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Introduction

In the 80’s, the field of disordered systems received a boost by the solution of a prototype prob-
lem, the Sherrington-Kirkpatrick Model, achieved by Parisi and collaborators. New theoretical
methods led to the understanding of new, interesting phenomena, typical of disordered frus-
trated systems in mean-field approximation. These features, like the existence of an extensive
number of pure phases, not related by any symmetry, and their organization in an ultrametric
structure, cannot be treated with standard tools of statistical mechanics.

The theory of disordered system receives interest also for its applications in Computer Sci-
ence. A combinatiorial optimization problem can be restated in terms of a statistical mechanics
problem with a Hamiltonian mimicking the cost function. Recently this research field is re-
ceiving considerable attention, since the development a new class of algorithms, named Survey
Propagation algorithms. They are based on equations derived from an analysis of Onsager cav-
ity fields, exploiting the physical knowledge of the phase space complexity structure, and they
are capable of solving optimization problems even for instances of hardness and sizes where
traditional algorithms fail.

Many questions are open in this field, both from a numerical and a theoretical point of
view. It would be important to understand what kind of problems this way of proceding can be
extended to, and to improve the performances of existing algorithms, with a better control of
the approximations they rely on.

In the first chapter, we review some basic concepts of statistical mechanics, and we introduce
some tools useful in the study of disordered materials. In particular, we shortly present the Parisi
Solution to the Sherrington-Kirkpatrick Model, discussing the replica method, the phenomenon
of Replica Symmetry Breaking, and the ultrametric structure of the phase space.

In the second chapter, another method is presented, the Cavity approach. The main idea
dates back to the same years of the Replica method, and its main difference with it is that the
cavity method can be applied also at given instance; only recently it has been applied to systems
with Replica Symmetry Breaking, and it has been recognized to be particularly suitable for finite
connectivity systems. Besides, Survey Propagation Algorithms are based on it. The derivation

presented here is original. We describe a general class of models it applies to, and derive cavity
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equations, emphasizing all approximations involved, both in the Replica Symmetric case, and in
the case where many pure phases are present. We finally discuss how to extend these equations

when averaging over disorder, a delicate topic for which a general discussion is lacking.

The third chapter is a short introduction to optimization theory, and describes qualitatively
some of the most fruitful exchanges between statistical physics and computer science. The

connection between optimization problems and physics is briefly exposed.

In this context, the study of a simple model, the Random Assignment Problem, is significant.
This problem has considerable practical drawbacks in the world of information theory: it is pos-
sible to connect it to the traffic scheduling in routers for network applications. Besides, it shows
many interesting features also from a theoretical point of view. The fourth chapter focuses on
this aspect. We introduce the model and apply the general theory of the Cavity Method to
derive cavity equations at finite temperature for this problem. The statistical investigation of
these equations, when averaging over disorder, is possible in the context of distributional equa-
tions. Using general theorems on Independent Point Processes, Cavity Equations are translated
into differential equations for the cavity-fields distributions, from which one can find several
statistical properties of the model. The mathemathical tool of Independent Point Processes is
shortly treated in the Appendix, where also an original theorem is presented. This tool has
allowed us to solve the zero-temperature limit of the equations, reobtaining some known results;
it chiefly has allowed us to extend the investigation to new quantities, like the finite-temperature
distributions of the fields.

In the fifth chapter we again exploit the same technique to study the thermodynamics of an
extension of the Random Assignment Problem, named the k-assignment problem, proposed in
literature, but for which a statistical analysis was lacking. After deriving Cavity Equations, we
promote them to distributional equations, and find a local differential equation for the cavity-
fields distribution. Also an equation for the average ground state energy is obtained. Analytic

expressions are derived in the large k limit, with finite-k corrections.

The sixth chapter comes back to the world of computer science: we present some methods
for an algorithmic solution of the Assignment Problem and its variations. In particular, we
describe in general how linear programming techniques work, presenting the Simplex Method.
The Linear Programming formulation for Assignment problems is given. We then describe
another exact algorithm to solve the Assignment Problem, named the Hungarian Algorithm,
showing how it works. An original algorithmic implementation of Cavity Equations for the
Assignment Problem is given, highlighting some difficulties. The hardness of the satisfiability
version of the Assignment Problem, as a function of the threshold, is discussed both in the SAT
and in the UNSAT regions. Finally, we briefly mention the scheduling problem in routers, one

of the main application for the Assignment Problem.
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This thesis has also raised many open questions, both from a theoretical and an algorith-
mical point of view. In the last chapter, a short presentation of future development is given,
ranging from a possible treatment of other optimization problems with cavity-method based
distributional equations, to a future sistematic investigation of algorithmic implementations for

the Cavity Equations, applied to the Assignment problem.






1. Introduction to the Statistical

Mechanics of random systems

This chapter presents some basic concepts, used extensively in this work. The first three sections
deal a prototype model for ordered systems, the Ising Model: the concepts of phase transitions,
pure phases, Cluster property are stressed. We then turn our attention to disordered systems:
in the fourth section, we describe the relevant questions for these models, while in the fifth and
sixth, a prototype model for disordered systems, the Sherrington-Kirkpatrick Model, is discussed,
presenting the so-called Parisi Solution. The phenomenon of Replica Symmetry Breaking and

the ultrametricity of the phase space are described, as well.

1.1 Spontaneous Symmetry Breaking in infinite systems

Equilibrium Statistical Mechanics deals with thermodynamical systems with a large number of

degrees of freedom [1]. The thermodynamics is encoded in a small set of physical quantities

(such as temperature, pressure, free energy density, ... ), arising from average over the macro-
scopic number of variables (positions, momenta, spins, ...) which describe the microscopic
components.

A mathematical definition of a system at equilibrium is the datum of a set of external
parameters (temperature, pressure, etc.), a finite-dimensional space of configurations X = X2,
equipped with a reference measure dz , and a Hamiltonian H(z) : X — R. For each temperature
T = 1/4, the Gibbs probability measure

dun(z) = %e’gﬂN(w)dx (1.1)

is stable under any local dynamics preserving detailed balance at given 8, which is a standard
request for a first modeling of the microscopic dynamics for systems at equilibrium.’
The normalization factor Zy is named partition function, and its logarithm is extensive in

system size. This leads to the definition of the free energy Fn and the free energy density

n formulas, the transition rates W,_,, of the dynamics should satisfy W,_,,+ — 0 for |z —x'| = co (locality)
and Wy, /Wy = exp[—B(H(z') — H(z))] (detailed balance).
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f=Fy/N
Zn :/ dz e PN (), Fy=-1Zy. (1.2)
X B

A physical state for a given system corresponds to a linear functional over the space of observables

{A}. The linearity property is implicit in functionals © of the form

Q(4) = (), = Lx ol A). (13)

fX dpo(z)

Note that, if ergodicity fails, the Gibbs measure is not guaranteed to be the only equilibrium

measure on the system. Indeed, the infinite-volume limit (or thermodynamic limit) can lead to
new phenomena forbidden in finite systems, namely the ergodicity under local dynamics can be
broken, and the free-energy density of the system can be a non-analytic function of the physical
parameters. The points in the space of parameters in which f is singular are called critical
points. At these points, a phase transition can occur in the system.

The study of Critical Phenomena receives a boost from Universality Hypothesis®: the kind
of singularity at the critical points is determined only by general properties of the configura-
tion space and of the Hamiltonian (dimensionality of the underlying space, range of interaction,
symmetry property of the variables involved, ...). This fact justifies an abstract mathematical
approach to critical phenomena: the study of idealized models reveals critical properties of com-
plicated physical systems sharing the same universality characteristics of the model, i.e. which
belong to the same universality class.

A prototype phase transition, the spontaneous magnetization of ferromagnetic materials
below the Curie temperature, has provided a general lexicon in the field, for models describing the
most diverse phenomenologies. The Ising Model, introduced to describe this kind of transition,
has been a milestone in the theory of Critical Phenomena, since the acclaimed solution of the
two-dimensional version of the problem by Onsager in 1944 [3].

We consider a regular lattice in d dimensions (to fix the ideas, think of a hypercubic lattice
of side L), with ions on the N = L¢ vertices. Since we are interested in the magnetic behaviour,
we only consider the spin quantum number of each ion, neglecting vibrational modes around
the equilibrium positions. Anisotropy suggests us to deal with classical spins o; € {£1}. The
configuration space is thus {+1}", where N is the number of sites in the lattice. The Hamiltonian
is

H(o) = —JZO’Z'U]' - hZO'Z'. (1.4)
(i.9) i

where (7, 7) denotes pairs of first-neighbouring sites, J > 0 is the parameter defining the intensity

of the interaction, and h is an external magnetic field. Consider the magnetization of the system

*Nowadays, this hypothesis finds a justification in the context of Renormalization Group [2].
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Figure 1.1 Qualitative shape of the average magnetization m(T, h) for
the Ising Model in d > 1.

as a function of temperature and magnetic field
1
m(T,h) = (m(c)) my(e) = 5 20 (1.5)
2

In the thermodynamic limit, for d > 1 a critical point exists in the plane (T, h), for h = 0 and
T =T, > 0. The function m(T, h) is analytic on the whole half-plane T > 0, with the exclusion
of the line with zero external field and T € [0,7], and the original symmetry of the problem
reflects into m(T,h) = —m(T,—h). On the critical line there is a cut discontinuity: the limits
mt(T) = limy_,q+ m(T, h) and m ™ (T") = lim,_,o- m(T, h) do not coincide. This fact has strong

implications on the equilibrium measures of the system. Consider the two limit measures

uP(e) = tim pGn)(o); 1(o) = lim pEi)(o). (16)
— —0

A finite difference on the expectation value of an intensive quantity (as the average magnetiza-

tion m) implies that the measures uf) and u(_T)

do not coincide. This phenomenon is called
Spontaneous Symmetry Breaking.

Indeed, on the critical line, both measures are equilibrium measures for the system: two pure
phases coexist. The set of equilibrium measures is a convex: any equilibrium measure can be
written in one and only one way as a convex combination of extremal measures. The extremal
(T) (T)

measures on this convex correspond to pure phases. In this case, both uY ’ and u”’ correspond

to restrictions of the Gibbs measure to a region of the phase space (space of configurations).
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In our case we can state
,u(T) o) o e” T H=0() (1 (o ; ,u(,T) o) oc " TH=0(2)g(— (o)) . 1.7
_|_

Note that this definition makes sense also at finite size, although stability under time evolution

is obtained only in the thermodynamic limit, and derives from two facts

e local stability far from the 6 discontinuity is a consequence of proportionality with Gibbs

measure, and locality of the dynamics;

e the lack of stability near the edge of the 6 is thermodynamically irrelevant, as the measure
of the region of phase space with m = O(1/N) goes to zero exponentially with the size:
indeed, far from the critical point, thermal fluctuations of the magnetization are of order
O(N~Y2), and |m(T)| is of order 1.

We could say that the finite-size measures (1.7) correspond to “quasi”-pure phases: pictorially
speaking, they correspond to “valleys” of the phase space, whose border has a measure which goes
to zero exponentially with the size, and thus become a “separated world” in the thermodynamic
limit.

This picture can be generalized to more complex situations, and in particular to disordered

systems. On the other hand, some features are peculiar of Ising-like systems:

e The Hamiltonian at zero magnetic field is symmetric for flip of all spins: this implies that
time evolution commutes with this operation. Thus, either we have only one equilibrium
measure which preserves this symmetry, as in the high-temperature phase 7" > T, or the
set of equilibrium measures is stable under symmetry operation, NSFT) (o) = u(_T) (—0o),asin
the low-temperature phase T' < T,. On the contrary, a typical Hamiltonian of a disordered
system does not have any symmetry, and it is not possible to relate a pure phase to the

others via the action of a symmetry group.

e The free energy of the two phases, related to normalizations of the two (1.7), and defined
in analogy with (1.2), strictly coincide as a consequence of the original symmetry. In

disordered systems, many pure phases can exist, with free energies differences of order 1.

e The two pure phases of the system are identified by the expectation value of magnetization.
In this case we say that m is an order parameter for the transition. As shown above, we
can select one pure phase via a limit process (Bogoliubov criterium [4]). In disordered
systems, it is a difficult task to identify an order parameter, and to select a certain pure

phase.
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1.2 Characterization of pure phases and Cluster Property

A different approach to the definition of pure phases in a thermodynamical system exists. This
approach starts from the physical assumption that the ground state of a system is perturbed only
locally under local perturbations (say, measurements of a physical quantity), so measurements
far away in space do not allow non-trivial correlations.

This property must be true only for a given ground state: when the system allows for
different ground states (and thus several “valleys” for a perturbation-theory approach), if we
perform averages with a measure which is not extremal, correlations can originate from different
expectation values of physical observables in different pure phases. Indeed, if we have two
distinct pure phases, at least one physical observable must exist, such that its expectation value
in the two phases is different. Thus, a formalization of the physical picture above (which goes
under the name of Cluster Property), under general physical hypothesis, can be reconducted to

an equivalent definition of pure phase.

Theorem 1 ((naive) Cluster Property) A given equilibrium measure p on a physical sys-
tem describes a pure phase if and only if for each pair of local physical observables the connected
correlation function vanishes in the large distance limit:

V AB lim ((A(:EO)B(:E))—(A(aco))(B(x))>:O. (1.8)

|z—x0|—00

In the previous section, we defined some quantities using large finite systems, in order to guar-
antee a more precise mathematical control. In particular, we gave a hint on the concept of
finite-system “quasi”-pure phases (in the Ising Model at h = 0 and T' < T, the two measures
(1.7), when considered at finite size): although only in the thermodynamic limit they have all the
properties of pure phases (for instance, stability under a local dynamic), quantitative corrections
to these properties are typically bounded by functions of the size (for instance, metastability
lifetimes are expected to scale as T ~ exp(aN)).

In particular, we expect a version of the Cluster Property to hold in finite-size:

Theorem 2 ((naive) finite-size Cluster Property) Consider a family of equilibrium mea-
sures uy on finite-size physical systems, which converge to a measure p in the large N limit.
The limit measure u corresponds to a pure phase if and only if for each pair of local physical
observables the connected correlation function, calculated w.r.t. the finite-size measures, vanishes
in the large size, large distance limit, provided that some typical diameter d(N) of the system is
kept large w.r.t. the distance |z — xg| between the supports of the operators:

v AB tim  ((Az)B(@))y — (Alzo))y (B(x))y ) = 0. (1.9)

|z—z0|—00

N—o0
|z—xo|Kd(N)
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An intuition on the validity of Cluster Property is given by the example of the Ising Model.
Consider the model at h = 0 and T' < T, on a finite periodic lattice of size N = L. In this
case d(N) ~ L/2. As all sites are equivalent under translations, we have

T oy =y = o)y ¥ me (L. N}, (1.10)

From the discussion presented in the previous section, it is clear that any stable measure can
be reconducted to convex combinations of the two (1.7), in the termodinamic limit.> Thus, we

have a one-parameter family of measures

pi(o) =tp(o) + (1 - thui(o),  t€[0,1]; (1.11)

and, if m = m™*(T) is the average magnetization in the phase y, the average magnetization in
the phase y; is given by m(1 — 2t).

What happens is that, when T' < T, the correlation length of the system is finite, thus long-
range thermal fluctuations are suppressed. In the correlation function (o4,0,), at large distance,
either both spins are on average m, with almost decorrelated fluctuations (this happens with
probability (1 — ¢)), or both spins are on average —m, with almost decorrelated fluctuations
(this happens with probability ¢). So the expectation value of the correlation function in this
measure is

2

lim  (og,0), = m~, (1.12)
|z—x0|—00

for all choices of ¢. On the other side, both the one-point function (o,,) and (o) are on average
m(1 — 2t), so we have
lim (<azo>t <am>t) = m?(1 - 2t)? = m2(1 — 4¢(1 — 1)), (1.13)
|z—zo|—00
which coincides with equation (1.12) only in the two pure phase measures ¢ = {0, 1}.

To summarize, this section presents some simple non-rigorous hint on a mathematically
delicate task, that is, characterizing pure phases of a thermodynamical system via the cluster
property of correlation functions. The proof of the equivalence of this characterization with the
more intuitive “valley” picture, and with stability under local dynamic, is out of our purposes,
and is done in literature only for traditional ordered systems, with particular emphasis over
S-matrix theory in Quantum Field Theory [5], [6], [4].

The lack of an equivalent of Cluster Property for disordered systems, with a sound mathemat-

ical formulation, is an important subject of research. Indeed, as we will see in section 2.3, Cluster

3At finite size, “quasi’-stable measures can be reconducted to convex combinations of the two (1.7), up
to discrepancies in a part of the phase space, whose measure in any equilibrium distribution vanishes in the

thermodynamic limit.
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Property is a fundamental concept in the derivation of Cavity Equations for weak-inference dis-
ordered systems. Attention of the mathematical-physics community over this delicate point is

welcome.

1.3 Statistical Mechanics of Disordered Systems

Random models arose from the study of disordered materials. We have seen in section 1.1 that
the Ising Model is a prototype model for the realistic interaction of ferromagnetic ions on a
regular lattice. We now turn our attention to new features arising from the physics of systems
in which variables are located on a disordered lattice, like the one of a glassy material.

The Hamiltonian of this kind of system is described by an extensive number of external
parameters (e.g. the exact position of the atoms in a glass sample). A physicist is not interested
in the exact thermodynamics of a given sample, but rather to average behaviour over all possible
samples.

For this reason, a powerful modelization of these systems consists of an ensemble for the
parameters J describing the specific instance, equipped with an a priori measure du(J), and an
ensemble for the configurations o. The partition function will depend on J, and the measure

over configurations will be given by

1
(o) = e PHI), 7z, = / dor e=BHs(@) (1.14)
Zy X
As measurements are performed on a given sample, the calculation of a certain expectation value

should be the result of a quenched average

— 1
A= /du(J) (A, (4), = = [ doA(o)e @), (1.15)
Zy Jx
Remark that if the disordered degrees of freedom J were at thermal equilibrium as in standard
Statistical Mechanics, the result of the measurement would have been given instead by the

so-called annealed average

oo, = 5 [ Wl7) [ o A()e @), (1.16)

It is interesting to know whether the result of a measurement depends on the sample or not.
Observables whose average does not fluctuate with the sample in the thermodynamic limit are
called self averaging, i.e. if A is such an observable
A —(A) ;)2
tim AT (1.17)

N—oo ZQ
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where the bar denotes an average over disorder. In particular, for most physical systems the
free energy density is a self-averaging quantity.

Quenched averages are difficult. Many standard tools of statistical mechanics cannot be used
any more. The replica trick allows to compute the quenched average of any observable A, as

defined in equation (1.15), as an analytic continuation over a set of more controlled quantities:

n-1 (o) _

A4 [du(J) 7 ’ 0

At each integer positive n, the quantity (A)(") corresponds to a traditional annealed average on
a system in which n copies of the original one (replicas) are coupled via the same realization of

disorder J. Indeed, define a n-replica Hamiltonian as
Hi(or,o0) = Hiloa), (1.19)
a=1

we recognize that

(") — fdu(‘]) fdal da'n A(O’l)e_ﬂ,HJ(a'lf"ya'n)

A
) [du(J) [doy -+ doy e FHi(a100)

(1.20)

Note that the partition function of the n-replica system corresponds to the average n-th moment
of the partition function in the original system, Z7.
In particular, this technique is useful for finding the quenched average of the free energy

density; since

z" -1
InZ = lim , (1.21)
n—0 n
the free energy density can be calculated as an analytic continuation from the formula:
f= L nZz =i ! (Zm —1) (1.22)
T BN T A5 BN ' '

So we must find the expectation value over the disorder of the n-th moment of the partition
function. This is an annealed average, thus for each finite n it is easier to calculate, in general,
than a quenched average. Then we have to perform an analitic continuation on the parameter
n, which has a physical interpretation only when it is a positive integer. Indeed, the analitic
continuation will turn out to be the difficult point of the whole procedure. This task has
been fulfilled for the first time by Parisi and collaborators in the 80’s for a specific model,
the Sherrington-Kirkpatrick Model, which since then has become a prototype for mean-field

disordered systems.
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1.4 The Sherrington-Kirkpatrick model

In this section we will consider the Sherrington Kirkpatrick model at zero external magnetic

field. For a more extensive presentation, we refer the reader to [7, 8]. The Hamiltonian is:

> Jijoioj. (1.23)

1<i<j<N
It depends on two sets of variables: a set of N spins o, taking value in {1}, and a set of
couplings J. For each unordered pair (4, ), the value of J;; = Jj; is a random number, drawn
from a probability distribution ug(J); we will assume that the distribution is a Gaussian with

Zero mean

po(J) =4/ —e 27 . (1.24)
Notice that the interactions are infinite range: each spin interacts with all others and there is
no notion of ‘neighbouring’ or geometric distance between pairs of spins.

We want to use formula (1.22) to find the free energy density. We start with the calculation

of average moments of the partition function:
7= [T (dJn NE zﬁ) ; (125
1<j

note that o is now an element of the configuration space {il}”N . Integrating over J we get

Z]7<7 :Ze2N E¢<J(Ea 10'1 ])2 = (N n)nﬁ Ze a<b 7, 10’?0’?) . (126)

Note that % is of the same form if we exchange N with n, up to a constant factor. It is thus
natural to repeat backwards all the passages we have done so far, where now n is the system
size, and N is the number of replicas; after Gaussian integration, all the constants conspire to

highlight the N dependence of this quantity:

i _ mning? nwﬂ / dQuap ()
— ’ (1.27)
N };[b \/W

where Qg is a n X n symmetric matrix, zero on diagonal, which is the counterpart of J;; in
equation (1.25), and describes the couplings of the n-site system. The action S is a sum of two

parts
S[Q] = —In M[Q] — In Z[Q]; (1.28)

M|[Q)] is the Gaussian measure on Qg

g2 2
M[Q] = e~ 7 Za<s%ap | (1.29)
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and Z[Q] is the partition function of the n-site system,
ZQ= 3 &P Eear Qo (1:30)
oc{tl}n

It is now possible to apply the saddle point method to evaluate the integral. The only relevant
part of the action is S[Q*], where @* solves the saddle point equations

95[Q]
0 Qab Q

and corresponds to a minimum of the action.

=0, for all a, b, (1.31)

Note that S[Q)] is invariant under the action of the group of permutations of n elements, Gy,
so either Q* is symmetric, or there exist several solutions of these equations, which define an
orbit of a non-trivial subgroup of &,,.

Once we have found the solution to these equations for n positive integer, the free energy,

up to trivial contributions coming from the constant multiplying factor, is given by the analytic

continuation
= lim -S(@']. (1.32)
Equations (1.31) read
Qup = (0a00) , (1.33)

where the average is evaluated on the n-site replica system; also
Q= (0%a? Z <O’ (1.34)

in the original n-replica, N-site system.* This equation allows us to give a physical meaning to
the saddle-point matrix ¥, even for its analytic continuation in n.

Given two configurations, we define their overlap as
1
by _ b
q(o®, 0’) = N EZ oloy, (1.35)
and their distance as

d(O'g,O'S)—].—(](O'Z,O' ZNZU _U (136)

In replicated systems, these quantities give a measure of the correlation and the distance between

configurations in different replicas. The distribution at fixed instance

pi() = (8(a(0",0") ~ )) (1:37)

“This can be proved for example introducing a source term AH = ofh§ + Ufhﬁ:.’ in formula (1.25).
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does not depend on 7 since the contribution of the other n — 2 replicas is factorized. It can be

shown that the overlap distribution is not self-averaging. Consider its quenched average

() = / du(7) psla) (1.38)

and the distribution of @), entries on the saddle point

) 2! . '
p(Q) = }llj)% m agb §(Qu — Q) (1.39)
we find that equation (1.34) implies
p(Q) = p(q).- (1.40)

1.5 Replica Symmetry Breaking and the Parisi order param-

eter

We seek for a solution of the saddle point equations (1.31). Proposing an Ansatz for the matrix
@, it is natural to use a form which is symmetric under permutation of rows and columns, since

the action has this property. We thus try
Ansatz 1.5.1 (Replica Symmetric Ansatz) For all a < b, Qg = q.

Plugging this form in equation (1.31) and performing an analytic continuation of the result
for n — 0, one finds that the only solution at T' > T, = 1 is ¢ = 0, while below the critical
temperature there is another non-null solution of the saddle point equation.

Starting from the result we have found this way, it is possible to calculate the free energy
density and the entropy. Unfortunately, it turns out that at low temperature not only the free
energy density does not agree with numerical simulations, but also, the entropy is negative.
This is a clear sign that the RS Ansatz is not stable at all temperatures, and the n — 0 limit
hides some difficulties. In particular, it is possible to show that the proposed solution, who was
a minimum for the action at n > 1, becomes a maximum for 0 < n < 1. We are thus forced to
propose an Ansatz breaking the symmetry of the action.

We can classify all possible matrices Q5 with respect to their symmetry group G¢ of per-
mutations. For each subgroup Gg C Gy, a set of generators exists, containing only simple
transpositions of index pairs, or of pairs of subsets of indices with equal cardinality. For exam-

ple, the matrix

o
[=EE<HES S

Ol Q& Q&
O O
O 0 0| /K
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has corresponding group of invariance generated by the permutations (12), (34), (12)(34), (56)
and (57). Each group G¢ can be graphically represented as a rooted tree with n leaves: at each
node, there is an arc collecting ¢ branches iff the permutations which exchange rigidly the sets
of leaves in two of these branches are in Gg. For example, for the matrix () we would have

A special class of matrices is the one corresponding to fully symmetric trees, i.e. trees in which
each node has a unique arc connecting all its branches. This implies that the tree is graded®,
with a certain height k¥ + 1, and that nodes at distance k' from the root have all the same
number of leaves my below them. Of course, these numbers are integers and decreasing, n =
my >mi > ... >mg > mpy1 = 1, and each my, is a divisor of my,_1.

Define the distance between leaves on the tree, d(a,b), as the height of the node at which
the paths from the root to a and b divide. The symmetry described by a fully symmetric tree
implies that an element Qg in the corresponding matrix only depends on d(a,b), and will be
denoted as g4. From simple combinatorics, given the set of parameters my:, the number of pairs
(a,b) at distance d is given by

Cd — 'n’(md—F; - md) ’
from which we deduce that the function p(Q) corresponding to a fully symmetric tree with
height k£ + 1 is the sum of k deltas, with coefficients

p(Q) =

Zodé Q — qa)

(n_1/2d+0

—nNn

k
Z ma — ma+1)0(Q — qq) - (1.41)
=0

The tree describing the trivial group Gg = &, corresponding to a matrix of the form of RS
Ansatz (1.5.1), is the tree

5A tree T, with vertices V(T') and edges E(T), is graded if an height function h : V(T) — N exists such that
h(v) =0 if and only if v € V(T') is a leaf, and (v1,v2) € E(T) = |h(v1) — h(v2)| = 0.
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As d(a,b) = 1 for each pair a # b, we recover the fact that we have only one free parameter, g;.
Fully symmetric trees with height 3 describe to the so-called one-step Replica Symmetry
Breaking (1-RSB) pattern: this ansatz is fully given by a positive integer mq, which divides n,

and two real parameters qi, g2, and corresponds to the tree

In the analytic continuation, the constraint on m; to be a divisor of n should be discarded.
Indeed, performing all calculations, the resulting saddle-point equations inside this pattern yield
m1 € [0,1], and ¢; > go. It can be shown that, from a variational point of view, this choice is
better than the RS one, and the agreement with numerical simulations is improved. Nevertheless,
it still presents the paradox of a negative entropy at zero temperature, so a better ansatz is
welcome.

If we considered fully symmetric trees with larger depth (k-step Replica Symmetry Breaking,
or k-RSB, pattern) we would have a larger number of integer parameters my, ..., my, such that
my, divides mp11 for each h < k, and of real parameters q1, ..., gx+1-

Again, in the analytic continuation, we could treat the variables my as real numbers. The
resulting saddle-point inside this pattern would have 0 = mg < m; < ... < Mg < Mgy1 = 1,
and gp > qp+1 for each h < k.

This ideal procedure should suggest that, as we treat the variables my, as real variables in the
analytic continuation, we allow for a limit process in which both ¢; and mj, vary in a continuous
way, and h is promoted from an integer index to a real continuous variable. This limit process
is called full Replica Symmetry Breaking (0o-RSB). Define

sta) = [ " 40p(Q). (1.42)

At each finite depth k, the set of allowed z(q) is the set of monotonic k-step functions which
map R into [0,1]. The limit ¥ — oo allows to deal with generic monotonic functions, and also
the distribution p(q) = d%a:(q) admits a continuos part, and is not constrained to be a finite sum

of delta functions. If one solves the saddle-point equations, its form turns out to be

P(q) = Tmind(¢ — gmin) + Tmaxd(q — gmax) + P(q) , (1.43)

where the only singular parts correspond to a maximum and a minimum allowed value of ¢, while

p(q) is a smooth convex function on the interval [gmin, gmax)- It is possible to show that it gives
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00-RSB ——
RS
1-RSB ——
2-RSB —
3-RSB — |
i
L] |
( |
0 |
-1 gmin dmax 1

Figure 1.2 Qualitative plot of the function z(q), and of the functions
zk(¢g) found in the RS pattern, and in the k-RSB pattern, for k = 1,2, 3.

the correct value of free energy and entropy at low temperatures. In k-RSB patterns, with finite
k, not only one finds good numerical convergence to the full-RSB results for thermodynamic
quantities (free energy, entropy, ...), but also the function z(g) is the “best” approximant of
the full-RSB limit z(q) in the space of k-step functions (i.e., z(g) is the maximum of a certain
functional, and z(q) is the maximum of the same functional, restricted to the space of k-step
functions, see fig. 1.5). The physical content of this solution, also called the Parisi solution,
turned out to be quite surprising. We have seen in the previous paragraph that the function
p(g) solving saddle point equations was related by formula (1.40) to a physical quantity, the
quenched average of the overlap between two configurations. In a similar way, it is possible to
find the average values of joint probability that three configurations have a given set of mutual
overlaps, i.e. we ask for the probability that the overlap between the first and the second replica
is g, between the second and the third is ¢/, between the first and the third is ¢”; from saddle

point equations, with reasonings similar to the ones leading to equation (1.40), one finds:

by (qa q’a q”) = p(Qa Qla Q”) ’ (144)

where p(Q, Q', Q") is the distribution of the triplets of values which determine diagonal 3 x 3

submatrices of Q)gp:

!
p(@.Q,Q") = lim 5

n—0 n(n — 1)(

Ty 2 0@ - Q@ - @)0@e ~ Q) (1.49)

a<b<c

this quantity can be calculated for a generic p(q) of the form (1.43), not necessarily solving

saddle point equations; only at saddle point, instead, one gets the formula:

pi(e,¢,q") = %p(Q)w(qﬁ(q —q")0(qg—q")
1

+5(P@p@)0la—0)(d —d) + (@od) + (@),

(1.46)
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where z'(¢) = p(q). This equation states that, given three replicas, and three possible overlaps
between pairs of them, either they all have the same overlap, or two overlaps have the same value,
and the third one is larger. This implies that the phase space of the SK Model is ultrametric
w.r.t. the distance defined in (1.36). An ultrametric space is a metric space where the standard
triangular inequality is replaced by a stronger one: the distances between any three points a, b,

c satisfy

dgp < max(dbca dac) ) (1'47)

i.e. all triangles are either equilateral, or isosceles with a side smaller than the other two. A
simple example of an ultrametric space is, for a given graded tree, the set of leaves, with the
distance defined previously. The fully symmetric trees are the graded trees in which for each
pair of leaves (a,b) an automorphism ¢ of the tree exists such that b = ¢(a). Ultrametric
spaces described by trees only allows for finite sets of distance values. The extrapolation of the
structure of fully symmetric trees to the n — 0 limit mathematically corresponds to the natural
extension to the whole set of fully symmetric ultrametric structures. Similar calculations can
be performed for an arbitrary number of replicas.

Parisi solution turns out to imply a precise picture of configuration space: there are many
pure phases, organized in a hierarchical way with a branching structure described by the Parisi
order parameter p(q). Indeed, define the thickness of a branch as the total probability of all
configurations steming from it. At any level of the hierarchical process, the joint distributions
for an arbitrary number of thickness values are known. The functional dependence of the weights
from the order parameter turns out to have an universal form, not related to the detailed form
of the Hamiltonian, or to the thermodynamic parameters.

As the distibution of the thickness is related to the thermodynamic weight of a certain pure
phase, this quantity, too, at any level of the tree (where a continuous branching process is
present), can be found from the order parameter. The distibution of the thickness is related
to the thermodynamic weight of a certain pure phase, thus for any model with an ultrametric
structure of the configuration space, all information on pure phases is contained in the Parisi
order parameter.

This surprising form of the phase space is not a peculiarity of the SK model. The whole
replica machinery can be applied to different disordered systems. For some of them, the RS
ansatz turns out to be the correct one for all temperatures. To this group belongs the problem
we will focus on, the Assignment problem [9], and also the famous Travelling Salesman Problem
[10], both deriving from the world of Computer Science. For other systems, like the K-SAT
problem [11], [12], or the Viana-Bray Model [13] (a finite-connectivity version of SK Model),
the correct solution is given by the 1-RSB Ansatz in a low-temperature region, and by the RS

Ansatz in a high temperature region. There exist systems, like the p-spin Model [14], where
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the structure of the phase space is described by a RS Ansatz in a high temperature region, by

an 1-RSB Ansatz at an intermediate range of temperature, and by full RSB Ansatz, in a low

temperature region.



2. General theory of the Cavity
Method

In the previous chapter we have described the replica approach to disordered systems. The
replica method relies on some hypotheses (e.g. the validity of the n — 0 limit procedure) whose
physical meaning is not completely clear. Besides, since the very first step is averaging over
disorder, it doesn’t provide a powerful tool for the problem at given instance.

However, different methods are available for dealing with disordered systems. One of them
is the Cavity approach. Even though it has some drawbacks (generally, a heavier notation) this
approach has several advantages. First of all, approximations have a clear physical meaning and
can be stated in a precise and controlled way. The Guerra-Toninelli approach [15], inspired by
the cavity method, have recently led to the result that in SK Model the free energy of the Parisi
solution is a rigorous upper bound for the free energy of the model. This approach generalizes to
other mean-field disordered models ([16]). Another fruitful application is in finite-connectivity
systems [17] Besides, Cavity Equations make sense also at fixed instance of disorder, and this
quality makes them a good starting point for algorithm design. This procedure has shown to
be surprisingly fruitful in many practical applications as, for example, a powerful algorithm for
solving 3-SAT problems or g-Colouring problems [18], [19], [20].

In this chapter we will give a derivation of Cavity Equations valid for a general class of models.
We start with a description of the models our derivation applies to, and their factor graph
representation; we introduce some hypotheses based on Cluster Property inside each pure state
and find the corresponding Cavity Equations, valid in the Replica-symmetric approximation.
Then, we discuss a generalization to systems where replica symmetry is spontaneously broken,
and we derive the Cavity Equations valid in 1-RSB approximation. In the last section we explain

what happens to Cavity Equations when an average over disorder is performed.

2.1 A general class of Random Mean-Field Models

In this chapter we want to deal with a class of statistical mechanics models sufficiently large to
include problems like the Sherrington-Kirkpatrick spin glass or the Random K-SAT as prototype
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cases.

Variables are defined on a certain (one-variable) state space S, e.g. S = {1} for spin systems,
or S = {true, false} for boolean problems. A configuration o = {o;}i=1,..~ is an element of
SN . Assume one-variable normalization fs do = 1 so that comparing the free energies of systems
with a different number of variables will not lead to irrelevant shifts due to a different number
of variables. Integrals should be intended as sums for S discrete. Each interaction a, involving
k, variables, corresponds to a real function E, : S¥» — R. One-body terms of the Hamiltonian,
corresponding to real functions W; : § — R, are understood to sit on each variable, and not
labeled by interaction indices. The parameters defining these functions are quenched, i.e., in the
spirit of chapter 1, even when the set of parameters is macroscopically large, we will perform

statistical averages only on the variables. The generic Hamiltonian is

M N
H(o) =D Bal{oir, 05, 1) + > Wiloi). (2.1)
a=1 =1

For Statistical Mechanics models on a lattice, the typical picture we have in mind is a
regular lattice, in which variables are sitting on the vertices, and the pattern of interaction is
quite simple: usually each interaction involves a fixed number of spins, and they relate spins
situated nearby on the lattice. For instance, often interactions are sitting on each link (i.e. only
first neighbours interact), or on each plaquette, so the lattice picture is sufficient to describe
in a complete and intuitive way the whole system. When dealing with disordered systems and
models arising in other contexts, such as coding or optimization theory, often variables interact in
a complicated and heterogeneous way, thus a more flexible graphical representation is advisable.
The common trend in Information Science is on structures named factor graphs: given a system
with IV variables and M interactions, we can represent it via a bipartite graph G, i.e. a graph
in which we have vertices V(G) of two species V1(G) and V2(G) (say, circles and squares), and

edges E(G) only between vertices of different species
V(G) =Wi(G) U Va(G); E(G) € Vi(G) x Va(G) . (2.2)

Associate to each variable a circle-vertex ¢ (variable node) and to each interaction a square-vertex
a (function node). Draw an edge between a circle and a square if the variable associated with
the circle is involved in the interaction associated with the square. With our choice of graphical
representation, there are no square vertices corresponding to the one-body interactions W;(o;),
which are implicitly represented in circle vertices. Call (7)) the neighbours of variable node 4
and ((a)) the neighbours of function node a. We denote with ¢(a), ¢(7) the cardinality of these
sets, respectively. A factor graph inherits the natural notion of distance over graphs, i.e., for 4,
Jj sites over G, the distance d(i,j) (or |¢ — j|) is defined as the length of the shortest path on the
graph going from i to j.
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(12) (23) (245) (3467)

Figure 2.1 Factor graph corresponding to the Hamiltonian of equation
(2.3).

As an example, we show in figure 2.1 the factor graph associated to the Hamiltonian for the
small spin system

7
H(o) = Z hio; + Ji201092 + Ja30203 + Joa5020405 + J346703040607 . (2.3)
i—1

2.2 The Cavity approach

The basic idea of Cavity Method is that we can understand the properties of a large system
of the kind defined in section 2.1 by comparison with systems which only locally differ from
the original one (cavity systems). These systems are chosen in order to almost decorrelate
certain highly correlated variables close to the deformation, while minimally perturbing other
observables, with support far away from the deformation (Cavity assumption).

We denote the set of neighbours of a given interaction a, but one given neighbour %, with the
symbol ((a));, and similarly, the set of neighbours of a given variable 4, but one given neighbour
a, with the symbol (())q-

We define some Hamiltonians connected to different cavity systems. Given a pair of neigh-
bouring vertex-interaction (i, a), we introduce a further spin variable i, and consider the Hamil-
tonian

Howi(o) = Z Wi(o;) + Z Ey (O’|((a/))) + Eq(oi,, 0'|((a))i) , (2.4)
1 a’'#a
where

o ={oi}ti=1,..nU{0oi,}.

This Hamiltonian corresponds to the cavity system in which we remove the effect of the interac-

tion a on the spin i. We stress the fact that there is no one-body contribution associated to the
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Figure 2.2 A portion of the factor graphs associated to the cavity

Hamiltonians of equations (2.4), on the left, (2.5), in the middle, and
(2.6), on the right.

new variable i,. This fact is visualized on factor-graph representation using a dashed circle.
A sketch of the factor graph associated to this system, in a neighbourhood of the bond (7, a),
compared to the original factor graph, is shown in figure 2.2 (left).

Systems in which a whole variable or a whole interaction are removed can be seen as reiterated
applications of this procedure. If, for a given interaction a, we remove its effects on all the
neighbouring variables i € ((a)), the small system containing interaction a and all the auxiliary
variables {i}ic(q) is disconnected from the rest of the system, and its contribution to the
partition function is trivially factorized. This provides us the recipe to obtain a system with M —1
interactions modifying as little as possible the system with M interactions. The corresponding

Hamiltonian in which we removed the interaction a is

Holo) =D Wile) + > Ev(ol()): (2.5)
% a'#a

note that o = {o;}i=1,.. n. The factor graph associated to this system is shown in figure 2.2

(center).

! A hint of motivation for this choice is the following. In the spirit of cavity approximation, we want to consider
the minimal deformation for the system in which the “inference channel” (i,a) has been switched off. As there
is no natural restriction of the interaction functions E, to a smaller space S%® ™! we are forced to introduce
the auxiliary variable i,. The remaining part of the system should be left unperturbed, so on site 7 we should
still have the corresponding one-body term and all the interactions b € (%)), ), while on the auxiliary site i, we
should not have any new one-body term. In this way the cavity system still contains N one-body terms and M
interactions.
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If, for a given variable i, we remove the effect of all the neighbouring interactions a € ((7)) on
it, the small system containing only the variable ¢ with its one-body term is disconnected from
the rest of the system, and its contribution to the partition function is trivially factorized. This
provides us the recipe to obtain a system with N —1 variables modifying as little as possible the

system with N variables. The corresponding Hamiltonian in which we removed the variable ¢ is

Hylo) =Y Wilow)+ Y Balol@) + Y Fal0ig0l(a)); (2.6)
e A(0) a€((%)

where
o ={oi}ieq,.,Ny~i Y10, tac() -
The factor graph associated to this system is shown in figure 2.2 (right).
Given an operator O, as usual (O) denotes its expectation value over the Hamiltonian of
the system. We denote averages over cavity Hamiltonians with the subscript associated to the

corresponding cavity system: (O),.,,; for the system in figure 2.2, (O),, for the one in figure 2.2

a1

(right) and (O),, for the one in figure 2.2 (center). In particular, F' denotes the free energy of

the cavity systems, for instance

Fovi = —~ 10 Zawis  Zawi = / do e FHawilo)
p
Consider the local operators 6;(c) = d(0;,0), and the algebra of observables containing generic
polynomials in these operators. A space h exists, parametrizing the normalized distributions
over S, that is, for all f(o) : S — Rt such that [;dof(0) = 1, there exists one and only one
h € h, such that f(o) = p(o,h). For example, if S is discrete and finite, with ¢ elements, the
space h is isomorphic to RI~!, i.e. ¢ — 1 magnetic fields fully describe the marginal probability
over one g-state variable. In particular, in many applications, such as spin models, boolean
variables, covering problems etc., |S| = 2. In this case, adopting the terminology of magnetic
systems, with S = {£1}, we can write a generic one-body term in the form W;(o;) = h;o;, and
a generic normalized distribution as
e—ﬂha

Inlo) = 2cosh(Bh)

Also in the general case, in analogy with magnetic-system jargon, we will deal with (generalized)

magnetic fields. In particular, we introduce a set of

magnetic field h;: the element h; € h such that p(o,h;) = (0;(0)), that is, the marginal

probability distribution over site ¢ in the original system.

cavity field h;_,: the element h;,, € h such that p(o,hi—e) = (0:(0)) that is, the

marginal probability distribution over site 7 in the cavity system in which interaction

ast)?
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a does not infer directly over site ¢, which reflects the direct influence on site i of all its

neighbouring interactions but a, in the original system.

cavity bias u,_,;: the element u,,; € h such that p(o,uq—i) = (6,(0)),..;» that is, in the
same cavity system as above, the marginal probability distribution over the site %,, which

reflects the direct influence of only interaction a over site ¢ in the original system.

A pictorial description of cavity fields and cavity bias is given in figure 2.2.

2.3 Single-state Cavity Equations

Informations on the typical length scales in the system are contained in expectation values of
higher-order monomials in the characteristic functions ;. For example, the connected two-point

function
(6:(01)0;(02))*"™ = (0i(01)0;(02)) — (Bi(01)) (0j(02)) , (2.7)
in the limit of large distances describes the correlation function of the system

1
N #{site pairs at dist. z}

Goy,05(2) D (6i(01)6;(02))™ . (2.8)
1,J

d(ing) =2

We expect this quantity to decrease for ¢, j far away inside a pure phase, as a consequence of the
Cluster Property discussed in section 1.2. Similar reasonings concern generic connected n-point
functions.

The way in which correlation functions decrease with distance in different systems is a
delicate topic. In systems whose factor graph representations are random bipartite Erdos-Renyi
graphs, the typical size of loops is of order In N. Furthermore, connected correlation functions
are expected to vanish exponentially with distance, and thus to decrease with a power law in
N. Also in many fully connected systems (as the SK model, or the Assignment problem), short
loops give contribution to the correlation functions negligible w.r.t. the one given by long loops
(typically, of lenght order In N). This is a delicate consequence of the fact that interactions
should be properly rescaled with the system size.

In the following, extremizing the Cluster Property statement, we will implicitly assume that
for our system correlation functions of operators far away inside a pure phase can be neglected
in large N limit. A systematic expansion can be the subject of future investigations (cfr. chapter
7).

Of course, we cannot in general expect that correlation functions of operators located nearby
are in some sense small. Nevertheless there is a remarkable exception. Think of local opera-

tors, concentrated on a certain region, reproducing a n-point function weighted with the cavity
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Hamiltonian in which we have removed that region. As the direct inference among neighbouring
sites is switched off, Cluster Property reasonings applied to the cavity system allow to assume
decorrelation for operators situated nearby in the original system.

For example, consider a pair of operators O;, Oy located nearby in the original system, with
Hamiltonian #, but far away in a certain cavity system with Hamiltonian He,,) = H + AH.

We expect

e BF~Ficay) <@1@26—m%> _ e 2B(F—Flear)) <ole—/3AH> <(926—,3A’H>

= (0102)(cav] = {O1)(cav (O2)(cav) = 0 (Cluster Property) (2.9)

This property, applied to specific choices of local operators, will lead us to Cavity Equations. In

the following statement we specify the factorization requirements we need in this procedure.

Ansatz 2.3.1 (Cavity Ansatz) In the thermodynamic limit, inside a pure thermodynamic

state, for the cavity system in which we removed site i we have

< 11 9ib(0)>.ﬁ II @)y (2.10a)

be(i)a ™ be(i)a
for the system in which we remowved interaction a we have
< I1 9j(a)>az I (o). (2.10b)
j€(a)i i€((a)):

Furthermore, the presence of a larger cavity in a region out of the inference neighbourhood of a

given site does not affect the marginal probability on that site

1R

(05, (0)) 5.~ (05 (0)) gmi ; (2.10¢)
{0i(0)) =~ (0i(0)) geni - (2.10d)

A consequence of the Cavity Ansatz 2.3.1 is the set of equations (Cavity Equations)

p(o-a hz—)a) X e—,BW,'(O’) H p(o-a ub—)i) )
be(@))a
plovtiani) o [ e PP T] (doyploy, b))
Jj€(a):

(2.11)

Indeed, the first equation represents the fact that

(0:(0)) auri =T 0400))
b€((1)a
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while the second equation is derived from

(0100 g = (€7 Eelc=rCD T 85(07)) = / e PEeCu=otoD( T] 0y(05)doy )

je(@)i j€(@)i -

The Cavity Equations (2.11) define a set of functionals on the space of cavity fields:

B; 0 : D71 5 h ®ia({upsitoe(ipe) = hisai (2.12a)
R e Yosil{hjsatje(a);) = Ua—is (2.12b)
They also define two functions for the normalizations involved in equations (2.11)
Visa({up—i}) == ——ln/dae AWilo H plo, up—i) ; (2.13a)
be(()a
Vasi({hya)) = =510 [ dov [ T] (@oyploy,hyosa))e?Pelentosd (2.13b)
j€((a));

Consistently with Cavity Approximation, we can relate the cavity fields to the free energy shifts

w.r.t. the free energy of the original system

F—-F,.,; ~ ——ln/dap 0y hisa)p(o, ua—i) ; (2.14a)
F—Fy~ —Eln/do e AWilo) H plo, upyi); (2.14b)
be((2)
F-F,~ ——ln/ H (doj p(0, hja))ePPallos) (2.14c)
j€((a)

We can also interpret the normalizations (2.13) as free-energy shifts

Visa({tb—i}) = Fawi — Fy (2.15a)
"pa—n({hj—)a}) Fooni — F (2.15b)

In two-state variable applications, we can write the Cavity Equations (2.11) with the language
of standard magnetic fields. Say that W;(o) = w;o, we have
hia = Wi+ Y Upsi,
b

1 Eo—j exp (_/BEG (+1a {O'J}) — ,BZ] h'j—)ao'j) (216)
Ug—i = ——1

283 >0, €XP <_5Ea (-1,{0;}) — B>, hj—’aaj) |

Analogously, when S = {0,1}, we can parametrize marginalizations as (for notational conve-

nience we have called variables n)

e Ph 4 (1 — e PM)§(n,0)
1+ e B ’

p(n,h) = (2.17)
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and one-body terms as W;(n) = w;n, equations (2.11) become
hisa =wi+ Y s,
b

1 S e (SAE (L)) - A5 hyany) (2.18)
ﬂ an exp (_IBEG (0’ {TL]}) - ﬂ Zj hj—)anj)

Ug—i =

2.4 Decomposition of Gibbs measure into pure phases

The cavity factorization hypotheses are strictly related to the Cluster Property of a statistical
mechanics system. In general, these hypotheses are not valid for a system showing Spontaneus
Symmetry Breaking, where many pure phases are present; nevertheless, they still hold inside
each pure phase. Following the seminal idea of Mézard and Parisi [17] we want to extend
equations (2.11) to systems with many states, promoting the cavity-field unknowns to survey
unknowns (probability distributions over pure phases). This approach does not require any
procedure for selecting one pure phase (the analogous of a Ruelle criterium, or a Boguliubov
criterium, for finite dimensional regular systems), this task being of overwhelming difficulty in
spin glasses.

This kind of approach must necessary make use of some properties of pure phases, but we
have seen in the previous chapter that any formalization of these concepts for disordered systems
is delicate, expecially if we deal with finite-size systems. So the whole discussion, even though
it is reasonable and self-consistent from a physical point of view, is not a formal demonstration
and is essentially non-rigorous.

The ergodicity breaking and the presence of many pure phases are mathematically depicted
as a non-trivial decomposition of Gibbs measure into a sum of measures, each one being almost
coincident with the Gibbs measure inside a certain “valley” of the phase space, and almost zero
out of the valley, with the property that they are stationary under a local dynamic.

Say we have N pure phases, labeled with an index a = 1,...,N. The pure-phase measures
{pa(o)} are defined via a partition of the phase space {x(® (&)}, that is a set of positive functions
such that 3, x(®) (o) = 1. We define

pal@) = X (@)e ), Zo= [dox@@)e M@, (219)
For each pure phase «, we have a free energy F,, = —(1/8)1n Z, and, for each observable O,

the corresponding expectation value ((’))(O‘) is given by

() = / dia(0) O(a). (2.20)
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The expectation value of the operator in the full Gibbs measure (symmetric phase) is a baricentric
combination of the expectation values in single pure phases, with weights related to the free

energies
(0) =" e PF-F) )@ (2.21)
«
We remark that, for a given pair of cavity systems, there is a natural identification of the pure
phases in the two perturbed systems.? From now on, in the phase labeling for the various cavity
systems, this identification is understood.

We expect that in each phase the Cluster Property holds. Of course, it does not hold in the
Gibbs Measure, and connected correlation functions do not vanish, so that cavity hypotheses,
in particular, are no longer valid.

As we have seen in section 1.1, for traditional lattice systems (whose prototype is the Ising
Model), Spontaneus Symmetry Breaking leads to a phase space landscape with a finite number of
pure phases, related by an exact symmetry of the Hamiltonian, with exactly the same energy (in
Ising Model below the critical temperature, two pure phases, related by the symmetry oo — —o).
In disordered frustrated systems, a new feature can appear: in a certain region of the parameters
space, we can have a number of pure states exponentially large in the system size, with free energy
differencies of order 1. For these systems, it is natural to approximate the discrete spectrum
of free energies with a continuous distribution, whose logarithm is an extensive quantity, and

introduce a complexity function X (F)

> AF = #{pure phases o : F(® ¢ [F,F +dF]}. (2.22)

2.5 Survey of Cavity Equations over many states

The cavity fields h;_,q, uq—; Of the section 2.2 were defined starting from averages of local
operators. The set of hypotheses in Cavity Ansatz 2.3.1 are valid only for averages over the pure
phase measures. Thus, for each bond (7, a), instead of h;_,q, uq—i, we define a set of cavity fields
{hz(.i)a, U((loi))i}a:1,___, A starting from averages of the same operators not over the Gibbs measure
but over the pure phase measures. Equations (2.11) are still valid for fields at fixed index «.
Consider a given instance of the general model defined in 2.1, with factor graph G. Define
the space H = R x h2F(@); 3 point p € H is the datum of a free energy and a set of cavity

fields, p = (F, {hi—as Ua—i}(i,a))- Different free energies and sets of cavity fields, corresponding

2This fact is pictorially clear: as pure phases correspond to “valleys” in the phase space, separated by macro-
scopically large free-energy barriers, a perturbation of order 1 of the Hamiltonian cannot change the pure-phase
landscape of the system.
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to different pure phases of the systems, can be seen as a set of A/ points {p(o‘)}azly___, A/ On space
H.

For each point p(®, we can consider restrictions to subsets of cavity fields. In particular, for
each cavity system, it is natural to turn the attention on the restriction of p{® to cavity fields
on the boundary of the cavity. Using equations (2.14), we can also reparametrize the free energy

of the original system into the free energy of the cavity system

Fla) _ Fla) ple) ()

a<+>z a ( »Yi—a? a—)z)

F = Fy(F {u{® ),
F'% = Fy(FO (1) }).

So, for a point p in the original set, we are interested in the points

Pawi = (Fa«/-»z'a hi—sa; ua—)i) ; (2-23)
py= (Fy {up—il); (2.24)
Pu = (Fu; {hjsa}) - (2.25)

The sets of points {pa&n} {p(a)} and {psz)} must satisfy some set identities reflecting the
pointwise (in H) validity of Cavity Equations

(P w0y = { (B + ol @0, ul,) } (2.264)
{(Féfgz’ zia’ a—)z)} = {(F(a + ’(/}((1&—))2’ h’z_))a’ ((la_)n'a)} ) (226b)
where
e = Pina (Ui Toeina) (%), = isal{uf™) hoe(iya)
Q/]aﬁz d’a—)i({hg'oi))a}je((a))i) ’ \ij;i))i = \Paai({hg(ﬂa}je«a»i) .

Note that equations (2.26) are set identities. Suppose to introduce a canonical ordering in each
set, for example ordering the free energies: then, the identities (2.26) are not pointwise, since a
reshuffling of free energies from a cavity system to another is possible. The comprehension of
this mechanism is a crucial point in deriving Survey Propagation Equations.

The requirement 2.26 that two finite sets of points coincide is technically difficult to handle.
If we deal with continuous distributions on the spaces R x h¢, with c of order one, we can use the
methods of differential calculus. This step is possible only in certain situations. In particular, we
focus on a system with a macroscopic number of phases, where the spectrum of free energies is a
continuous function in the large NV limit, in the scheme depicted on section 2.4. If the points are

canonically ordered w.r.t. the free energy parameter, they can be described by a point process
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of exponentially large rate. We choose instead to describe the two sets {p } and {p } with a

continuous density

pulFas i) = NQ o) F), [ dRQEP =15 (22m)

pilFa{upsi}) = P ({up i} | Fy), /h » di P(@|F)=1. (2.27b)

The consistency requirement (2.26) implies, in particular, for each edge (i,a), a set identity on

the Laplace Transforms w.r.t. the free energy:

Z e 5(}1,}%@@) 5(u,u,(10‘_)n>
)

pa«-/-»i

) (@)
_ Ze_y(Fz\—HDz—»a({ub_)i}be((i))a)) 6(h, q’iaa({uz(,o_ézi}be((i))a)) 5(u,u((l0i)n)

2.28
@ (2.28)
— NISURY ) a a
=Y e ¥ tenilihSakie@,)) 5( hg#) § (u \Daai({hg'—z(z}je«a))i))'
Pl
Plugging the expressions (2.27) for the densities we get
Jar [((TT dtsesa)exd (= oo+ doonlfyesah) + N2, (P ))
j€(a)i

0 (ttasis Bai({hs5a}) ) Qul{hysa}IF) 29

— [ar [ ((T] s ) exp (= uFict pial{unsih) + NE(FYN)

be(()a

0 (hissas @icsa({tp2i}) ) Pel{uni}IF)

We now introduce some hypotheses in order to make equation (2.29) more tractable. These

hypotheses are related to the assumption that the phase space is of the 1-RSB kind.

e Because of the concavity of the complexity function, the parameter y (named the reweight-
ing parameter) selects a narrow interval of free energies relevant for the integrals in (2.29).

A typical free energy F™* exists such that for all cavity complexity functions

~ s P

2ulF)| = gp

~y, (2.30)
F*

OF

up to corrections of order 1/N.
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e We neglect the F' dependence of the quantities () and P, in the neighbourhood of F*

O Qu({hj )P =0(). B Py(fuy i} ) =o(). e
We thus define the densities
Qul{hj=a}) = Qul{hj=a}|F7); Py({up—i}) == Py({up-i}[F7) . (2.32)

e We consider the functions (2.32) almost factorized

({h]—)a} H Q]—)a, j—)a) ({ub—)z} H Py y; 'u'b—)z) (2'33)
j€(a) be((2)

with each Qj_q(hj—q) and Py_y;(up—;) normalized on h.

Under these hypotheses equation (2.29) considerably simplifies. Integrating both sides over the
variable u,_,;, on the left side the delta function cancels out, while on the right side, using the
factorization of Py and the normalization of P, ,;(ug—i), it just produces a factor 1. Then, on

the left side we can integrate over the variables {h; .4} e(q);- This gives a prefactor depending

only on y
/ ( H dhja Qj—alh J—)a))e wasilthised) = Cyi(y) . (2.34)
j€(a)i
Finally, also integration over free-energy variables F, and F'y produces two prefactors depending
only on y
/ dFy e VPV = oy (g / dFye YV = oy(y). (2.35)

Since Q;_, and P,_,; are normalized, these prefactors do not play a significant role. Eventually,

we are left with the so-called 1-RSB Cavity Equations (or Survey Propagation Equations)

Qz—)a( z—m /H dupy; Pb—n(ub—n)) € ~yeimalfursil) ‘S<hi—>a,q>i—>a({ub—>i}))a (2-363)
be(%)a

Pacsi(ttasi) o / TT (5520 Qisalbjna) ) €0t imed) 6 (g s, Wasi({hjna})) - (2:36D)
j€(a)i

These equations have many points of contact with the Cavity Equations (2.11). The main

differencies are essentially two:

e the cavity fields h;_,, and u,_,; are replaced by surveys of cavity fields, related to the

process of handling the various pure phases simultaneously;

e a new factor e ¥2F accounts for the reweighting of pure phases due to free-energy shifts.
In a numerical implementation, the reweighting parameter y must be tuned on the value of
dd—FE(F) in correspondence of the expected free-energy window explored by the algorithm

in that moment.
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Figure 2.3 Subset J; ) of nodes of the factor graph associated to the
pair (i, a).

2.6 Cawvity Equations as Distributional Equations

So far, we have discussed Cavity Equations in systems with a phase space of the RS or 1-RSB
kind, valid for a given instance of the disorder. We now want to perform an average over the
ensemble of the disorder. From now on, we will suppose the validity of RS equations (2.11), for
simplicity of discussion, and since in the rest of the work, this will be the case.

Call J = {E,, W} the set of parameters describing the Hamiltonian, sampled with a certain
measure j(J). Given a pair (7,a), consider the subset Ji; .y C J

Jiia) = (Wi, { Bb Yoe(i).) - (2.37)

The set J(;4) corresponds to the set of interactions involving only the vertex ¢ and its first
neighbours on the cavity system Hg..; (see figure 2.6). We make some assumptions on the

measure induced on this set by the measure on the whole instance, pu(J):

e The probability distribution on Ji; 4y does not depend on the rest of the system
prob (Ji,wl J N Jia) = Plia) (Jia)) - (238)

e There is a macroscopic number NM of pairs (i,a), so a priori we have to deal with a
macroscopic number of probability distributions p; 4 (J(i,a)) . We assume that the measure
on the instances p(J) has a sufficiently large group of invariances, so that a small number
of pair classes exists, such that p(; 4 (J(Z-,a)) = P@ira!) (J(i/,a/)) if (4,a) and (7', a’) are in the
same class. When averaging over the instances, eventually we will have a distributional

equation per class of pairs.
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e This probability is factorized over each interaction and one-body term appearing in the

system:
c(i)—
Pia) (Jia) = p1 (Wi, c(d) H (Ep|W;, c(4)) . (2.39)

The first assumption is essentially an hypothesis of independence. It is easily verified in systems
defined over random graphs d la Erdos-Renyi. Furthermore, it is verified also in some systems
for which the measure over the factor graph has both a deterministic and a stochastic part, for
example, in the Assignment Problem, where the factor graph does not change from instance to
instance, while the values of one-body terms are random, i.i.d. quantities.

The second assumption is an homogeneity hypothesis for the measure over the instances.
It is typically true for all random systems, with only one class of variable-interaction pairs.
An example in which there are two classes is given by the variant of Assignment Problem
on rectangular grids, with N; rows and Ny columns: it is necessary to make a distinction
between links connecting variables to row constraints, and links connecting variables to column
constraints, as the factor graph of the problem, which does not change from instance to instance,
contains “row” interaction-nodes with coordination Ny and “column” interaction-nodes with
coordination N;. To avoid notation complicancies, we will deal with the case in which all edges
are equivalent.

The third assumption is delicate. The expression itself is slightly ill-defined, as on the right
side we have a product over all interactions but one. Suppose to have a one-parameter family

of Hamiltonians of the form

My Mo N
=> Eu{oir,--r00, )+t Y Ea,({az-l,...,o,-ka,})+ZW,-(01-). (2.40)
a=1 a'=Mi+1 i=1

We have a system in our general form, but when ¢ # 0 there are M> interactions, while when
t = 0 there are only M; interactions. We expect the distribution of the cavity fields to vary in
a continuous way with ¢, while equation (2.39) suggests a qualitative difference at t = 0. The
proper way to proceed is to recognize that there are two classes of pairs, the ones involved in an
interaction not scaled with ¢, and the ones involved in an interaction scaled with £. We would

have a probability distribution per each class

c(z) 1 c(3)

Pia) (Ji) =1 (Wi, (i), ¢ p2 (Ba|Wi, c(i)) [[ ph (Bar|Wi, c(4)) ; (2.41a)
b=1 b=1
c(z) c’(z) 1

(w) (i) = p1 (W, (i), D2 (Eq|W;, c(i) H ph (Ey Wi, c(i)) . (2.41b)

bl b'=1
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Now the apparent paradox above is solved: the distribution of cavity biases outcoming from
interactions not scaled with ¢ varies in a continuous way, while the distribution of cavity biases
outcoming from interactions scaled with ¢ concentrates on zero.

Accounting for this fact is not necessary in many cases. Indeed, in the case in which the
average coordination is macroscopically large, the product on all interactions but one in (2.39)
can be replaced by a product on all interactions, with a negligible error. This is the case of
Assignment Problem, of SK Model and of p-spin Models.

Besides, for finite-connectivity models like Viana-Bray Model, K-SAT, (2+p)-SAT, in which
all families =y of interaction functions are distributed independently, the conditional probability

distributions for the coordinations of function nodes in each family, of the form

p1 (Wi, {cy (i) —6(7';7)} | a is of kind 7) ,

do not depend on index . Moreover, if the coordinations are Poissonianly distributed, for each

family ~
p1 (Wi, {cy (0)}) = p1 (Wi, {cy(3) — 6(',7)} | a is of kind v) . (2.42)

So, in all these cases, the distribution of the shapes of the neighbourhood of ¢ in the cavity
system Hg..;, conditioned to having a given interaction in node a involving variable ¢, coincides
with the distribution of the shapes of the neighbourhood of a variable 7 in the whole system.

Equations (2.11) can be summarized as

hisa = ®isq ({\Ijb%i({hj%b}je((b))i)}be((i))a) ’ (243)

for any choice of J; ). When averaging over disorder, this equation turns into a self-consistency
equation for the probability distribution f(z) of the cavity fields, assuming that they are dis-
tributed indipendently, consistently with Cavity Ansatz 2.3.1. The functionals ®;_,, and ¥;_,;
depend respectively on the elements W; and Ejp of Ji; ,), which are distributed according to
(2.39), so, with abuse of notation, we could say that ®;_,, is distributed with p;(®), and ¥y_;
is distributed with po(¥|®;_,). Equation (2.43) thus is promoted to a distributional equation,
determining the distribution of the field:

2L & {U,({z:})}) , (2.44)

with z and zp i.i.d. with f(z), and ® and ¥, distributed as described above.



3. A short introduction to

Optimaization Theory

The theory of disordered system has recently received great attentions from the scientific com-
munity because of its connections with optimization problems in information theory. The theo-
retical and algorithmic treatment of these problems has a practical counterpart in the design of
performing algorithms for applications in everyday life. This chapter briefly presents the basic
definitions of the theory of algorithmic complexity. In particular, we focus our attention on the
class of Polynomial and Non-deterministic Polynomial problems. In the last section, we explain
how an optimization problem can be restated, and possibly solved, in terms of a physical disor-
dered system, and we sketch some of the possible applications of physical concepts to algorithm

design.

3.1 The theory of Algorithmic Complexity

The theory of Algorithms concerns the solution of complex problems via a prescription on a
sequence of elementary steps (called an algorithm). The most varied and heterogeneous problems
can be treated. In order to allow for an unitary mathematical formalization, it is useful to
define classes of problems sharing the same definition frame. Algorithmic Complexity [21], in
particular, studies time employed by an algorithm to solve a given problem. Of course we are
not interested in a detailed quantification of the amount of time: we would rather know the
asymptotic behaviour of algorithm time, with respect to the size of the problem. So Algorithmic
Complexity focuses on problems for which a size can be reasonably defined, and arbitrarily large
problem instances can be given, in order to study asymptotics.

In our treatment we mainly deal with problems such that, at given size N, a set X of feasible
solutions exists, of exponentially large size, | X| ~ exp(P(N)) with P(N) a power-law at leading
order, and the problem can be stated as a search problem for a solution in X. We define two
classes in this framework: optimization problems and satisfiability problems. For optimization
problems, there is a cost function C' : X — R, and the problem is solved when a solution
zs € X such that C(zs) = mingex C(z) is found. For satisfiability problems, there is both a
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cost function C and a threshold a, and the problem is solved either when a solution z; € X such
that C(zs) < a is found, or a proof that such a solution does not exists (called a certificate) is

given.

For example, one of the most famous optimization problems is the Travelling Salesman
Problem: given a set of n points (towns, in a pictorial description), a cost is associated to each
pair of points (the length of the road). The set X is the set of all possible connected tours
passing only once from each town and connecting all of them, and the cost function is the total
length of the tour. In this example, the problem is fully described by the set of N = n(n —1)/2
pairwise lengths, and the number of possible tours is (n — 1)!, so | X| ~ exp(V/NInN).

Optimization problems and satisfiability problems are intimately related. Is is obvious that
the solution of an optimization problem contains the solutions for all the related satisfiability
problems, i.e. with the same cost function, in the whole range of thresholds a. A less obvious fact
is that a “fast” algorithm for a satisfiability problem in the whole range of thresholds typically can
be trivially adapted to a “reasonably fast” algorithm for the associated optimization problem.
If reasonable bounds on the range of values of minyx C(z) can be given, then the optimization
problem can be solved iteratively applying the algorithm for the satisfiability problem, bisecating
over the range of thresholds. This would be the case, for example, of the Travelling Salesman
Problem, with integer distances: as the cost function is the sum of n terms, the interval between a
trivial lower-bound and a trivial upper-bound, say the sum of the n shortest lengths and the sum
of the n longest lengths, is at most of order nL, with L the difference between the largest distance
and the shortest distance. Bisecating over a range of nL values involves log,(nL) iterations in
the worst case, which is certainly a very small complexity, w.r.t. the intrinsic complexity of the

satisfiability version of the Travelling Salesman Problem.

We have proved that, for the Travelling Salesman Problem with integer lengths and bounded
largest-distance — shortest-distance interval, the complexity of the best algorithm for the opti-
mization problem is not smaller than the complexity of any algorithm for the satisfiability
problem, and the complexity of the best algorithm for the satisfiability problem is not smaller
than the complexity of any algorithm for the optimization problem, up to a factor logs(nL).
The proof has been performed rephrasing a problem of the first kind as a problem of the second

kind, and vice versa.

In general, studying the complexity of one algorithm for a given problem is at its worst
technically complicated. On the other side, the algorithmic complexity of the problem itself,
defined via a minimization over the whole set of possible algorithms for the problem, is typically

a very delicate question.
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3.2 Polynomial and Non-deterministic Polynomial Algorith-

maic Classes

The knowledge of the algorithmic complexity of a family of problems induces a fine hyerarchy
of classes, depending from the asymptotic resolution time for each problem: we would thus
deal with linear-time problems, quadratic-time problems, and so on. It is intrisecally difficult to
perform such a fine classification, but for particularly simple problems for which a direct analysis
is possible.

Besides, the precise mathematical definition of the algorithmic time, involved in the deter-
mination of a problem’s complexity, depends on the mathematical formalization of the concept
of algorithm. Several possibilities exist [22], but it can be proven that all consistent definitions

are equivalent up to polynomial factors in the resulting complexity.

In the previous section, we have shown how it is possible to solve a satisfiability problem, if
we dispose of an algorithm for solving the corresponding optimization problem. We can reduce
each instance of the saisfiability problem to an instance of the optimization one: we thus say
that the satisfiability Travelling Salesman Problem is reducible to the optimization TSP. We
have also seen that the converse reduction holds up to a logarithmic factor. If, in the spirit of
the previous discussion, we are interested in the complexity up to polynomials in the problem
size, it is natural to extend the concept of reducibility to problem pairs such that the complexity
of the firt bounds the complexity of the second up to a polynomial factor. Naturally, reducibility
is transitive. Besides, if problem A is reducible to problem B, and B is reducible to A, A and

B are equivalent under their complexity aspect.

It is thus relatively easy, using reducibility arguments, to determine if the complexity of a
given problem is polynomial, or to state that the complexities of two given problems must be

either both polynomial, or both non-polynomial.

So, one is naturally led to dealing with a large class of Polynomial-time problems (P prob-
lems), insensitive of the degree of the polynomial describing the complexity: any problem be-
longing to this class can be solved by an algorithm working in polynomial time. A relevant class
of problems is defined in an operative way: define the class of Non-deterministic Polynomial-
time problems (NP problems) as the class of search problems such that, given a feasible solution
Zs, the subproblem of checking whether z; is a solution or not is a polynomial problem. Clearly,
a polynomial problem must also be in the NP class. A main question is whether the inclusion of
class P in class NP is tight or if there are NP problems which are intrinsically non-polynomial.

This question is of great relevance, and is one of the main open questions of Computer
Science. Indeed, the class NP contains a large number of problems of practical relevance: among

them, for instace, is the Travelling Salesman Problem discussed above, and the Boolean K-



36 A short introduction to Optimization Theory

Satisfiabilily problem (K-SAT problem) for K > 3, which is stated in the form of a logic
boolean expression, and thus is naturally related to computer implementation.

Reducibility arguments induce also the introduction of the concept of completeness for prob-
lems in a given class: given a complexity class of problems, we define the subclass of complete
problems as the set of problems to which all problems in the class can be reduced, up to poly-
nomial factors in the complexity. For a given class, a priori, this subclass can be empty. But,
if there is at least one representative, reducibility arguments can enlarge it via the obvious
transitivity property.

The K-Satisfiabilily problem, discussed before, is of great importance also for a reason tran-
scending its practical applications: it is NP-complete. This fact has been proved by Cook [23],
starting from the formal definition of problems in NP, and of non-deterministic Turing Machines.
The proof of Cook’s Theorem establishes that K-SAT is NP-complete by showing reduction of
general SAT to K-SAT, and of the formal class of NP-complete problems to SAT. This last step
relies on the complete generality of formulation of boolean satisfiability instances, which mimic
any abstract non-deterministic Turing Machine. Using reducibility arguments, also the TSP can
be shown to be NP-complete.

Although the question whether P=NP or PCNP is open, it is widely believed that NP
problems are not polynomial problems. Heuristic arguments give a hint that their algorithmic
hardness is due to some intrinsic structure of the problem. Nonetheless, formalizing these
arguments seems a hard task, and one of the main difficulties lies of the fact that P and NP
problems can often be stated in a very similar way. As an example, consider the following
problems. For a given graph G, with set of edges E(G), and a length function [ : E — N, we can

ask if there is a self-avoiding path connecting two given vertices whose total length is
e smaller than a given threshold Lpax;
e larger than a given threshold Lp;y.

Despite of the formal similarity of the two problems, it can be shown that the first one is in P,

while the second one is NP-complete.

3.3 Average case analysis of algorithmic complexity

So far, we have concentrated on defining the algorithmic complexity of a problem. We have
focused on algorithms capable of solving a problems for any instance, since the definition of
algorithmic complexity is based on a worst-case analysis.

Nevertheless, in many NP problems, a deep exploration of the possible instances of given

size show that, in certain “regions” of this space the problem is computationally “easy”, while
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the “hard” instances concentrate on a region where performing the search of a solution becomes
structurally difficult. For example, in the Travelling Salesman Problem, if we force the towns to
be on a planar map, triangular inequality between distances must be satisfied, and the notion of
nearby towns allows for high-performance deterministic algorithms. In small words, if we grow
the path connecting the endpoint to one of the nearest unvisited towns, and trying to leave at
the end only towns in the same region, typically we achieve a good final cost. On the other side,
if distances are simply randomly chosen, partial paths created connecting the endpoint to one
of the nearest unvisited town easily get stuck at the end, because of the lack of a global strategy
based on the geometric structure.

It thus becomes relevant to dispone of an average case analysis of the difficulty of a problemn,
depending on the ensemble of problem instances. Indeed, for many practical purposes, beside
the formal optimization problem, a “reasonably good” solution will do nearly as well (say, a
solution of the satisfiability problem, with a threshold depending from the application), with a
cost “close” to the optimal one. In order to apply this strategy, it is advisable to know a priori
the expected value of the optimal cost, and how much it fluctuates from instance to instance:
this information is contained in an average-case treatment of the problem. Another situation
in which average-case analysis becomes an important tool is the case in which we search for
the most-performing algorithm meeting certain requirements on the time employed (say, for the
Travelling Salesman Problem, the algorithm, in the class of quadratic-time algorithms, which
on average finds the shortest path).

In this scenario, heuristic incomplete algorithms become relevant. Such an algorithm is
typically highly performant for certain ensemble of instances, and poorly performant for other
ones, and it is frequent that an average-case analysis highlights the mechanisms for which the
algorithm gives the wrong answer, or in case gets stuck.

Once we have motivated the study of average-case complexity, we want to show how this

study is strictly related to a statistical-mechanics rephrasing of the Computer-Science problem.

3.4 Combinatorial Optimization and Statistical Mechanics

It is easy to see that an optimization problem can be stated as a physical problem. Indeed, the
set of possible solutions can be interpreted as a configuration space, and its cost can be chosen
as the Hamiltonian of the system: cost minimization turns into finding the ground state of the
physical system, when frozen at zero temperature.

The cost function, as we said before, depends on a large set of parameters, and one is
interested in the average case w.r.t. a measure on the parameter space. Thus, the physical

system is a disordered system, in the sense described in section 2.6, where the probability
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measure aver the disorder corresponds to this measure on the parameter space, i.e. on the space

of possible instances.

The “hardness” of a hard optimization problem is related to the fact that the corresponding
disordered system is frustrated, and, as the ground state configuration is not the one which
simply minimizes all local interactions (as usually happens in ordered Ising-like systems), it is

possible that a local algorithm for finding the ground-state does not exist.

Note that the probability measure over the disorder has a crucial role: changing the measure
can change the statistical properties of the system, analogously to the fact that “hard” problems

can be “easy” for certain regions of the space of instances.

Also in this case, as happens in physical problems on disordered systems, it is interesting
to study the problem both at fixed instance, and averaging over disorder. In the first case, a
statistical mechanics approach can be fruitful in order to design good heuristic algorithms based
on some physically meaningful approximations. In the second, one can answer to the important

questions of average-case complexity described in the previous section.

For what concerns algorithm design, two major applications have been achieved. One is
the use of the so-called simulated annealing algorithms. Since these kind of problems usually
are frustrated, algorithms trying to minimize locally the energy often get trapped in a local
minimum of the cost function, and the resulting configuration not only has a cost higher than
the optimal one, but also is very different from the ground state. A solution to this problem
comes from the physical formulation: if we introduce a temperature, and thus allow for thermal
fluctuations, it is possible to avoid being stuck in local minima, exploring a larger part of the
configuration space. When the temperature decreases, first the system gets trapped in the valley
of the energy landscape containing the minimum, then, inside the valley, a further cooling allows
to find the ground state. In case this procedure should fail, a “reheating” can be performed, in
order to select a new valley. How this annealing is to be done is in general a difficult question
that can be answered with a careful statistical analysis of the whole phase space. It is thus clear
that the physical formulation of optimization problems becomes interesting even at non-zero

temperature, also from an informatics point of view.

A second class of algorithms based on a statistical mechanics approach is very recent, and
is inspired by the cavity method of chapter 2. The cavity method approach discussed therein
allows to analyse also single instances of a given disordered system, and leads to self-consistency
relations for the set of cavity fields (equations (2.11)), when the phase space is described by a
RS-pattern, or for the surveys of cavity fields over various pure phases (equations (2.36)), when
the phase space is described by a 1-RSB-pattern. It is possible to write an heuristic algorithm
which uses cavity equations (2.11) or (2.36), at zero temperature, to find the minimum cost
solution [18, 24, 20].
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In fact, programmers have been using for a long time an heuristic message-passing algo-
rithms, called Belief Propagation, which have been recognize to correspond to cavity equations
in the RS approximation [25, 26]. Belief Propagation is highly performing on certain prob-
lems, and low performing on other problems. The physical interpretation of this fact is that
Belief Propagation fails when the phase-space landscape contains many phases, and that Survey
Propagation Algorithm is the proper generalization to 1-RSB landscapes.

The first application of Survey Propagation has been to the 3-SAT problem. We shortly
describe here this exemplar case. An admissible configuration is a set of N boolean variables
z; € {0,1}", and it must satisfy a set of M logical constraints, or clauses, involving three
literals (say, a clause could be z5 V ZTg V z13). Each clause can be viewed as an interaction term
of a Hamiltonian, so the constraint that all clauses are satisfied translates into the requirement
that the corresponding Hamiltonian is not frustrated. In an average-case analysis, a natural
control parameter is the clause-to-variable ratio « = M/N. If the value of « is sufficiently low,
the problem is satisfied with probability going to 1 in the thermodynamic limit, while if it is
sufficiently high, the problem is unsatisfied with probability going to 1. It turns out that, in
the thermodynamic limit, the satisfiability probability undergoes a sharp SAT-UNSAT phase
transition: the probability py(«) that a random 3-SAT instance of size N and ratio « is satisfied,

in the large N limit, is given by
lim p(a) = 0(ac — ), (3.1)
N—o00

with o, = 4.267... In the UNSAT region, the encoding itself of a certificate of unsatisfiability
requires an exponential time [27], whose rate is larger at lower values of the parameter .
The SAT region presents a second transition point: for values of a below ag = 3.921..., the
system contains an exponentially large number of solutions, and the phase space is depicted by
a RS-pattern, while for values of o between a4 and o, there is an exponential number both of
solutions and of pure phases, whose rates vanish at a., and the pure-phase clusterization pattern
is well-described by a 1-RSB ansatz.

This statistical mechanics analysis has a practical counterpart. Heuristic algorithms which
only use “local” informations undergo a dynamical transition at the ratio a&alg): beyond this
value, they fail to retrieve a solution. When there are many pure phases, these algorithms
always get stuck on metastable valleys, so a4 is an upper-bound for all the a&alg), found in any
algorithm of this class. On the other hand, when using Survey-Propagation-inspired algorithms,
the non-local information propagated by the survey over pure phases, and by the parameter y
which accounts for the reshuffling of free-energies, allows to retrieve a solution also for large
sizes, and values of a near to o, (for example, a random instance with N = 10° and o = 4.22
has been solved in 3338.6 seconds on a 2.4 GHz Pc, cfr. [24]
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4. The Random Assignment

problem

In this chapter we present the classical solution of the Random Assignment Problem (or Random

Matching Problem) [9, 28, 29], at zero temperature, using the Cavity Method approach in the

Replica Symmetric ansatz. Some interesting thermodynamical quantities are derived, too.
Then, we solve the problem also at finite temperature, using a similar technique, and a

property of Poisson Point Processes, discussed in Appendix A.

4.1 The problem

Given a N x N matrix ¢, with positive entries, consider the cost function
He(n) = Zeijnij; (4.1)
t,J

defined on the ensemble of feasible configurations n € {0, 1}V 2, with the property that there is
one entry n;; = 1 per row and per column.
There exists a natural one-to-one mapping of the ensemble of feasible configurations into the

set of permutations Gy. The mapping is given by
n<meBy: nyg =1 <<= j=m(i).

A combinatorial optimization problem is finding, for a given instance ¢, the configuration n(!) (¢)
which minimizes the cost function (4.1), and the relative cost Enin(€). The related satisfiability
problem would be, for a given cost threshold F, finding either a configuration n such that
He(n) < E, or a certificate that such a configuration does not exist. We will discuss the
complexity of these problems and some algorithmic solutions in chapter 6.

The statistical mechanic problem, in which the cost function (4.1) is interpreted as the
Hamiltonian of a physical system, can be studied also at finite temperature. The partition
function and the free energy for a given system € are given by

2 =Y e, (o) = —% log Z(e) (4.2)

n
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and the minimum cost is related to the zero-temperature limit of the free energy,
Enin(e) = lim Fg(e) . (4.3)
B—00

We can consider the problem both for a given instance, and on average over a certain ensemble
of instances €, weighted with a certain measure given a priori. In the following we will always use
factorized measures, in which the entries ¢;; are i.i.d. quantities distributed with some normalized

function p(e) over Rt. The situations most frequently studied in literature are

e Flat measure over a compact interval, u(e) = 6(1 — €)@(e).. This measure exploits the

symmetry Fg(e) + F_g(1 —€) = N, as it is symmetric under the involution €;; — 1 — €.

e Exponential measure u(e) = e~ . This measure is in some sense “natural” in the context of
Poisson Point Processes (the spacings between i.i.d. variables with exponential distribution
are still distributed exponentially). This leads to an elegant combinatorial proof of the

statistical properties of Random Assignment [29], as summarized at the end of the section.

e Exponential measure with a cutoff. A sampled value ¢;; = ¢ € [0, ] with probability

—¢/N_ This measure can be seen also as a deformation

e ¢de, and 400 with probability e
of the exponential measure above, in which entries larger than ¢/N are removed. In the
large N limit, this process does not change the choice of the optimal cost configuration
for values of ¢ > O(logy, N). Working at finite ¢ allows us to deal with graphs of finite
connectivity, thus providing a stronger mathematical control of Cavity Theory. We can
perform the limit ¢ — oo at the end of calculations in order to obtain the results of the

exponential measure problem.

e Double-delta measure p(e) = £d(e)+ (1 — £) 6(e—1). This measure leads to the combina-
torial problem of dimer packing on random graphs d la Erdos-Renyi, of average connectivity

c. This problem is discussed in [30].

The precise choice of the measure u(e) is not important as long as we are interested to the
thermodynamics of the system for sufficiently large inverse temperatures 3, and in particular
for the zero-temperature limit involved in the calculations of average properties of optimal cost.

Indeed, consider the extraction of N i.i.d. variables {z;} with a given probability distribution
u(x) as above. Then this set of variables, sorted and rescaled by a factor N, are distributed
according to a Poisson Process of rate u(z/N). So, if u(e) is finite and regular in a sufficiently
large right neighbourhood of the origin, with 1(0) = po, the first items of the process are
asymptotically distributed according to a Poisson Point Process of rate equal to the function
pof(x). For this reason, the first two examples above, (and a posteriori also the third one for
¢ > O(log N)), are all thermodynamically equivalent.
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In the context of replica symmetric approximation, it has been proven in [9] that the average

value, over the disorder measure pu(e€), of the minimal cost in the infinite N limit is

(Bai) =T =@ =) 5. (4.4

This fact has been recently proven with exact methods on the exponential measure [29], together
with the finite-size conjectures

N
(Buihy =3 5 (4.5
n=1

(Parisi Conjecture), and the more general Coppersmith and Sorkin Conjecture [31], for the case
of rectangular cost matrices e.
As we will see in the derivation, the {(2) limit of random assignment [28] is related to the
moments of the logistic distribution
1
x) = ,
f( ) (ez/Z + 6—1/2)2

which is indeed the distribution of the cavity magnetic fields in the zero-temperature limit.

4.2 Cavity Equations for the Assignment Problem

The Hamiltonian (4.1) is of the general form (2.1) of section 2.1, with variable indices {(4,7)} €
{1,..., N}?, and interaction indices {i}{rows)y{j}(columns) ¢ fy(row) - p(row) q(col) " plcol)y

One-body terms are given by

e~ PWii(nij) — g=Peijnij (4.6)
while interactions correspond to
(row) (. _pgpleol)
e~ BB (ni) _ (5( S ni, 1) ’ o BES M (nij) _ (5( 3 nij, 1) . (4.7)
j i
Specializing equation (2.11) to this problem, we obtain the Cavity Equations

hijy—i = €ij + Uj(ij) 5

Ujn(i) = ~ 50 ;

jl

Zn. , 5( Z 44, 1) e_ﬂ 22 hjry i
ij

which, solving w.r.t. cavity fields, can be written for short

> 5( > nigr, 0) exp ( — By (eiy + “j'ﬁ(ij'))“ij')

Uiy = — 5 n L7 17 (4.9)
1—>(1j) — . .
J ,8 Z 5( Z Nijr, 1) exp ( - 5 Z (Gijl + ’u,]/_)(Z]/))’nZ]f)

Nt §#] 3'#3




44 The Random Assignment problem

Because of the delta constraint, the numerator reduces to a single term, since all n;;; must be
zero, while the denominator is the sum of N — 1 terms since only one n;; must be non-zero.

From now on we call for short
Ui (i) = Gi—j > Ujs(ig) = hjsis (4.10)

equation (4.9) becomes

1
Gisj = 3 In Z e Aleij thirsi) (4.11a)
J'#7
1
hj i = 5 In) e Aleritoiag), (4.11b)
i i

4.3 FExact solution of the distributional equation

In this section we search for a distributional identity involving the average cavity field dis-
tribution, for a measure over instances factorized on the entries ¢;;, which are ii.d. with
p(e) = O(e)e . As we will see, the entries of an instance on a certain row in the large N
limit are distributed as a Poisson Point Process, and this will allow us to solve the equation
using general properties of Independent Point Processes discussed in A.

Consider equation (4.11a) for a given pair (z, ) averaged over the instances. The cavity fields
gi—j and {hj _;},r+; are assumed to be identically distributed with some normalized f(x), which
we want to find self-consistently. We will come back to this point in section 6.4. We can reorder
the N — 1 summands w.r.t. the values of ¢;;s, and rescale the entries and the fields of a factor
%. Call {&}i=1,.. n—1 the rescaled entries, and z, {z;}i=1,. ~_1 respectively the rescaled fields

g and h. We can write the distributional equation
=
2 B In Z e Bl&itz:) , (4.12)
i=1

with {¢;} a Poisson Point Process of rate 6(£), as motivated in page 4.1 and z, {x;}i=1,..,N—1
iid. with f(z). We will find in the end that the differentail equation we find allows for a
solution, f(z), with a finite limit for N — oo, and is a fast-decreasing function. So, for values

of B of order 1, or larger, the equation above allows for a simple infinite N limit, we can write

o0

ol %lnz e~BlEte) (4.13)
1=1

up to corrections of order exp(—BN), as the contribution of terms with index larger than N in

the sum is exponentially small.
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The zero-temperature limit of this equation provides us the relevant results for the optimiza-

tion problem. For 8 — +o0, the equation becomes

z £ max(—& — ;). (4.14)

2

The quantity on the right-hand side is of the same kind discussed in Appendix A. The points é+x
are the result of a reshuffling procedure, and are consequently distributed with (6 f)(z) = F(z),
where F(z) is the primitive of f(z):

Flz) = / " (). (4.15)

— o0

We ask for the probability distribution of the maximum value in the set {—¢; — z;}. As we deal
with an independent Poisson Process, the probability that this value is smaller than a given
value y is expressed as the probability that, for a given free gas of particles distributed with
density F(—z), there are exactly zero particles in the region [y, 4+00), and thus is a poissonian
of rate R = fyoo dy' F(—vy'), calculated in n = 0:

prob(max(—¢; — ;) < y) = Poissg(0) = e~ ®(-¥) | (4.16)

where

T
B(z) = / dz' (). (4.17)

—00

The distributional equation (4.14) implies in particular
prob(z < y) = prob(max(—¢§; — zi) < y),
(2
and, by definition (4.15), we have
prob(z <y) = F(y),

from which we obtain

F(z) = e 22) (4.18)
Furthermore, differentiating equation (4.16) we find
d ~a(-y)
prob(max(—§; — z;) = y) = —d—yprob(max(—é“i —z;) <y) =F(—y)e v, (4.19)
which by the distributional equation (4.14) implies

f(z) = F(—z)e~®=2) (4.20)



46 The Random Assignment problem

2 4 6

Figure 4.1 Plot of the logistic distribution f(z) = 1/(4 cosh®(z/2)).

which can be also obtained directly by differentiation of (4.18). Combining (4.18) and (4.20) we
get
f(z) = F(z)F(-z), (4.21)

from which we deduce that f(z) is an even function. So, we find
f(z) = F(z)(1 - F(z)); (4.22)

this differential equation jointly with the fact that f(z) is positive and is normalized, allows us

to identify the distribution of the cavity fields with the logistic distribution

1 o
" deosh2(z/2)  (1+en)? (4.23)

f(z)

The explicit forms of its first and second primitives, with boundary condition fixed by symmetry,

are T
F(z) = 1;;—6$ (4.24)
®(z) =In(1l +€%). (4.25)

4.4 Statistical properties of the minimum energy configuration

From distributional equation (4.14) we can deduce more than the mere distribution of the fields
(4.23). Indeed, the distribution p(£), for the entry £ on which the maximum of —¢; — z; is
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realized, corresponds to the distribution of instance entries €;; chosen in the solution, rescaled
by a factor N. From this distribution we can extract the average value of the minimum energy,
(Emin)-

The probability p(£) can be found by independence of Poisson Processes. Say we ask for the
probability p(€,7) that the maximum value is realized for a given pair (£,Z). The remaining
entries (&;,z;), conditioned to the presence of the entry (£,%), are still an independent point
process with rate p(¢,z) = 6(§) f(z), thus the maximum of —¢; — z; over these remaining entries
is still distributed with f(z). So p(§,Z) = prob(—¢ — T > z), with z and Z i.i.d. with measure
f(x). After integration we find

e s —1+¢

4cosh?(£/2) (4.26)

p(€) =0() [ a5 [ o 1(@) f(@)0(E -7~ 2) =0(6)
The average value of the minimum energy corresponds to the first moment of this distribution

(the factor 1/N for the rescaling of the entries cancels out with the factor N of the sum):

7['2
(Bui) = [ dtép() = . (1.27)

Starting from the distribution of the fields we can find another interesting quantity connected
to the statistical properties of the minimum energy configuration. We want to calculate the
probability that the k-th smallest entry in a row is chosen in the minimum cost configuration, in
the limit where the number of entries goes to infinity. Remember that, for a fixed row, we have
relabeled the entries {&;}, so that they are sorted in increasing order. We seek for the probability
pi that the index realizing the maximum of {—¢; — z;}; is equal to k, where, as usual, the entries
{&} are a Poisson Point Process of rate 6(¢), and the set of fields z; are distributed according
to a logistic distribution (4.23).

Say that the maximum of —&; — x; is realized with the values ¢ and Z; the probability we

are looking for is given by

bk = /dzdfp(kaga E)a p(kagaf) = pI‘Ob(fk = Ea T =71, Igga}f(_gz - x’t) < _§ - E)

= 0(€) f(Z) Poiss 4(0) Poissg(k — 1) (4.28)

k-1
= B _A-B

= 0@ (®) g gy

where

e Poiss4(0) implements the constraint that the point —¢ — T is the maximum; A is the
integral of the density of the two-dimensional Poisson Point Process with rate 6(¢) f(x),
over the region (¢, 1) such that (—¢ —z > —€ — 7).



48 The Random Assignment problem

e Poissp(k — 1) implements the constraint that the number of entries ¢; smaller than ¢ is
k — 1; B is the integral of the density of the two-dimensional Poisson Point Process with
rate 0(¢) f(x), over the region (£, z) such that (—¢ —z < —€ —7) and & < €.

So, using definitions (4.15), the quantities A and B are

d¢ [ dz (&) f(z)0(E+T — € — x)
/ / (4.29a)
— [0 ©F €+ -6 -2+,

(4.29D)

0

Now substitute expression (4.25). The generating function p(w) is given by

e £ Foo e ® e 1+e® \¥
=1 0 — 00 ( +e ) +e

performing the change of variables

we finally find

o 1 ¢ 1 1
p(w)z/o dtm/o du(l—l—u)‘*’:Z—w' (4.31)

So the probability of chosing the kth smallest entry in a row for the minimum cost configuration

is simply given by
1

2_k -
This result is found with different techniques in [28], while it is derived in a similar way in [32].

pr = (4.32)

4.5 Finite-temperature distributional equations

We now turn our attention to equation (4.13). In a fashion similar to what we did for its zero-
temperature limit (4.14), we want to translate that distributional equation into a functional
identity for fg(z), the distribution of the quantities z and {z;} at inverse temperature 3: this
identity, together with the normalization and the boundary conditions lim;_,+ fg(z) = 0,
univocally identifies the distribution of cavity fields.

We rewrite equation (4.13) as

B & Z o BlEitai) (4.33)

%
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B

8|

A

Figure 4.2 Regions of integration for the quantities A and B in (4.29).

Let’s focus on the left-hand side first. If z is distributed with fg(z), the quantity y = e is

distributed with

o) = I5(a ) | 22| = L fiato)) . (4.3

Since y > 0, we can introduce the Laplace transform g(n) of this distribution on the domain
Re(n) > O:

_ L

_ +o0 +o0 ,
i) = [ aye o) = [ ad fp(@) explne’). (43)
—0oQ
For the right-hand side, we define
y=> v, yi=e P&t (4.36)
i
Each y; is sampled according to a distribution ge(y):
1 Iny
_ L, Imyy 4.37
%) =5 1s(~ €~ 5) (4:37)

We can find the distribution g(y) of the sum ), y; using the results of Appendix (A). We again
consider the Laplace Transform of the distribution g¢(y)

+oo e~ lny /—I—oo ,
ge(n) == dy —fsl - ——) = dz’ exp(—nefE+®)) fo(—a'), 4.38
ge(m) /0 Y 5, fﬂ( 5 ) . (=n )fp(=2") (4.38)
where we have made the change of variable
1
= f + ﬂ .

B
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We now apply equation (A.8), and find

§(n) = exp [— / :o do’ f5(~a') /0 e (1-exp (- nef’@”’)))] : (4.39)

where we have used also the normalization of f. Equating (4.39) with (4.35) we get a differential
equation allowing to determine fz(z). Expressions of the kind exp(—e %) are the only ones
in which the temperature parameter explicitly appears. In the 8 — oo limit they just produce
O(x). At finite 8 we recognize the primitive of a universal normalized function, the Gumbel

function ¢(x), rescaled of a factor g:

t(x) =exp (~z—e7");  tg(z) = Bt(Bz); (4.40)
exp(—e %) = Ty(z) i= /_ da’ t5() (4.41)

Set
n=eP". (4.42)

Equation (4.35) becomes
| e i@ Tyt~ o) = (Fy +t)a) (4.43)

while the argument in the exponent of equation (4.39) becomes

/dx'/d&fg(—ﬂc')@({)(1—Tg($— — ) /dy/d€f5§ Y)0(6) (1 — Ts( — v))

- / dy Fa(y) (1 - Tp(z — y)) = (@5 % 1§)) (~a), (4.44)

with t,(;)(w) = tg(—x). We finally get

(Fp + t5)(z) = exp (D +£5))(~2)] . (4.45)
or, deriving w.r.t. x the previous equation:
(f3 * 1) () = (Fy » t5) (2)(Fs 1) (~a). (4.46)
The 8 — oo limit of this equation is again equation (4.21): indeed

lim t5(z) = 6(z); () =d(a);  (f#0)(w) =b(x) V fla). (4.47)

B—00
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4.6 Low-temperature expansion of cavity field distribution

Equation (4.46) allows us to find finite-temperature corrections to the distribution of the fields,
at any order in %

First note that equation is invariant under the transformation
t(z) — to(z) = t(z — a), (4.48)

as deducible from the explicit form

/da:' fa(a)tg(z —2') = /dw' Fs(z')tp(z — 2') / dz' Fg(z')tg(z + ') . (4.49)

So we can replace t(z) with its central part ¢(z + ygum), such that [dzzt(z+yem) = 0.
Given an analytic function f and a fast-decreasing function ¢, their convolution can be

expressed as

(50 = 3 1 L), (4.50)

where M, is the k-th moment of ¢
My = /dav:ckt(:v). (4.51)

Indeed, from the definition of convolution

.’L'—"Ek
(4@ = [ 4o’ f@)tta - o) = [ o ( L )@> to—a),  (452)

where we have expanded the function f around z.
In equation (4.46), where translation of Gumbel function in the barycenter is understood,

Mj, are the central moments, which can be obtained from the generating function

> %gk =T(1—¢&)e #M8 = exp (Z %gk) : (4.53)
k=2

k

Considering also the scaling (4.40) in 3 of t5(x), we get
(Fs * tg)(z Z ﬂkk' dxk Fﬁ( ). (4.54)

Besides, the (central) moments of the function té,s)(ac) are identical to those of the Gumbel

distribution, but an extra factor (—1)* appearing in the k-th moment, so that

M, d*
(Fﬂ*tﬂ Z ki doF Fp(—x). (4.55)
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We can now plunge these expansions in equation (4.46); in order to find corrections in 3, we

make an ansatz on the temperature dependence of the unknown field distribution primitive,

Fy(z)
Fila) = Y- g Gi(o) + Hilz)], (4.56)
k
Gi(z) = Gy(—z),  Hy(z) = —Hp(-17), (4.57)

where we have highlighted the symmetric and antisymmetric part. Substituting in equation

(4.46), and using the parity of the two parts, we get

k
1 kN (k1 (k2 li+o
= Z BEE! Z Z <k1> (ll> (12)(_1) My M,
9=
[D(ll)lefll (x)D(lZ)G/m*lz (‘T) - D(ll)Hk1*l1 (‘T)D(ZZ)HIQ*ZQ(‘T)] ’ (458)

where we have denoted % = D),

To find the corrections of the k-th order in 3, we must match the k-th summand of the left
side with the k-th summand of the right side; in this way we find equations where 8 no longer
appears. This system of equations is hyerarchical, since the k-th order involves only Gy, ..., Gy

and Hy, ..., Hi. That is, the k-th order correction can be found solving the equation:

k
> (-1) (k) M DUV [Gy(z) + Hyy(z)] =

=0 ;

Ek: (:1) f: (l;j>(_1)l1Mll[D(ll)(Gk1l1(~T) + Hp, 1, (2))]

k1=0 11=0

5y (32) (203,10 Gy (0) + szlf,))](\hﬁg)

l
12=0 2

The first equation, for £ = 0, is the only non-linear one and coincides with equation (4.22); it is

solved by
1 1 T
Go(z) = 5+ Hol@)= Etanh(i) . (4.60)
For k > 1, G and Hy, are the solutions of a linear system, where the only operators acting on

the functions involved are derivatives (of order k at most) and products. Note that the closure
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of 1 and tanh (%) w.r.t. these operators is contained in the linear space generated by the set of

monomials
1 tanh (%)
2\ 2k 2\\ 2k
(cosh (5))™  (cosh (5))™ ),
Set
T 1
t=tanh (=), y=—>=. (4.61)
( 2 ) cosh (%)2
The following formal rules are valid for these variables:
D(yk) = _ktyk )
D(ty*) = —ky* + (k + 3)y*F 1, (4.62)
?=1-y

With this substitution, obeying the set of formal rules, no longer do we have to cope with a set
of differential equations; instead, we have a linear system of polynomials in y and ¢, of degree

at most 1 in ¢. Since this set is closed w.r.t. products and derivatives, as we noticed before, we

Fg(z) — F(x)
0.01 |
T=0
002 )
T=0.75
- 0.03 |

Figure 4.3 Plot of the finite-temperature corrections Fg(z) — F(z),

at temperatures T = % = 0,0.05,0.10,...,0.75 (from red to green).

Included corrections are up to order 3~8.
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are guaranteed that the unknown functions Gy and Hj are of the following form:

Gi(e) =Y Arny”, (4.63)
h

Hy(z) = Y Braty". (4.64)
h

From the zero order equation, we recognize:
1
AJ0,0] = B[0,0] = 37 A[0,h] = B[0,h] =0 Vh>1. (4.65)

The calculation of coefficients Ak, h|, B[k,h] for & > 1 can be implemented using a computer
program!. Tt turns out that, at all orders k, when non-null, G4 (z) ~ cosh™ (%) and Hy(z) ~
tanh (2) cosh™2 (%) at large .

The explicit analytic form of the solution, up to order B4, is

1
8l@) = 1=
1 72 3 (T\ . T
+ 718 cosh 3 <§> sinh (5)
- %%2) cosh™ (g) (1 + sinh (z)) (4.66)
. ;mh %) (11 sinh (£ — sinh (37))
+0(57%)

'We used a Mathematica™ 4 program.



5. The k-assignment problem

The k-assignment problem is a generalization of the assignment problem to the case in which

each person can execute k jobs simultaneously, and each job can be shared among k persons.

The statistical analysis can be performed in a fashion similar to the one of chapter 4, using
the Cavity Equations in RS approximation. As we will see, the original case k = 1 shows some

peculiarities. This is a first motivation for the present analysis.

Furthermore, the case k = 2, in a delicate limit of “number of colours” going to zero, can
be related to the famous Travelling Salesman Problem, which is known to be a NP-complete
problem, and, under many aspects, is considered as a prototype problem for Complexity Theory.

The consequences of this fact are briefly discussed in the Conclusions.

In this chapter, instead, we focus on the thermodynamics of this problem. Following the
same procedure of the previous chapter, we start specializing the general Cavity Equations
(2.11), derived in chapter 2, to this case. An average over the ensemble of disorder leads to
their promotion to distributional equations: a local differential equation, solved with numerical
methods, is derived. We also explain how to calculate the average value of the minimum cost,

and we find analytically the large k& behaviour of the fields, solving the distributional equation.

5.1 The problem

Consider the ensemble of instances {e}, where each instance is a N x N grid of i.i.d. random
variables ¢;;, ¢ = 1,..., N, sampled according to some normalized distribution p(€). To fix the
ideas, let us suppose that p(e) has support on R;, and is finite and continuous in a right-
neighbouring of the origin.

We will show that the statistical properties of the minimization problem (corresponding to
a zero-temperature limit of the related statistical-mechanics problem), in the thermodynamic
limit only depend on the value of the distribution at the origin, py = p(0).

The set of allowed configurations is the set of N? variables n;; € {0,1}, such that for each
1 < N we have Ej n;j = k, and for each j < N we have ), n;; = k.
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The cost function (Hamiltonian) is

He(n) =) eyni; - (5.1)
2

5.2 Clavity equations for the k-assignment

The argument exposed in section 4.2 to find cavity equations for the assignment problem can
be easily generalized to the k-assignment problem. Variables and interactions are labeled in
the very same way as the Assignment problem: variable indices are {(i,)} € {1,..., N}? and
interaction indices are {1}(%s) U {j}(columns) ¢ fq(row)  pr(row) q(col)  N(c°l)}1 One-body
terms are again given by

e PWij(nij) — o—Beijnij ) (5.2)

the only difference being in the constraints, which correspond to the interactions:

e_ﬂEi(row)({mj}) _ 5(2”@', k) ’ e_ﬂEJ(Col.)({mj}) — 5(an‘jak) ] (5.3)
J i

Specializing equations (2.11) to this problem, we obtain the Cavity Equations
hij)—j = €ij + Uiy (ij) ;
1 En (5(1 + E]/ ’)’I,Z'j/,k) e_/B ZJ" h(ij')*inij' (54)

Uis(ij) = — 7 10 ;
? 5( ij g, k) e B gt Pty imat

j’

>
It is again convenient to solve w.r.t. cavity fields, getting

Z 5( Z N4, k— 1) €Xp ( - ,3 Z(eij/ + u]/_)(”,))n”,)
nijt §'#] J'#3

Ui (ig) = B In Z 5( Z N, k) exp ( -B Z(eij’ + ujf—)(z'j’))”ij’>
"%

N0 J'#5

j'

| =

(5.5)

In this case, the numerator involves (]Z__ll) terms, while the denominator includes (N i 1) terms.

In analogy with the Assignment Problem, we turn to the notation:
Uis(i5) = Gij » Ujs(ig) = Pjsis (5.6)
equation (5.5) becomes

1 Zn ' 5( Ej’ i, k— 1) 67’8 2o (e thj L )ngg

ginj = gln . ) (5.7a)
- P Enijl g ( Zj’ g0, k) e P Xg (Cijr Thjr)nage
1 ij/ 6( Ei' ngj, k- 1) e Bl (et gi;0ni5)
himi =g ln (5.7b)

Don. 5( S it k) e~ B lewjtginiIny;

v)
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In the zero temperature limit, they have a much simpler form. On equation (5.7a), the leading
term in the denominator is the product of the k largest values exp(—p(e;j + hjr—;)), with j' # 7,
while the leading term in the numerator is the product of the k¥ — 1 largest values in the same
set. Corrections due to subleading terms are of order O(e~#2% ¢=#A%k+1) with Az equal to
the difference between the k-th and the (kK — 1)-th smallest zj = €7 + hjr_,;. If we neglect
them, the first & — 1 factors exp(—p(ei;r + hj—;)) simplify, and we are left with the k-th in the
denominator. If we denote with k-th;(z;) the k-th largest element in a set {z;}, we obtain the

zero-temperature equations
gi—sj = k-th(—€ijr — hjroi) (5.8a)
J'#]

hji = ]‘Z?,';E?(_ei’j — gij) - (5.8b)

5.3 Daistribution of the fields

Following the procedure described in section 4.3, we require that the fields h; and g; are dis-

tributed with the same (normalized) distribution fy(x), satisfying the distributional equation

d
= k-th(—& — z; .
o L kth(~¢ — 1), (5:9)
where the sequence {0 = &g, &1, &, ...} is arate 1 Poisson point process, i.e. the quantities &—&;_1
for 4 > 1 are independent identically distributed as 6(¢)e¢, and the quantities z, z; are i.i.d. as
fr(z). The pairs (&;, z;) form a two-dimensional point process with density pi(z,&) = fr(z)0(€),
and we search for the k-th item with respect to the gradient function —¢ — z. The probability

that k-th;(—¢&; — z;) € [y,y + dy] is the product of two factors:

1. the differential probability that there is a point in the slice [y, y + dy], given by

[ dwneo- [ ddop@o;

—{—xz2>y —{—z>y+dy

2. the probability that the number of points such that (—£—xz) > y is exactly k—1. As we have
an independent point process, the number of points inside a certain region is Poissonianly
distributed, with average given by the integral of the density inside the region. In our

specific case, we have

(n) = /_ a¢ dz pi (2, €).

§—z>y
Define the integral:
L= [ dedefu(a)o(o), (5.10)
—{—z>y
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then the distributional equation (5.9) reads

k—1
ety = —ay (550 ) T expl-Ti). (.11

Note that, by definition, lim,_,_ oo Zx(y) = 0T as the support is empty in the limit.

We expect fr(x) to be a fast-decreasing function. We introduce its primitive

Yy
R = [ a/hi) (5.12)
for which we must have
. —_nt. : 1.

Apply the operator fy+°° on both sides of equation (5.11). On the right side, integrating by
parts and using the asymptotic limit of Zy(y):

+o00 400 Nk—1
1A = [ ) == [ (550) B ea-n)
Y Y )
1

Y
k-1 k— (5.13)
T, h 0 T h
_ <exp<—zk(y>) y B ) “1- ( o) ) exp(~Z(w0))
h=0 | Yo h=0 ’
Simplifying, we have:
k—1
Ty (y)"
Fily) = exp(-Ty(w) Y 4V (5.14)
h=0
The function Zy(y) itself is related to Fi(y). Indeed, from the definition (5.10) we have:
+oo
T = [ dede e = [ a0y
z<—€—y —00
= - (5.15)
- [ ahee-n - [ ane.
We define also the primitive of Fi(z):
X
o(0)= [ ayFi(y) = Tu(-o); (5.16)
—00
with the asymptotic behaviour
lim @(z) = 0", lim K@) g

T—r—00 T—+00 €
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We recall the definition of Euler Gamma function I'(k, z) and of Regularized Gamma function

Q(k, z)

o0 k-1 h
— k=1 -t _ - + .
I‘(k,z)—/z dttF= e ZZM ke N'; (5.17)
[(k, 2)
k,z) = 1
Using definition (5.16), equation (5.14) can be written as
L'(k, B (z))
@I — = 2 == k @ . 1
In the £k =1 case, an important role is played by the symmetric combination
F(-x)F(z) = f(z)
Also for this general case we can write a symmetric combination:
! (—x)P) (z 1
putw) = DB Loy )0k, @4 () (5.20)
The function 9, (x) turns out to be normalized. Indeed, we have for its right primitive:
k, @ (z'
(D () (5.21)
= Q(k + 1,84 (x)) — —5 Qlk, B (2))
and, since ®g(z) — 0 as z — —o0,
wEIPoo Up(z) =1. (5.22)
Note that for this function the following identity holds

From the symmetry of the function 1, (z) we derive a relation for the numerical value of ®4(0):

2:(0)

- (5.24)

N —

U1(0) = Q(k + 1, 2(0)) - Q(k, @x(0)) =

5.19), allows us to find
z) for the first values of

This initial condition, together with the linear differential equation

—_

numerically the distribution function for the cavity fields. A plot of fi

k is shown in figure 5.3.
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-10 -5 5 10

Figure 5.1 Plot of the field distributions fx(x), for k =1,...,10. The
central symmetric function is the logistic distribution f; (z) of equation
(4.23), already shown in figure 4.3.

5.4 Calculation of the expectation value for the minimum en-

erqy

As shown in Aldous [28] for the case of Random Assignment, the average value of the minimum
energy can be calculated from the distribution of the cavity fields, f(z). Following the reasoning
which led us to the distributional equation (5.9), we understand that the entry chosen for the
minimum energy configuration is the one realizing the maximum. So, if in row ¢ we have that
max;(—e€;; — h;) is realized on the index 7, the energy contribution of row 4 is given by ;.

The probability p(¢) that, for a certain row, we have a summand £ as energy contribution,

is the product of two events:

e the probability that a point & € [¢,€& + d€] is sampled in our process, that is
0(£)d¢;

e the probability, conditioned to the event above, that all the other points in the process
have gradient function —§; — x; smaller than —&; — x;, where z; is sampled according to

(@)
prob(—¢{ — z) < max(—§; — z;)).

'Note that in an independent point process, the process marginalized to the presence of some points, in which

these points are removed, coincides with the original process.
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Since the right hand side of the inequality is distributionally identical to f(z), we can replace it

with a single random variable z’, distributed with f(z'). So we have

p(§) = 0(§prob(—¢ < z + ') (5.25)

In the general k-assignment problem, the distributional equation for the fields (5.9) is

d
fi(@) = k-th(=& — z4) ,
1>1
and the k entries chosen for the minimum configuration are the ones corresponding to the k
largest values of the gradient function —&; — ;. So, if in row ¢ the first £ values of —¢;; — h;
are obtained for {jy),. . ]k } C {1,...,N}, the energy contribution for row 7 is given by
€. .6 F ..., FE ().
ij; g
Followmg a reasoning similar to the one above, for a given row, one of the k energy contri-

butions is inside the interval [¢, £ + d¢] with probability px(€) given by
pi(§) = 0(¢) prob(—€ — & < k-th(=§; — i) . (5.26)

As we have k contributions, the measure p(¢) is normalized to k. Since the right hand side
of the inequality is distributionally identical to fx(z), we can replace it with a single random

variable z', distributed with fx(z'). So we have

pi(€) = 0(6) prob(—¢ <z + 7). (5.27)

The average energy contribution per row is given by the expectation value of £ over the measure
k(€), that is

+o0
(Buin)g = [ dé€prob(—¢ < z + ') / de¢ / dw Fe(@) fula)
0

+oo +oo
:/0 d¢ [ da fy(@)Fi(~€ — o) = "z Fi(o) dé&fk( ¢ )

-0
and, integrating by parts in &,

[ @R [(dEene-n= [ Bawos)

—00 o0

+00
_ / dz By, (z) Q(k, By ()) -

— 0

The expectation value of the free energy is thus given by

+o0
(B = [ dou(x)Q(k, 21 (2)). (5.28)

-0
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5.5 Asymptotic behaviour for large k

The distributional equation (5.19) can be easily solved in the limit £ — oo using the asymptotic
properties of the Poisson distribution. The density of the points y; = & + x;, given by the
reshuffling argument of A, is p(y) = Fi(y). Suppose that the width of fx(x) is o(k), then in
the relevant region where ffoo dp(y') ~ k, the density is approximatively 1. So, the k-th point
is distributed approximatively as a Gaussian of variance k, centered in the point y such that
ff’oo dp(y') = k, that is k + (z) in our hypothesis. From the distributional equation we deduce
that f(x) itself should be a Gaussian of variance k, centered on some point (z). The width of
f(z), being of order vk, is consistent with the previous ansatz. The average value is determined
by
k
(2) = (kth(-g) ) =~k — (@) ; (=) =5

The first non-trivial correction can be calculated by a careful analysis of equation (5.19). First
we note that this equation admits a scaling limit for £ — oco. At order zero we find

lim Q(k,kz) =6(1 —z), (5.29)

k—o0
by saddle-point reasonings?, from which we deduce that the proper rescaling of ®;(z) is of a
factor k. This factor is balanced on the left side of (5.19) if we also scale the argument z of a

factor k, because of the Jacobian in the derivative. Thus, defining a rescaled function

By(a) = 1 Ou(ke);  B(r) = lim By(a),

k—o00

at zero order equation (5.19) becomes

' (—z) = 0(1 — ¥(z)). (5.30)
Using the boundary condition lim,_, o &)(w) = 0 we find the solution

B(a) — 0 z < —1/2;
(=) = T+1/2 z>-1/2.

From ®"(z) = &§(x + 1/2) we recover the fact that (z) = —k/2. We expect corrections to this
solution in a neighbourhood of the singularity of size O(1/ V'k). Indeed, the leading correction
to (5.29) is given by?

2Going back to definition (5.17),

+o0 +o0 dt
Q(k, kx) =/ dtt* et x / Tefk(tflnt),

kx x
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Figure 5.2 On the left, plot of the rescaled regularized gamma functions
Q(k, k + Vkz) in (5.31), for k = 2", and n = 0,...,10. On the right,
plot of Q(k,k + Vkz + ¢), with the translation coefficient ¢ = —1/3
which enhances the asymmetry suppression, as described in equation
(5.33). Comparison with the asymptotic curve, plotted in red (gray for
B&W prints) is shown.

1 +0o0 2
li k k + Vkz) = —/ dte = + Ok /%), 5.31
kggoQ(+a:)mw e (k%) (5.31)
Defining
Bo(@) = —Bu(Vhz—1/2); B(z)= lim (),
k k—+00

and using the fact that ®(z) = z + 1/2 + O(e™*) in a neighbourhood of z = 1/2, we can write

=/ 1 +0o0

Fw=—[ dte=% +O(1/VF). (5.32)

From the original definition f(z) = F'(z) = ®"(z), which applies also to :NI;(:I:) up to a scale factor,

we obtain that f(z) at leading order is a Gaussian, as expected from the previous reasoning.
Keeping the next correction in the expansion of Q(k,x), which describes the asymmetry of

this function, we find

kli_}n;o\/il;(l - Ei: Q(k, k + \/Ex+c)) = \/g <c+ ! _3‘”2> = (5.33)

and the saddle-point action S(t) =¢ — Int has a minimum in ¢ = 1.
3Expanding around the saddle point

+ +
/ ee d_te—k(t—lnt) = / * dte—%ﬂ')(k‘l)_
evE b «
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64
So the next order in equation (5.32) is given by
! 1 [t 2 2 (1—2?\ _a?
P = — dte” 2 — Tz .
(z) Nerd e 2 + kw( 3 )e z; (5.34)
~ =i 1 2 2 z3 1
=® = T 14+ = - — ol - . 5.35
fo) =80 = =¥ (14 2 (a4 T ) +0(1)) (5:39



6. Survey of Algorithms for

Random Assignment Problems

In this chapter we describe some algorithms to solve Assignment Problems. We start with a
short description of a general method for solving Linear Programming problems, the Simplex
method; the linear programming formulation of the Assignment and the k-assignment Problems
are discussed subsequently. Another exact algorithm for the Assignment Problem, the Hungarian
Method, is presented. Also an algorithmic implementation of Cavity Equations is described, as
well as several problems we have faced in this task, which have highlighted some peculiarities of
the Assignment, and stressed the validity extent of the approximations done in the theoretical

treatment. The final section deals with the satisfiability version of the Assignment Problem.

6.1 The Simplex method of Linear Programmaing

A Linear Programming problem [33] is any problem that can be stated so that the desired

solution is a set of values {z1,...,2,} such that:
e all z; > 0 (non-negativity condition);

e they are a solution of the system in n unknowns, composed of m constraints

o111+ ...+ a1pTy, = b1, (6.1&)
anT1+ ...+ aopT, = by, (61b)
Am1T1 + ... + GmnTn = by ; (6.1c)

e they minimize the objective function

He(z)=crz1+ ...+ cprp = 2. (6.2)

Any configuration satisfying the first two properties but not the third, is called a feasible solution.

A basic solution is a feasible solution in which n — m unknowns are set to zero. The set of all
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feasible solutions is a convex (n — m)-dimensional polygon in R", and its vertices are the basic
solutions!. As a consequence, the optimal solution, if it exists and is unique, is a vertex of the
convex. If it is not unique, it is the simplex convex combination of a subset of vertices, all
optimal solutions.

Linear programming problems admits a certain number of algorithms of solution, but almost
all of them use the basic principles already present in the simplest algorithmic approach, named
simplex method, which we shortly describe in this section.

The simplex method is an iterative procedure which consists of moving from an extreme
point of the convex to an adjacent one?, following the steepest gradient of the cost function.

Assume that all the equations (6.1) are linearly independent (or restrict to an independent
subset). Suppose we have found a feasible basic solution (this is potentially a delicate point),
and z1,...,Zy, are the basic variables. With a set of linear transformations we can rearrange

(6.1), in the so-called canonical form

! ! !

T + a1 g 1Tm+t1 + ... + aj pTn = b1 ,
! ! !

2 +ag mi1Tmt1 + ... Fag,Tn = by,

/ / / (6.3)
Tm + A m+1Tm+1 + .o F Ty = by
/ /
Crm+1Tm—+1 + ... +tcTn =2—2p-

In the last line z; is the value of the cost function in the basis under consideration.

If the smallest coefficient ¢, is positive or equal to zero, the basic solution we are considering
is the optimal solution, because all extreme adjacent points correspond to higher values of the
cost function. Indeed, suppose we move to another vertex; there will be some x;, whose value
was set to zero in the old basic solution, now assuming a positive value, and the cost funtion
value in the new basis will be equal to z = zy + ¢jz;. So, say that the minimum ¢ is negative; in
the column s look for the positive coefficients a}, (if they are all negative or null, this means that
the cost function is unbounded -and this is advised not to happen). It is possible to see from
the canonical form that the non-negativity constraint implies that for all 7 such that a;s > 0,
zs must be smaller than b;/a;s. Choose the row r realizing the smallest value of these ratios.
Using element al.; as a pivot, we move with another set of linear tranformations to the adjacent

basis where z, takes the place of 5. This new basis has been chosen in order to decrease

Tt is convex as, given two feasible solutions Z(* and &), the convex combination ) = ¢tZ© + (1 — ¢)&®)
still satisfy both non-negativity condition and the linear system (6.1); it is a polygon since it is the intersection
of a (n — m)-dimensional vector space and n semi-spaces in R"”, and the basis solutions correspond to the points

satisfying tightly at least n — m disequalities, so they are the vertices of the polygon.
2Two extreme points are adiacents if their basis differ of only a pair of variables.
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the cost function as much as possible (we have taken the smallest coefficient ¢/,) while satisfying
non-negativity constraint. Performing another linear transformation, we can write the canonical
form in the new basic feasible solution and restart the whole procedure, eventually halting when

all coefficients in the cost function are negative.

6.2 Linear Programmaing formulation for Assignment and k-

Assignment Problem

It is known that the assignment problem has a formulation in terms of an integer linear pro-

gramming instance. There are:

e N2 variables
ni; > 0;

e 2N — 1 independent equations

Yunij=1 Vj<N-1;
Zjnijzl VZSN,

e the cost function H.(n).

The constraints n;; < 1 are not needed, as they are implicit in the conditions above.

This fact doesn’t hold any longer in the generic k case, for which a linear programming

formulation requires a larger instance. Introduce the N? slack variables 7j;, complementary to

n;j. The desired instance consists of:

e 2N? variables
nij 2 0; nij 2 0;
e N2 4+ 2N — 1 independent equations

Yunig=k Vj<N-1;

Zj ni; = k Vi S N;

N +7;; =1 Vi,j <N;
e the cost function H¢(n).

This is a first hint of a different behaviour of the £k = 1 case with respect to the k > 1 case.
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6.3 The Hungarian Algorithm

In this section we describe in detail a performing algorithm for solving in polynomial time the
Assignment Problem on each instance (up to a zero measure set) of the ensemble of random
matrices (4.1). The algorithm described is a modification of the so-called Hungarian algorithm
[34], which we have chosen because of its conceptual simplicity, its interesting algebraic aspects,
and its resemblance with some features of the cavity method approach.

First we note the existence of a gauge invariance in the definition of the cost function.

Generalize the family of cost functions (4.1) introducing an arbitrary cost shift

Heno(n) = Z €ijnij + ho . (6.4)
tj
If all ;; > 0, the quantity hg is a lower bound for the minimum cost i, (€, ho). Furthermore,

the cost function (6.4) is invariant under the linear transformation
Gij—>€ij—)\z'_/1/j, ho—)ho—i—Z)\i—l-Zp,j, (65)
i J

which are thus a sort of gauge transformations for the system. The space of gauge choices is
isomorphic to R*V; the subset for which €;; > 0 is a closed convex. Since now on we restrict
ourselves to this subset.

The Hungarian algorithm consists in finding a sequence of gauge transformations, increasing
at each step the lower bound hg, so that eventually it will reach the minimum cost Fnyi,. At
the same time the algorithm will provide the permutation 7 (i) such that Emin = ), €iz(;); the
entries €;,(;) chosen in the solution will all be equal to zero in the final gauge.

We will assume in the following that the costs €;; are sampled with a non-singular real val-
ued function. A consequence of this assumption is that the subset of instances where accidental
degeneracies are present has a null measure (in the Lebesgue sense), that is, any linear combi-
nation of the entries with non-null coefficients c;;, is zero only on a subset of zero measure of
the instances. In particular, for gauge-invariant combinations (i.e. such that > ; ¢ij = 0 for each
1, and Zj ¢ij = 0 for each j), this is true under any arbitrary gauge transformation.

In particular, for each sequence

(i17j15i27j2, s ailajl) ;

the choice ¢;,j, =1, ¢, = ¢iyjy = —1 and ¢;; = 0 otherwise corresponds to a gauge-invariant
combination, so

prob( Z cijei; =0) =0 (6.6)
ij
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after each gauge transformation, i.e. at each step of Hungarian Algorithm.

For a subset of gauge choices, which we call S-gauges, there is at least one null entry for each
row and for each column. Given a gauge not fulfilling these conditions, just apply the gauge
transformation which shifts all rows of their minimum entry, and then does the same for the
columns, to have a S-gauge. The Hungarian Algorithm works applying gauge transformation in
the set of S-gauges.

Consider the complete bipartite graph Ky, n, where each vertex of the first kind is associated
with a row of the original matrix, and each vertex of the second kind to a column. The subgraph
Go C Kn,n has vertices V(Go) = V(Kn,n), and an edge (4, §) is in F(Gp) if and only if ¢;; = 0. As
a consequence of the property (6.6), no loops are present, so Gy is a forest (that is, a collection of
trees). Furthermore, in a S-gauge, Gy is a spanning forest, i.e. all the vertices have coordination
larger than one. Note that the lower-bound is tight if and only if Gy allows for a dimer-covering,
as the configuration in which n;; = 1 on pairs (4, j) of the covering has cost H¢ py(n) = ho = Emin-

This fact is crucial in the way Hungarian Algorithm works: the desired optimal configuration
is the dimer-covering of Ky y which minimizes the cost function — but searching for an optimal
dimer-covering on a generic graph is in principle a difficult task, because of “information feed-
back” due to the presence of loops. On the contrary, the Hungarian Algorithm involves as a first
step the search for a dimer-covering on the forest Gy, then, as long as contraddictions appear,
a second step involves a global move on the entries defining the instance. It is a peculiarity of
the Assignment problem that, as long as hg < Fmin, it is possible to find a gauge transfomation
which improves the bound hg. The same approach can be applied to variants of Assignment
which are NP-complete [35], and of course it fails to provide a complete deterministic algorithm
for these problems. Their failure is due to the lack of this last property.

So the main property of Assignment Problem used by the Hungarian Algorithm is the fol-

lowing

Theorem 3 As long as Gy does not allow for a dimer-covering, a gauge transformation exists

such that the lower bound hg is improved in the new gauge.

We prove this fact as a sequence of lemmas. First note that the search for a dimer-covering
on a forest can be performed separately in each tree. Then, in a given S-gauge, either all trees
allow for a dimer covering (in this case the algorithm stops for the reasons described above),
or a certain tree does not allow for a dimer-covering. Define a contraddiction subtree a rooted

subtree of a tree (that is, a subtree with a privileged vertex) such that

e the root is the only vertex connected to the rest of the tree (if the subtree does not coincide
with the tree);

e the root has coordination two in the subtree;
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0
0 0 Zeroes-
Trow
0 0 0 free
column 0 0
root 0O 0,0 0 O
row
Zeroes-
column free

Trow

Figure 6.1 An example of a contraddiction subtree, and the correspond-
ing matrix €;;.

e each of the two branches connected to the root allows for a dimer-covering which contains

the edge incident on the root.
We want to prove that

Lemma 1 If a tree does not allow for a dimer-covering, it contains a contraddiction subtree

(which can be found in short time).

Start imposing that leaf edges are in the covering, then that edge neighbouring leaf-edges are
not in the covering and so on. This procedure is fast and deterministic on a tree (the time of
steps is poportional to the number of edges), and either produces a dimer-covering or identifies

a contraddiction subtree (cfr. fig. 6.3 for an example).

Lemma 2 If in a given S-gauge there is a contraddiction subtree, a gauge transformation exists

(and can be found in short time) improving the lower bound hy.

The contraddiction subtree inherits from Ky ny the property of being bipartite. In fact the
number of vertices at odd distance from the root, minus the number of vertices at even distance, is
exactly two. This is true for the smallest contraddiction subtree with two edges, e=—(root)—s,
and inductively true on larger contraddiction subtrees, as they can be reconducted to the smallest
one by recursively removing subgraphs of the kind (Rest)—e==s. So, up to a relabeling of rows
and columns, and a matrix transposition, a contraddiction subtree corresponds to a n x (n + 1)
block such that

e the n-th row corresponds to the root vertex;

e rows from 1 to n — 1 correspond to vertices at even distance;
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e columns from 1 to n + 1 correspond to vertices at odd distance;

e the top right (n — 1) x (N —n — 1) block and the bottom left (N —n) x (n + 1) block are

free of zeroes.

Because of the last property, for § sufficiently small, an allowed gauge transformation is

Ai=—0 1< n; pj =46 i<n+1; (6.7)
Ai=0 i>n; p; =0 j>n+1. (6.8)

The largest allowed value of d is the minimum entry in the bottom left (N —n) x (n + 1) block.
In the new gauge, Gy has slightly changed: we have one more edge connecting one of the first
n + 1 column-vertices to one of the last N — n row-vertices, and all the edges (possibly none)
connecting the root vertex to the rest of the tree are removed. The value of hy has increased
of §, which is expected to be of order m
is composed of a macroscopic number of trees, whose size is order 1, so the gain is order 1/N.

In a first part of the algorithm, the forest

At the very end, we are left with large trees, so, in the worst case n ~ N/2, the gain is of
order 1/(N?) and the complexity of a single move is order N. Thus, a rough estimate of the
algorithm complexity is N3. Note that the peak of complexity is on the last moves, so we expect

a crossover in the growth rate of the lower bound. We will turn back to this point in section 6.5.

6.4 Algorithmic Implementation of Cavity Equations

Since Cavity Equations are valid for a given instance of the disorder, it is possible to use them
also in the special case of the Assignment Problem as a starting point for an algorithm. If we
want to solve the optimization problem, we must use the zero-temperature limit of equations
(4.11a):

i—si = max(—e€;;r — hi_y;), 6.9a
gi—j j’;éj( ij j —>z) ( )
hjsi = I}}g(—em = Girj) - (6.9b)

Cavity equations at finite temperature can be used, in case, for an annealing to improve perfor-
mances. We remark that the gauge invariance pointed out in section 6.3 has a counterpart also

in cavity equations implementation: if we change

€ij — €5 — Az’ — M55 (6.108.)
i = Gimsj + Ais Rjsi = hjosi + pj; (6.10b)

equations (6.9) do not change.
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In this section, we outline the simplest implementation, without paying attention to several
possible smart ways of reducing algorithmic complexity: our main goal is to point out some
general difficulties we have noticed.

A possible implementation is an algorithm iterating at each time step t the following maps:

(t+1) _ @

iy ];92;.‘(_61;’ hiyi) (6.11a)
(t+1) (t)
hisi” = max(=ej = gis,;) (6.11b)

The cavity fields h and g are N x N matrices, that can be initialized to zero, or to a random real
value. Consistently with the discussion of section 4.1 a good choice for the cost matrix entries
€;; is to draw them randomly with, say, flat measure on the interval [0, N].

From the first step of the iteration on, fields g;_,; with the same row-index ¢ will all assume
the same value, but at most one, assuming a smaller value. The same would happen for fields
hj_; with the same column-index j. According to the general Belief- and Survey-Propagation
prescriptions, the iteration should stop when all fields are stationary, then a certain number
of variables should be fixed, in order to reduce the instance size, finally the procedure should
restart from scratch.

A criterium for fixing the variables could be the following. As all the fields g;,; in a row
but at most one are equal, and the same holds for fields h;_,; in a column, and as we have the
gauge invariance (6.10), we can shift the fields as

§§2j = z(t—)m - mﬁXQEZj' ; ﬁgtlz = hﬂz — max hﬁa : (6.12)
Now all the fields are zero up to at most one g;_,; per row and one ﬁj_n per column, which are
negative. Large negative values for a field g;_,; (or 77,]-%) means that the row-interaction node 3
(or respectively the column-interaction j) strongly suggests to take the corresponding entry n;.

We could fix n;; = 1 on the variables for which the quantity

min(—ﬁi—m‘, _hj—n')

is larger, then restrict the instance matrix e to the minor which complements the fixed entries.
Some comments are to be done. The main problem with this procedure is that the fields
do not converge to a stationary solution. This is a consequence of several facts. First, two zero
modes of the iteration are present. The first one has eigenvalue 1, and is due to the fact that
the graph is bipartite. Indeed, say {h*,¢*} is a fixed point of the map (6.11). Then, another

fixed point is given by
h=h*+$§
’ (6.13)

g=g —9d.
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This is no major surprise. Going back to section (4.3), also in the theoretic treatment it was
necessary to impose that the fields had the same probability distribution. This problem can
thus be fixed in the same way: we impose that the average value of fields of both species is
(almost) the same in the following way. We start with the same distribution for both sets of
fields; at each time step we iterate the fields using maps (6.11), and getting R and gtth);
we calculate their average value over all pairs?, (k) and (g); the new value of the fields is given

by
{ poew — h(H—l) — %((h) — (g)), (6.14)

g =g + 5((h) — (9)) -
The second zero mode of the iterative map corresponds to an eigenvalue of —1: if {h*,g*} are

fixed points of the map (6.11), another point, given by

{ h=h*+3§(-1)",

g= g +8(=1)" (6.15)

gives a cycle of period 2. This mode is related to the discrete dynamics we are using. One way

to fix this problem is to change the dynamics. Indeed, say evolution at each time step is given
by

gty = T(x];;%c(—ei_,-, —nP.)) +(1-7) g, (6.16a)
t+1 t t
BETD T(I?igc(—ei,j _ gg,g].)) +(1—7) B, (6.16b)

For 7 € (0,1) this map shares the same fixed points of (6.11), and the eigenvalue related to

the mode (6.15) becomes —1 + 27: the cycle is no longer stable for any value of 7 € (0,1). In
1
5-
The third reason why the fields do not converge using equations (6.11) is more subtle and

particular the mode is suppressed in just one iteration if we choose 7 =

is not easy to fix, since it is a problem intimately related to the cavity method and the approx-
imations it relies on. Consider the following example. Given the map (6.11), we want to find

the optimum assignment for the matrix of size N x N
€ij = €(1 = dy5) , (6.17)

initializing all fields to zero. It is clear that the optimal configuration is nz(-;-)pt) = §;j. Writing
the evolution equations for the cavity fields g;,; and h;_;,
If we initialize all cavity fields to the same value, the evolution reduces to only two equations,

one for the diagonal fields h1,; = g151 = ... = gnN = hyes and one for the out-of-diagonal

3This time-consuming procedure can be helped, as for all practical purposes it is sufficient to average only on
a few pairs.
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Figure 6.2 On the left, dynamics of the map ¢ of equation (6.18).
Iteration can be view as a reflection w.r.t. the dash-drawed diagonal,
plus a traslation of (—e,0). On the right, dynamics of the enhanced
map ¢1/2 = (¢ + I) of equation (6.19). Iteration can be view as a
projection on the dash-drawed diagonal, plus a traslation of (—e/2,0).

ones hj_y; = gi—j = hno for all 4 # j:

(t+1) (t)
S e T Y B (6.15)
hno -1 0 hno 0

The behaviour of the solution is drawn in figure 6.4 (left). It shows the period-two oscillations
discussed previously. We observe that the fields do not converge to a finite fixed-point: but
rather the fields corresponding to the solution are drifting towards —oo while the others are
drifting towards +oo, with velocity linear in €. If we use the strategy of equations (6.16), with

T= %, the iteration map becomes

) L (1) ()T (e 619
o 2\ -1 1 o 2\ o0/’ '

for which the period-2 mode is suppressed in one step, but the drift of the fields is still present
(cfr. right part of 6.4).

This behaviour is not a peculiarity of this particular example. In fact, this seems to be
the typical case. In random finite size systems, qualitatively what happens is that there is a
feedback of information through loops, as the constraints are stiff and inference propagation is
not damped. This fact shows that the general theory we have developed in the previous chapters
has two weak points. On one hand, the assumption we made in section 2.3 when deriving Cavity
Equations, that the inference is in some sense small in cavity systems, so that the effect of loops

can be neglected, turns out to be uncorrect in this case. On the other hand, in section 4.3 we
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have assumed the field distributions to correspond to stationary points of Cavity Equations, and
this assumption, too, turns out to be wrong. Nevertheless, Cavity Equations, albeit non valid
for cavity iteration at finite size, do find the right thermodynamic quantities, like the average
minimum energy, which are intrinsically static; moreover they predict the correct distribution of
fields, but only for metastable times, scaling with the size. This has been observed numerically
in our simulations (see figure 6.4).

Thus, even in the simple case of the Assignment Problem, we find many interesting phenom-

ena which require a deep investigation, as we note in the concluding chapter 7.

6.5 Average-case complexity for the Satisfiability Assignment

Problem

We have seen on chapter 3 that any optimization problem can be related to a satisfiability
problem in a natural way. For the case of Assignment, this leads to consider the following
problem: given a N X N matrix ¢;; and a threshold value o, we search either for a solution n;;
satisfying the traditional constraints 3, n;; = 1, >, n;; = 1, and such that the cost function
He(n) = Zij n;;€;; is smaller than o, or for a certificate that such a solution does not exist: it
is known that, in the large N limit, the minimum cost Ey,;, concentrates on the value 2 /6.
So we deduce that, in the parameter «, the satisfiability variant of assignment undergoes a
SAT-UNSAT transition at the critical value o, = 72 /6.

In chapter 3 we discuss a simple reduction argument which typically applies to these pairs
of optimization- and related satisfiability-problem. This argument suggests that the worst-
case complexity of the optimization problem is strictly related to the worst-case complexity of
the satisfiability problem. What typically happens is that the average-case complexity of the
satisfiability problem at fixed threshold value « has a peak in correspondence of the SAT-UNSAT
transition.

This can be understood via a general procedure, useful for hard problems, called branch and
bound method. Organize the search process in a tree structure: feasible solutions are located
on the leaves of the tree, while solutions having in common the choice of the first k variables
have a common ancestor at level k. For example, a branch-and-bound tree for the set of feasible
solutions of Assignment Problem, in the case N = 4, is shown in figure 6.5. The search process
explore the tree following the branching structure. At a given node, all the leaves below it have
in common a certain fraction of variable choices. One can evaluate a (computationally simple)
lower-bound on the minimum cost for the remaining subproblem, and, at each level, for a certain
fraction of branches, determine a priori that no solutions are present, thus skipping the search

inside the branch.
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Figure 6.3 Time shots of numerical integrated distributions of fields
F(z), for a system of size N = 100, each 100 iterations of cavity equa-
tions. In solid line, the theoretical prevision F'(z) = e*/(1 + €%).
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Figure 6.4 A branch-and-bound tree for the set of feasible solutions of
Assignment Problem, in the case N = 4. Each string of & < N entries
corresponds to the sequence 7(1),...,m(k), where w(i) = j if and only

When one is deep inside the SAT phase, a heuristic algorithm which follows the more “rea-
sonable” branches first can fastly find a solution with a small fraction of backtracking moves.
On the other side, deep inside the UNSAT phase, in most cases the bound procedure succeeds
at the very first nodes, thus skipping large regions of the tree.

In the case of the Assignment Problem, it is straightforward to recognize all these general
features, using the diverse algorithmic implementations discussed so far. In the region where « is
larger than the expected average value, 72 /6, we are in the SAT phase. Many algorithms, suitable
also for the optimization problem, e.g. Simplex method or Cavity method, work suggesting a
sequence of possible solutions of decreasing cost. The satisfiability variant, in the region a > a,
can in case stop before the sequence reaches for the optimal solution, if a configuration is
reached, whose cost is lower than the threshold. On the other hand, below the critical value, it
is necessary to reach for the ground state before getting a certificate of unsatisfiability. Thus, the
average case complexity of these algorithms is a monotonic decreasing function of the threshold
for a > a,, while below the critical value it is constant on the maximum value, reached in a..

The Hungarian Algorithm, on the other hand, works differently: instead of having a sequence
of decreasing costs, associated to each possible solution, there is a sequence of lower bounds of
FEnin, which increase until this value is eventually reached. In the satisfiability variant, when
looking for a UNSAT certificate, the Hungarian Algorithm will stop, as soon as a lower bound
higher than the threshold is reached. In the SAT region, instead, the Hungarian Algorithm must
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always find the minimum energy configuration in order to have the largest possible lower bound.

Furthermore, we have already noticed in the end of section 6.3 that the rate of growth of
the lower bound hg has a size-dependence crossover approaching the end of the procedure. The
complete optimization Hungarian Algorithm has a power-law complexity. From the previous
observation, we expect that the satisfiability Hungarian Algorithm in the large N limit reaches
for this complexity only for values of a approaching a..

Thus, a mixed algorithm, working in the best possible way both in SAT and UNSAT region,
will have a peak of complexity only in proximity of the critical value, which becomes more and

more narrow in the large N limit.

6.6 Application of Assignment to Scheduling

The Assignment Problem has several practical applications. One of the most relevant is in
scheduling packet traffic in routers [36]. Internet, for instance, is basically a large packed switched
network: travelling informations are divided into packets, and the most important switching
system in Internet are the routers. Their main task is to receive packets from input ports,
find their local destination port on the basis of the routing table, and then deliver them to
the output ports. Routers of all throughtputs (i.e. the traffic volume supported) are present,
but in particular there is a relatively small number of basic routers, named backbone routers,
switching almost all information traffic, and they must meet strict requirements in terms of
speed and reliability.

The problems routers face is basically an Assignment problem. A good model to describe
how a router works is the following: there are N input ports and N output ports; at each
discretized time slot one information packet, or none, arrives at each input port, carrying a label
with its destination. The router can support at most one outcoming packet per port, so, if at a
given time slot two incoming packets must go out of the same port, one of them must wait.

The router thus must schedule the crossing times of packets, and manage queues. Queue
scheduling is a complex and delicate topic, and we will not treat here. However, whatever
the scheduling policy, the result is an “priority” parameter for each pair of input-output ports,
related to the number of packets waiting, reflecting how long they have been waiting, and
possibly other informations, like their urgence, level of priority, and so on.

At this point the router must find an assignment, in order to decide which packets should
cross the switch: in our notation of chapter 4, the cost matrix €;; is related to the priority
parameters, and if n;; = 1, a packet arrived at port 7 and directed to port j is routed.

The algorithm chosen to find an Assignment must meet a certain number of requirements.

Speed is the very first requisit: as the algorithm must produce a solution at each trigger time
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of the switcher, the complexity of the algorithm must not scale with the number of ports. On
the contrary, optimality is secondary, provided that, for the largest possible set of incoming
traffic patterns, the gap between the cost of the optimal solution and the one of the solution
identified by the algorithm remains of order 1. Another requisit for a performing algorithm is
parallelization. It is not possible to solve a problem of macroscopic size in a time of order 1,
unless one makes use of a macroscopic scalable circuitry.

For example, the Hungarian Algorithm, which develops a particularly smart combinatorial
idea, is a good complete algorithm for software implementation, but is not a good algorithm for
a hardware implementation in a specific router circuitry.

On the contrary, the Cavity Method approach seems to meet a large number of the require-
ments exposed above: the iterative equations are extremely simple and scalable, and processable
in parallel. So an heuristic message-passing algorithm could be feasible for applications in this
field. Nonetheless, a wider numeric study of performance for various algorithmic implementa-

tions and traffic patterns are necessary.
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7. Conclusions and perspectives

In this thesis, two main research topics have been treated. On one hand, a revisitation of the
general theory of the cavity method has led to the understanding of some potentially delicate
points; a numeric implementation of Cavity Equations for a simple model, the Assignment
Problem, has confirmed that these points were indeed delicate, since the effect of inference loops
at finite size, neglected in Cavity Ansatz, does play a relevant role. Recipes on the solution of
these problems in the design of a Cavity algorithm for Assignment have been proposed.

On the other hand, we have formalized the averaging procedure of Cavity Equations in the
mathematical framework of Independent Poisson Processes. This led us to deal with distribu-
tional equations, which we have solved also in some new cases, obtaining original results (the
finite-temperature analysis of the Assignment Problem; the k-assignment Problem for generic
value of k).

Both these research areas suggest some directions for further investigation, which we outline

in the following.

7.1 General derivation of Cavity Theory

In chapter 2 we have given heuristic arguments for the fact that, for a certain family of models
(weak-inference models), yet to be outlined precisely, in the infinite-size limit, Cavity Approxi-
mations 2.3.1 hold. Moreover, for systems showing symmetry breaking of 1-RSB kind, a further
set of hypotheses concerning the complexity of the system (cfr. page 2.5) are expected to be

valid in the infinite-size limit.

Here we argument that these sets of approximations can both be handled at finite-size in a
systematic way, inside the theoretical framework of a system with many pure phases. Indeed,
finite-size corrections to this picture are expected to be asymptotically irrelevant w.r.t. correc-
tions related to assuming factorization hypotheses and neglecting higher-order dependence in
the free energy of cavity-fields distributions, as the latter are expected to be of power-law order
in N, while the first are expected to scale exponentially with V. For instance, as free-energy

barriers are expected to scale with a power-law in N, AFé:;f‘ )~ N 7, metastability times are
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expected to scale as

_ (a,a’) _ A NY
T(a,a’) ~ e CAFbarr ~ e N .

Corrections to Cavity Ansatz 2.3.1, inside a pure phase, can be derived from a perturbative
evaluation of correlation functions, calculated self-consistently using the cavity fields which solve
the set of infinite-size Cavity Equations (2.11). We expect these corrections to be relevant
w.r.t. corrections to the pure-phase picture, at least for models defined over finite-connectivity
random graphs, as, although correlation functions are expected to decrease exponentially with
distance

Gac,ac’ (O’, al) ~ €Xp _|:E - x/|/£’

the average loop lengths, which determines average distances of variables in cavity systems, are
expected to be of logarithmic order in size.

A systematic expansion on correlation functions, inside a pure phase, analogous to the
Dobrushin-Lanford-Ruelle expansion for ordered systems [1], is eventually possible. Further-
more, the study of the first-order correction should lead to a more precise definition of a weak-
inference system, a concept treated only heuristically in literature so far.

For what concerns 1-RSB hypotheses of page 2.5, also when restricting to systems whose
complexity has the form outlined in section 2.4 (which are the most interesting ones, for many
purposes), a certain number of approximations play a role. Assume that approximation of X(f)
with a continuous concave function is justified, thus the reshuffling parameter y select one typical

value F* of free energy only up to statistical fluctuations of order O(v' N), as

. 1
So we expect that the error due to the approximation

Qul{hj=aIN(f* + Af)) ~ Qu({hj=a}IN ) = Qu{hj-a})

is proportional to the function

_ 1 .
IV — Gy exp (o |5 )

1 0
ﬁ WQ@({hj—)aHNf)

Nonetheless, from a more careful analysis of equation (2.29) we derive that this function is aver-

f*

aged with a symmetric gaussian at first-order correction, so the first non-vanishing corrections
are of order O(%).

A further source of error is the factorization hypothesis of equations (2.33). The analysis of
this contribution is connected to the quantification of inference, in analogy with the previous
discussion on estimating corrections to Cavity Ansatz, although with some subtle difference.

Anyway, corrections should be of the same order of magnitude.
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A last (and also least) correction derives from neglecting discrepancies between complexity
functions of different cavity systems. As free-energy differencies of pure phases between different
cavity systems are expected to be of order 1, one could naively argue that this correction is of
order 1/N. Some care is required in this case: complexity functions are involved with their
derivaties, and, if some regularity hypothesis are missing, discrepancies could be potentially
large. Nonetheless, these regularity hypotheses can typically be related to physically reasonable
hypotheses on decorrelation between free-energy shifts in different pure phases, and are believed

to hold for most interesting systems.

7.2 Applications of distributional-equation formalism

The systematic discussion of a method for transposing averages of cavity equations into dis-
tributional equations, outlined in section 2.6, is original in its generality. It has allowed us to
derive in a relatively straighforward way some new results on the statistical properties of the
Assignment and k-assignment Problems, and seems promising for further future applications.

In particular, it is natural to extend it to two models intimately related to the Assignment
Problems, treated in this work. The first is the (D, D')-assignment Problem, which is a multi-
dimensional variant of Random Assignment: the grid € is generalized to dimension D + D' > 2,
and the constraints apply to subgrids of a given dimension D, with 1 < D < D + D'. This
problem reduces to traditional Assignment for (D, D') = (1, 1), while it is NP-complete for each
pair (D, D) # (1,1) (cfr. [35] for a proof in the case (D, D’) = (1,2)). The derivation of Cavity
Equations for this problem is a straightforward generalization of section 4.2 using the recipe
given in chapter 2. An algorithmic study of this problem with a Survey Propagation approach
seems interesting, since the NP-completeness of the problem.

A second problem is the famous Travelling Salesman Problem (TSP), shortly introduced also
in chapter 3. In the 2-assignment problem, for each feasible solution n;;, the graph G(n) C Ky n
such that E(G) = {(¢,),ni; = 1} consists of a set of self-avoiding closed paths. The TSP is
a variant of the 2-assignment where a non-local constraint is present: G(n) must be composed
of a single loop. This makes TSP a NP-complete problem, but, since this constraint decimates
the phase space only for a subexponental factor (bounded below by the factor 1/N), it is ex-
pected that the RS ansatz, valid for the 2-assignment, is valid also for this problem [37]. This
non-local constraint can be reconducted to a local one introducing a (colour) auxiliary vari-
able on occupied bonds, and letting the number of colour go to zero [38]. The corresponding
cavity equations, even though involving some technical difficulties, seem suitable both for an
algorithmic implementation and for a theoretical investigation, extending the formalism of dis-

tributional equations, and complementing the results of Parisi and Mézard, obtained via the
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replica approach [10].

7.3 Numerical investigations on Assignment Problem

At the beginning of our work, the Assignment Problem was considered as a toy model for apply-
ing cavity-based algorithms, eventually with direct applications as an algorithm for switching
problem in network routers. Instead it has shown unexpected striking features: the algorith-
mic implementation has presented, and theoretical treatment has partially explained, the need
for modifying ad hoc the general recipe [24] for this model, in order to make the cavity fields
converge in cavity iteration.

Indeed, using a traditional iterative dynamics we find essentially three problems

e presence of zero-modes in the dynamics;

e occurrence of cycles of period 2;

e metastability of the traditional solution, and asymptotic drift of the fields toward +oc.
The peculiarities of the model which we believe to account for these problems are mainly

e gauge invariance of Cavity Equations;

e bipartition of the interaction-node part of the factor graph (all second-neighbours of row-

interaction nodes on the factor graph are column-interaction nodes, and vice versa);

e presence of stiff constraints with just one allowed configuration in certain marginals of

variables in cavity systems.

In our advice, a further theoretical and numerical investigation of these aspects should be done.
Particularly, if we correct the wrong stability assumption in the derivation of field distribu-
tion, into an assumption of asymptotically stationary drift, it should be possible to extract the
asymptotic form of field distributions in the drift regime. In perspective, when the solution of
these highlighted subtleties has been achieved, the primary applicative idea to routers could be
reasonably tried.

As a last remark, the connection between the Hungarian Algorithm and a certain prescrip-
tion on implementing Cavity Iteration, seems interesting. On the other hand, the Hungarian
Algorithm seems to be related also to the Simplex Method, which is a paradigm in approaching
problems that can be stated as Linear Programming Problems (note that a large number of fa-
mous problems, as e.g. the K-SAT, belong to this class). Working out these connections might

lead to a better understanding of Cavity-Equations based algorithms.



A. Mathematical properties of

Independent Point Processes

A.1 Poisson Point Distributions

We define a Poisson Point Distribution (PPD) as a measure over the space = of (possibly
infinite) configurations of points on the line R such that any two disjoint intervals of R behave
independently. We refer the reader to [39] for a short clear physical description of the field, and
[40], for a textbook.

Although defined on the huge space =, a PPD is fully identified by a single functional
parameter, p(£), describing the density of points. With an eye to physical application, and
in order to avoid tedious technicalities, in the following we will consider only finite densities,
integrable on every compact interval of R.

A definition involving a measure over the space of infinite configurations, although intuitive,
is mathematically imprecise. Nonetheless, the independence property allows to use as a definition

the natural property that, for each pair of measurable sets Q1,{2s € R such that

| ante) = o, | dnte) =, [ ante) =o.

the probability distribution of the number of points n; inside ; and ns inside 9, averaged
over the PPD, is factorized:

p(n1,m2) = pa, (n1)pa, (n2) . (A1)
Applying independence reasoning on infinitesimal intervals, it is simple to show that for any set

Q € R such that fQ dp(¢) = « is finite, the probability distribution of the number n of points

inside € is a Poissonian of rate a:

Poissq (n) =™ — . (A.2)
n!

A physical intuition of these distributions is given by a one-dimensional free gas, in the grand-

canonical ensemble. The mathematical independence property is the correspective of the absence
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of interaction in the gas, and the density is simply related to the chemical potential u, by equa-
tion p(§) = exp[—Bu(§)).

When [dp(¢) = N is finite, we deal with a finite PPD. We can write a configuration e
as (&1,-..,&), with & < &1 and n distributed Poissonianly with rate N.

For a finite PPD, a clear algorithmic recipe exists for a process of construction of a config-
uration 5 € = with the proper distribution: first extract the total number of points, n, with
probability Poissy (n), then extract n i.i.d. random variables &; on R, with (normalized) measure
adp (6).

When [dp(€) = oo each configuration £ € E contains an infinite number of points, ac-
cumulating only at +oco. We call such a distribution a semi-infinite PPD. We can write the
configuration as an infinite sequence, f: (&1,&2,&3,...), with & < &1 for each 7 € N.

Semi-infinite PPDs allow for a finite-size limit procedure of construction. Define

dp () = dp(§)6(L - ). (A.3)

For each finite L we deal with a finite PPD, and thus the construction above is possible. If we
enlarge the domain to L + AL, from independence property A.l, it follows that the enlarged
distribution coincides with the previous one on the restriction to (—oo, L].

A certain number of transformations preserve the independence property:

Merging. Given two PPDs with densities p; (€) and ps (), for each pair of configurations (€1, &),
extracted with the two measures, consider the configuration {7 = 51 U é The distribution

obtained by this procedure is still a PPD, with density
p'(€) = p1(&) + p2(§) -

Filtration. Given a PPD with density p(¢), and a function p(¢) : R — [0, 1], for each configu-
ration £ reject each point &; € E independently with probability 1 — p(&;). The distribution
obtained by this procedure is still a PPD, with density

Reshuffling. Given a PPD with density p(¢), and a normalized distribution f(z), we shift each
point &; of a configuration T by an independent random quantity z; sampled with f(z).
The distribution obtained by this procedure is still a PPD with density

J() = / dz f(2)p(€ — ) = (p* ) ().
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A.2 Independent Poisson Processes

We stress here a fact which has been anticipated in the previous section. As, by hypothesis,
dealing with finite or semi-infinite PPDs, the density is integrable from the left, i.e. for each

allowed density p(z) and each real value z, the function
X
R@) = [ ap(a)
—00

is finite, for any configuration & a natural ordering of the points (€1 < & < ...) is defined.

A non-trivial consequence of independence is that one can define an iterative process of
construction of a configuration, such that at the k-th step the k smallest points {&;}i<x of
configuration E are sampled. Moreover, the probability distribution of the (k + 1)-th point,
conditioned to the first £ points already extracted, only depends on the k-th point. For the
simplest case of the semi-infinite PPD the sorted sequences (£1,&2,...) should be extracted with

the memory-1 Markov Process !

_ rén dp(¢
Plnlints++ 161) = plénlén-1) = p(éne” fora ¥, (A4)
where conventionally £_; = —oo. For finite PPDs, the conventional symbol BREAK should be
added: when a BREAK is extracted, the sequence (&1,&s,...,&) terminates. The memory-1

Markov Process associated to finite PPDs is

_ rén
tn dp(E) e Jent 0
S dne)

n—1

P(nlén-1,--- 1 €1) = p(énlén—1) = (A.5)

BREAK 1—e€

This formulation as a point process accounts for the name of Poisson Point Process (PPP)
devoted to Markov Chains related to PPDs in the way described above. The simple facts about
merging, filtration and reshuffling holds also for PPPs. An interesting fact is that the PPP-
construction of a semi-infinite process allows to deal directly with an infinite number of points,
while, on the other hand, the construction used for i.i.d. extraction on semi-infinite PPDs was
based on the introduction of a finite-size cut-off.

Now consider some simple applications. Given a PPP with density p(¢), and a normalized
distribution f(z), we consider a reshuffling process as described in the previous section. For a

given threshold a, we ask for the probability that all the points &; + z; are larger than a. We can

!Note that probabilities are automatically normalized, as

+oo _ € 1 _ € N s
/ dé p(E)e Jeuiyde€) _ _ = JE,_, de€) 1
€n—1 €n—1
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understand this problem either as a Reshuffling procedure, or as a Filtration procedure. Indeed

in the first context we have
prob(é; —z; >a Vi)=e" oo A€ (x1)(€) = e=(pxF)(a) (A.6)
while in the second

prob(&; —z; >a Vi) = e JpEprobE-a<a) — o~ [dp(OF(@-6) = o~ (pF)(a) (A7)

i

A less trivial calculation is the following. Consider a PPP with density p(¢), and a one-parameter
family of distributions g¢(y) on an abelian additive group Y (say, Y = R). Given a configuration
E € &, for each point & sample a value y; with probability g¢;(y). The total value y = > y; is

distributed as g(y). Consider an integral transform on Y such that a convolution theorem holds

T(fi+ f2) =T()T(f2),

and for which 7(d(y)) = 1, with d(y) the delta function in the group Y. A simple example is,
for Y = R, the Fourier Transform or the Laplace Transform, while, for a generic abelian group
Y, the Peter-Weyl Transform has the desired properties. Our statement is that the transform
g(n) is given by

) =exp |- [ 4©) (1~ 3cw)] (A8)

To prove this equation, introduce the distribution g()(y) for the truncated sum yl&) = Zi:§i<§ Yi-

We have the differential equation

9(e+ae)(y) = 9e)(y) * [6(y) (1 — dp(&) ) + dp(€) g¢(v)] , (A.9)

and, transforming
Gie+de)(m) = gey(n) [1 —dp(§) (1 — ge(n)] , (A.10)
Ing(etae)(n) = Ingeey(n) —dp(€) (1 —ge(n)), (A.11)

from which, jointly with the boundary condition lim¢_, o g(¢)(y) = d(y), we finally obtain

Ing(n) = lim Inge(n) = - / ap(€) (1 - Ge(n)). (A12)

E—+o0

As a first specialization of this general formula, we can rederive equation (A.6) for the probability
that all points of the reshuffled process are larger than a threshold a.

Say that y; = 1 if {§; + z; < a and y; = 0 otherwise. The quantity y = ), y; counts the
number of points below the threshold, and the desired probability is g(y = 0). The distribution
9¢(y) is

Ge(y) = 6(9)(1 — Fla—€)) + 6y — 1)Pla —§).
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We use Fourier Transform. Since we have
/dp(ﬁ) (1= g¢(n) = /dp(ﬁ) Fla—§&)(1—¢") = (1—¢") (p* F)(a)
and since, by Taylor expansion,
/dn emimy—a(l—e") _ Poiss, ()

we get equation (A.6).
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B. Mathematics of Distributional

Equations

In this work we have made large use of mathematical expressions of the kind
(something) 4 (something else) , (B.1)

adding somewhere nearby in the text sentences like “... where ‘something’ is distributed as . .. and

‘something else’ is distributed as ...”.

We have called this kind of expressions distributional
equations. In this appendix we want to clarify the mathematical meaning of this framework,
and illustrate some elementary algebraic manipulations which concern this kind of expressions.
As clear from the nomenclature, we deal with expressions which are true “on average”,
given a probability distribution over the variables involved. More precisely, say that an (in case
infinite) set of variables & = {z;} is distributed with u(Z), and that an (in case infinite) set of
variables i = {y;} is distributed with A(7). Then, given two functionals ®(Z) and ¥(%), the
equation
(@) £ ¥(7) (B.2)
means that the marginal distribution of ®(Z) w.r.t. the probability distribution u(Z) coincides
with the marginal distribution of ¥ (%) w.r.t. the probability distribution A(%)

veeR [ au@i0@) = [ @D V@), (B3)
As a simple example of the resolution of a distributional equation, consider the following equation
max(ml,--- 7'(1"19) gya (B4)

where the k variables are i.i.d. with f(z), and y is distributed with g(y). The probability that
the maximum value of k identically distributed variables {z;} is inside the interval [y, y + dy] is

given by
e a factor k for the choices of the index realizing the maximum-value;

e a factor f(y)dy for the probability that a variable is in [y, y + dy;
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e a factor F(y) = [Y_dy' f(y) per each of the other variables, which gives the probability

that all the other variables are smaller;

putting together all these factors, we get

d

—F*(y). (B.5)

9(y) = kf(y)F*1(y) = i

Note that g(y) is automatically normalized.

We remark the importance of having different variables on the two sides of the distributional
equation: two independent averaging procedures on the two sides of the equation must be
done. A simple example is explicative of a certain number of useful warnings: consider the
distributional equation

Ly +p, (B.6)

where z is distributed with f(z) and y; 2 are distributed with g 2(y). The translation in the

form of equation (B.3) of this example is

f(z) = / dy 91 ()92(x — 1) = (g1 % 92)(3) (B.7)

The traditional algebraic manipulations of equations are not admitted anymore. For example,
the distributional equation
d
T —Y2 =Y (B.8)

is not verified by the same triplets of functions, !

fl@) = / oaWal-y) o / do f@)ple—y) =qi(y).  (BY)

Nonetheless a few manipulations are still possible. Consider the case in which the functionals ®
and ¥ take value in R, and the distributional equation is intended in 7 dimensions. One can

write a system of real equations, one per component
2!(#) £ U (7)
: (B.10)
o"(7) £ U(7)

Since the distributional identity does not depend on the choice of basis in R”, a linear combi-

nation mixing the n components in the same way on the two sides of the equations is allowed.

'In particular, using Fourier Transform, one easily deduce that the two equations (B.9) are satisfied if and
only if [§2(€)|? = 1 on the whole region in which F(€) and §1(€) are different from zero, i.e., if y» is a real variable,
essentially only if g2(y2) = d(y2, 7).
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For example, if the system of distributional equations
T = yt+y
1= 1
{ d (B.11)
T2 =Y+t Y2

holds in the sense above, i.e., given the probability distributions p(z1,z2) and A(y,y1,y2), the

distributional equation system translates into
V (z1,22) € R? p(z1, T2) = /dy My, 1 —y, 22 — y), (B.12)

then the distributional equation

d
1 — T2 =Y1 — Y2 (B-13)

is valid.
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