the free energy:

Hµν =
∂2f

∂mµ∂mν
.

A detailed analysis (see again [48]) of these mean field solutions shows that the
Mattis states are the only stable solutions near T = 1. At lower temperature the
behavior is different: below a certain temperature 0 < Tn < 1 (Numerical solutions:
T3 = 0.461, T5 = 0.385 and T7 = 0.345) some of the odd-n symmetric solutions
became locally stable while all the even-n symmetric solutions are unstable for all
T . At T = 0 all the odd-n solutions are stable and order fully.

When the temperature increases, some odd-n solutions change its stability in a
certain direction. It does not usually exchange stability with another existing saddle
point which lie in that direction. Instead, an asymmetric saddle point between the
two existing saddle point appears. This situation is verified since the temperature is
T ' 0.575 when the n = 2 symmetric solution ~m = (m,m, 0, 0, .., 0) became unstable
due to the mixing of more memories.

4.3 Limit of finite α: from the retrieval to Spin Glass
phase

Let us proceed with the analysis of properties of the equilibrium statistical me-
chanics of the Hamiltonian (4.1) in the limit of finite α [4, 50].

In this case, in the low temperature phase the random overlaps with most of
patterns will be weak, typically of oder 1√

N
. However, one, or a finite number of

overlaps, could condense macroscopically, in other words, they will assume fixed
and finite values as N → ∞. In order to consider this possibility it is useful to
introduce external fields, aligned to a finite number of patterns ({ξνi }

1≤ν≤s
1≤i≤N ). Then

Hamiltonian will have a new term due to the presence of such external fields:

H [σ]h = −1

2

∑
i,j

Jijσiσj −
s∑

ν=1

hν
N∑
i=1

ξνi σi.

This approach is known as the Bogolyubov’s method of quasiaverages.
Moreover the replica method is necessary to proceed the analysis. As seen in

details for spin glasses in the previous chapter, it consists in computing the average
free energy from the analytic continuation of the average of the partition function of
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n uncoupled replicas of the initial system. Then the ”replica trick” consists in first
considering n as an integer and then taking the limit n→ 0 of the result.

This method is useful to evaluate the average free energy, in particular:

lim
n→0

fn = − 1

βN
lim
n→0

1

n
log 〈〈ZnJ 〉〉 = − 1

βN
〈〈logZJ〉〉 = 〈〈f〉〉 .

This property let compute the average of the free energy over the distribution of
patterns without evaluate the average of logZ which is an approach technically
difficult to deal with. The only function which is necessary to be averaged is the
partition function.

The partition function of the n replicas is thus:

(4.5)

〈〈Zn〉〉 =

〈〈 ∑
{σai }1≤a≤n1≤i≤N

exp

βN
2

n∑
a=1

p∑
µ=1

(
1

N

N∑
i=1

ξµi σi

)
·

 1

N

N∑
j=1

ξµj σj



− βαn

2
N + β

s∑
ν=1

hν
N∑
i=1

n∑
a=1

ξνi σ
a
i

〉〉

where a is the replica index over the n copies of the systems and hν are external
fields coupled to the projections of the configurations on the first s pattern. Note
that it is assumed that s << p.

Using the well-known property of gaussian:

∫ +∞

−∞
dxe−

k
2
x2+Jx =

√
2π

k
e
J2

2k ,

and setting the various parameters as:

J =
1

N

N∑
i=1

ξµi σi, k =
1

βN
, x = ma

µNβ,

then, the first term of the exponential in the above equation can be expressed
as:

n∏
a=1

p∏
µ=1

exp

βN
2

(
1

N

N∑
i=1

ξµi σi

)
·

 1

N

N∑
j=1

ξµj σj

 =

n∏
a=1

p∏
µ=1

{∫ +∞

−∞

(√
Nβ

2π
dma

µ

)
expNβ

[
−1

2

(
ma
µ

)2
+ma

µ

1

N

N∑
i=1

ξµi σ
a
i

]}
.
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Substituting this result in equation (4.5) we obtain:

〈〈Zn〉〉 =

〈〈
e−

βα
2
nN

∑
{σai }1≤a≤n1≤i≤N

∫ n∏
a=1

p∏
µ=s+1

(√
Nβ

2π
dma

µ

)

exp

Nβ p∑
µ=s+1

n∑
a=1

(
−1

2

(
ma
µ

)2
+ma

µ

1

N

N∑
i=1

ξµi σ
a
i

)
∫ n∏

a=1

s∏
ν=1

(√
Nβ

2π
dma

ν

)

exp

[
Nβ

s∑
ν=1

n∑
a=1

(
−1

2
(ma

ν)2 + (ma
ν + hν)

1

N

N∑
i=1

ξνi σ
a
i

)]〉〉
.

The sums and the products over ν and µ are respectively over the first s patterns
and over the remaining p − s patterns. The average over the first s ξνi ’s describes
the fact that these random variables are discrete while the average over the infinite
number of other pattern (remember the limit N → ∞ implies p → ∞) become an
average over a gaussian measure.

Then the average over ξµi ’s is now made explicit:

〈〈Zn〉〉 =e−
βα
2
nN

∑
{σai }

1≤a≤n
1≤i≤N

∫  N∏
i=1

p∏
µ=1

P (ξµi ) dξµi


∫ n∏

a=1

p∏
µ=s+1

(√
Nβ

2π
dma

µ

)
exp

Nβ p∑
µ=s+1

n∑
a=1

(
−1

2

(
ma
µ

)2
+ma

µ

1

N

N∑
i=1

ξµi σ
a
i

)
∫ n∏

a=1

s∏
ν=1

(√
Nβ

2π
dma

ν

)
exp

[
Nβ

s∑
ν=1

n∑
a=1

(
−1

2
(ma

ν)2 + (ma
ν + hν)

1

N

N∑
i=1

ξνi σ
a
i

)]
.

Let us focus on first member of the last equation, in particular let us now perform the
average of the first exponential, over p− s patterns. As seen before, the probability
of each random variable ξµi is P (ξµi ) = 1

2δ (ξµi − 1) + 1
2δ (ξµi + 1):

∫ ( N∏
i=1

P (ξµi ) dξµi

)
expNβ

n∑
a=1

[
−1

2

(
ma
µ

)2
+ma

µ

1

N

N∑
i=1

ξµi σ
a
i

]

= e−
Nβ
2

∑n
a=1(maµ)

2
N∏
i=1

(∫
P (ξµi ) dξµi expβ

n∑
a=1

ma
µξ
µ
i σ

a
i

)

= e−
Nβ
2

∑n
a=1(maµ)

2
N∏
i=1

cosh

[
β

n∑
a=1

ma
µσ

a
i

]

Now it is useful to rescale the integration variables:

ma
µ →

ma
µ√
N
,
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then the part of the first member relative to sums and products over µ results to be:∫ n∏
a =1

p∏
µ =s+1

(√
β

2π
dma

µ

)
exp

p∑
µ =s+1

[
−β

2

n∑
a=1

(
ma
µ

)2
+

N∑
i=1

lncosh

(
β√
N

n∑
a=1

ma
µσ

a
i

)]
.

In the thermodynamic limit, N →∞, the function ln[cosh(ax)] can be expanded as
(ax)2

2 :∫ n∏
a =1

p∏
µ =s+1

(√
β

2π
dma

µ

)
exp

p∑
µ =s+1

[
−β

2

n∑
a=1

(
ma
µ

)2
+
β2

2N

N∑
i=1

n∑
a=1

n∑
b=1

ma
µσ

a
im

b
µσ

b
i

]
.

Moreover the integration over ma
µ gives:∫ ∏

(a,b)

δ

(
qab −

1

N

N∑
i=1

σai σ
b
i

)
dqab

×
p∏

µ =s+1

∫ n∏
a=1

(√
β

2π
dma

µ

)
exp

−β
2

(1− β)

n∑
a=1

(
ma
µ

)2
+
β2

2

n∑
a6=b=1

ma
µm

b
µqab


=

∫ ∏
(a,b)

δ

(
qab −

1

N

N∑
i=1

σai σ
b
i

)
dqab

×
p∏

µ=s+1

[∫ (
β

2π

)n
2

d~mµ

]
exp

[
−β

2
(1− β) ~mT

µ1~mµ +
β2

2
~mT
µQ~mµ

]

=

∫ ∏
(a,b)

δ

(
qab −

1

N

N∑
i=1

σai σ
b
i

)
dqab

 p∏
µ=s+1

[
1

det [(1− β)1− βQ]

] 1
2

=

∫ ∏
(a,b)

dqab exp
[
−p

2
Tr log [(1− β)1− βQ]

]
×

∏
(a,b)

δ

(
qab −

1

N

N∑
i=1

σai σ
b
i

)
.

The products over the couple (a, b) are over two replicas indexes such that a < b. Q
is the n× n matrix of overlap qab which has only n (n− 1) /2 independent variables
(remember that the overlap is symmetric: qab = qba). The last two lines are obtained
using the property of gaussian integral in n-dimensional:∫

e−
1
2

∑N
i,j=1 Aijxixj+

∑N
i=1 JixidNx = e−

1
2
~xTA~x+ ~JT ~xdNx

=
(2π)

N
2

√
detA

e
1
2
~JTA−1 ~J

=
(2π)

N
2

√
detA

e
1
2

∑N
i,j=1 A

−1
ij JiJj .
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Now it is useful to write the delta function in another way in order to rewrite the
last term as: ∫ ∏

(a,b)

drab

∫ ∏
(a,b)

dqab exp
[
−p

2
Tr log [(1− β)1− βQ]

]
×

exp
N

2

−αβ2∑
a6=b

rabqab +
αβ2

N

∑
a6=b

N∑
i=1

rabσ
a
i σ

b
i

.
Finally after the average over the {σai }

1≤a≤n
1≤i≤N and the quenched average, the

partition function of the n replicas in (4.3) results to be:

〈〈Zn〉〉 = e−
βα
2
nN

∫ ∏
(a,b)

dqabdrab

∫ s∏
ν

dma
ν ×

expN

−1

2
β
∑
a

∑
ν

(ma
ν)2 − 1

2
αTr log [(1− β)1− βQ]− αβ2

∑
a6=b

rabqab

×
exp

〈〈log Tr{σai }1≤a≤n1≤i≤N
exp

1

2
αβ2

∑
a6=b

N∑
i=1

σai σ
b
i + β

∑
a

∑
ν

(ma
ν + hν) ξνσai

〉〉
ξ

.
As N → ∞, the integrals are dominated by the saddle point. Physically the

parameters ma
µ, qab and rab have meaning as a consequence of the saddle point

equations.
ma
µ is the overlap with a learned pattern:

ma
µ =

1

N

〈〈
N∑
i=0

ξµi 〈σ
a
i 〉

〉〉
,

qab is the Edwards-Anderson order parameter:

qab =
1

N

〈〈
N∑
i=1

〈σai 〉
〈
σbi

〉〉〉
,

and rab is the Lagrange multiplier:

rab =
1

α

p∑
µ>s

〈〈[
1

N

N∑
i=1

ξµi 〈σ
a
i 〉

]
·

[
1

N

N∑
i=1

ξµi

〈
σbi

〉]〉〉

=
1

α

αN∑
µ=s+1

〈〈
ma
µm

b
µ

〉〉
.

Then, after having evaluated the integrals with the saddle point, the free energy
per spin in the limit n→ 0 results:

(4.6)fn =
α

2
+

1

2n

s∑
ν=1

n∑
a=1

(ma
ν)+

α

2βn
Tr log [(1− β)1− βQ]+

αβ

2n

n∑
a6=b

rabqab−
1

nβ
〈〈logZ0〉〉
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where

Z0 = Tr{σai }
1≤a≤n
1≤i≤N

exp

αβ2
2

n∑
a6=b

rabσ
a
i σ

b
i + β

∑
a

∑
ν

(ma
ν + hν) ξνσai


4.3.1 Symmetric replica solutions

Now the analysis continue using the replica symmetric ansatz. According to this
approach, the possible free energies are restricted considering that all the replica of
the system are thus equivalent and it is possible to set all the parameters equals:

ma
µ = mb

µ ∀µ
,qab = q a 6= b

,rab = r a 6= b.

Then, after having substituted these parameters in equation (4.6), we have to
conclude the replica method computing the limit n → 0. In order to make this
computation let us consider the limit for single parts of equation (4.6).

1) Let us consider the matrix (1− β)1 − βQ. It has one eigenvalue 1 − β −
(n− 1) qβ and n− 1 eigenvalues 1− β − qβ. Then the limit n→ 0 implies:

lim
n→0

1

n
Tr log [(1− β)1− βQ] = lim

n→0

1

n
[log (1− β − (n− 1) qβ)

+ (n− 1) log (1− β − qβ)]

= log (1− β + qβ)− qβ

(1− β + qβ)
.

2) Then, the sum:

lim
n→0

1

n

n∑
a6=b

rabqab = −qr.

3) The limit n → 0 of the average over the distribution of pattern can be ex-
changed and can be seen as the average of the limit n→ 0:

lim
n→0

1

n

〈〈
log

[
Tr{σai }1≤a≤n1≤i≤N

e

(
αβ2

2
r
∑n
a6=b σ

a
i σ

b
i−

1
2
nαβ2r

)
e(β

∑
a

∑
ν(m

a
ν+h

ν)ξνσai )

]〉〉
= −1

2
αβ2r

+ lim
n→0

1

n

〈〈
log

∫
dz√
2π

[
−z

2

2
+ n log 2cosh

[
β
√
αrz + β

(
~m+ ~h

)
· ~ξ
]]〉〉

ξ

= −1

2
αβ2r +

∫
dz√
2π
e−

z2

2

〈〈
log 2cosh

[
β
√
αrz + β

(
~m+ ~h

)
· ~ξ
]〉〉

ξ
.

In conclusion, the resulting free energy per spin is:

f =
α

2
+

1

2

s∑
ν=1

(mν) +
α

2βn

[
log (1− β + qβ)− qβ

(1− β + qβ)

]
+
αβ

2
r (1− q)

− 1

β

∫
dz√
2π
e−

z2

2

〈〈
log 2cosh

[
β
√
αrz + β

(
~m+ ~h

)
· ~ξ
]〉〉

ξ
.
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Then at the saddle points, obtained as the stationary states which minimize the
last equation, the parameters ma

µ, qab and rab are respectively:

mν =
〈〈
ξνtanh

[√
αrz +

(
~m+ ~h

)
· ~ξ
]〉〉

, (4.7)

q =
〈〈

tanh2
[
β
√
αrz + β

(
~m+ ~h

)
· ~ξ
]〉〉

, (4.8)

r =
q

(1− β + qβ)2
. (4.9)

The average 〈〈...〉〉 now is the combined average over the ξν ’s and over the gaussian
noise z.

The results exhibit two components: a ferromagnetic contribute ~m ·~ξ, due to the
s condensed overlaps and a spin glass part

√
αrz due to the random overlap with

the remaining patterns.
Equations (4.7), (4.8) and (4.9) have two kind of solutions: a solution such that

~m = 0, q, r 6= 0, which is a Spin Glass state characterized by none macroscopic
overlap. It does not contribute to associative memory. The other possibility is a
ferromagnetic solutions which have also ~m 6= 0: the system, when these solutions
are verified, exhibits, for small α, associative memory.

4.3.2 Ferromagnetic solutions at T = 0

Ferromagnetic solutions are characterized by macroscopic overlap with a single
learned pattern. These solutions have 2Nα degenerate solutions. In the limit α→ 0
they approach the Mattis states as seen for finite p.

In the limit of zero temperature, β →∞,∫
dz

2π
e−

z2

2 tanh
(
β
√
αr + βx

)
=

√
2

π

∫ x√
αr

0
dze−

z2

2 +O

(
1

β

)
= erf

(
x√
2αr

)
+O

(
1

β

)
,

equation (4.7) becomes:

mν =

〈〈
ξνerf

[
1√
2αr

(
~m+ ~h

)
· ~ξ
]〉〉

ξ

where the average is over the discrete distribution of ξν , ν = 1, ..., s.
The parameters result:

q = 1− CT

r =
1

(1− C)2

where

C =

(
2

πrα

) 1
2

e−
m2

2rα .

The parameters have always the solution with m = 0 which is the Spin Glass (SG)
solution, with no macroscopic overlaps with any patterns. For α > αC = 0.138
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there is not other solutions with m 6= 0. Instead, for α < αC , there are also the
ferromagnetic solutions where m 6= 0. There are 2p of such kind of solutions. They
appear at α = αC with an overlap m = 0.967.

In particular, the ferromagnetic solutions have macroscopic overlaps with the
condensed patterns: these overlaps are close to unity and they exhibit associative
memory. Moreover, while there is a macroscopic overlap with these patterns, they
have very small overlaps with the other patterns and they are randomly distributed
and of order 1√

N
.

The average energy per spin when the system exhibits a macroscopic overlap m
with one of the learned patterns is:

E =

〈〈
− 1

2N2

p∑
µ=1

N∑
ij

ξµi ξ
µ
j σiσj

〉〉
+
α

2

=− m2

2
+
α

2
(1− r)

At α = αC , E = −0.5014, whereas as α → 0, for finite m, E → −0.5. For finite
α the system is able to slightly lower its energy by relaxing a small fraction of the
spins, to accommodate for fluctuations in the overlap of the other patterns.

4.3.3 Spin Glass solutions at T = 0

Let us focus on the spin glass solution, where m = 0 and q, r 6= 0. As seen
before, these conditions imply that:

r =

[
1 +

(
2

πα

) 1
2

]2

Moreover, using this last result, the energy of the spin glass state is equal to:

E = − 1

π
−
(πα

2

) 1
2

In the limit α → 0, E → − 1
π and C =

√
2
παr → 1. This limit coincides with the

value of E of the symmetric solutions in the p-finite case, where the state mix n
patterns, in the limit n → ∞. This implies that, as p → ∞, the numerous states
which mix many patterns merge to form the present spin glass phase. Comparing
the energy of the spin glass and ferromagnetic states, the spin glass energy results to
be lower in the range 0.051 < α < 0.138, whereas the ferromagnetic states becomes
the absolute minimum below 0.051. Then at α = αC the spin glass state is definitely
the ground state of the system.

Even for α > αC there are states with nonzero m which are stable to single
spin flip. The number of these states will decay at finite T much faster than the
thermodynamically stable or metastable ferromagnetic states below αC , which are
surrounded by barriers of order N .
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Figure 4.1: Phase diagram for the Hopfield model. The system exhibit three
different phases. Under the curve TC the phase is ferromagnetic: the states with
m 6= 0 are the global minima of the free energy. In the limit T → 0 the ferromagnetic
phase persists since α < 0.051. Above the TM the system has a spin glass behavior:
m = 0 and q, r 6= 0. In the limit T → 0 the spin glass phase persists since α > 0.138.
Between TC and TM there is a ”mixture” phase: there are also ferromagnetic states
but they are only metastable states. In this phase the spin glass state is again
the global minima of the free energy. The phase transition at TC is a first-order
transition at which the ferromagnetic states becomes global minima. These states
start to appear under TM in a discontinuous way. The curve TR in the main plot
is the instability temperature for replica symmetric solutions. In the upper box
the instability temperature for broken replica symmetric solutions is plotted. This
image is reproduced from [50].

4.3.4 Finite temperature solutions

The spin glass phase appears as T decreases via a second order transition. The
expansions of equations (4.7) and (4.8) for ~m = ~h = 0 in powers of q and r gives the
transition temperature Tg:

Tg = 1 +
√
α.

Moreover, above T = 1 and below Tg there are only spin glass solutions for any
α. For α < αC , there are the ferromagnetic states with a single macroscopic overlap
m. They appear as T decreases below TM (α) but in a discontinuous way. The
minimum value of TM is 0.07, at α = αC . As α goes to zero, TM increases to the
T = 1 and m (TM ) go to zero, thus approaching the continuous transition of the
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p-finite case. Near TM , the ferromagnetic states are metastable. If α < 0.051, these
states become the global minima of f below a temperature TC (α). At TC (α), there
is a thermodynamic first order transition from a spin glass to a ferromagnetic phase
characterized by a discontinuous jump in m, q and r and by a latent heat.

TC (α) varies increasing monotonically from 0 at α = 0.051 to unity at α =
0. Others ferromagnetic solutions appear for sufficiently small α and T . These
solutions are characterized by ~m with more than one nonzero components. As seen
before, some of these ”mixture” states are metastable but any of them is an absolute
minimum at any T . This happened starting below α = 0.03 where a locally stable
solution with three symmetric overlaps appears.

So far we have assumed that replica symmetry is unbroken. This is clearly wrong
at T = 0, where the entropy per spin is

S = −1

2
α

[
log (1− C) +

C

1− C

]
with C = β (1 + q). This is negative for all replica symmetric solutions and then is
unphysical.

Moreover the condition of stability of the replica symmetric solutions is connected
to the ”eigenvalue”

λ = [1− β (1 + q)]2 − αβ
〈〈
sech4

[
β (rα)

1
2 z + β ~m · ~xi

]〉〉
.

The solutions are stable if this eigenvalue is positive. We find that λ < 0 in the spin
glass solution, for T < Tg. On the other hand, the ferromagnetic solutions result to
be stable in a finite temperature regime TR < T < TM . The instability temperature
TR (α) is shown in figure 4.1 for the stares with single overlaps. It decreases very
rapidly to zero with α as

TR (α) ∼
(

8α

9π

) 1
2

e−
1
2α .

It is possible to expand this analysis using the broken replica symmetry (see [2] for
a general approach to broken replica symmetry). This approach is not expected to
give substantial differences and it will not be presented there. For a detailed analysis
about the broken replica symmetry see [4].





Chapter 5

Topological characterization of a
Spin Glass transition

Nowadays the dynamical properties of Spin Glass systems are still of great in-
terest for their peculiar characteristics. In general Spin Glasses exhibit energy land-
scapes characterized by the existence of many rugged valley structures due to the
inherent frustration in the system: the free energy presents an exponential number
of minima separated by free-energy barriers [51] which make difficult to approach
the analysis of the dynamics. These properties make computationally expensive a
complete simulation with a Monte Carlo approach or an exact evaluation.

In this chapter we will present an alternative approach to overcome these prob-
lems and to understand this complex dynamics inspired from studies of the energy
landscape of glassy systems [5].

5.1 The Inherent Structure Approach

The starting point is to model a complex system as a network [6, 52, 53]. This
kind of approach results intriguing: according to this kind analysis, a large number
of complex systems from very different fields exhibit analogous emergent properties.

The main idea is to combine the methods taken form networks analysis to the
usual techniques of complex system theory in order to outline the global structure
of potential energy landscapes.

For a continuous system, the potential energy landscape is a multi-dimensional
configuration space where the dependence of the potential energy is a function of
the positions of all the atoms of the system. The landscape of a system with many
atoms will present a complex topography with higher-dimensional minima, saddles
and barriers. The topology of the landscape is thus strictly connected to the thermo-
dynamics and to the dynamics of the system. In this context, the inherent structure
approach of Stillinger and Weber [5] allows to simplify the analysis of such surface:
the landscape is partitioned into basins of attraction surrounding each minima. In
other words a basin of attraction is the set of every configurations which a local
minimization of the potential energy maps to the same minimum. See figure (5.1)
as example of the inherent structure approach for a Lennard-Jones system [6].

This partition provides a natural way to investigate the intrinsic properties of

53
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Figure 5.1: Inherent structure approach for representing the potential en-
ergy landscape of a Lennard-Jones system. (a) A two-dimensional energy
surface. (b) The inherent structure partition. According to this approach, the land-
scape is partitioned into basins of attraction surrounding each minima. A basin of
attraction is the set of every configurations which a local minimization of the poten-
tial energy maps to the same minimum. The basin boundaries are delimited by red
lines, the minima and transition states by blue and green points. (c) The inherent
structure network (ISN). The energy landscape can be represented as a network
where the nodes are the basins and the edges are the saddles connecting them and
the interminima dynamics can then be represented as a walk on this network. This
image is reproduced from [6].

the potential energy landscape and to describe the dynamics of the system: if the
temperature is low enough, a system spends most of the time around a minimum
and only occasionally jumps to a different minimum by passing over a transition
state. According to the latter approach the energy landscape can be represented
as a network where the basins are nodes and the edges link those basins which are
connected by a transition state. The interminima dynamics which describes the
effect of a nonzero temperature on the system, can then be represented as a walk
on this network. This kind of network is called inherent structure network (ISN).

The inherent structure approach can be a very useful tool to study the cooper-
ative behavior of complex systems and gives enthusiastic results in contexts where
configuration spaces are continuous [6]. An example of this approach for a Lennard-
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Jones systems is presented in figure (5.1)).
Spin Glass models, like Sherrington-Kirkpatrick and Hopfield, analyzed in the

previous chapters, present configuration spaces which are no more continuous: these
spaces are discrete, they are a boolean hypercube. In this kind of spin systems
definitions of saddles or transition states are not well defined and the inherent struc-
ture approach we have just presented is not easily applicable and it is necessary to
develop a more general approach.

RETRIEVAL CROSSOVER CONFUSED

Figure 5.2: Network schematic of Boolean Hopfield Networks with N =
10. These networks are obtained from the Hopfield model with zero temperature
synchronous dynamics. They are the complete graph of a single realization of p
fixed memories. Topological properties in different phases can be directly observed.
(a) p = 2, retrieval phase: the initial memories are the global minima of the system
indeed the network exhibits 2p evident basin of attractions. Other attractors are
metastable states or local minima. (b) p = 3, crossover: the dynamics is no more
dominated only by memories attractors and glass states became to emerge. (c)
p = 10, confused phase: the attractors of the dynamics are no more memories: now
the attractors are the Spin Glass states and the number of basins of attraction grows
exponentially with the size of the system. Networks are plotted using IGraph library
[64].

5.2 Zero temperature synchronous dynamics: from Hop-
field model to Boolean Hopfield Networks

The dynamical properties of random networks and disordered systems like glasses
exhibit several qualitative features in common, for example the randomness of the
topology of the energy landscape.

As seen before, the Hopfield model describes a network working as an associative
memory and it exhibits the property of storing and retrieving informations even if
given data are degraded. The system is defined by a set of boolean variables {σi},
neurons, that constitute the vertices of a complete graph with the same Hamiltonian:

H = −1

2

∑
j 6=i

Jijσiσj ,
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where the couplings are defined by choosing the set of p initial memories {ξµi }
1≤µ≤P
1≤i≤N .

For the present analysis the dynamics is a synchronous dynamics at T = 0 [58], each

RETRIEVAL CROSSOVER CONFUSED

Figure 5.3: Network schematic of Boolean Hopfield Networks with N = 10.
These networks are obtained from the Hopfield model with zero temperature syn-
chronous dynamics. They are the main subgraph of a single realization of p fixed
memories. Topological properties and the distribution of the number of incoming
vertexes in different phases can be directly observed. (a) p = 2, retrieval phase: the
initial memories are the global minima of the system. Indeed the others configu-
rations tend to evolve into the memory. (b) p = 3, crossover: the dynamics is no
more dominated only by memories attractors and glass states became to emerge.
(c) p = 10, confused phase: the attractors of the dynamics are no more memories:
now the attractors are the Spin Glass states and the number of basins of attraction
grows exponentially with the size of the system. Networks are plotted using IGraph
library [64].

neuron is updated at the same time according to the relation:

σi (t+ 1) = sign

 N∑
j

Jijσj (t)

 . (5.1)

If the sum results zero, the spin does not flip.

The Hopfield model equipped with this synchronous dynamics provide a natural
cross-over between Spin Glass theory and Random Boolean Network.

As shown before for RBNs, it is possible to build a network starting from a
synchronous dynamics: each configuration at time t is a node which is directly con-
nected throw an edge to the configuration in which evolves. In this case, for a given
realization of memories, the dynamics is completely deterministic and consequently a
topology can be univocally defined. This process gives rise to a new class of Random
Boolean networks, generalizing the ones introduced by Kauffman, characterized by
peculiar properties which would be linked to the original Hopfield phase transition
which can be called Boolean Hopfield networks. Examples of this kind of networks
for various number of memories corresponding to different phases of the Hopfield
model are plotted in figure (5.2).



Topological observables: a transition from compact to scale free networks 57

RETRIEVAL CROSSOVER CONFUSED

Figure 5.4: Network schematic of Boolean Hopfield Networks with N = 14.
These networks are obtained from the Hopfield model with zero temperature syn-
chronous dynamics. They are the main subgraph of a single realization of p fixed
memories. Topological properties and the distribution of the number of incoming
vertexes in different phases can be directly observed. (a) p = 2, retrieval phase: the
initial memories are the global minima of the system. Indeed the others configu-
rations tend to evolve into the memory. (b) p = 3, crossover: the dynamics is no
more dominated only by memories attractors and glass states became to emerge.
(c) p = 14, confused phase: the attractors of the dynamics are no more memories:
now the attractors are the Spin Glass states and the number of basins of attraction
grows exponentially with the size of the system. Networks are plotted using IGraph
library [64].

Boolean Hopfield Networks exhibit a general behavior which is strictly related to
the properties of the original Hopfield model. In order to investigate the hypotheses
presented in the last statement it is useful to observe the distribution of configu-
rations obtained through the spin dynamics. In figure (5.5) the probability that a
randomly chosen configuration evolves into one of the p memories is plotted. This
probability is computed though exact enumerations of the number of configurations
evolving in memories and is the result of averages of various realizations over ini-
tial patterns (10000 realizations for systems with N ≤ 25 and 100 for ones with
N = 30). The restricted range of systems is due to the time of computation: the
number of configurations of a given realization grows as a power of 2 increasing the
dimension of the system and similarly the computation time since every evolute has
to be valued. A single realization of a network with N = 30 spins needs 30 minutes
while for N = 35 more than 8 hours.

5.3 Topological observables: a phase transition from
compact to scale free networks

Thus the inherent structure approach gives an inspiration for studying the Hop-
field model as a random boolean network: for a given realization of initial memories,
the dynamics described by equation (5.1) defines univocally a topology on the phase
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Figure 5.5: Probability that a random configuration in a Boolean Hopfield
Network evolves in one of the p memories as a function of α = p/N .
This probability is computed though exact enumerations of the number of configu-
rations evolving in memories and is the result of averages over various realizations
of initial patterns (10000 for N ≤ 25 and 100 for N = 30). The errors are estimate
with standard deviation. The restricted range of systems is due to the time of com-
putation: the number of configurations of a given realization grows as a power of
2 increasing the dimension of the system and similarly the computation time since
every evolute has to be obtained. A single realization for a network of N = 30
need 30 minutes while for N = 35 more than 8 hours. Both axes of this plot are in
logarithmic scale.

space which can be well characterized through topological properties arising from
such networks like the number of incoming connections of each node, the indegree,
a parameter describing the weight of each node compared to the entire network,
and the probability distribution of finding each configuration during the dynamical
process. In the following sections we will present results concerned to this context.

5.3.1 Indegree: from compact support distributions to power laws

A network can exhibit an extraordinary complex structure and the connections
among the nodes can constitute a range of complicated patterns. It is possible to
characterize complex networks studying the degree of their nodes: the degree is
defined as the number of edges linking other nodes, included itself. Since Boolean
Hopfield Networks are built through a dynamics, they are directed. A direct network
has two different degrees, the indegree, which is the number of incoming edges, and
the outdegree, which is the number of outgoing edges. The synchronous dynamics
defined by equation (5.1) is deterministic: each configuration evolves in the same
state every time. Consequently all nodes of a Boolean Hopfield network has always
outdegree 1. Indeed the distribution of indegree emphasizes the collective properties
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Figure 5.6: System finite size scaling of the probability that a random
configuration evolves in a memory. The probabilities are plotted as a function
of the size of system, 2N , with α = p/N fixed in logarithmic scales. The errors are
estimate with standard deviation. The property of retrieval is not a feature which
depends on the number of memories p but it depends on the ratio between p and the
number N of spins α. The validity of the last statement is qualitatively suggested
by this plot. It is impossible to obtain more accurate results due to the fact that
memories are discrete variables.

of networks.

The distribution of indegree in Boolean Hopfield Networks depends on the real-
ization of initial memories: some results relative to a single realization are plotted in
figure (5.7) for various numbers of memories. The average distributions computed
over 1000 networks are presented in figure (5.9) for various numbers of memories.
These graphics are obtained with a logarithmic binning in base 2 on both axes.

The results are relative to finite systems with limited sizes for computational
reasons: a configuration is described as a string of N boolean variables and it can be
represented efficiently as a binary number, an integer variable. Each integer variable
in C++ allocates 4 bytes. A vector containing all 2N possible configurations of a
system will occupy 22N bytes. For example, exact simulations of a system of only
N = 30 spins will need 4 gigabytes of RAM.

The distribution of the indegree shows clearly different properties varying the
number of memories of the system.

Let us consider the details of the distributions for a single realization varying α.

A system built with only one memory has pathologic behavior: the distribution
of indegree exhibits two deltas, one corresponding to indegree 0, which represents
configurations which evolve in the memories, one to indegree 2N−1− 1, representing
the memory and its symmetric: the Z2 symmetry of the Hopfield model effects
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Figure 5.7: Distributions of indegree of a single realization of systems with
N = 25.
The distribution of the indegree shows clearly different properties varying the num-
ber of memories of the system.
(a) Retrieval regime, p=2: in the few memories case the distribution exhibits two
deltas corresponding configurations with zero indegree and memories with an huge
indegree. Moreover there are other deltas with intermediate values of indegree: they
are due to the presence of nodes with nonzero indegree in the memories basins of
attraction which eventually evolve in memories in a few steps.
(b) Crossover regime, p = 3: the distribution for intermediate number of memories
is a power law overlapping two deltas like in the few memories regime. In this case
memories are anyway attractors of the dynamics but now saddles points and Spin
Glass states are emerging from the spin glass phase.
(c) Confused regime, p = 7: increasing the memories the distribution is clearly a
power law. The complex behavior of the dynamics is reflexed in the network topol-
ogy: memories are no more the attractors and the basins of attractions depend on
the Spin lass solutions in the Hopfield model.
These graphics are obtained with a logarithmic binning in base 2 on both axes.

Boolean Hopfield Networks too. The dynamical behavior is clear: all configurations
evolve in the memory and its symmetric. This kind of characterization depends
strictly on the parity of the number of spins: the are two deltas in system where N
is even but when N is odd indegree distributions have the same appearance as for
few memories systems. The case characterized by a few number of memories exhibits
again two deltas corresponding to configurations with zero indegree and memories
with an huge indegree. Moreover the distribution has other deltas with intermediate
values of indegree. As an example see plot (a) of figure (5.7). The dynamical process
is a bit complicated: there are also nodes with nonzero indegree belonging to the
basins of attraction of the memories. They eventually evolve in memories in a few
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steps. The opposite case is characterized by a big number of memories. As an
example see plot (c) in figure (5.7). The distribution is clearly a power law: this
kind of Boolean Hopfield Networks are scale free. This statement means that they
contain multiple groups of nodes with more edges within a group and less connections
among groups. The complex behavior of the dynamics is reflexed in the network
topology: memories are no more the attractors and the basins of attractions depend
on the Spin Glass solutions of the Hopfield model.

Between these two cases there is a crossover regime which contains peculiarities
from both previous cases. See plot (b) in figure (5.7). The distribution is again a
power law merging with the two deltas like in the few memories regime: memories
are again the dynamical attractors but now saddles points and Spin Glass states are
emerging from the Spin Glass phase.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

E
n

tr
o

p
y

α=p/N

N=10
N=15
N=20
N=25

 N=30

Figure 5.8: Averaged entropy of the indegree distributions. The entropy
constitutes a measure of randomness of the distribution of indegree. There the
averaged entropy is plotted as a function of α = p/N for various sizes. The averages
are over 1000 realizations for N ≤ 25 and 300 for N = 30 and the errors are estimate
with standard deviation. The entropy exhibits the analogous behavior for different
sizes. It is possible to observe a qualitative change of the slope of the curves in
different regimes like seen with distributions of indegree: the entropy assumes his
minimum values in the few memories phase and seems to tend to a maximum value
in the Confused phase. The restricted sizes of networks do not allow to determinate
carefully this trend. In addition Hopfield networks defined from one memory have
different values bigger than the few memories regime. This property is due to the
pathological distributions of indegree characterized by only two deltas.

In Boolean Hopfield Networks, the distribution of indegree depends strictly on
the initial p memories which define the coupling constants of the original Hopfield
model. It is useful to introduce a notion of probability in order to generalize the
properties analyzed so far. The probability p that a node has indegree k can be
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defined from its frequency, the ratio between number of configurations which have
indegree k and the total number of states 2N , p :

[
0, 2N

]
→ [0, 1],

p : k 7→ # (k)

2N

such that
∑2N

k=0 p (k). Then it is possible to define the entropy function for a real-
ization of initial memories:

SJ (p) = −
p∑

k=0

(k) ln (k) .

This definition of entropy is strictly related to the initial memories and constitutes a
measure of randomness of the distribution of indegree. In figure (5.8) the averaged
entropy is plotted for various sizes of the system as a function of α = p/N for
various sizes. The entropy exhibits the same behavior for different sizes: the trends
corresponding to the few memories regime and to the Confused phase show clearly
how the general properties of entropy do not depend on the size. Consequently
the qualitative changes of regimes are the same seen in distributions of indegree:
the entropy assumes his minimum values in the few memories phase and seems to
tend to a maximum value in the Confused phase. The restricted sizes of networks do
not allow to determinate carefully this trend. In addition Boolean Hopfield networks
defined from one memory have different values bigger than the few memories regime.
This property is due to the pathological distributions of indegree characterized by
only two deltas.

The averaged distributions of indegree exhibits again three regimes varying the
number of memories of the system (see figure 5.9).

Again the average distributions of systems built from only one memory are patho-
logic: every realizations have the same distribution with two deltas and so it is for
the average. In the phase characterized by a few number of memories (for exam-
ple see plot (a) in figure 5.9) the averaged distribution exhibits a coexistence of
a compact support distribution and a peak. This kind of outlier is called Dragon
King : as we have seen in chapter on complex systems, according to Sornette the
presence of Dragon Kings reveal the existence of mechanisms of self-organization
that otherwise is not possible to observe from the distribution of the other events
and could be associated to phase transitions. In this particular class of Random
Boolean Network, the peak in the distribution of indegree is a consequence of a con-
densation of configurations which converge to a limited number of configurations,
which results to be memories. This Dragon King is present only at this stage and
is reabsorbed by increasing the memories until it disappears completely in the full
Confused phase. The regime characterized by a big number of memories (see plot
(c) in figure 5.9) presents an averaged distribution which is a power law. Again
the Spin Glass solutions of the Hopfield model prevail and affect the topology of
Boolean Hopfield networks: memories are no more the attractors. The crossover
regime contains peculiarities from both previous cases. See plot (b) in figure (5.9).
The averaged distribution is again a power law overlapping the two deltas like in
the few memories regime: the Dragon King suggests that memories are again the
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Figure 5.9: Averaged distributions of indegree for systems with N = 25.
Averaged distributions of the indegree show clearly different peculiarities varying
the number of memories of the system.
(a) Retrieval regime, p=2: in the few memories case the averaged distribution ex-
hibits a coexistence of a compact support distribution and a peak. This kind of
outlier is called Dragon King : this peak is a consequence of a condensation of con-
figurations which converge to a limited number of configurations, which results to
be memories. This Dragon King is present only at this stage and is reabsorbed by
increasing the memories until it disappears completely.
(b) Crossover regime, p = 3: the distribution for intermediate number of memories
is a power law overlapping two deltas like in the few memories regime. The Dragon
King suggests that memories are again the dynamical attractors but now saddles
points and Spin Glass states are emerging from the Spin Glass phase.
(c) Confused regime, p = 7: increasing the memories the averaged distribution is a
power law. Again the Spin Glass solutions of the Hopfield model prevail and affect
the topology of Hopfield networks: memories are no more the attractors.
These graphics are obtained averaging over 1000 realizations and plotted with a
logarithmic binning in base 2 on both axes.

dynamical attractors but now saddles points and Spin Glass states are emerging
from the Confused phase.

The averaged distribution of indegree allows to characterize qualitatively the
transitions through the various regimes described so far. The distributions varies
clearly and the phase transition can be described as a transition from a compact
network, for the few phase memories, to a scale free network, in Confused phase. The
presence of Dragon Kings which is reabsorbed by increasing the memories completes
the peculiarities of this topological observable.

The scaling exponent, which determines the power laws of the averaged distri-
butions of indegree, can be considered as a parameter to characterize more quan-
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Figure 5.10: Scaling exponent of the averaged distribution of indegree.
The scaling exponent, which describes the power laws of the averaged distributions
of indegree, can be considered as a parameter to characterize more quantitatively
the transition. The scaling exponents exhibit similar behaviors for different sizes and
shows clearly different peculiarities corresponding to the few memories regime and to
Confused phase. The power laws has been fitted with the distribution p (k) = Ck−γ

through the maximum likelihood estimator as seen in the previous section about
power laws. Every lines corresponds to the exponent as a function of α for a different
sizes of the system.
The averages are over 1000 realizations for N ≤ 25 and 300 for N = 30.

titatively the transition. In the chapter on complex systems we have studied the
power law probability distribution p (k) = Ck−γ and how to fit this kind of functions
through the maximum likelihood estimator. In figure 5.10 the scaling exponents are
plotted as a function of α = p/N for various sizes. The scaling exponents exhibit
similar behaviors for different sizes and again shows clearly different peculiarities
corresponding to the few memories regime and to Confused phase. The results give
support to the hypotheses that the scaling exponent has a universal form which
seems to independent of the size. The exponent of the power law, γ ≈ 2.6, is sim-
ilar to other scale-free networks [59]. The cause of the random-graph like scaling
of the average separation is thus the scale-free topology of the ISN. The network is
extremely heterogeneous with a few hubs that have a very large number of connec-
tions, but with the majority of nodes only connected to a relatively small number
of other minima.

The finite systems which can be exactly investigated give only a weak indica-
tions of the transition in Boolean Hopfield Networks, it is necessary to continue the
analysis with a numerical approach.
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5.3.2 Google Rank: a numerical approach

The results presented so far are interesting but confined due to the limited sizes.
As seen before, an exact analysis for systems bigger than N = 30 is not realizable be-
cause it requires excessive processing resources since configuration spaces dimensions
grow as 2N . Consequently it is necessary a numerical approach.

A naive method could could be the computation of the probability distribution
of finding each configuration during the dynamical process with a trivial Monte
Carlo method. For example the sampling could consist of picking N random con-
figurations {σi} and computing evolute configurations through the spin dynamics.
Unfortunately this kind of approach underrate the sampling space and it is not
interesting at all.

A more effective tool of network theory is the Google Rank.

Figure 5.11: Google Rank Plot of a single Boolean Hopfield Network with
N = 40.
The Google Rank algorithm has been performed with d = 2 deterministic steps
and with 10000 random jumps. In this case the Z2 symmetry is taken in account: a
configuration and its symmetric contribute in the same way. It is possible to identify
again three regimes.
(a) retrieval phase, p = 2: there is a compact step distribution which exhibits a
plateau associated to the memories. The number of configuration of this plateau are
exactly the number of memories.
(b) critical phase, p = 4: the distribution is now a power law. The plateau is
reabsorbed by increasing the memories.
(c) spin-glass phase, p = 10: the distribution is simply a power law.

The growing World-Wide Web requires effective ranking methods in order to
optimize the web search. The Google Rank algorithm was originally developed as
a quantitative method for analyze connectivities in this context. Interesting results
with Google Rank have been obtained in ecology [54] and in the citation network in
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Figure 5.12: Google Rank Plot of a single Boolean Hopfield Network with
N = 200. The Google Rank algorithm has been performed with d = 16 deterministic
steps and with 10000 random jumps. In this case the Z2 symmetry is taken in
account: a configuration and its symmetric contribute in the same way. For a bigger
three regimes can be easily identified. (a) retrieval phase, p = 4: there is a compact
step distribution which exhibits a plateau associated to the memories. The number
of configuration of this plateau are exactly the number of memories. (b) critical
phase, p = 10: the distribution is now a power law. The plateau is reabsorbed by
increasing the memories. (c) spin-glass phase, p = 50: the distribution is simply a
power law.

papers of American Physical Society [55].

In the following topic we will use a variant of the algorithm. The Google Rank
has been developed in order to quantify numerically the relative importance of an
element of network within the network itself. n this case, a surfer is placed on a
randomly chosen vertex of the network. Then its position is changed according to the
following dynamics: for d times the surfer jumps to the neighboring vertex according
to the synchronous spin dynamics. Then the surfer gets bored and starts again from
a randomly selected vertex. Consequently the Google Rank gives higher weight to
configurations that are the evolutes of configurations and have higher indegree and
also weights configurations which are the attractors of the spin dynamics. Because
of these attributes, this method identifies a large number of special configurations
with are the most outstanding in Boolean Hopfield Networks.

The Google Rank is thus applied to Boolean Hopfield Networks.

In figures (5.11) and (5.12) are shown the Google Rank for single realizations with
various sizes as a function of the rank, a number associated to each configuration
ordered decreasing the corresponding Google Rank. Analogous analysis have been
performed averaging over the possible memories. Results are plotted in figures (5.13)
and (5.14) with different sizes.
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Figure 5.13: Averaged Google Rank Plot of Boolean Hopfield Networks
with N = 40. The Google Rank algorithm has been performed with d = 2 deter-
ministic steps and with 10000 random jumps. In this case the Z2 symmetry is taken
in account: a configuration and its symmetric contribute in the same way. For a
bigger three regimes can be easily identified. (a) retrieval phase, p = 2: there is
a compact distribution which exhibits a plateau associated to the memories. The
number of configuration of this plateau are exactly the number of memories. (b)
critical phase, p = 4: the distribution is now a power law. The plateau is reabsorbed
by increasing the memories. (c) spin-glass phase, p = 10: the distribution is simply
a power law.

Even the Google Rank suggests the presence of a collective behavior characterized
by the phase transitions described so far with indegree distributions. Again, in
the phase characterized by a few number of memories, the retrieval regime, the
Google Rank exhibits an overlap of a distinct plateau consisting of configurations
corresponding to memories, and a distribution with compact support. Examples are
plotted in (a) in figures (5.13) and (5.14). This kind of plateau is directly linked to
Dragon Kings seen in distributions of indegree: the plateau is present only at this
stage and is reabsorbed by increasing the memories until it disappears completely.
Indeed, confirming this statement, the plateau is less defined in the critical regime,
as can be seen in plots (a) of figures (5.13) and (5.14).

The scale-free topology of the Spin Glass phase in Boolean Hopfield Networks
suggests a reflection on global optimization, the task of locating the global minimum.
In the Spin Glass phase attractors are also the minima of the Hopfield Hamiltonian
and searching the global minimum is a NP-hard problem. NP-hard in computa-
tional complexity theory is a class of problems that are at least as hard as the
hardest problems in which proof are verifiable in polynomial time by a deterministic
Turing machine. This kind of systems, although the number of minima increases ex-
ponentially with the size of the system, as a class of scale-free networks, has also the
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Figure 5.14: Averaged Google Rank Plot of Boolean Hopfield Networks
with N = 200. The Google Rank algorithm has been performed with d = 16
deterministic steps and with 10000 random jumps. In this case the Z2 symmetry
is taken in account: a configuration and its symmetric contribute in the same way.
For a bigger three regimes can be easily identified. (a) retrieval phase, p = 4: there
is a compact distribution which exhibits a plateau associated to the memories. The
number of configuration of this plateau are exactly the number of memories. (b)
critical phase, p = 10: the distribution is now a power law. The plateau is reabsorbed
by increasing the memories. (c) spin-glass phase, p = 50: the distribution is simply
a power law.

property of small-world: their diameter increases logarithmically with the number
of vertices [62]. Consequently they have to present an average number of steps in
the shortest path to the global minimum which grows sublinearly with system size.
Of course, finding the shortest path is not obvious: the process which determines
this path is not trivial and required information about the global energy landscape,
whereas a global optimization algorithm usually takes a step based on only local
information. Some methods which aim to find the shortest path to efficiently nav-
igate scale-free networks have been suggested using the property that most of the
shortest paths pass through highly-connected hubs [60, 61].

In Spin Glass phase there is a connection between the topology of a Boolean
Hopfield Network and the energy landscape which could provides an additional ad-
vantageous strategy in global optimization. The increasing number of links as the
energy decreases can be seen in figure (5.17) for a single realization of initial mem-
ories. This dependence results to be a power law.
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Figure 5.15: Probability distribution of Google Rank Plot of a single re-
alization of Boolean Hopfield Networks with N = 200. The Google Rank
algorithm has been performed with d = 16 deterministic steps and with 10000 ran-
dom jumps. In this case the Z2 symmetry is taken in account: a configuration and
its symmetric contribute in the same way. (a) critical phase, p = 10: the distribution
is now a power law. A delta is linked to memories as in the indegree distribution.
(b) spin-glass phase, p = 50: the distribution is simply a power law.

Figure 5.16: Averaged probability distribution of Google Rank Plot of
Boolean Hopfield Networks with N = 200. The Google Rank algorithm has
been performed with d = 16 deterministic steps and with 10000 random jumps. The
averege is over 250 realizations. In this case the Z2 symmetry is taken in account:
a configuration and its symmetric contribute in the same way. (a) critical phase,
p = 10: the distribution is now a power law. A delta is linked to memories as in
the indegree distribution. (b) spin-glass phase, p = 50: the distribution is simply a
power law.
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Figure 5.17: The dependence of the indegree of a node on the energy
of corresponding configuration for a system with N = 20 spins and 20
memories. The data poins are for each node of a relation and the solid line is a
binned average. The indegree is plotted in logarithmic scale.

5.4 Conclusions

The main results are related to the Hopfield model with a zero temperature
synchronous dynamics. This dynamics, according to the method inspired from the
Inherent Structure Approach, generates a new class of Random Boolean Networks
that we called Random Hopfield Network. This approach allows to define univocally
a topology on the phase space which can be characterized through topological prop-
erties arising from such networks like the number of incoming connections of each
node, the indegree, a parameter describing the weight of each node compared to the
entire network, and the probability distribution of finding each configuration during
the dynamical process.

It is fundamental to underline how geometric these considerations are sufficient
to characterize these phase transitions in the contest of Random Boolean Networks
as an alternative to the standard approach using overlap between configuration
and local magnetization as order parameters. We have presented strong evidences
of phase transition in the context of networks theory: Boolean Hopfield Networks
exhibit a transition from compact networks in the regime of few memories to scale
free networks in the Spin Glass phase. This transition can be characterized in
terms of the distributions of connectivities: the properties of such systems change
substantially varying α, the rate between the number of memories p and of spins
N . The collective behavior originating from Hopfield model emerges clearly also in
this approach of network analysis: transitions from compact distributions to power
law distributions which are present both for indegrees and for Google Ranks are
fundamental mainstay of this work. Dragon Kings in indegree distributions and
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plateaus obtained with Google Rank complete the description of the few memories
phase: networks condenses to a regime where the most of configurations converges
to a limited number of configurations, the memories. Memories are definitively the
attractors of the dynamics and coincide to the absolute minima of the Hamiltonian.

For what concerns the spin glass phase, it would be interesting to understand if
the scale free network is a feature peculiar to Hopfield model, or more in general (as
we suspect), is a general characteristic of spin glass models. We have preliminary
evidences that the same scale free graph is also obtained in the SK and K-sat models.
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