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Abstract

Euclidean matching problems have been extensively studied in their
random formulation since early works by Mézard and Parisi [MP85]; the
interest arises from the technical similarities that random matching prob-
lems share with disordered systems like spin glasses. Due to Euclidean
constraints that correlate the random variables of the problem, random
Euclidean matching is difficult to treat. In one dimension, a number of re-
sults were proven (see for example [CDS17]) for a power law cost function
(f(x) = xp) due to the fact that optimal matchings are independent from the
specific istance of the problem in the case p > 1. This circumstance does
not hold in the concave cost function regime (0 < p < 1).

In this Thesis, new simulated data for the concave cost function regime
are presented and a concept of approximate optimal matching is intro-
duced. Approximate matchings are more tractable than exact optimal
matchings and have well known combinatorial properties, allowing for ex-
plicit computation of average quantities of interest.





Contents

1 Motivation 3

2 Random Euclidean Matching in 1d 7
2.1 Definition of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Visual representations . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Analytical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Non random properties . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Random properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 0 < p < 1 simulations 23
3.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Average optimal cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Distribution of links’ lenghts . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Combinatorics of natural matchings 31
4.1 Paths and bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Technical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Counting properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Number of bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Number of paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Links’ lenghts distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Unified notation for paths and bridges . . . . . . . . . . . . . . . . . . . . . 40
4.6 Average cost computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6.1 Average cost of links . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6.2 Generating functions for the average cost . . . . . . . . . . . . . . . 43
4.6.3 Explicit summation with generating functions: paths . . . . . . . 45
4.6.4 Explicit summation with generating functions: bridges . . . . . . 49



2 CONTENTS

4.6.5 Universal relation between paths and bridges asymptotic coeffi-
cents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6.6 Explicit summation: exact recursion solution method . . . . . . . 55
4.6.7 Limiting cases: p = 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Comparision with simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7.1 Average cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7.2 Links’ lenghts distribution . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Conclusions and outlook 63

Bibliography 64



CHAPTER 1
Motivation

The Euclidean matching problem dates back to 1781, when Gaspard Monge first in-
troduced and studied it in his treatise [Mon81]. The problem is simply stated: given
mines and deposits, what’s the cheapest way to transport the extracted goods from
each mine to the deposits? The natural assumption was that to transport goods there
should be a cost, and that the cost should be function of the Euclidean distance of
the transport route. In this formulation, the problem is a combinatorial optimization
problem, i.e. an optimization problem whose domain consists in a finite set of possible
optimal solutions. Such problems can be a priori tackled by a brute force approach;
interesting problems tipically arise when the set of possible optimal solutions is of
large size, typically N! if N is a measure of the size of the istance of the problem (in
the matching case, N could be the number of mines).

The Euclidean matching problem was soon abandoned in its combinatorial for-
mulation due to the lack of computational power and practical uses of algorithmic
approaches to the problem. Today, combinatorial Euclidean matchings can be solved
in polynomial time thanks to the Hungarian algorithm ideated by Kuhn in 1955 [Kuh55].
The lack of interest in the combinatorial matching was balanced by a reformulation of
the problem in the continuous setting. The new formulation statement is the following:
consider a continuous distribution of mass to be excavated and a continuously shaped
deposit ready to recieve goods; what’s the optimal way to transport all the mass to
the deposit? In this contiuum formulation, the problem becomes of interest both to
measure theory and geometry, and is referred to as the optimal transport problem. The
optimal transport problem was and still is a fertile field of research. As proof, the
Nobel in Economics of 1975 was awarded to Kantorovič for works related to optimal
transport theory, and one of the 2018 Fields medals was awarded to Figalli for results
in the same field.

From a physical point of view, both the combinatorial and the continuous versions
of the problem are quite uninteresting per se; both problems deal with the solution
of specific istances of matching, aiming to derive general properties of the solutions
given hypotesis on the initial data. Moreover, thanks to the already mentioned Hun-
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garian algorithm, the combinatorial version of the problem can be practically solved in
a couple of hours by a common laptop for a number of mines and deposits in the
order of the tens of thousands; this satisfies every practical need for a solution to a
specific istance of the problem. Still, the Euclidean matching found a new formula-
tion that appeals researchers from statistical mechanics, in particular from the field of
disordered systems. The random Euclidean matching problem studies the average
properties of the solutions of Euclidean matching problems when the points, or the
costs of expedition, are generated randomly according to some probability law. This
version of the problem is not trivial at all: when points are randomly generated, their
distances, and thus the expedition costs, are correlated by Euclidean constraints like
the triangular inequality; average properties are then difficult to compute and study.
The reason for this difficulty is mainly computational: averages of disordered systems
are usually computed through the replica trick, that is intractable when the probability
distribution of the possible configuration of the system does not factor over the de-
grees of freedom. The random Euclidean matching problem is now studied as a toy
model to test and create techniques to tackle correlated random variables problems
in physics; moreover, the fact that single istances of the problem can be easily solved
through computer simulations gives experimental data to confront with.

A first step in the computation of average properties in the random Euclidean
matching problem was performed thanks to the study of a simpler version of the
problem, the random-link matching problem. In this formulation, randomness is
introduced by randomly generating the expedition costs; such costs are thus non cor-
related, and averages are easier to be computed. This uncorrelated matching prob-
lem can be seen as an infinite dimensional version of the problem, where Euclidean
constraints are not important anymore. Mézard and Parisi studied the random-link
problem and proposed a perturbative study for the Euclidean version based on the
random-link results in a series of papers published in the eighties ([MP85], [MP86],
[MP87] and [MP88]).

The other dimensional limit in which Euclidean matching seems tractable is the
one dimensional case. In recent years a number of exact results were found for one
dimensional matchings (see for example [CS14], [CDS17] and [CDS18]). The key ob-
servation is that the concavity of the cost function, i.e. the function of the distance
which computes the expedition costs, determines the structure of the solution of the
matching in one dimension. For convex cost functions, the solution to the matching
problem can be stated in a way that is independent on the particular istance of the
problem. This feature allows to relate average properties of the solution to known
properties of Brownian bridges, easing computations. This unfortunately does not re-
main true for the concave cost function case, which is the main subject of this Thesis.
In fact, while some features of the solution are known (see [McC99]), they are highly
dependent on the particular istance of the problem; thus no average property is known
in the concave case.

The interest in concave cost function random matching problems arises also be-
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cause their solutions can be interpreted as folding structures of polymeric chains (in
a sense that will be made precise in Subsection 2.1.1). RNA folding is a challenging
problem: it consists in the study of the equilibrium structure of the molecule given
external properties like temperature. Equilibrium structures determine the function-
ality of the molecule, so that exposed portions of the chain are used by the cell, while
hidden portions remain inactive. Recent works on RNA folding share quite a lot of
vocabulary and techniques with the matching literature, such as in [NSV13] or [TN07].
Average results for concave cost function random matchings may be able to provide
new tools, techniques and computational algorithms to study RNA folding.

This work of Thesis consisted first in extensive simulations of the concave cost
function regime for Euclidean matching problem to study and understand important
features of optimal solutions, and to collect average data. Then an approximation to
the optimal matching was introduced and studied, allowing to compute approximate
average properties using techniques from generating functions theory. The Thesis has
the following structure:

• Chapter 2 formally introduces matching problems and reviews important results
for both combinatorial and random versions of the problem;

• Chapter 3 presents new simulated data for concave cost function problems, fo-
cusing on the comparison between optimal matching and approximate matching;

• Chapter 4 develops the theory of approximate matchings in a rather general
way, and presents computations for some average properties of approximate
matchings; finally, computed properties are compared with simulated data.
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CHAPTER 2
Random Euclidean Matching in 1d

Matching problems arise often in real life situations. What’s the best way to assign
jobs to workers? What’s the optimal transport plan to send some goods from factories
to resellers?

In this chapter, a particular version of the matching problem will be introduced,
namely the monodimensional random Euclidean bipartite matching. For a review of
general matching problems see [Sic16] and [D’A15].

2.1 Definition of the problem

Consider N red points R = {ri} and N blue points B = {bi}, distributed on the segment
[0, 1] ⊂ R. Usually the coordinates are considered ordered, i.e. i < j =⇒ bi < bj, ri <
rj.

A matching over B and R consists in assigning to each blue point one and only one
red point. Two points mutually assigned in a matching are said to be a link of that
matching, and are denoted as (bi, rj). In the following, the interval whose endpoints
are bi and rj will be denoted as Ibi,rj ; notice that this notation does not imply bi < rj.
A matching can be seen equivalently as:

• a bijective map π : B→ R such that π(bi) = rj ⇐⇒ rj is assigned to bi;

• a permutation of N objects π such that π(i) = j ⇐⇒ rj is assigned to bi.

As matchings can be seen as permutations, the total number of matchings over two
differently colored sets ofN points is given byN!, i.e. the total number of permutations
of N objects.

In the matching problem, we are interested in finding an optimal matching. In
order to define what an optimal matching is, to each possible matching π over given B
and R a cost E[π] is assigned. The optimal matching will be the minimum of E[π] over
all possible matchings.
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One way to build the cost functional E is to assign to each possible link (bi, rj) a
cost wi,j, and define

E[π] :=

N∑
i=1

wi,π(i), (2.1)

i.e. E is the total cost of the links of the matching π. Among the various possibilities
for a choice of costs wi,j, the Euclidean version of the problem defines

wi,j := g(|bi − rj|) (2.2)

for a generic function g : R → R, called cost function. In this thesis, the cost function
analysed is g(x) = xp, as it has well defined monotonicity and convexity properties
and it is smooth for each value of p. Thus, the cost functional considered will be

E[π,p] =
N∑
i=1

|bi − rπ(i)|
p. (2.3)

The optimal matching will be denoted as π̃(p) and its cost will be denoted as Ẽ(p) =
E[π̃,p]. Notice that for p = 0 every matching has the same cost. Examples of optimal
matchings for various values of p can be seen in Figure 2.2.

The random version of the problem assumes that costs are randomly generated
following some specified procedure, and asks questions about average properties of
the optimal matching (denoted with an overline, for example E). The most natural
way to introduce randomness in the Euclidean problem is to consider the points as
randomly extracted with uniform probability on [0, 1] ⊂ R. This implementation of
randomness is highly non trivial. The costs generated this way are in fact correlated
through Euclidean inequalities, leading to a non factorized probability density.

Another difficulty arises by the fact that typical quantitites of interest are functions
of the optimal matching, which in turn is, a priori, highly dependent on the particular
istance of randomness. This is a key observation: most of the known and new results
presented in this thesis follow from the fact that in certain regimes and approximations
the optimal matching depends weakly, or does not depend at all on the instance of
randomness.

Tipical quantities of interest are:

• the average optimal cost per link ϵ(p,N) = 1
N Ẽ(p,B,R), where the dependence

over the sets of random points is explicitly indicated to stress the fact that of the
input of the problem, only the number of points N is significant in the averaged
quantity;

• the distribution of optimal costs per link;

• the distribution of links’ lenghts in the optimal solution. The lenght of a link
(bi, rj) can be defined both in an Euclidean fashion, as the distance |rj − bi|, and
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distance = 7+1

distance = 4+1

Figure 2.1: Lattice distance between points

Lattice distance between two points is computed by counting the spacings between consecutive points
between the two, i.e. counting the points between the two and adding 1.

in a lattice fashion, as the number of points between bi and rj plus one. Examples
of lattice distances are shown in Figure 2.1. Both distances give distributions
worth studying.

2.1.1 Visual representations

One dimensional Euclidean matching allows for a number of different graphical rep-
resentations. Here we briefly review some of them.

Link representation

The easiest way to visualize a matching is by explicitly linking matched points using
arcs. In the following, this visualization will be called the link representation. The
convention is that every arc has to lie in the upper halfplane, if the segment over
which the matching is done is embedded in R2 as the segment with endpoints (0, 0)
and (1, 0). Figure 2.2 uses this kind of representation to depict optimal matchings.

Definition 2.1. A matching is called non crossing if in its link representation no arc
crosses another one; such a graph is usually called a planar graph.

Figure 2.2 shows a non crossing matching for p = 1
2 .

Height diagrams

If a matching is non crossing a common way to represent it is by the use of a height
diagram. The height diagram counts how many arcs pass above a certain point, giving
informations about the overall structure of the matching in a syntetic way. To each
point, one associates the number of arcs passing above it, adding or subtracting 1

2 if
the point itself is a leftmost (starting) or rightmost (ending) point of a link. Given the
height diagram, the matching is recovered by matching contiguous points at the same
height; notice that this recovery process assumes that the matching is non crossing.
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p = 1
2

p = 2

Figure 2.2: Examples of Bipartite Matchings

For N = 8 and p = 0.5, 2, the optimal matching is shown via link representation. Notice the ordering of
the p = 2 solution and the non crossing of the p = 0.5 one. See Theorem 2.5 for the details of this
observation.

Figure 2.3: Example of the height diagram of a matching

Comparison between the link representation and the height diagram of a matching. Given a matching,
the height diagram is built by drawing an "up" step over each leftmost point of a link, and a "down"
step otherwise. The matching is recovered from its height diagram by linking contiguous points at the
same height.
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Figure 2.4: Example of chain folding induced by a matching

Example of chain folding induced by the matching represented in Figure 2.3. The segment containing
the points is folded such that linked points are near in the ambient space. The folded segment provides
the same amount of information as the matching itself. Notice that as we started from a non crossing
matching, no pseudoknots are formed; all loops are independent and not intertwined.

Figure 2.5: Example of pseudoknot

A crossing matching with its link and its chain fold representations. Crossing implies that a pseudoknot
is formed, i.e. that two loops are intertwined.

Chain folding

Matchings give a useful instrument to describe patterns of folding of 1d chains of
points. The reason is clear if a third graphical representation of matchings is intro-
duced. Start from the link representation of a matching, then deform the [0, 1] segment
in a way such that linked points are superimposed. The [0, 1] segment thus folds on
itself, creating a structure of loops that encodes the same information of the initial
matching. See Figure 2.4 for an example.

This representation motivates the interest in the study of matchings as equilibrium
configurations of 1d polymeric chains. The parallel is strenghtened by the observa-
tion that in nature, RNA molecules fold on themself without creating pseudoknots,
i.e. particular loop configurations; an example is given in Figure 2.5. Pseudoknots
prevent the chain from properly stacking parallel subchains, thus giving energetically
unfavorable configurations. These configurations are precisely described by crossing
link representations. Thus, RNA seems to fold according to a non crossing matching.
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2.1.2 Properties

In the following, a number of useful definitions are introduced.

Definition 2.2. A matching is called ordered if for any pair of links (b1, r1), (b2, r2)
with b1 < b2, then r1 < r2.

Notice that, if all points are labeled in order of ascending coordinate, then the
ordered matching is given by the identity permutation π(i) = i.

Definition 2.3. A matching is called non crossing if for any pair of links (b1, r1),
(b2, r2), the intervals Ib1,r1 and Ib2,r2 whose endpoints are the endpoints of the links
are either disjoint (i.e. Ib1,r1 ∩ Ib2,r2 = ∅) or nested (i.e. Ib1,r1 ⊂ Ib2,r2 or Ib2,r2 ⊂
Ib1,r1). A matching is crossing if it is not non crossing. This definition is equivalent to
Definition 2.1.

Definition 2.4. (Rule of three) Consider two nested links (b1, r1), (b2, r2) of a match-
ing, and suppose without loss of generality that b1 < r1 and Ib2,r2 ⊂ Ib1,r1 . Suppose
that the two links are not equally oriented, i.e. (r1 − b1)(r2 − b2) < 0. With our as-
sumptions, this restricts the mutual ordering of points to b1 < r2 < b2 < r1.
If 2b2 − r2 < r1 and 2r2 − b2 > b1, then the pair of links satisfies the rule of three. In a
link representation, this means that the outer link must be large enough to enclose the
inner link and two copies of it positioned just on its sides (see Figure 2.6).
If every pair of links of a matching is either disjoint or satifies the rule of three, than
the matching is said to satisfy the rule of three.
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b1 r2 b2 r1(2b2 − r2)(2r2 − b2)

(a)

(b)

b1 r2 b2 r1 (2b2 − r2)(2r2 − b2)

Figure 2.6: Rule of three

Examples of pairs of links (a) satisfing the rule of 3 and (b) not satisfing it.

2.2 Analytical results

A number of analytical results are available for the Euclidean Bipartite Matching in
one dimension, both in its random and non random versions. Non random properties
are usually the baseground onto which random results are derived.

2.2.1 Non random properties

The main analytical result about the optimal matching, at fixed positions of the points,
is that for p > 1 the matching is ordered, and for 0 < p < 1 the matching is non crossing.
Figure 2.2 gives a graphical comparison of the two regimes for a fixed distribution of
points.

Theorem 2.5. For p > 1, the optimal matching is ordered, and if the points are labeled
in order of ascending coordinate, the optimal permutation is the identity permutation
π(i) = i.
For 0 < p < 1, the optimal matching is non crossing.

Proof. The proof has the following structure:

1. the theorem is first proven in the case N = 2 by direct inspection of the possible
cases;
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2. for p > 1, the local ordering of the optimal matching deduced in the N = 2 case
immediately implies the ordering of the global matching for N > 2;

3. for 0 < p < 1, there is still the need to show that each "uncrossing" operation
involving two links not only lowers the cost of the matching as shown in the
N = 2 case, but it also lowers the number of total crossings. This is again proven
by explicit inspection of the possible cases;

4. for p = 1, point 1) and 2) guarantee that the ordered matching is optimal, but
don’t rule out the possibility of having other optimal matchings as well.

1) N = 2 case
Factoring out the exchange and reflection symmetries, [••••], [••••] and [••••] are the
only possible orderings of 2 red and 2 blue points. Call T1 the cost of the matching
that links the leftmost red with the leftmost blue, and T2 the cost of the other possible
matching. By extension, call T1 and T2 also the relative matchings. We can proceed
computing the costs of all possible matchings to find the optimal one.

First case [••••]: apart from a scaling factor that does not alter the reasoning, fix
the position of the four points at 0, 1, 1+ x1, 1+ x2, with 0 < x1 < x2 (see Figure 2.7).
Then:

T1 = (1+ x1)
p + xp2

T2 = (1+ x2)
p + xp1

(2.4)

and T1 ⩽ T2 if and only if
f(x1) ⩽ f(x2) (2.5)

for f(x) = (1+ x)p − xp. But f(x) is monotone increasing for p > 1, constant for p = 0, 1
and monotone decreasing for 0 < p < 1 by a check of its first derivative. Thus T1 is
optimal for p > 1, T2 is optimal for 0 < p < 1 and the two matchings are degenerate for
p = 0, 1. Notice that T1 is ordered and crossing, T2 is non ordered and non crossing.

1 x1 x2 − x1 1 x1 x2 − x1

Figure 2.7: Theorem 2.5 - First case

Second case [••••]: apart from a scaling factor that does not alter the reasoning,
fix the position of the four points at 0, 1− x1, 1, 1+ x2, with 0 < x1 < 1 (see Figure 2.8).
Then:

T1 = (1− x1)
p + xp2

T2 = (1+ x2)
p + xp1

(2.6)
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and T1 ⩽ T2 implies
(1− x1)

p − xp1 ⩽ (1+ x2)
p − xp2 . (2.7)

For p ⩾ 1, T1 ⩽ T2 as
T1 ⩽ 1 ⩽ T2. (2.8)

For p < 1, the optimal matching is not always the same. Numerical checks confirm
indeed that for different values of x1 and x2 T1 can be greater, equal or less than T2.
Notice that T1 is ordered, T2 is not and both matchings are non crossing.

1− x1 x1 x2 1− x1 x1 x2

Figure 2.8: Theorem 2.5 - Second case

Third case [••••]: apart from a scaling factor that does not alter the reasoning, fix
the position of the four points at 0, x1, x2, 1, with 0 < x1 < x2 < 1 (see Figure 2.9). Then:

T1 = xp1 + (1− x2)
p

T2 = xp2 + (1− x1)
p

(2.9)

and T1 ⩽ T2 if and only if
f(x1) ⩽ f(x2) (2.10)

for f(x) = (1+ x)p + xp. But a check on the first derivative confirms that f(x) is mono-
tone increasing for p > 0 and constant for p = 0. Thus T1 is optimal for p > 0. Notice
that T1 is ordered and non crossing, T2 is non ordered and crossing.

x1 x2 − x1 1− x2 x1 x2 − x1 1− x2

Figure 2.9: Theorem 2.5 - Third case

3) See Theorem 2 in [DSS12b].
Consider a matching with 2 crossing links (a,b) and (c,d); Figure 2.10 shows the
possible crossing configurations (modulo symmetries). Uncrossing creates the two
new links (a,d) and (c,b) in each of the two configurations. Consider a third link
(x,y) that in the uncrossed configuration of the original links crosses (a,d) or (c,b).
Its possible positions are shown in Figure 2.10 as dotted lines, both in the crossed and
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a c b d

(a)

a d b c

(b)

a c b d a d b c

Figure 2.10: Possible crossing configurations

(a) Possible crossing configurations of two links. Dotted lines show the possible positions of a third link
that crosses at least one of the original links.
(b) Uncrossed configurations of the two links.

uncrossed situation. Direct inspection confirms that uncrossing operations eliminate
exactly one crossing. Thus, a finite number of uncrossings generates a non crossing
matching and lowers the total matching cost for 0 < p < 1.

Theorem 2.5 is crucial: for p > 1, the optimal matching is uniquely determined
independently on the positions of the points. This greatly simplifies the treatment
of the random properties of the problem, as averages are decoupled from the actual
construction of the optimal matching in each random instance. On the other side, for
0 < p < 1 only non crossing is guaranteed, and unfortunately this does not suffice to
uniquely determine the optimal matching. Still, a remarkable restriction of possible
optimal matchings is achieved.

Finally, p = 1 shows degeneracy properties that place this regime at the boundary
of ordered and non crossing optimal solutions.

More results are available for the 0 < p < 1 cases.

Lemma 2.6. (Rule of three) If 0 < p < 1, the optimal matching satifies the rule of three.

Proof. See [McC99], Lemma 2.1. Consider two links in the configuration b1 < r2 <

b2 < r1 as in Definition 2.4. If the pair of links are part of an optimal matching, then it
must be true that

w(b1, r1) +w(b2, r2) ⩽ w(b1, r2) +w(b2, r1). (2.11)

Now, b2 is the midpoint between 2b2 − r2 and r2, thus w(b2, r2) = w(b2, 2b2 − r2);
by ordering, r2 is nearer to b1 than to 2b2 − r2 giving, by monotonicity of the cost
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Figure 2.11: Examples of opposite neighbours

The opposite neighbour of a point is the nearest point of the opposite color, considering the lattice
distance.

function, w(b1, r2) < w(b1, 2b2 − r2) (see Figure 2.6). Thus, Equation 2.11 implies

w(b1, r1) +w(b2, 2b2 − r2) < w(b2, r1) +w(b1, 2b2 − r2). (2.12)

Equation 2.12 can be interpreted as an optimality condition for the links (b1, r1) and
(b2, 2b2 − r2) over their counterparts (b1, 2b2 − r2) and (b2, r1). This optimality con-
dition is subject to non crossing, giving that b1 < 2b2 − r2 < r1. This results and its
symmetric counterpart for 2r2 − b2 prove that the pair of links satisfies the rule of
three, and by extension that the optimal matching satisfies the rule of three.

Lemma 2.6 describes another property of the optimal matching in the 0 < p < 1

regime, unfortunately not sufficient to determine it uniquely. In fact, this Lemma only
forbids pairs of link breaking the rule of three; nothing is said if they satisfy the rule.
Moreover, the rule is quite difficult to implement in computations and, to best of our
knowledge, was never succesfully used.

The last non random result presented is the key concept exploited in the following
chapters to deduce analytical results in the 0 < p < 1 regime.

Definition 2.7. (Opposite neighbour) Define the opposite neighbour (o.n.) of a point
to be the nearest point of the other color such that between the two there is an equal
number of red and blue points (possibly zero). Here nearest is to be intended in a
"lattice" way, i.e. the distance between two points is k+ 1 if between them there are k
other points.

Notice that the definition is symmetric (b is o.n. of r ⇐⇒ r is o.n. of b).

Lemma 2.8. Each distribution of N red/blue points admits a natural non crossing
matching, i.e. a non crossing matching uniquely determined by the mutual ordering
of differently colored points.

Proof. Match every point with its opposite neighbour. This matching is uniquely de-
termined by the color ordering and well defined thanks to the symmetry of the o.n.
definition.
This matching is non crossing: given a link (b, r) of opposite neighbours, the oppo-
site neighbours of all the points inside Ib,r must lay inside the same interval. In fact,
suppose without loss of generality that b < r and consider the first point f and last
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point l inside Ib,r (supposed non empty, else the statement is trivial); f must be blue,
otherwise b’s o.n. would be f, and l must be red for the same reason. Between f and
l there is an equal number of red and blue points, thus either they are o.n., or their
o.n.’s lay between them by iteration.

Another way to introduce natural matchings is the following: consider the base
points of the matching and build a height diagram by assigning an "up" step to red
points and a "down" step to blue points, and by reflecting all negative portions of
the graph to the positive halfplane. The matching induced by this height diagram
reproduces the above defined natural matching.

Lemma 2.8 seems quite unaccomplishing: counterexamples are easily found con-
firming that the natural matching defined is not in general the optimal matching. For
example, consider the N = 2 configuration [••••]: as seen in the proof of Theorem 2.5,
both possible matchings are non crossing, and can both be optimal in different ranges
of distances between the points. The natural matching selects always the ordered
matching in this ambiguous case, which is not the known behaviour of the optimal
matching.

Surprisingly, when simulations are run the natural matching seems quite similar to
the optimal one. This is fortunate: manipulating natural matchings to extract average
properties is much easier, though not trivial, than manipulating optimal matchings.
Chapters 3 and 4 will focus on the comparison of simulated quantities for optimal and
natural matchings, and will develop a number of results for the average properties of
the natural matchings.

2.2.2 Random properties

As sketched in Subsection 2.2.1, average results are known only in the p > 1 case. The
main point is that independently on the random positions of the points, the match-
ing is ordered. Labeling the points in order of ascending coordinate shows that the
matching is composed by all the links (bi, ri), 1 ⩽ i ⩽ N.

Definition 2.9. The transport field of a matching π is defined as

ϕi(π) = bi − rπ(i), 1 ⩽ i ⩽ N. (2.13)

For p > 1, π = 1 and ϕi = bi − ri. The optimal cost is

Ẽ(p) =

N∑
i=1

|ϕi|
p. (2.14)

In [CDS17], the transport field ϕi is related to the difference of two Brownian
processes. This connection allows for the computation of the average optimal cost in
the large N limit, as well as correlation functions of the kind ϕiϕj. The average optimal
cost is

ϵ(p,N) = N−p
2
Γ(1+ p

2 )

p+ 1

[
1+

p(p+ 2)

8

1

N
+ o

(
1

N

)]
. (2.15)
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2.3 Simulations

Simulations where performed by Matteo D’Achille in his thesis work [D’A15] for N up
to 1000. The average optimal cost per link scaling behaviour was studied extensively,
simulating up to 10000 random istances per each value of the parameters p and N. For
p > 1, simulations are in agreement with the results of Subsection 2.2.2. For 0 < p < 1
its scaling behaviour, i.e. the leading coefficient of the expansion in the limit of large
N was extracted by fitting data against

ϵ(p,N) =
βp

Nαp
(1+ o(1)). (2.16)

Results are shown in Figure 2.12. The dependence on p of the coefficient was then
fitted against simple polynomials, with results shown in Figure 2.13. The scaling
exponent is in good agreement with a parabolic behaviour p(1− p

2 ), and the scaling
coefficient seems to have a linear behaviour 1− p

2 .

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

p

βp
αp

p αp βp

0.1 0.0917(9) 0.936(4)
0.25 0.215(2) 0.860(9)
0.4 0.314(4) 0.78(1)
0.5 0.366(5) 0.72(1)
0.6 0.406(5) 0.66(1)
0.75 0.449(3) 0.565(8)
0.9 0.478(2) 0.480(3)

Figure 2.12: Scaling exponent αp and coefficient βp
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Figure 2.13: Behaviour of αp and βp

Plots of residuals of the linear regression for αp vs p (top-left) and βp vs p (bottom-left) suggest
higher-than-linear dependence of parameters on p. Instead, on the right very good agreement with the
ansatz αp ∼ −p(1− p

2 ) (top-right) and βp ∼ 1− p
2 is found.

2.4 Variants

In this Section, a brief review on the literature regarding variants of the problem will
be considered.

Random link

Euclidean costs for links are a difficult feature to treat. In fact, Euclidean correlations
do not allow for the usage of mean field techniques. A more tractable version of the
matching problem is then created by considering each link cost as a independent ran-
dom variable distributed with a certain probability law. Such version of the problem
loses any information about the underlying geometry of the space of points, result-
ing in a infinite range version of the matching problem. The random link matching
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problem was studied in [MP85] by Mezard and Parisi by usage of the so called replica
trick, and the techniques developed ware later adapted to the correlated problem in
[HDMM98].

Monopartite

The monopartite version of the problem considers 2N points of a single kind, and looks
for the optimal matching without any color restriction. Optimal matchings found
this way induce a bipartition on the points, or better 2N distinct bipartitions: for all
matched points, let one be red and the other be blue. This observation allows to study
the monopartite problem as the minimum over possible bipartition, i.e. over possible
colorings, of the optimal bipatite matching. Results for the p > 1 regime can be found
in [CDS17].

Negative p

The structure of optimal matching in the p < 0 regime was studied in [CDS17]. In
particular, the permutation describing the matching is found to satisfy certain ciclic
properties, that allow to treat the problem in the same way as the p > 1 regime. The
average optimal cost per link behaves as

ϵ(p,N) =
1

2p

[
1+

p(p− 2)(p− 4)

3(p− 3)

1

N

]
+ o

(
1

N

)
(2.17)

in the large N limit.

Grid-poisson unbalanced

In [BCS14], the Grid-poisson problem was studied, in which red points are taken on an
equispaced lattice, while blue points are randomly uniformly distributed. Moreover,
the problem addressed was unbalanced, i.e. with different numbers of red and blue
points. The focus was on the correlation function study for the problem with respect
to a density parameter ρ, defined as the ration between the number of red and blue
points; criticality was studied in the ρ ≈ 1 regime.

Higher dimensions

Higher dimensions Euclidean matching problems have been studied extensively. In
the convex regime, the average optimal cost per link leading behaviour in the large N
limit was conjectured in [MP88] and later proven, for d ⩾ 3 in [Tal92]:

ϵ(p,N,d) ∼ N1− p
d . (2.18)

Further results were obtained in low dimensions for the behaviour of the first order
corrections, see [CDS18] and [CLPS14].
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CHAPTER 3
0 < p < 1 simulations

This chapter summarizes the results of simulations in the 0 < p < 1 regime. The main
reasons that motivate the simulations are:

• studying the low N behaviour of optimal matchings to gain insights on its prop-
erties and dependences;

• studying the large N limit for the average cost, to extract its leading behaviour;

• studying natural matchings (Lemma 2.8) in both N regimes to understand their
relevance as approximate optimal matchings.

The first point of the simulations was carried out qualitatively, generating tens
of random instance of the problem at fixed conditions, for example at fixed points
positions or at fixed color ordering. Color ordering was found to be the variable with
the strongest impact on the structure of optimal matchings, while not determinant.
This observation motivated the introduction of natural matchings and their study.

The second and third phase of the simulations were performed thanks to the access
to the LCM farm (https://lcm.mi.infn.it/farm/), which allowed for up to 1000 par-
allel simulations to be run at a single time. In the following sections results obtained
in this phase are presented.

Given as input the pair (p,N), a random istance of the Euclidean matching problem
was produced and solved. The output gave back:

• the total cost of the optimal matching and the cost of the natural one;

• the structure of computed matchings, i.e. the positions of all red and blue points,
along with the permutation describing the optimal and natural matchings.

Simulations were performed in two batches:

1. given the sizable output of the structure of computed matchings, the first batch
focused only on the simulation of the costs. For each value of p in
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] and for a range of values of N from 50 to 6000,

https://lcm.mi.infn.it/farm/
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between 5000 and 10000 random istances where simulated, and the costs com-
puted. Section 3.2 presents the analysis of this dataset;

2. for the same values of p and for a range of values of N from 500 to 4000, the
entire structure of computed matching was simulated and saved. Subsections
following Section 3.2 present the analysis of this second dataset.

3.1 Code

The program used for the simulations is a custom made C++ code revolving around
the usage of an external library for graph optimization, namely the library LEMON
(Library for Efficient Modeling and Optimization in Networks), an open source project
available at http://lemon.cs.elte.hu/trac/lemon.

The code is straightforward: it defines a class BIPARTITE that stores all the relevant
information of the problem, i.e. positions of the points, number of points, dimension,
p parameter, etc. . . Moreover, it stores the graph structure using LEMON types. After
random generation of the distribution of points, the weights are computed and the
optimal assignement is found using an Edmond’s maximum weighted perfect match-
ing algorithm (see http://lemon.cs.elte.hu/pub/doc/latest/a00256.html for the
details). The optimal cost is extraced by the algorithm itself. The natural matching is
computed directly by building the height diagram and using it to recover the matching
itself.

3.2 Average optimal cost

The first dataset was used to compute average total costs per link (from now on, we
will omit the phrasings "total" and "per link"). For each fixed (p,N), all the costs pro-
duced for each random instance were averaged, and the statistical error was extracted
as the standard error. Results are plotted Figure 3.1, and shown in Table 3.1 and
Table 3.2.

Data was fitted against a power law leading behaviour of the kind

ϵ(p,N) =
βp

Nαp
(3.1)

and compared with results presented in Section 2.3, i.e. with smaller N simulation
data and predicted behaviours αp = p(1− p

2 ) and βp = 1− p
2 . Results for the fit are

plotted in Figure 3.2 and shown in Table 3.3.
The parabolic behaviour of αp starts to deform. The new data was analysed pro-

gressively removing high N data: this procedure showed that the parabolic behaviour
deforms more and more as N grows, suggesting that N = 6000 is still not large enough
to single out the leading behaviour. The behaviour of βp is evidently non linear.

http://lemon.cs.elte.hu/trac/lemon
http://lemon.cs.elte.hu/pub/doc/latest/a00256.html
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Table 3.1: Average total cost for the optimal matching
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Table 3.2: Average total cost for the natural matching
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p= 0.1 0.2 0.3 0.4 0.5
αp optimal 0.096(4) 0.187(6) 0.27(0) 0.33(9) 0.39(4)
αp natural 0.090(1) 0.17(4) 0.24(9) 0.31(4) 0.36(8)
βp optimal 0.9626(9) 0.946(2) 0.930(4) 0.89(8) 0.84(3)
βp natural 0.9742(6) 0.953(3) 0.923(3) 0.87(8) 0.81(7)

p= 0.6 0.7 0.8 0.9
αp optimal 0.43(3) 0.46(1) 0.47(8) 0.489(0)
αp natural 0.41(1) 0.44(5) 0.46(8) 0.485(4)
βp optimal 0.76(4) 0.68(0) 0.58(9) 0.50(7)
βp natural 0.74(0) 0.66(3) 0.57(9) 0.50(3)

Table 3.3: Fit results

The comparison between optimal and natural matching results looks promising:
as N = 6000 isn’t large enough to single out the leading behaviour of the cost, it’s still
possible that both matchings share the same leading behaviour.

3.3 Distribution of links’ lenghts

The distribution of links’ lenghts was computed by averaging over 1000 istances of
disorder the histogram of discrete links’ lenghts. Discrete lenghts are to be intended
as distances in lattice units, i.e. two points are at distance 2l+ 1 id they have 2l other
points between them.

An example of links’ lenghts distribution for optimal matchings can be found in
Figure 3.3, and for natural matchings in Figure 3.4. Compared to the optimal match-
ings distribution, the natural matchings one seems to have no dependence on the value
of p. The tail shows a different behaviour too, indicating a significative lack of longer
links in natural matchings. This can be explained considering that natural matchings
favor ordered non crossing matchings whenever possible, and ordered matching have
shorter links. Nevertheless, in the range [0, 0.5] the distributions for optimal and nat-
ural matchings seem to agree. A comparison at fixed values of p can be found in
Figure 3.5
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Figure 3.1: Average total cost for optimal and natural matchings

Each pair of lines describes the behaviour at a different value of p. For each pair of lines, the below one
represents the average total cost of the optimal matching, the other the average total cost of the natural
matching. Each data line shows linearity, suggesting that the power law fit is viable.
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Figure 3.2: Fit results

Power law fit results for the cost of optimal and natural matchings, compared with previous results by
D’Achille [D’A15].
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Figure 3.3: Links’ lenght distribution at N = 4000 for optimal matchings

The distribution of links’ lengths was computed by averaging the links’ lenghts histogram over the 1000
random istances generated. A further normalization factor of 1

N was included such that the area of the
histogram equals the total number of links per istance, i.e. N. To be able to plot the distributions at
N = 4000, a filtering process was performed, discarding all datapoints but 200 equispaced ones.
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Figure 3.4: Links’ lenght distribution at N = 4000 for natural matchings

The distribution for natural matchings was extracted and normalized the same way as Figure 3.3.
Despite the coarseness of the tail of the plot, a different behaviour can be observed.
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Figure 3.5: Links’ lenght distribution at N = 4000, p = [0.3, 0.5, 0.7, 0.9] for both optimal
and natural matchings

For each value of p, the blue plot is the distribution for optimal matchings, the orange plot fot natural
matchings. A different behaviour in tha tail of the distribution is present.



CHAPTER 4
Combinatorics of natural matchings

In this chapter the main analytical results obtained in this work of thesis are presented.
The observation that natural matchings and optimal matchings share similar prop-

erties motivated the interest in the analytical study of natural matchings. Contrary
to the optimal ones, natural matchings depend only on the color ordering of the
points, and not on their actual positions. This allows to study random averages in
two independent steps: an average over color ordering, on which the natural match-
ing depends, and an average over points’ positions, that determines only the average
separation between two points, knowing that they have 2l points between them.

First, colored sequences and their natural matchings are studied, counting prop-
erties of interest are presented as well as technical details that will be useful in the
following. Then the actual expression for the average cost is given, analyzed and ma-
nipulated to obtain closed expressions for the scaling behaviour of the cost. Finally
the analytical data is confronted with the simulations.

4.1 Paths and bridges

The combinatorics of natural matchings relies heavily on the combinatorics of se-
quences of colored points.

Definition 4.1. A bridge is a sequence composed by an equal number of two kinds of
letters, say u and d. In the following, u will be associated with red points, d with blue
points.
A Dyck path is a bridge such that any of its left subsequences (i.e. contiguous sub-
sequences starting from the leftmost letter) contains at least as many u letters as d
letters.

In the literature, a useful graphical representation for Dyck paths is found (see
Figure 4.1): consider the two dimensional lattice of integer coordinates, and represent
each u letter as a vector moving toward the nearest north-east lattice point, each d letter
as a vector moving towards the nearest south-east lattice point (respectively, an up and
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(a)

(b)

Figure 4.1: Examples of Dyck paths and bridges

(a) A bridge fo lenght N = 6. Contrary to Dyck paths, bridges has no height restriction. The sequence of
colored points in bijection with the bridge is drawn on the horizontal axis, with the choice that red
points are up steps.
(b) A Dyck path of lenght N = 6. Notice that the profile always lies above the "horizon". This Dyck path
is the Dyck path assigned to the bridge in (a), and can be interpreted as an height diagram for a non
crossing matching.

a down movement). Then bridges are paths of up and down movements constrained
to start and finish at the same height (y-coordinate value). Dyck paths are bridges that
never fall below the height of the starting point. In the following:

• Dyck paths will be called just paths for the sake of brevity, where no other indi-
cation is given;

• paths and bridges will be assumed to start at the origin of the lattice;

• paths and bridges will be said to be of lenght N if they are composed by 2N

letters;

• the set of bridges of lenght N will be denoted as BN, and the set of paths of
lenght N will be denoted as CN.

Dyck paths arise in the study of first excursions of bridges, i.e. portion of a bridge
between its first up step and its first step to arrive at height zero. First excursions
are a powerful way to decompose paths and bridges in order to find recursions and
formulas about their properties. Notice that, by reflecting all the portions of a bridge
that fall below the horizontal axis above, a Dyck path is recovered. In this sense, each
Dyck path corresponds to a family of 2k bridges, where k is the number of zeroes of
the path, including the starting point and excluding the arrival.

Bridges are important because they are in bijection with the color ordering of the
points in the matching problem, ordering that determines the natural matching over
the sequence. Moreover, consider the Dyck path assigned to a bridge. This path can be
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interpreted naturally as an height diagram representing some non crossing matching
over equispaced points. This matching is precisely the natural matching assigned to
the colored point sequence in bijection with the starting bridge. In this sense, to every
bridge a natural matching is assigned.

4.2 Technical preliminaries

Definition 4.2. Let x ∈ C, N ∈ N.
The falling factorial is defined as xN = x(x− 1) . . . (x−N+ 1).
The rising factorial is defined as xN = x(x+ 1) . . . (x+N− 1).
The notation follows [GKPL89].

Lemma 4.3. Properties of rising and falling factorials

1. xN = N!
(
x
N

)
2. xN = N!

(
x+N−1

N

)
3. xN = (x+N− 1)N

4. xN = (−)N(−x)N

5. xN =
Γ(x+N)
Γ(x)

6. xN =
Γ(x+1)

Γ(x−N+1)

Proof. Properties 1), 2), 3), 4) follow from the definition.
Properties 5), 6) follow from the definition and the factorial property of the Euler
gamma function. These two properties extend the definition of the rising and falling
factorial to complex N.

Lemma 4.4. Generalized binomial theorem

(1− x)a =

∞∑
n=0

Γ(n− a)

Γ(−a)

xn

n!
∀a ∈ R/N. (4.1)

Proof. Follows from the straightforward generalization of the binomial theorem to real
exponents, along with the use of properties 1) and 4) of Lemma 4.3.

A further generalization of binomial theorem will be needed:

Lemma 4.5.

log(1− x) (1− x)a =

∞∑
k=0

xk

k!
Γ(k− a)

Γ(−a)
[ψ0(−a) −ψ0(k− a)] (4.2)

where ψ0(x) =
Γ ′(x)
Γ(x) is the digamma function.
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Proof. Using Lemma 4.4:

log(1− x) (1− x)a = lim
ϵ→0

(1− x)ϵ − 1

ϵ
(1− x)a

= lim
ϵ→0

1

ϵ

[
(1− x)ϵ+a − (1− x)a

]
=

∞∑
k=0

xk

k!
lim
ϵ→0

1

ϵ

[
Γ(k− a− ϵ)

Γ(−a− ϵ)
−
Γ(k− a)

Γ(−a)

]

=

∞∑
k=0

xk

k!
lim
ϵ→0

1

ϵ

[
ϵ
Γ(k− a)

Γ(−a)
(ψ0(−a) −ψ0(k− a)) + o(ϵ)

]

=

∞∑
k=0

xk

k!
Γ(k− a)

Γ(−a)
[ψ0(−a) −ψ0(k− a)] .

(4.3)

Lemma 4.6. Properties of central binomials
Let BN =

(
2N
N

)
be the central binomial of order N. Then:

1. (1− 4z)−
1
2 =

∑∞
n=0 Bnz

n

2.
∑n

m=0 BmBn−m = 4N

3. BN = 4N
√
πN

(1+ o(N−1))

Proof. 1) Follows from Lemma 4.4 using the duplication formula for the Γ function. In
the following B(z) = (1− 4z)−

1
2 .

2) Follows from property 1). In fact:

∞∑
n=0

n∑
m=0

BmBn−mz
n =

∞∑
m=0

∞∑
n=m

BmBn−mz
mzn−m = [B(z)]2

=
1

1− 4z
=

∑
n=0

4nzn.
(4.4)

3) Follows using Stirling’s approximation for factorials.

Definition 4.7. Generating function
Let aN be a sequence. It’s generating function is defined as a(z) =

∑∞
N=0 aNz

N.

Property 1) of Lemma 4.6 gives a closed expression for the generating function of
central binomials. Generating functions are to be considered formal series, possibily
with null radius of convergence. If they converge in a finite disk around the origin,
than in that disk they are considered analytical functions. In the following, every
sequence not defined for negative index will be supposed to satisfy a−N = 0 for all
N ⩾ 1.
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4.3 Counting properties

A typical problem in combinatorics is to count how many objects of a certain kind there
are, or how many objects of a certain kind satisfy some property. In our case, as bridges
represent natural matchings, counting techniques can allow the characterization of
properties of the ensemble such as its size, the average distribution of links’ lenghts in
a natural matching, and more.

4.3.1 Number of bridges

The total number of bridges of size N, BN, can be found simply by considering the
possible ways to select N letters between 2N to be u’s, letting all the others be d’s.
Then

BN =

(
2N

N

)
(4.5)

the combinations of 2N objects of class N, also called N− th central binomial.

4.3.2 Number of paths

A more sofisticate technique is required to compute the number of Dyck paths of size
N, CN: the first return decomposition. Consider a path of size N such that it has its
first zero after 2m+ 2 steps (notice that only after an even number of steps there can
be a zero). Its first portion, to the first zero, is called first excursion; the rest of the
path is called the tail. Then, we can write that

CN =

N−1∑
m=0

CmCN−1−m N ⩾ 1 (4.6)

meaning that a path is always composed by two smaller paths, the first excursion
and the tail, possibly empty (when m = N − 1). The recursion written has starting
condition C0 = 1, meaning that the only path with no letters is the empty one. The
initial condition can be enforced by adding a Kroneker delta δn,0 in the recursion,
validating it for N ⩾ 0. Recursions are often solved introducing a generating function
C(z) =

∑∞
N=0 CNz

N. The recursion implies, by multiplying by zN, summing and
paying attention to the particular case N = 0:

C(z) =

∞∑
N=0

CNz
N = 1+

∞∑
N=1

N−1∑
m=0

CmCN−m−1z
N

= 1+ z

∞∑
m=0

∞∑
N=m+1

Cmz
mCN−m−1z

N−m−1

= 1+ z

∞∑
m=0

Cmz
m

∑
i=0

Ciz
i

= 1+ zC(z)2.

(4.7)
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The equation for C(z) leads to

C(z) =
1±

√
1− 4z

2z
. (4.8)

The plus solution diverges in z = 0, leading to C0 = ∞ and thus not respecting the
initial condition of the recursion. The other solution gives C0 = 1 after removal of the
discontinuity, and allows to compute the coefficients CN explicitly by series expansion
using Lemma 4.4:

C(z) =
1

2z

(
1−

∞∑
N=0

Γ
(
N− 1

2

)
Γ
(
−1

2

)
N!

(4z)N

)

=
1

2z

(
1− 1−

∞∑
N=1

2
√
π 4−NΓ(2N)

1
2(2N− 1)Γ(N)

1

−
√
π
2 N!

(4z)N

)

=

∞∑
N=1

√
π(2N− 2)!√
π (N− 1)!N!

zN−1 =

∞∑
N=0

(2N)!
(N+ 1)!N!

zN

=

∞∑
N=0

BN

N+ 1
zN

(4.9)

where the duplication formula for the Γ function was used, as well as its value at 1
2 .

Thus:
CN =

1

N+ 1
BN. (4.10)

The numbers found are known in the literature and widely studied as the Catalan
numbers (https://oeis.org/A000108). These numbers count a variety of different
combinatorial objects, justifing the interest in results concering them. Among interest-
ing results, there are a number of parameters according to which Dyck path can be
counted, as peaks, returns, and others. A complete review on counting methods and
results is [Deu99].

Lemma 4.8. Properties of Catalan numbers

1. CN+1 =
2(2N+1)

N+2 CN

2. CN =
4NΓ(N+ 1

2)√
πΓ(N+2)

3. CN = 4N

√
πN

3
2

(1+ o(N−1))

Proof. 1) Follows from the definition.
2) Follows from the definition, using the duplication formula for the Γ function. This
provides an analytical continuation for Catalan numbers.
3) Follows from the definition, using Stirling’s approximation for factorials.

https://oeis.org/A000108


CHAPTER 4. COMBINATORICS OF NATURAL MATCHINGS 37

4.4 Links’ lenghts distribution

Among the various properties according to which bridges and paths can be counted
and characterized, the following is of relevance for a later exstimate of the average
cost of natural matchings. It’s the links’ lenghts distribution, i.e. the average number
of links of a certain lenght in natural matchings built using paths or bridges. In this
section, lenght will be used to mean "the number of lattice spacings", imagining each
point fixed on a equispaced lattice of step 1. A link of lenght 2l+ 1 is therefore a link
such that between its two endpoints there are 2l other points. Non crossing forbids
even lenght links.

The average distribution can be computed as follows: consider a bridge b of lenght
N, such that its natural matching has nl(b) links of lenght 2l+ 1. Then the average
distribution LBN(l) is:

LBN(l) =
1

BN

∑
b∈BN

nl(b) =
1

BN
vN,l (4.11)

where vN,l is the total number of links of lenght 2l + 1 in natural matchings of all
bridges. An analogous result holds for paths, where the numbers vN,l are called rN,l.

This distribution is important because will allow us to write an explicit expression
for the average cost of natural matchings. The computation will be performed for
paths first, as the technique is instructive and useful for the bridge case.

4.4.1 Paths

The total number of link of lenght 2l+ 1 in paths of lenght 2N will be called rN,l.
As for counting paths, the first return decomposition is useful to count the total

number of links of lenght 2l+ 1. A recursion can be written:

rN,l = ClCN−l−1 +

N−1∑
m=0

[rm,lCN−m−1 +CmrN−m−1,l]

= ClCN−l−1 + 2

N−1∑
m=0

rm,lCN−m−1

= ClCN−l−1 + 2

N−1∑
m=l+1

rm,lCN−m−1,

(4.12)

where 2m+ 2 is to be interpreted as the position of the first zero of the path. The logic
is the following:

• the first term counts all the paths in which the link between the first step and
the first zero is of the required lenght. The molteplicity of paths in which this
situation arise is given by all the possible paths composing the first excursion
times all the possible paths composing the tail;
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• the sum counts, for all the possible positions of the first zero, the possible links
of the required lenght hidden in the first excursion or in the tail of the path. To
count links of the required lenght hidden in the first excursion, one can use rm,l

itself, times all the possible tails CN−m−1. The tail case is symmetric; the second
passage exploits this symmetry.

The starting condition for this recursion is that rN,l = 0 for l ⩾ N: short paths cannot
have long links. The starting condition is used in the third line, where it simplifies the
lower bound of the sum.

The recursion is solved by noting first that rN,l = ClR̃N,l: all rN,l are divisible by Cl

by induction. The remaining recursion for the ratio R̃N,l is better analysed by shifting
its dependence from (N, l) to (N− l− 1, l), i.e. defining RN−l−1,l = R̃N,l; the recursion
becomes:

Rs,l = Cs + 2

s∑
m=1

Rm−1,lCs−m s ⩾ 0, (4.13)

where we see that as for all l the initial condition of the recursion is R0,l = 0, RN−l−1,l

is really just function of s = N− l− 1.
The recursion in Equation 4.13 can be solved introducing a generating function

R(z) =
∑∞

s=0 Rsz
s. The recursion implies

R(z) =

∞∑
s=0

Rsz
s =

∞∑
s=0

Csz
s + 2

∞∑
s=0

s∑
m=1

Rm−1Cs−mz
s

= C(z) + 2

∞∑
m=1

∞∑
s=m

Rm−1Cs−mz
s

= C(z) + 2

∞∑
n=0

∞∑
k=0

RnCkz
k+n+1

= C(z) + 2zC(z)R(z).

(4.14)

Thus R(z) = 1
2z((1− 4z)

− 1
2 − 1). Lemma 4.4 allows to expand R(z):

R(z) =
1

2z

( ∞∑
m=0

Γ
(
m+ 1

2

)
Γ
(
1
2

) 4mzm

m!
− 1

)
=
1

2z

∞∑
m=1

Γ
(
m+ 1

2

)
Γ
(
1
2

) 4mzm

m!

=

∞∑
m=1

21−2m
√
π Γ(2m)

2
√
π Γ(m)

4mzm−1

m!
=

∞∑
m=0

Γ(2m+ 2)

Γ(m+ 1)

zm

(m+ 1)!

=

∞∑
m=0

(2m+ 1)!
m!(m+ 1)!

zm =

∞∑
m=0

(2m+ 2)!
2(m+ 1)!(m+ 1)!

zm

=

∞∑
m=0

Bm+1

2
zm,

(4.15)

obtaining RN−l−1 = 1
2BN−l, and rN,l =

1
2ClBN−l.
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The average distribution of links’ lenghts is

LCN(l) =
ClBN−l

2CN
. (4.16)

4.4.2 Bridges

The total number of link of lenght 2l+ 1 in paths of lenght 2N will be called vN,l.
The first return decomposition with first zero at step 2m+ 2 can be used in this

case too, leading to the recursion

vN,l = 2

[
ClBN−l−1 +

N−1∑
m=0

(rN,mBN−m−1 +CmvN−m−1,l)

]

= 2ClBN−l−1 +

N−1∑
m=l+1

ClBm−lBN−m−1 + 2

N−1∑
m=0

CN−m−1vm,l

= 2ClBN−l−1 +Cl

N−l−1∑
m=1

BmBN−l−1−m + 2

N−1∑
m=l+1

CN−m−1vm,l

= 2ClBN−l−1 +Cl

N−l−1∑
m=1

BmBN−l−1−m + 2

N−l−1∑
m=1

CN−l−1−mvm+l,l

(4.17)

The logic is the following:

• the bridge is supposed to start with an up step. This undercounts the total
number of links by a factor one half. This is corrected by the initial factor 2;

• each term is the same as in Equation 4.12, with carefulness due to the fact that
the first excursion is a path, while the tail is a bridge.

The initial condition is, as for paths, vN,l = 0 for l ⩾ N.
By induction, vN,l = ClVN−l−1,l as in the paths case. The recursion for the ratio

gives:

Vs,l = 2Bs +

s∑
m=1

BmBs−m + 2

s∑
m=1

Cs−mVm−1,l s ⩾ 0, (4.18)

which again shows that VN−l−1,l is only function of s = N− l− 1. Now, the second
term is simplified thanks to propery 2) of Lemma 4.6, giving

Vs = 4s +Bs + 2

s∑
m=1

Cs−mVm−1. (4.19)
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The recursion is solved introducing a generating function V(z) =
∑∞

s=0 Vsz
s. Equa-

tion 4.19 implies

V(z) =

∞∑
s=0

[4s +Bs] z
s + 2

∞∑
s=0

s∑
m=1

Cs−mVm−1z
s

= (1− 4z)−1 + (1− 4z)−
1
2 + 2

∞∑
m=1

∞∑
s=m

Cs−mVm−1z
s

= (1− 4z)−1 + (1− 4z)−
1
2 + 2

∞∑
n=0

∞∑
k=0

CkVnz
k+n+1

= (1− 4z)−1 + (1− 4z)−
1
2 + 2zC(z)V(z),

(4.20)

giving V(z) = (1− 4z)−1 + (1− 4z)−
3
2 .

Lemma 4.4 gives

V(z) =

∞∑
m=0

[
1+

Γ
(
m+ 3

2

)
Γ
(
3
2

)
m!

]
4mzm

=

∞∑
m=0

[
1+

(
m+ 1

2

)
21−2m

√
π Γ(2m)

√
π
2 Γ(m)m!

]
4mzm

=

∞∑
m=0

[
4m + 2

(2m+ 1)(2m− 1)!
(m− 1)!m!

]
zm

=

∞∑
m=0

[
4m +

(2m+ 2)(2m+ 1)2m(2m− 1)!
(2m+ 2)m(m− 1)!m!

]
zm

=

∞∑
m=0

[
4m +

m+ 1

2
Bm+1

]
zm

(4.21)

resulting in VN−l−1 = 4N−l−1 + N−l
2 BN−l and vN,l = Cl4

N−l−1 + (N− l)rN,l.
The average distribution of links’ lenghts is

LBN(l) =
Cl

BN

[
4N−l−1 +

N− l

2
BN−l

]
. (4.22)

4.5 Unified notation for paths and bridges

From now on, all models and results can be equally defined for paths or bridges.
It’s useful to adopt a unified notation in all the following, except where differently
specified.

The cardinality of the set of possible color orderings will be denoted as PN (for
paths, PN = CN etc. . . ), and the set itself will be denoted as PN. The average distribu-
tion of links’ lenghts will be denoted as LN(l), and as seen has the form

LN(l) =
Cl

PN
DN−l−1. (4.23)
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The generating function of Ds will be denoted as D(z).

4.6 Average cost computation

The average cost per link of natural matchings will be denoted as ϵ(p,N) with a slight
abuse of notation. Notice that every colored sequence is equiprobable, thus every
natural matching/bridge is equiprobable. The average cost of natural matchings can
be written as:

ϵ(p,N) =
1

NNpPN

∑
b∈PN

N−1∑
l=0

nl(b)ϕ(p, l,N)

=
1

Np+1PN

N−1∑
l=0

⎛⎝ ∑
b∈PN

nl(b)

⎞⎠ϕ(p, l,N)

=
1

Np+1

N−1∑
l=0

LN(l)ϕ(p, l,N)

(4.24)

where N−pϕ(p, l,N) is the average cost of a link of lenght 2l+ 1, and the factor N−p is
highlighted to absorb the N dependence of ϕ in the large N limit, allowing to consider
ϕ(p, l,N) = ϕ(p, l). nl(b) is the number of links of lenght 2l+ 1 in the natural matching
of the sequence b.

After the introduction of the average cost function, explicit summation of Equa-
tion 4.24 will be performed with two independent methods.

4.6.1 Average cost of links

To study Equation 4.24, the average cost of a link of lenght 2l+ 1, N−pϕ(p, l,N) must
be computed. Three cases are considered.

Equidistant points

The easiest case for the computation of ϕ(p, l,N) is the equidistant points case, in
which all the points are considered equidistant, with the first being at coordinate

1
2N+1 and the last at coordinate 2N

2N+1 .

N−pϕeq(p, l) =
(
2l+ 1

2N+ 1

)p

. (4.25)

Strangely enough, as simple as it seems the equidistant case is not exactly nor
approximately solvable. Only its leading behaviour for 1

2 < p < 1 is known: in fact,
it will be shown that ϕ functions that agree in the large l limit provide the same
1
2 < p < 1 leading behaviour.
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Random positions at fixed color ordering

In [CDS17] the probability density for the distance between successive random points
is computed (Equation 95a).

One has
ρ
(1)
N (φi = xi+1 − xi) = 2Ne

2Nφi (4.26)

if xi is the position of the i-th point in order of ascending coordinate.
Then

N−pϕrnd(p, l,N) = (xi+2l+1 − xi)p =

⎛⎝i+2l∑
j=i

φj

⎞⎠p

= zpi (4.27)

where zi =
∑i+2l

j=i φj. The last average is intended over the probability distribution of
z, which is the convolution of 2l+ 1 exponentials:

pZ(z) = (2N)2l+1z2le−2Nz. (4.28)

The average value is then

N−pϕrnd(p, l) = zp =

∫∞
0 (2N)2l+1zpz2le−2Nz∫∞
0 (2N)2l+1z2le−2Nz

x = 2Nz
=

∫∞
0 (2N)−2l−p−1x2l+pe−x∫∞

0 (2N)−2l−1x2le−x

=

(
1

2N

)p
Γ(2l+ 1+ p)

Γ(2l+ 1)
.

(4.29)

The behaviour for large l of ϕrnd(p, l,N) is given by

ϕrnd(p, l) = lp
(
1+

p(1+ p)

4l
+ o

(
1

l

))
, (4.30)

coinciding at first order with the equidistant points case.

Custom cost function

The possibility of using custom made average costs ϕ(p, l,N) allows to choose cost
functions that simplify computation. Clearly custom cost function will not describe
precisely the average distance in matching problems; it’s important then to understand
when these custom cost function approximate well some matching problem.

We found that

ϕ0(p, l) =
Γ
(
l+ 1

2 + p
)

Γ
(
l+ 1

2

) = lp
(
1+

p2

2l
+ o

(
1

l

))
. (4.31)

allows certain recursions to close in exact form, allowing easier explicit computations
of the average cost.
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In fact, consider the total cost on the ensamble of paths

EN[ϕ] =
1

Cn

N−1∑
l=0

rN,lϕ(l) (4.32)

as a functional of the average cost function ϕ. Note that the rn,k satisfies the following
recursion:

rN+1,l =

⎧⎪⎨⎪⎩
1
2BN+1 l = 0
1

N+2 [(4N− 4l+ 2)rN,l + (4l− 2)rN,l−1] 1 ⩽ l ⩽ N− 1

CN l = N

. (4.33)

In turns, this implies

(4N+ 2)EN+1[ϕ] = (4N+ 4)EN[ϕ] + 4EN[ϕ̃] + (2N+ 1)ϕ(0) +ϕ(N) (4.34)

where
ϕ̃(l) =

(
l+

1

2

)
[ϕ(l+ 1) −ϕ(l)]. (4.35)

The family of functions ϕ0(p, l,N) is such that ϕ̃0(p, l) = pϕ0(p, l). This allows
to iterate the recursion to the initial condition E0[ϕ] = 0, explaining our interest; the
actual computation is performed in Section 4.6.6.

4.6.2 Generating functions for the average cost

The first method to compute Equation 4.24 uses generating functions techniques, al-
lowing the summation for both paths and bridges with ϕ0 cost function. The same
technique allows for the computation of the leading behaviour in the case of ϕrnd av-
erage cost function, and for the equidistant case in the p > 1

2 regime. At the cost
of tedious computations, this method allows also for the computation of subleading
corrections.

The idea of the generating functions method is to introduce a generating function
E(z;p,ϕ) =

∑∞
N=0

[
Np+1PNϵ(p,N)

]
zN; then, using the definition of ϵ and the factori-

azion of LN(l) = Cl

PN
DN−l−1:

E(z;p,ϕ) =
∞∑

N=0

N−1∑
l=0

DN−l−1Clϕ(l,p)zN

= z

∞∑
l=0

Clϕ(l,p)zl
∞∑

N=l+1

DN−l−1z
N−l−1

= zD(z)

∞∑
l=0

Clϕ(l,p)zl

= zD(z)Φ(z;p)

(4.36)

where Φ(z;p) generates the sequence Clϕ(l,p). Computation of Φ(z;p) allows to com-
pute the coefficients of the expansion of E(z;p,ϕ).
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Random positions at fixed color ordering

For ϕ(p, l) = ϕrnd(l,p), one has

Φrnd(z;p) =
∞∑

k=0

zkCk
Γ(2k+ 1+ p)

Γ(2k+ 1)2p

= 2−p
∞∑

k=0

zk
(2k)!

(k+ 1)!k!
Γ(2k+ 1+ p)

(2k)!

= 2−pΓ(p+ 1)

∞∑
k=0

(4z)k

k!
1

(k+ 1)!
4−k Γ(2k+ 1+ p)

Γ(1+ p)

= 2−pΓ(p+ 1)

∞∑
k=0

(4z)k

k!

(
1+p
2

)k (
2+p
2

)k
2k

= 2−ppΓ(p) F

(
1+p
2 , 2+p

2

2

⏐⏐⏐⏐ 4z
)

,

(4.37)

where the hypergeometric function F was introduced (the notation follows [GKPL89]).
The hypergeometric function is defined precisely by its series expansion, and it

can be shown that it converges absolutely for |4z| < 1, diverges for |4z| > 1 and, on the
circle |4z| = 1 converges absolutely if the sum of its lower parameters its greater than
the sum of its higher parameters. In this case

2−
p+ 1

2
−
p+ 2

2
> 0 =⇒ p <

1

2
(4.38)

is the condition for convergence on the circle.
Expanding around the possible pole 4z = 1, one finds (Mathematica):

Φrnd(z;p) =
pΓ(p)

√
π sec(pπ)
2p

[
−

2p

Γ(32 − p)Γ(p+ 1)
(1− 4z)

1
2−p

+
21−p

Γ(2− p)Γ(p+ 1
2)

] (4.39)

for p ̸= 1
2 , and

Φrnd(z;p =
1

2
) = −

Γ
(
1
2

)
π

log(1− 4z) = −
1√
π

log(1− 4z). (4.40)
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Custom cost function

For ϕ(p, l) = ϕ0(l,p), one has

Φ0(z;p) =
∞∑
l=0

Cl

Γ(l+ p+ 1
2)

Γ(l+ 1
2)

zl =

∞∑
l=0

4lΓ(l+ 1
2)√

π Γ(l+ 2)

Γ(l+ p+ 1
2)

Γ(l+ 1
2)

zl

=
1√
π

∞∑
l=0

(4z)l
Γ(l+ p+ 1

2)

Γ(l+ 2)
=

1

4z
√
π

∞∑
l=1

(4z)l
Γ(l+ p− 1

2)

l!

p̸= 1
2=

1

4z
√
π

[ ∞∑
l=0

(4z)l
Γ(l+ p− 1

2)

l!
− Γ(p−

1

2
)

]

=
Γ(p+ 1

2)

2z(1− 2p)
√
π

[
1−

∞∑
l=0

(4z)l
Γ(l+ p− 1

2)

l! Γ(p− 1
2)

]

=
Γ(p+ 1

2)

2z(1− 2p)
√
π

[
1− (1− 4z)

1
2−p

]
,

(4.41)

where in the second step the analytic continuation of Catalan numbers was used, and
in the last step Lemma 4.4 was used.

For p = 1
2 , using standard MacLaurin expansions one finds

Φ0(z,p =
1

2
) = −

log(1− 4z)
4z
√
π

=
1

4z
√
π

∞∑
l=1

(4z)l

l
, (4.42)

whose expansion matches the fifth passage of Equation 4.41.

4.6.3 Explicit summation with generating functions: paths

For paths, D(z) = 1
2z

(
(1− 4z)−

1
2 − 1)

)
.

Random positions at fixed color ordering

In this case

E(z;p,ϕrnd) =
1

2

(
(1− 4z)−

1
2 − 1

) pΓ(p)
2p

F

(
1+p
2 , 2+p

2

2

⏐⏐⏐⏐ 4z
)

(4.43)

and no exact expansion could be found. This is not a problem for the asymptotic anal-
ysis of expansion coefficients. In fact, a number of asymptotic properties are related to
analytical properties of the generating function. In particular, to compute the leading
order behaviour of the coefficients of a generating function, only its expansion at the
pole is needed (see Theorem 5.11 of [Wil05]).
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For 0 < p < 1
2 one has:

E(z;p,ϕrnd) =
pΓ(p)

√
π sec(pπ)

4pΓ(2− p)Γ
(
p+ 1

2

) ((1− 4z)− 1
2 − 1

)
=
pΓ(p)Γ

(
1
2 − p

)
Γ
(
1
2 + p

)
4p

√
π Γ(2− p)Γ

(
p+ 1

2

) ((1− 4z)− 1
2 − 1

)
=
pΓ(p)Γ

(
1
2 − p

)
4p

√
π Γ(2− p)

∞∑
N=1

Γ
(
N+ 1

2

)
√
π

4NzN

N!
.

(4.44)

This implies that

ϵ(p,N) ∼
N−1−p

CN

pΓ(p)Γ
(
1
2 − p

)
4p π Γ(2− p)

4N
Γ
(
N+ 1

2

)
N!

∼
N−1−p

√
πN

3
2

4N
pΓ(p)Γ

(
1
2 − p

)
4p π Γ(2− p)

4N
1√
N

∼ N−ppΓ(p)Γ
(
1
2 − p

)
4p

√
π Γ(2− p)

(4.45)

where ∼ is inteded as equality for the leading term in the large N expansion. In the
above the following fact was used:

Γ(N+ a)

Γ(N+ b)
∼ Na−b for N→ ∞. (4.46)

For p = 1
2 one has, using Lemma 4.5, and considering only the dominant singular

part of D(z):

E(z;p =
1

2
,ϕrnd) = −

1

2
(1− 4z)−

1
2
1√
π

log(1− 4z)

=
1

2
√
π

∞∑
N=0

Γ
(
N+ 1

2

)
Γ
(
1
2

) [
ψ0

(
N+

1

2

)
−ψ0

(
1

2

)]
4NzN

N!
.

(4.47)

This implies:

ϵ(p =
1

2
,N) ∼

N− 3
2
√
πN

3
2

4N
1

2π

4N√
N

log(N)

∼
1

2
√
π

1√
N

log(N).
(4.48)
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For 1
2 < p < 1 one has, considering only the dominant singular part of D(z):

E(z;p,ϕrnd) = −
pΓ(p)

√
π sec(pπ)

2Γ(p+ 1)Γ
(
3
2 − p

)(1− 4z)−p

= −

√
π sec(pπ)
2Γ
(
3
2 − p

) ∞∑
N=0

Γ(N+ p)

Γ(p)

4NzN

N!

= −
Γ
(
1
2 − p

)
Γ
(
1
2 + p

)
2
√
π
(
1
2 − p

)
Γ
(
1
2 − p

) ∞∑
N=0

Γ(N+ p)

Γ(p)

4NzN

N!

=
Γ
(
p− 1

2

)
2
√
π

∞∑
N=0

Γ(N+ p)

Γ(p)

4NzN

N!

(4.49)

This implies that

ϵ(p,N) ∼
N−1−p

√
πN

3
2

4N
Γ
(
p− 1

2

)
2Γ(p)

√
π
4N
Γ(N+ p)

N!

∼
N

1
2−pΓ

(
p− 1

2

)
2Γ(p)

Np−1

∼
Γ
(
p− 1

2

)
2Γ(p)

1√
N

.

(4.50)

To sum it up:

ϵ(p,N) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pΓ(p)Γ( 1
2−p)

4p
√
πΓ(2−p)

1
Np 0 < p < 1

2

1
2
√
π

log(N)√
N

p = 1
2

Γ(p− 1
2)

2Γ(p)
1√
N

1
2 < p < 1

(4.51)

Custom cost function

In this case:

E(z;p,ϕ0) =
1

2

(
(1− 4z)−

1
2 − 1

) Γ(p+ 1
2)

2z(1− 2p)
√
π

[
1− (1− 4z)

1
2−p

]
(4.52)

which can be exactly expanded, allowing for an exact expression at finite N for the
average cost.
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For p ̸= 1
2 :

E(z;p,ϕ0) = zD(z)Φ0(z;p)

=
1

2

(
(1− 4z)−

1
2 − 1

) −Γ(p− 1
2)

4z
√
π

(
1− (1− 4z)

1
2−p

)
=
Γ(p− 1

2)

8z
√
π

[
1+ (1− 4z)−p − (1− 4z)−

1
2 − (1− 4z)

1
2−p

]
=
Γ(p− 1

2)

2
√
π

∞∑
N=0

(4z)N
1

(N+ 1)!

[
Γ(N+ 1+ p)

Γ(p)
−
Γ(N+ 3

2)

Γ(12)

−
Γ(N+ p+ 1

2)

Γ(p− 1
2)

]
.

(4.53)

This implies:

ϵ(N,p) =
1

Np+1CN

Γ(p− 1
2)

2
√
π

4N

(N+ 1)!

[
Γ(N+ p+ 1)

Γ(p)
−
Γ(N+ 3

2)√
π

−
Γ(N+ p+ 1

2)

Γ(p− 1
2)

]

=
1

Np+1

[
−
(2N+ 1)Γ(p− 1

2)

4
√
π

+
Γ(p− 1

2)Γ(N+ p+ 1) − Γ(p)Γ(N+ p+ 1
2)

2Γ(p)Γ(N+ 1
2)

] (4.54)

and at leading order

ϵ(N,p) ∼ −
N−pΓ(p− 1

2)

2
√
π

+
Γ(p− 1

2)N
− 1

2 − Γ(p)N−1

2Γ(p)

∼
Γ(p− 1

2)

2

[
1

Γ(p)
√
N

−
1√
πNp

]
.

(4.55)

For p = 1
2 one has, using Lemma 4.5:

E(z;p =
1

2
,ϕ0) = −

1

2

[
(1− 4z)−

1
2 − 1

] 1

4z
√
π

log(1− 4z)

=
1

2
√
π

∞∑
N=0

(4z)N

[
Γ(N+ 3

2)√
π (N+ 1)!

(
ψ0(N+

3

2
) −ψ0(

1

2
)

)
−
1

N

] (4.56)

This implies:

ϵ(p =
1

2
,N) = N− 3

2
(N+ 1)!
2Γ(N+ 1

2)

[
(2N+ 1)Γ(N+ 1

2)

2
√
π (N+ 1)!

(
ψ0(N+

3

2
) −ψ0(

1

2
)

)
−
1

N

]
(4.57)

and at leading order

ϵ(p =
1

2
,N) ∼ N− 3

2

[
N

2
√
π

log(N) −

√
N

2

]
=

1

2
√
π

log(N)√
N

. (4.58)
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To sum it up:

ϵ(p,N) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Γ(p− 1
2)

2
√
π

1
Np 0 < p < 1

2

1
2
√
π

log(N)√
N

p = 1
2

Γ(p− 1
2)

2Γ(p)
1√
N

1
2 < p < 1

(4.59)

Comparison

The behaviour of the average cost per link with the two cost functions considered is
similar: both predict the same exponent in the whole range of values of p.

The coefficient of the leading order is the same for 1
2 ⩽ p < 1. This is expected:

in this regime of values of p, a finite initial portion of the sum defining the average
cost can be summed separately, giving a subleading contribution of order N−p. Then,
only the large l behaviour of the average cost functions ϕ(p, l) matters, and since the
ϕ’s considered agree in this limit, the same leading coefficient is found. For 0 <
p < 1

2 the opposite is true: finite initial portion of the sum contribute exactly to the
leading behaviour, and in fact different coefficients are found for different average cost
functions ϕ.

4.6.4 Explicit summation with generating functions: bridges

For bridges, D(z) = (1− 4z)−
3
2 + (1− 4z)−1.

Random positions at fixed color ordering

In this case

E(z;p,ϕrnd) = z
[
(1− 4z)−

3
2 + (1− 4z)−1

] pΓ(p)
2p

F

(
1+p
2 , 2+p

2

2

⏐⏐⏐⏐ 4z
)

(4.60)

whose explicit expansion is not known. In the vicinity of the pole 4z = 1, the asymp-
totic behaviour of the coefficients of this generating function are dominated by the
term (1− 4z)−

3
2 and by the leading term of the hypergeometric function expansion in

Equation 4.39; the z term equals 1
4 to this order.

Thus, for 0 < p < 1
2

E(z;p,ϕrnd) =
2pΓ(p)

√
π sec(pπ)

4pΓ(2− p)Γ
(
p+ 1

2

) 1
4
(1− 4z)−

3
2

=
2pΓ(p)Γ

(
1
2 − p

)
4p+1

√
π Γ(2− p)

∞∑
N=1

2Γ
(
N+ 3

2

)
√
π

4NzN

N!
.

(4.61)
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This implies that

ϵ(p,N) ∼
N−1−p

BN

pΓ(p)Γ
(
1
2 − p

)
4p π Γ(2− p)

4N
Γ
(
N+ 1

2

)
N!

∼
N−1−p

√
π
√
N

4N
pΓ(p)Γ

(
1
2 − p

)
4p π Γ(2− p)

4N
√
N

∼ N−ppΓ(p)Γ
(
1
2 − p

)
4p

√
π Γ(2− p)

.

(4.62)

For p = 1
2 one has, using Lemma 4.5, and considering only the dominant singular

part of D(z):

E(z;p =
1

2
,ϕrnd) = −

1

4
(1− 4z)−

3
2
1√
π

log(1− 4z)

=
1

4
√
π

∞∑
N=0

Γ
(
N+ 3

2

)
Γ
(
3
2

) [
ψ0

(
N+

3

2

)
−ψ0

(
3

2

)]
4NzN

N!
.

(4.63)

This implies:

ϵ(p =
1

2
,N) ∼

N− 3
2
√
π
√
N

4N
2

4π
4N

√
N log(N)

∼
1

2
√
π

1√
N

log(N).
(4.64)

For 1
2 < p < 1 one has, considering only the dominant singular part of D(z):

E(z;p,ϕrnd) = −
1

4

pΓ(p)
√
π sec(pπ)

Γ(p+ 1)Γ
(
3
2 − p

) (1− 4z)−1−p

= −
1

4

√
π sec(pπ)
Γ
(
3
2 − p

) ∞∑
N=0

Γ(N+ p+ 1)

Γ(p+ 1)

4NzN

N!

= −
1

4

Γ
(
1
2 − p

)
Γ
(
1
2 + p

)
√
π
(
1
2 − p

)
Γ
(
1
2 − p

) ∞∑
N=0

Γ(N+ p+ 1)

Γ(p+ 1)

4NzN

N!

=
1

4

Γ
(
p− 1

2

)
√
π

∞∑
N=0

Γ(N+ p+ 1)

Γ(p+ 1)

4NzN

N!

(4.65)

This implies that

ϵ(p,N) ∼
N−1−p

√
π
√
N

4N
Γ
(
p− 1

2

)
4pΓ(p)

√
π
4N
Γ(N+ p+ 1)

N!

∼
N− 1

2−pΓ
(
p− 1

2

)
4pΓ(p)

Np

∼
Γ
(
p− 1

2

)
4pΓ(p)

1√
N

.

(4.66)
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To sum it up:

ϵ(p,N) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pΓ(p)Γ( 1
2−p)

4p
√
πΓ(2−p)

1
Np 0 < p < 1

2

1
2
√
π

log(N)√
N

p = 1
2

Γ(p− 1
2)

4pΓ(p)
1√
N

1
2 < p < 1

(4.67)

Notice that the first order corrections at 0 < p < 1
2 are given by the leading be-

haviour at 1
2 < p < 1 and viceversa. Thus the computation is valid at the second order

in the asymptotic expansion for N→ ∞.

Custom cost function

In this case:

E(z;p,ϕ0) = z
[
(1− 4z)−

3
2 + (1− 4z)−1

] Γ(p+ 1
2)

2z(1− 2p)
√
π

[
1− (1− 4z)

1
2−p

]
(4.68)

which can be exactly expanded, allowing for an exact expression at finite N for tha
average cost.

For p ̸= 1
2 :

E(z;p,ϕ0) = zD(z)Φ0(z;p)

= z
[
(1− 4z)−

3
2 + (1− 4z)−1

] −Γ(p− 1
2)

4
√
π

(
1− (1− 4z)

1
2−p

)
= −

Γ(p− 1
2)

4
√
π

[
(1− 4z)−

3
2 + (1− 4z)−1 − (1− 4z)−1−p − (1− 4z)−

1
2−p

]
= −

Γ(p− 1
2)

4
√
π

∞∑
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(4z)N

N!

[
2Γ
(
N+ 3

2

)
√
π

+N! −
Γ(N+ p+ 1)

Γ(p+ 1)

−
Γ(N+ p+ 1

2)

Γ(p+ 1
2)

]
.

(4.69)

This implies:

ϵ(N,p) =
√
π Γ(N+ 1)

N1+p4NΓ(N+ 1
2)

4NΓ(p− 1
2)

4
√
πN!

[
Γ(N+ p+ 1)

Γ(p+ 1)
+
Γ(N+ p+ 1

2)

Γ(p+ 1
2)

−N! −
2Γ(N+ 3

2)√
π

]

=
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4N1+pΓ(N+ 1
2)

[
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Γ(p+ 1)
+
Γ(N+ p+ 1

2)

Γ(p+ 1
2)

−N! −
2Γ(N+ 3

2)√
π

]
(4.70)
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and at leading order

ϵ(N,p) ∼
Γ(p− 1

2)

4

[
1

Γ(p+ 1)
√
N

+
1

N Γ(p+ 1
2)

−
1

Np+ 1
2

−
2√
πNp

]

∼
Γ(p− 1

2)

4

[
1

pΓ(p)
√
N

−
2√
πNp

]
.

(4.71)

For p = 1
2 one has, using Lemma 4.5:

E(z;p =
1

2
,ϕ0) = −z

[
(1− 4z)−

3
2 + (1− 4z)−1

] 1

4z
√
π

log(1− 4z)

=
1

4
√
π

∞∑
N=0

(4z)N

N!

[
Γ
(
N+ 3

2

)
Γ
(
3
2

) (
ψ0

(
N+

5

2

)
−ψ0

(
3
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+N!

(
ψ0(N+ 1) − γE

)] (4.72)

This implies:

ϵ(p =
1

2
,N) =

√
πN!

4NN
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√
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(
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(
N+
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(
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(
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)
Γ
(
3
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) (
ψ0

(
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)
−ψ0

(
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+N!

(
ψ0(N+ 1) − γE

)]
(4.73)

and at leading order

ϵ(p =
1

2
,N) ∼

1

2
√
π

log(N)√
N

. (4.74)

To sum it up:

ϵ(p,N) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Γ(p− 1
2)

2
√
π

1
Np 0 < p < 1

2

1
2
√
π

log(N)√
N

p = 1
2

Γ(p− 1
2)

4pΓ(p)
1√
N

1
2 < p < 1

(4.75)
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Comparison

Again, as in the paths case, the large l behaviour determines the leading coefficient in
the 1

2 < p < 1 regime.
Moreover, the comparison between paths and bridges at fixed average cost function

shows that the leading coefficient is simply related: its the same for 0 < p < 1
2 , and its

different for a factor 2p in the 1
2 < p < 1 regime. The reason for this is explained in

Section 4.6.5.

4.6.5 Universal relation between paths and bridges asymptotic coefficents

The reason for the relation between leading coefficients in the expansion of the average
cost in the paths and bridges case is justified here. For later convenience, define the
reduced quantities

cN := 2−2N−1CN ∼ κN− 3
2 κ =

1

2
√
π

bN := 2−2N−1BN ∼ κN− 1
2 .

(4.76)

Every bridge is either a path, or the concatenation of a non-empty path and a non-
empty bridge. This implies the formula

bN = 2cN + 2

N−1∑
k=1

ckbN−k. (4.77)

Suppose that we know the normalized total cost scaling

E
(paths)
N = N1+pϵ(paths)(p,N) =

Np

CN

∑
T∈CN

∑
e∈T

ϕ(ℓ(e)) ∼ αNγ(1+O(N−δ)) (4.78)

where both α and γ are known, and γ ⩾ 1. The normalization is precisely chosen such
that γ ⩾ 1 considering the behaviours found in the previous sections. Suppose (and
indeed that is verified in the previous sections) that the bridge asymptotics has the
same exponent

E
(bridges)
N = N1+pϵ(bridges)(p,N) =

Np

BN

∑
T∈BN

∑
e∈T

ϕ(ℓ(e)) ∼ βNγ(1+O(N−δ)). (4.79)

We want to determine β. The recursion above can be used to rewrite the expression
for the total cost of bridges of lenght 2N as follows:

bN βN
γ(1+O(N−δ)) = 2 cN αN

γ(1+O(N−δ))+

2α

N−1∑
k=1

ckbN−kk
γ(1+O(k−δ))+

2β

N−1∑
k=1

ckbN−k(N− k)γ(1+O((N− k)−δ)).

(4.80)
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The first sum can be approximated by an integral:

2α

N−1∑
k=1

ckbN−kk
γ(1+O(k−δ)) =

= 2ακ2Nγ−1

∫1
0

dx x−3/2+γ(1− x)−1/2 (1+O(N−1,N−δ))

= 2ακ2Nγ−1

√
π Γ
(
γ− 1

2

)
Γ(γ)

(1+O(N−1,N−δ))

= αbN
Γ
(
γ− 1

2

)
Γ(γ)

Nγ− 1
2 (1+O(N−1,N−δ))

(4.81)

where the fact that γ > 1
2 is fundamental to the convergence of the integral.

The second sum can be approximated by an integral only by removing and treating
separately a singularity:

N−1∑
k=1

ckbN−k(N− k)γ(1+O((N− k)−δ))

=

N−1∑
k=1

ckbNN
γ

⎡⎣∑
s⩾0

(−1)s
(
k

N

)s(
γ− 1/2

s

)⎤⎦ (1+O(N−δ))

(4.82)

where the s = 0 term is singular due to the k−
3
2 behaviour. For s = 0 the k sum gives

N−1∑
k=1

ckbNN
γ = bNN

γ

(
1+

1√
πN

+O(N− 3
2 )

)
(4.83)

where the sum of reduced Catalans was computed by explicitly finding and reexpand-
ing their generating function. For s ⩾ 1 the integral approximation is valid, giving:

N−1∑
k=1

ck

⎡⎣∑
s⩾1

(−1)s
(
k

N

)s(
γ− 1/2

s

)⎤⎦ ≃ κN− 1
2

∫1
0

dx

⎡⎣∑
s⩾1

(−1)sx−
3
2+s

(
γ− 1/2

s

)⎤⎦
= N− 1

2

(
1√
π
−
Γ
(
γ+ 1

2

)
Γ(γ)

) (4.84)

for a combined value for the whole sum

2β

N−1∑
k=1

ckbN−k(N− k)γ ≃ βbNN
γ

(
1−N− 1

2
2 Γ
(
γ+ 1

2

)
Γ(γ)

)
. (4.85)

Plugging the sums in Equation 4.80 leads to cancellations of the leading order, and
at subleading order to the condition

β

α
=

1

2γ− 1
. (4.86)
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Now, from the explicit computation in the paths case, taking into account the different
normalization (a factor N1+p):

γ =

{
−p+ 1+ p = 1 0 < p ⩽ 1

2

−1
2 + 1+ p = p+ 1

2
1
2 < p < 1

, (4.87)

giving
β

α
=

{
1 0 < p ⩽ 1

2

1/2p 1
2 < p < 1

, (4.88)

4.6.6 Explicit summation: exact recursion solution method

The second method revolves on exact solution of Equation 4.89, that allows to compute
both in the path and bridge case the value of Equation 4.24 for average cost function
ϕ0.

Paths

It was already shown that the following recursion holds in the ϕ0 case, using the
omogeneity of E[ϕ] and reorganizing the terms:

EN+1[ϕp] =

(
1+

p+ 1
2

N+ 1
2

)
EN[ϕp] +

1

2
ϕp(0) +

1

4N+ 2
ϕp(N) (4.89)

Iterating the recursion up to E0[ϕp] = 0 gives

EN[ϕ0] =

N−1∑
k=0

Γ(N+ p+ 1)

Γ(n+ 1
2)

Γ(k+ 3
2)

Γ(k+ p+ 2)

(
1

2
ϕ0(0) +

1

4k+ 2
ϕ0(k)

)

=
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Γ(N+ 1
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[
Γ(p+ 1

2)

2Γ(12)

N−1∑
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Γ(k+ 3
2)

Γ(k+ p+ 2)
+
1

4

N−1∑
k=0

Γ(k+ p+ 1
2)

Γ(k+ p+ 2)

] (4.90)

The sums can be performed exactly, giving:

EN[ϕ0] = −(2N+ 1)
Γ(p− 1

2)

4
√
π

+
Γ
(
p− 1

2

)
Γ(N+ p+ 1) − Γ(p)Γ

(
N+ p+ 1

2

)
2Γ
(
N+ 1

2

)
Γ(p)

(4.91)

that reproduces the result obtained with the other method.

Bridges

The sum can be performed exactly for bridges as well, using the result for paths and
computing some of the sums exactly. This gives again the already obtained result.
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4.6.7 Limiting cases: p = 0, 1

Two limiting cases are interesting. At p = 0, the problem is trivial due to the fact that
every link has weight 1, giving ϵ(p,N) = 1. At p = 1, the problem has known scaling
behaviour thanks to the results in the p > 1 regime (Equation 2.15):

ϵ(p = 1,N) =

√
π

4

1√
N

. (4.92)

The bridges results agree with both behaviours at p = 0, 1.

4.7 Comparision with simulations

4.7.1 Average cost

The theorical prediction for the leading behaviour of average cost is given in Equa-
tion 4.67 and recalled here:

ϵ(p,N) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pΓ(p)Γ( 1
2−p)

4p
√
πΓ(2−p)

1
Np 0 < p < 1

2

1
2
√
π

log(N)√
N

p = 1
2

Γ(p− 1
2)

4pΓ(p)
1√
N

1
2 < p < 1

(4.93)

Recall that the first correction to the leading order in the case 0 < p < 1
2 is the leading

behaviour for 1
2 < p < 1 and vice versa; in the following comparisons, the average cost

was theoretically predicted using also the first correction.
Direct comparison with data must be performed with carefulness: Equation 4.93 is

an asymptotic estimate for the average cost that is expected to be valid only for largeN.
It was already argued in Chapter 3 that simulated data seems to have a too low value
of N to be confronted with asymptotic estimates. Nevertheless is important to at least
confirm that simulated data for natural matchings agrees qualitatively with theorical
computations; comparison with optimal matching data is needed too to understand if
the natural matching approximation is a solid techinque to approach the problem.

A first comparison can be performed by simulating through Equation 4.93 the
average cost at the simulated values of p and N for a graphical comparison: results are
shown in Figure 4.2. It seems that natural matchings are always described properly by
the theorical prediciton as N grows. Optimal matchings seems well described only for
high values of p.

With these computed data, a fitting procedure can be performed on the same line
as described in Chapter 3. Fitting results are shown alongside to the simulated data in
Figure 4.3; notice that fitting for theorical prediction was performed only for N ⩾ 1000,
as for low N the asymptotic approximation gets worse and worse. Simulated data
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Figure 4.2: Average cost per link comparison at p = [0.1, 0.3, 0.5, 0.7, 0.9]

For each value of p, the blue plot is the theorical average cost, the green plot is the simulated average
cost for natural matchings and the orange plot is the simulated average cost for optimal matchings. For
all values of p, as N grows the theorical prediction and the natural matching simulated data coincide
more and more. As p grows, optimal matching gets more and more well described by the theorical
prediction.
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is not perfectly reproduced by the theorical prediction, probably due to higher order
corrections to the leading behaviour that were discarded in this analysis. Future work
focused on higher order correction will be needed to confirm the goodness of this
theorical computation.
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Figure 4.3: Fit results compared with theorical prediction

Theorical predictions are added to Figure 3.2. Qualitatively the predictions reproduce the behaviour of
the simulated data.
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4.7.2 Links’ lenghts distribution

The theorical prediction for the links’ lenghts distribution is given in Equation 4.22
and recalled here

LBN(l) =
Cl

BN

[
4N−l−1 +

N− l

2
BN−l

]
. (4.94)

Comparison between theorical predictions and simulated data can be found in Fig-
ure 4.4. Theorical predictions seem to well reproduce the natural matching simulated
data as expected. Optimal matchings are well reproduced in the range of shorter
links, but have a significant discrepancy in the longer link range. No particular p
dependence is observed.
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Figure 4.4: Links’ lenghts distribution compared with theorical computations at p =

[0.1, 0.3, 0.5, 0.7, 0.9]

Links’ lenghts distributions: in blue data from optimal matchings, in orange data from natural
matchings and in green theorical predictions from Equation 4.94 To be able to plot the distributions at
N = 4000, a filtering process was performed, discarding all datapoints but 200 equispaced ones.
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CHAPTER 5
Conclusions and outlook

In this Thesis the one dimensional random Euclidean matching problem with concave
cost function was addressed. A new concept of approximate matching was intro-
duced, namely the natural matching, and some of its average properties were exactly
computed. Moreover, the same average properties were computed for formally similar
combinatorial objects, Dyck paths.

The principal open question still to be completely answered is whether natural
matchings share the same average properties of optimal matchings in the large N limit.
Data acquired during this work of Thesis show that natural matchings qualitatively
behave as optimal matchings; still, it seems that N = 6000 is not a large enough N to
consider our data as depicting large N limit properties. New data should be simulated
to better compare the two kind of matchings, and to understand if natural matchings
can be really used as a proper approximation. Moreover, simulated data was not used
in its fullness in this work of Thesis; the distribution of average costs could be studied,
along with links’ properties distributions.

Future work will focus on two main points:

• taken for granted that natural matching can be an effecive way to compute av-
erage properties of optimal matchings, we are interested in understanding how
wide their application in the study of matching problems can be. Is it possible to
compute properties in the monopartite problem? Is it possible to compute prop-
erties for more general concave cost functions, other than power laws? Moreover,
for what model natural matchings are the real optimal solutions? Addressing
these questions could improve the toolbox of techniques and results that are
used in the study of matching problems, possibly allowing for new exact results;

• as mentioned in Subsection 2.1.1, non crossing matchings are closely related to
favored configurations for the folding of polymeric chains, as RNA molecules.
First, a thorough review of existent literature will be needed to understand
known results in the light of natural matchings techniques. Then toy models
for RNA folding could be formulated with the aim of reproducing experimental
observations about phase transitions in the folding structure of these molecules.
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