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Introduction

The story of the quantum Hall effect

In 1980 Von Klitzing and his team were studying the Hall effect at low tempera-
tures (around 1 K) and high magnetic fields (around 10 T), when they observed
an unexpected phenomenon: the quantization of the Hall resistance (i.e. the
resistance measured along the direction perpendicular to the current flow), con-
current with a “superflow”, i.e. a dissipationless current flow [1]. They coined
the name quantum Hall effect (QHE) in order to describe this new intriguing
phenomenology, which turned out to be independent of the microscopic details
of the material, or of the sample type or geometry, provided that the conductor
samples were almost two-dimensional.

B

RH

Figure 1: The blue line represents the classical expected Hall resistance RH

as function of the magnetic field B. In red there is a schematic picture of the
plateaux (regions in which the Hall resistance is constant) observed at high
magnetic fields (larger than 10 T) and low temperatures (∼ 1 K or less). We
remark that the effectively observed plateaux are neither vertically spaced by a
constant value, nor all of the same width.
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In particular (as shown schematically in figure 1 and with an experimental
plot in figure 2) the Hall resistance was observed to be quantized at

RH =
h

ne2
, (1)

where h is the Planck constant, e is the electron charge and n is an integer
number. The quantity h/e2 = 25813.807 Ω is called Von Klitzing constant.
This effect is today called integer quantum Hall effect (IQHE), in order to
differentiate it from the fractional quantum Hall effect, described below. This
quantization is quite surprising, because it does not refer to a microscopic system
as many other known quantizations, but to a macroscopic sample.

Two years later, in 1982, Tsui, Stormer and Gossard [2] discovered the so
called fractional quantum Hall effect (FQHE), i.e. the quantization of the Hall
resistance at

RH =
h

fe2
, (2)

where f is a fraction, also called filling factor. They have been able to obtain
this result thanks to the use of higher magnetic fields and lower temperatures
than those of Von Klitzing’s experiment.

While the integer QHE was explained in terms of non-interacting electrons
only, the FQHE was recognized to take place because of the intrinsic interacting
nature of the electrons. Despite the tremendous effort done in the last 30 years
in order to understand it, a systematic microscopic theory of this fascinating
macroscopic quantization due to collective phenomena is yet to come.

At the very beginning, only the filling factor 1/3 was observed, but today
more and more fractions have been discovered thanks to technological advance
in preparing semiconductor samples. For instance, more than 30 different filling
factors in the interval between 0 and 1 have been observed [3]. In figure 2 we
show a measurement of the Hall and the diagonal resistance in a QHE exper-
iment. In this figure we can easily recognize several plateaux, i.e. regions in
which the Hall resistance is constant. In correspondence of these regions the
longitudinal resistance suddenly drops down. In figure 3 we show an example of
a recent quantum Hall effect measurement in which the diagonal resistance (i.e.
the resistance measured along the direction of the current flow) is measured as a
function of the magnetic field. We notice that the number of observed resistance
drops is considerably greater than those observed in figure 2, as a consequence
of the experimental techniques improvement.

Experimental techniques

The QHE is characteristic of two-dimensional electron systems in a transverse
magnetic field. So the experimental setup used has the property of trapping
electrons in two dimensions. Such systems are achieved using artificial struc-
tures, created by a process called molecular beam epitaxy (MBE), which allows
a controllable, layer-by-layer growth, in which one type of semiconductor can
be grown on top of another, approximately lattice-matched semiconductor to
produce an atomically sharp interface.
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Figure 2: Overview of Hall and longitudinal resistances, RH and R, respec-
tively. We can clearly see the plateaux (regions in which the Hall resistance is
constant) in the RH plot, which correspond to dips in the R plot (no plateau
and dip are associated with f = 1/2). Source: H. L. Stormer, Rev.Mod.Phys.
71, 875889 (1999).
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Figure 3: Longitudinal resistance as a function of the magnetic field measured
in a recent quantum Hall effect experiment. A FQHE or an IQHE state is
associated with each minimum. Many arrows only indicate the positions of
filling factors and have no FQHE associated with them. Source: Pan, Stormer,
Tsui, Pfeiffer, Baldwin and West , Phys.Rev.Lett. 88, 176802 (2002).
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In this way the electron mobility1 of the resulting structure is particularly high
(up to 10 millions cm2/(V·s)). An important request is that the two semicon-
ductors must have a different energy gap. For example, two semiconductors
used are AlGaAs, which has a gap of 2.2 eV and GaAs, whose gap is of 1.5 eV.
An example of structure used is the “quantum well” AlGaAs–GaAs–AlGaAs:
in this case the smaller gap of the central semiconductor (which typically has
a width of 20 − 50 nm) makes the realization of the quantum well possible, as
shown in figure 4.

AlGaAs

GaAs

AlGaAs

0.35 eV0.35 eV

2.2 eV

Figure 4: This is a schematic picture of the energy band diagrams of the
AlGaAs–GaAs–AlGaAs (undoped) quantum well. This semiconductors struc-
ture is created growing a semiconductor on top of another. The lower and upper
lines are the energy profiles of the valence and conduction bands respectively,
and the square well is due to the different gap of the semiconductors: AlGaAs
has a 2.2 eV gap, while GaAs gap is of 1.5 eV. Upon doping the AlGaAs regions
with donors, electrons fall into the GaAs region, which width is of 20− 50 nm,
and form a two-dimensional electron system.

If the AlGaAs semiconductors are doped, the free electrons (or holes) are
trapped in the GaAs region and if the trapping energy is kept very large with
respect to all the other energies, a two dimensional electron system is realized.

A good quality sample is characterized by high electron mobility. Such
a sample allows the observation of more plateaux. If the electron mobility
is decreased or if the temperature is increased, the QHE plateaux landscape
gradually fades into the straight line typical of the classic Hall effect: in the
first case the plateaux are broken because of the interaction between electrons

1the electron mobility is a parameter of a metal or a semiconductor that represents the
resistance to the electron passage if an electric field is applied. It is defined as vd/E, where
vd is the electron drift velocity when an electric field E is applied.
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and impurities, in the second case it is the thermal energy that destructs them.

Why is the QHE so intriguing?

Since its discovery, studies about the QHE have made several physicists worthy
of the Nobel prize, in 1995 and in 1998. Moreover, a very wide literature exists
about the QHE in its integer or fractional form, considering books and papers
(two excellent and rather recent reviews can be found in [4] and [5]). Neverthe-
less today, after more than 30 years from its discovery, there are still many open
questions regarding the microscopic origin of the quantum Hall effect. Indeed a
theory which explains all the results obtained in the years regarding this effect
is lacking to date.

For the simplest series of filling factors f (referring to equation (2)), namely
those of the form 1/m with m an odd integer, the physics of the FQHE is
indeed well-understood phenomenologically thanks to the pioneering work by
Laughlin and his celebrated ansatz [6], which will be considered in section 1.3.3.
His approach was generalized to more complicated fractions [4,7–9] and a huge
amount of results were obtained in the years, confirming the validity of this
approach based on model wave functions, which are wave functions specifically
constructed in order to describe the ground state of the system for a particular
series of filling factors.

The most valuable generalization of Laughlin’s work is the composite fermion
theory introduced by Jain in 1989 [4]. Furthermore the unexpected link between
the Laughlin ansatz and the Conformal Field Theory, uncovered by Moore and
Read [8, 9], allowed to put forward a new class of model wave functions, that
for instance describe quite well the f = 1/2 state, which do not exhibits any
plateau. There are two strong points that made the model wave functions
approach prominent along the years:

• these wavefunctions (for instance the Laughlin series) have an impressive
overlap (> 0.99) with the ground state found by exact diagonalization
methods. Additionally they allow for a relatively straightforward defini-
tion of fractional quasi-particle excitations, carrying fractional charges,
which have been observed experimentally [10];

• in some cases particular two-body interactions exist (built for the first time
by Haldane [7]), for which the model wave functions, such as Laughlin’s
ones, are the exact ground state.

Nonetheless the strongly correlated nature of these wave functions does not allow
to perform calculations in the thermodynamic limit, considerably limiting our
understanding of this phenomenon from a microscopic point of view. Moreover,
a systematic theory of the fractional quantum Hall effect, which is able to explain
all the observed fractions f at once, is still missing.

On the other hand, the very fact that there are many theories used to de-
scribe this effect makes it interesting. Among them we can cite the Conformal
Field Theory, Luttinger liquid theory, Chern-Simons theory and others, which
came from other branches of Physics and can also be applied to explain some fea-
tures of the QHE. Then the quantum Hall effect is an important testing ground
for these theories, thanks to the possibility of validating the prediction of them
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in QHE experiments. Moreover, the interest in the fractional quantum Hall
effect is recently renewed, because the FQHE seems to be a promising hunting
ground for the so called topological phases of matter, which have in turn promis-
ing applications in the field of quantum computation since they could allow to
encode and manipulate quantum information in a manner that is resistant to
error [11,12].

Our aim

With the phrase “Fock-space construction” we mean the natural way in which
we write a state in a second quantization framework, that is as its expansion
over the occupation number basis, or equivalently as several creation operators
applied over a vacuum. A Fock-space construction of FQHE states could give us
many advantages: for example, it could allow us to calculate expectation values
of some important operators as the density. It could also give us fundamental
insights into the understanding of fractional excitations, since the Fock-space
formalism is ideal to investigate the spectrum of a quantum theory (two ex-
amples are the BCS theory of superconductivity and also the simple harmonic
oscillator).

In a general framework, the occupation number basis is obtained in the
following way. We consider a basis {|a⟩} of an Hilbert space and we want to
describe a system of n identical particles. Thus a basis is obtained inserting all
the possible combination of single-particle states in

S± |a1, . . . , an⟩ , (3)

where S+ is the symmetrization operator, S− the anti-symmetrization one (we
use the one or the other depending on the statistic of the particles involved).
We want to pass to the occupation number basis, which is composed of state as
|n1, n2, . . .⟩ where n1 is the number of particle in the first state of the original
single-particle basis {|a⟩}, n2 the number of particles in the second state and so
on. We are not losing information switching between these two basis because of
the action of the (anti)symmetrization operator, which make impossible for us
to say which particle is in which single-particle state. Therefore the two basis
are in a one-to-one correspondence. If we construct the wave functions basis of
the single-particle problem, i.e. (|x⟩ is the eigenstate of the position operator)

ψa(x) = ⟨x|a⟩ (4)

we can recognize in the expression S± |a1, . . . , an⟩ the Slater determinats or
permanents (for fermions and bosons respectively). In other words, it can be
proved that

⟨x1, . . . , xn|n1, n2, . . .⟩ = ⟨x1, . . . , xn| S± |a1, . . . , an⟩ = C Per
Detψa(xi), (5)

where the constant C is a normalization constant (it depends on our definition
of S±).

We want now to apply this idea to the fractional quantum Hall effect, and
we can start making an explicit example taken directly from the FQHE itself.
The Laughlin wave function which describes the ground state of the system with
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n electrons at filling factor 1/q is (it is obtained following the Laughlin’s ansatz
in section 1.3.3):

ψq(z1, . . . , zn) =
∏
i<j

(zi − zj)
q e−

1
4

∑
i |zi|2 , (6)

where zj = (xj − iyj)/ℓ is the complex coordinate which describes the j-th

electron position and ℓ =
√
~c/eB is called magnetic length. We want to

expand this wave function over the occupation number basis, i.e. over the Slater
determinants (because Laughlin’s wave functions describe electrons) basis. In
order to do it, we need to choose a suitable single-particle basis, which is the
following (un-normalized) one2

⟨z|m⟩ = zme−
1
4 |z|2 . (7)

Using this basis, the exponential part of the Laughlin’s wave function is trivial,
but the polynomial part is very difficult to expand. For example, we can write
the explicit expansion for n = 2, q = 3 (only the polynomial part is considered):

ψ3(z1, z2) = (z1 − z2)
3 =

⏐⏐⏐⏐z31 1
z32 1

⏐⏐⏐⏐− 3

⏐⏐⏐⏐z21 z1
z22 z2

⏐⏐⏐⏐ = sl(3,0) − 3sl(2,1), (8)

where sl(a,b) = ⟨z1, z2|S− |a, b⟩ and then

sl(a,b) =

⏐⏐⏐⏐za1 zb1
za2 zb2

⏐⏐⏐⏐ . (9)

So this is the Fock-space picture we are searching for, but here is the problem:
the number of different Slater determinats involved in this expansion, whose
coefficients we have to calculate, increases as an exponential of the number
of electrons. However, the coefficients of the Slater determinant expansion in
equation (8) are integers, and this property holds if we increase the number of
electrons. This suggests us that a combinatorial explanation of these coefficients
could exist. Many authors have worked on such an expansion [13, 14], trying
to understand a way to obtain the correct Slater determinants involved and
their coefficients. A breakthrough (extensively explained below) has been made
by Bernevig, Regnault, Haldane and their co-workers: they have proved that
the polynomial parts of the Laughlin’s wave functions are the anti-symmetrized
version of the so-called Jack polynomials, which have been widely studied in the
mathematics literature. This allow them to give a precise algorithm to obtain
every Slater determinant involved starting from a reference state, as well as a
recursion relation for the coefficients.

However, there are still many open questions, for example: is this algorithm
applicable to other FQHE model wave functions, different from the Laughlin’s?
If so, how can we choose the reference state from which start? And again, can
this path bring us to a microscopic and systematic theory of the FQHE?

An hint which make us thinking that this is an interesting path comes from a
recent paper [15], whose main result is the mapping between the quantum Hall
effect Hamiltonian (restricted to a particular subspace of the Hilbert space, the
lowest Landau level, which is discussed in chapter 1) and a long-range repulsive

2this choice is motivated by physical reasons, which are explained in chapter 1.
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lattice gas model in one dimension. This mapping is shown to be exact in a
particular limit, called thin-torus limit. Although this limit is non-physical3, the
predicted plot of the Hall resistivity versus the magnetic field is in qualitative
agreement with the one experimentally observed, for a remarkable number of
filling factor. Moreover, we notice that the ground state of the long-range re-
pulsive lattice gas model is a state in which each particle is at the same distance
from its neighbours, and these states are exactly the same reference states from
which Bernevig’s algorithm starts.

In order to investigate this fact, in this work we develop an operatorial form
of the Bernevig’s algorithm, that is a Fock-space operator (i.e. composed of
destruction and creation operators) that constructs Laughlin’s wave functions
if applied to the correct reference state. This operator is rather general, so
our hope is that if it is applied to other reference states (for example those
obtained in [15]), it could lead to the Fock-space construction of other model
wave functions.

3i.e. the requests upon the parameters are almost never satisfied in the experimental setups.
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Chapter 1

The quantum Hall effect

In this chapter we will review all the necessary background needed to discuss
our work on the Fock-space operator construction of the fractional quantum
Hall effect states. We will start from a short review of the classical Hall effect,
then we will explain how a single electron behaves if it is confined in a two-
dimensional plane with a transverse magnetic field. We will see that in this
case the electron energy is quantized and the energy levels formed are called
Landau levels. We will briefly see how this simple argument is able to explain
qualitatively the integer QHE, but in order to understand the fractional QHE we
need to consider the electron interactions. After a discussion on the microscopic
Hamiltonian of the QHE system, we will consider the exact diagonalization
and the variational methods used to study it, with particular emphasis on the
Laughlin’s wave functions. In the end of the chapter, Jain’s Composite Fermions
theory is briefly introduced for completeness.

1.1 The classical Hall effect

The local form of the Ohm law is:

J = σE, (1.1)

where σ is the conductivity tensor, E is the applied electric field and J = ρqv is
the current density for particles of charge q and density ρ moving with a velocity
v. In 1879, Hall discovered that, in presence of a magnetic field, current flows
in a direction perpendicular to that of the applied field, i.e. the tensor σ is not
a diagonal matrix. In other words, the passage of a current induces a voltage
perpendicular to the direction of the current flow. This is known as Hall effect
and the system in which it takes place is sketched in figure 1.1.

This phenomenon has a classical origin and it is readily understood using
the Lorentz equation of electrodynamics:

F = q

(
E+

1

c
v ×B

)
(1.2)

which gives the force acting on a particle of charge q, moving with a velocity v,
in presence of an electric field E and a magnetic field B. This equation can be

12



B

I I

VL

VH

Figure 1.1: Sketch of a diagram of the classical apparatus used in Hall ef-
fect experiments. I, VL, and VH are the current, longitudinal voltage and the
Hall voltage, respectively. The longitudinal and Hall resistances are defined as
RL = VL/I and RH = VH/I.

integrated to get the particle motion, and if we take E = Eŷ and B = Bẑ , we
can see that the charged particle drifts in a direction perpendicular to the plane
containing the two fields, with a velocity v = c(E/B)x̂. Using this in J = qρv
and the inverse of Ohm law to get the Hall resistance1, we obtain:

RH =
Ey

Jx
=

B

ρqc
. (1.3)

This effect is routinely used to measure the density of charge carriers, and
the sign of their charge (i.e. whether they are electrons or holes).

The direct proportionality between RH and B holds until the system is not
two-dimensional, the magnetic field is not too high (B ∼ tens of Tesla) and the
temperature is not too low (T ∼ 1 K or less).

1.2 Landau Levels

When the system is two-dimensional, the temperature is sufficiently low and the
magnetic field sufficiently high, the quantum Hall effect takes place. In order
to understand this phenomenon, we begin with the study of a simpler system,
which is of fundamental importance for the quantum Hall effect: a single electron
(particle of charge −e) moving in two dimensions in a perpendicular magnetic
field. The Hamiltonian of this system is:

H =
1

2m

(
p+

e

c
A
)2
, (1.4)

1the resistivity tensor is the inverse of the conductivity tensor, and in this two-dimensional
system we can easily see that the Hall resistance and the Hall resistivity are the same quantity.
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where m is the electron’s mass, p = −i~∇ is the canonical momentum operator
and A is given by

∇×B = A. (1.5)

We notice that the Schrödinger equation Hψ = Eψ is gauge-invariant, i.e. it is
invariant under the transformation

A(r) → A(r) +∇θ(r);

ψ(r) → exp

[
− ie

~c
θ(r)

]
ψ(r).

(1.6)

We consider the symmetric gauge using a suitable function θ for which

A =
B× r

2
=
B

2
(−y, x, 0) (1.7)

holds. Inserting this in the Hamiltonian, we find:

H =
1

2
~ωc

[(
−i ℓ ∂

∂x
− y

2ℓ

)2

+

(
−i ℓ ∂

∂y
+
x

2ℓ

)2
]

(1.8)

where ωc = eB/mc is the cyclotron energy and ℓ =
√
~c/eB is the magnetic

length. From now on, we will measure the energies in unit of ~ωc and the lengths
in unit of ℓ.

With the following transformation,

z = x− iy = reiθ ; z̄ = x+ iy = re−iθ (1.9)

and with the definition of the operators

b =
1√
2

(
z̄

2
+ 2

∂

∂z

)
,

b† =
1√
2

(
z

2
− 2

∂

∂z̄

)
,

a† =
1√
2

(
z̄

2
− 2

∂

∂z

)
,

a =
1√
2

(
z

2
+ 2

∂

∂z̄

)
,

(1.10)

we get

H =
1

2
+ a†a. (1.11)

With these definitions, one can easily verify that [a†, a] = 1 and [b†, b] = 1 and
all the other commutators are zero, so the Hamiltonian is equivalent to that of
a one-dimensional harmonic oscillator and the energy eigenvalues are quantized
at

En =

(
1

2
+ n

)
~ωc. (1.12)

These energy levels are called Landau levels.
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The z component of the angular momentum is defined as

L = −i~ ∂
∂θ

= −~
(
b†b− a†a

)
,

(1.13)

where we have used the definitions (1.9).
We notice that the energy of the particle is independent of its angular mo-

mentum, as expected from the fact that the Hamiltonian is invariant under
rotation with axis ẑ and [H, b] = 0, [L, b] ̸= 0. Because [H,L] = 0, we choose
the eigenfunctions that diagonalize the Hamiltonian and the angular momen-
tum operator, denoting respectively with n and m the quantum numbers. This
means that a state |n,m⟩ has energy (1/2 + n)~ωc and angular momentum
−~m. From equation (1.13) we can see that the admitted values of m are
−n,−n+1, . . . , 0, 1, . . . if the particle is in the n-th Landau level. The applica-
tion of b† increases m by one unit while preserving n, whereas a† simultaneously
increases n and decreases m by one unit.

The state indexed by the quantum number n,m can be written as

|n,m⟩ = (b†)n+m√
(n+m)!

(a†)n√
n!

|0, 0⟩ , (1.14)

where the state |0, 0⟩ is the one that satisfies a |0, 0⟩ = b |0, 0⟩ = 0. Using these
requests, we obtain

η0,0(r) = ⟨r|0, 0⟩ = 1√
2π
e−

1
4 zz̄. (1.15)

Now we can obtain the generic n,m state simply applying the definitions of the
creation operators given in equations (1.10). In particular, we are interested in
the lowest Landau level (LLL) wave functions, i.e. the states |0,m⟩, given by

η0,m(r) = ⟨r|0,m⟩ = (b†)m√
m!

η0,0(r) =
zm√

2π 2mm!
e−

|z|2
4 . (1.16)

In figure 1.2 there is the 3D plot of |η0,m|2 with m = 15 (the plots obtained for
other m are similar).

1.2.1 Degeneracy and filling factor

We remark that in the LLL (but we can do an analogue reasoning for each
Landau level) the eigenstate |0,m⟩ has its probability density centered on the

circle of radius r =
√
2mℓ, as we can see by calculating the values of |z|2 = r2/ℓ2

for which
∂|η0,m|2

∂|z|2
= 0. (1.17)

Moreover, moving away from this circle we can see that the probability of finding
the particle rapidly drops to zero (see also figure 1.2). Therefore we can think
to the electron as a classical particle which moves in the circle of radius r. We
consider a disk of radius R and evaluate how many particles (in this classical
picture) lie inside it in a given Landau level. The largest value of m for which

15



Figure 1.2: The plotted function is |η0,m|2(x, y) with m = 15, so the value re-
lated to the vertical axis represents the probability density of finding an electron
within the horizontal plane in the lowest Landau level with angular momentum
of −15~.

the electron is inside the disk is given by m = R2/2l2, which is thus the total
number of degenerate eigenstates in the lowest Landau level that are “available”
inside the disk. Therefore, the degeneracy per unit area is

G =
R2/2ℓ2

πR2
=

1

2πℓ2
=
eB

hc
(1.18)

(and it is the same everywhere: the calculation would have been the same if we
had counted the particles from R1 to R2). The filling factor is given by

ν =
ρ

G
= 2πℓ2ρ, (1.19)

where ρ is the electron density. Thus the filling factor is the number of electron
per area unit over the number of degenerate state per area unit, and so it equals
the number of occupied Landau levels in the case of non-interacting electrons
at a given magnetic field.

Moreover, defining φ0 = hc/e as the “magnetic field flux quantum”, we
readily see that G = B/φ0, i.e. the degeneracy per area unit is the number of
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flux quantum piercing the sample. Using that in equation (1.19), we get

ν =
ρ

B/φ0
, (1.20)

that is another interpretation of the filling factor: it also equals the number of
electrons per flux quantum.

We notice that the filling factor is inversely proportional to the magnetic
field. As the magnetic field is increased, each Landau level has more and more
degenerate states to allocate the fixed number of electrons, so less and less
Landau levels are occupied.

1.2.2 The wave function of many independent electrons

Now we consider the wave function in the many-electron case, neglecting their
interaction. If the filling factor is a non-integer number, the ground state of
the system is highly degenerate. Indeed in this case we have to allocate the
n highest Landau level electrons in m states at the same energy, with m > n.
Therefore we have

(
m
n

)
possible degenerate many-particle states. If n = m, the

filling factor is integer (because also the highest Landau level is full), therefore
the ground state is unique, and it is the Slater determinant composed of the
single-state wave functions. As an example, we write the explicit form of the
wave function φ1 for the filled first Landau level:

φ1 =

⏐⏐⏐⏐⏐⏐⏐⏐
1 1 · · ·
z1 z2 · · ·
z21 z22 · · ·
· · · · · · · · ·

⏐⏐⏐⏐⏐⏐⏐⏐ exp
[
−1

4

∑
i

|zi|2
]

=
∏
j<k

(zj − zk) exp

[
−1

4

∑
i

|zi|2
]
.

(1.21)

In the second line we used a well-known result. Indeed the determinant in the
first line can be evaluated exactly and it is known as Vandermonde determinant.
The simplest proof is the following. We consider a particular coordinate, for
instance z1. The determinant in the first line of (1.21) has to be a polynomial
of degree N − 1 of z1, because in the last line of the determinant we have
zN−11 . The “fundamental theorem of algebra” tell us that such a polynomial
has N − 1 zeroes, which must coincide with the position of the other particles,
i.e. the other zj , because of the form of the determinant (a determinant with
two equal columns is zero). Therefore we can pull out the factor

∏
j ̸=1(z1− zj).

This reasoning can be repeated for each coordinate, and using the fact that the
determinant has to be anti-symmetric under coordinate exchanges, we obtain

V (z1, z2, . . . , zN ) =

⏐⏐⏐⏐⏐⏐⏐⏐
1 1 · · ·
z1 z2 · · ·
z21 z22 · · ·
· · · · · · · · ·

⏐⏐⏐⏐⏐⏐⏐⏐ =
∏
j<k

(zj − zk). (1.22)

Finally, we want to underline that the derivation presented here for the
symmetric gauge, can be straightforwardly extended to other gauges (another
common choice is the Landau gauge) and different geometries (disk, torus). The
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choice of the gauge and of the geometry is done depending on convenience. In
this dissertation all the work will be done in the symmetric gauge and plane
geometry. This gauge has a remarkable property: all the wave functions in the
LLL can be written as analytic function times a common exponential factor. An
excellent treatise of other gauges and geometries (as well as those considered
here) can be found in [4].

The only important result we need from the electron-in-a-magnetic-field
problem solved in spherical geometry is the following: in this case one can
see that the system has rotational invariance. Then a state with total angular
momentum L = 0 has uniform density. Moreover, in this geometry a state with
n filled Landau levels has L = 0 and therefore it has uniform density. There is
not a similarly simple proof in the planar geometry, but the fact that a state
with n filled Landau level has uniform density remains however true.

1.2.3 A qualitative explanation of the IQHE

As we can see from equation (1.3), the classical formula for the Hall resistance,
for an integral filling factor ν = ρφ0/B = n, reads

RH =
h

ne2
. (1.23)

If we variate the magnetic field B (or the electron density ρ), the filling factor
changes continuously and so we have at this level no explanation of the plateaux
formation. Now we add a fundamental ingredient: the presence of the (reducible
but unavoidable) disorder, for instance caused by impurities. This has a central
role in the formation of plateaux. Let us then introduce disorder in our sample:
the degeneracy of Landau levels is broken and they broaden into bands, making
the energy gap disappear, as shown in figure 1.3.

It has been demonstrated that [16–19] in presence of disorder and strong
magnetic field, all states become localized (i.e. trapped in the potential val-
leys/hills caused by impurities), except those at the center of the bands, which
are not affected by the introduction of disorder.

Now, in this idealized picture (we are not considering the electrons inter-
action) an electron in an extended (i.e. not localized) state carries a current
if a potential is applied. So at fixed electrons number and magnetic field we
have a definite conductance due to all the electrons in extended states below
the Fermi level. Let us suppose that the Fermi level lies on an extended state.
If we add an electron, it will be trapped in a localized state and so it will not
contribute to increase the conductance. Even if we continue to add electrons,
the conductance will not change until the Fermi level reaches the next extended
level. This is the qualitative explanation of the formation of plateaux in the
quantized Hall resistance.

However, given this explanation, one can suppose that

RH =
B

ρexec
, (1.24)

where ρex is the density of electrons in extended states. This density is surely
lower than the total density ρ, but the experiment tell us that the value of the
resistance is given exactly by RH = h/ne2, as n Landau levels were carrying
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extended states

localized state

disorder

Figure 1.3: In this schematic picture, we see how the degenerate Landau level
states (left) broaden into bands in the presence of disorder (right), with extended
states near the center (dark lines), separated by localized states (shaded). In
presence of disorder, the energy gap between Landau levels disappears.

full current, without disorder. The first solution to this enigma was provided by
Laughlin [20], who showed that the Hall resistance is quantized at RH = h/ne2

as long as the Fermi level lies between the n-th and (n+ 1)-th Landau levels.
However this proof (and any other linked to the IQHE) would take us quite

far from the objective of this work, but the interested reader can find it in [4,5].
In fact the QHE theory we are searching for is a microscopic theory, i.e. obtained
from the Hamiltonian of the problem. The IQHE can be explained without
resort to such a theory, though certainly a microscopic theory of the QHE
has to explain also the IQHE. Moreover the FQHE can be explained only by
taking into account the electron interactions, which is not necessary in the IQHE
theory. Including Coulomb interactions is thus fundamental to move toward an
explanation of the fractional quantum Hall effect. The necessary background is
presented in the next section.

1.3 The fractional quantum Hall effect

1.3.1 The Hamiltonian

Our aim is to tackle the QHE from an Hamiltonian point of view. The first step
is to understand the relevant terms to be included in an Hamiltonian description
of interacting electrons in a two-dimensional conductor subject to a transverse
magnetic field. To simplify the system we neglect the presence of disorder: as for
the IQHE, the plateaux formation requires the introduction of a weak disorder,
but the physics of the system can be understood also neglecting this further
effect.
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A good starting point is the following Hamiltonian:

H =
∑
j

1

2mb

[
−i~∇j +

e

c
A(rj)

]2
+
∑
j

U(rj)+
∑
j,k

e2

2ϵ

1

|rj − rk|
+gµB·S, (1.25)

where mb is the reduced mass of the electrons, due to the band structure of
the semiconductors system, U is the potential due to the host lattice, S is the
magnetic momentum of the electrons. The FQHE is observed only with strong
magnetic fields (above 10 T), suggesting that the approximation of infinite mag-
netic field B → ∞ should be reasonable.

We can exploit some important simplifications: the first is that the periodic
potential due to the host lattice is of no relevance to this problem, because the
size of the electron wave packet in a magnetic field (∼ ℓ ≈ 25/

√
B[T ] nm ≈ 10

nm for typical magnetic fields) is much larger than the lattice period for typical
experimental parameters (≈ 0.2 nm). Then we can neglect the term with U .

Moreover, the Zeeman splitting, i.e. the energy requested for flipping a spin,
is (in Kelvin degrees)

Ez = 2gµB · S =
g

2

mb

me
~ωc ≈ 0.3B[T ]K, (1.26)

so it is infinite in the limit of high magnetic field and also the last term of (1.25)
can be neglected.

The third simplification is related to the Landau level structure: in presence
of electron interactions, they broaden into bands (the degeneracy is broken).
The energy gap between unperturbed levels is ~ωc ∝ B, so it is infinite in the
limit B → ∞ and we can consider that the electrons cannot jump from a Landau
level (or a Landau band) to the next. In experimental systems, we have

~ωc = ~
eB

mbc
≈ 20B[T ]K (1.27)

and for the typical electron-electron interaction

Ve−e =
e2

ϵℓ
≈ 50

√
B[T ]K. (1.28)

Then the condition ~ωc ≫ Ve−e, which is necessary to prevent the excitation
from a Landau level to another via Coulomb interaction, is satisfied only for
strong magnetic field B.

We need also low temperatures: in this way the thermal energy is weak if
compared with the other energies. In our idealized picture, we take T = 0.

As we can immediately see, the Coulomb potential Ve−e is greater than the
Zeeman splitting Ez for typical experimental magnetic fields (although in the
limit B → ∞ this is no longer true). As a consequence, FQHE states which are
not fully spin-polarized are routinely observed in most experiments. However,
fully spin-polarized FQHE states do occur, and in our quest for the simplest
possible system we will concentrate on these states, in which the spin degrees
of freedom are frozen.

Therefore from now on the electrons are considered spinless fermions, i.e.
particles that obey to the Pauli exclusion principle but which have not the spin
degree of freedom.
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Since the Landau levels do not mix with each other, the relevant physics
results from the partly filled Landau level, which is the higher one, while the
electrons in the lower levels act as a charged background. This can be seen more
clearly in a second-quantized form of the Hamiltonian (1.25).

The interacting part of H is

Hint =
1

2

∑
m1

∑
m2

∑
m3

∑
m4

⟨m1,m2|Ve−e |m3,m4⟩ a†m1
a†m1

am4
am3

, (1.29)

where the single-particle basis used is the one which diagonalize the kinetic
term, then mi is the set of quantum numbers (ni, Li), where ni is the Landau
level and −~Li the angular momentum of the i-th particle.

Now we suppose that the first electron involved in the interaction is in a
filled Landau level. Since there is no possibility to be excited in another level,
we have n1 = n4 and n2 = n3. The first level is full, then the only possibility
is L1 = L4. Using the angular momentum conservation, we also obtain the
condition L2 = L3. If also the other electron involved is in a full level, the term
is a constant. Then we can neglect each term that corresponds to an interaction
between full Landau levels. If n2 is the partly filled level, the term takes the
form

∑
m Cma

†
mam, where we have summed over m1 using the fact that this

level is full and so the operatorial part is trivial (it is always equal to 1 when
applied over a state). This interaction is a background-density one. However,
we have seen that a full Landau level has uniform electron density, and so each
term of this kind in the Hamiltonian (1.29) is merely a constant term and we
can neglect it. Therefore the only non-trivial terms in (1.29) are those referring
to electrons in the higher Landau level, which is the not completely filled one.

The kinetic part of the Hamiltonian in a second-quantized form reads

Hkin =
∑
n,L

(
n+

1

2

)
~ωca

†
n,Lan,L. (1.30)

From this we can understand that in our strong-field limit in which the electrons
cannot change their quantum number n, the kinetic part of the Hamiltonian is
always a constant and then we can neglect it.

To simplify further the problem, we suppose that the lowest Landau level is
the incomplete one, i.e. our filling factor is a fraction between 0 and 1. There
are two reasons for this: the first is that many observed plateaux are at filling
factor < 1. The second is that the system with an incomplete higher Landau
level can be mapped in another with an effective potential in the LLL (as we
can see from equation (1.30) using the considerations just exhibited).

The final Hamiltonian, simplified as much as possible, but containing the
whole relevant physics of the FQHE in the LLL, is

H = PLLL

∑
j,k

e2

2ϵ

1

|rj − rk|
PLLL = PLLLHe−ePLLL, (1.31)

where PLLL is the projection operator on the LLL. We notice that if we calculate
the matrix element between two states of an Hilbert space basis, we can write:

⟨ψ1|H |ψ2⟩ = ⟨ψ1|PLLLHe−ePLLL |ψ2⟩ =
⟨
ψ
(LLL)
1

⏐⏐⏐He−e
⏐⏐⏐ψ(LLL)

2

⟩
(1.32)
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and so the use of LLL wave functions is equivalent to the restriction of the LLL
imposed over the Hamiltonian.

We want now to understand why the FQHE is so difficult to tackle from
a microscopic point of view. The main difficulty is that this problem cannot
be treated with perturbative methods, because we have no small adimensional
parameter. This can be seen measuring the energies in unit of e2/ϵℓ: in this
case, the Hamiltonian is given by

H = PLLL
1

2

∑
j,k

1

|rj − rk|
PLLL, (1.33)

where ri are measured in unit of ℓ, so there are only pure quantities. A standard
many-body technique is realized turning off the interaction and taking the non-
interacting ground state as starting point for an investigation of the interacting
problem. However, in this case it is not practicable, because if we turn off the
interaction, the resulting system has an incredible large number of degenerate
ground states2, so it is useless.

Therefore we must take advantage of other techniques to try to solve the
problem: two of them that have proved to be particularly fruitful are the ex-
act diagonalization (that can be used only for small electron number) and the
variational methods.

In the next two sections we give an overview of these two methods.

1.3.2 Exact diagonalization method

The idea behind this method is that the Hamiltonian of a finite-size system,
as the FQHE restricted to the LLL, can be expressed as a finite-dimensional
matrix. As we have seen before, in a system of area S there are S/2πℓ2 = Nφ

single-particle levels (degenerate in the independent-electrons picture). Then
the number of independent many-electrons state (i.e. the dimension of the
space in which the system lives) is

NH =

(
Nφ

Ne

)
=

Nφ!

Ne! (Nφ −Ne)!
, (1.34)

where Ne is the number of electrons. We indicate with the symbol |m⟩ the
m-th many-particle state of the NH -element basis (we can concretely take, for
example, the basis obtained using the Slater determinants of the single-particle
states) and the Hamiltonian matrix is constructed as

Hij = ⟨i|H |j⟩ . (1.35)

Using a computer program, we can diagonalize this matrix, obtaining its eigen-
values and the corresponding eigenvectors. The eigenvalues are the energies of
the ground state and of the excited levels. From the eigenvector (ξ1, . . . , ξNφ

)
we can get the wave function of the corresponding eigenstate as follows:

ψ =
∑
i

ξi |i⟩ . (1.36)

2as an example, a toy system containing 100 electrons in 250 single particle states (within
the LLL), so with a filling factor ν = 0.4, has 1072 distinct ground state configuration, which
is roughly equal to the number of atoms in the Universe.
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The dimension of the matrix H increases very rapidly with Ne (as we can see
using Nφ = Ne/ν with ν < 1 in equation (1.34)) and so we cannot treat with
this method a system with too many electrons. As an example, a system with
ν = Ne/Nφ = 1/3 and Ne = 6 electrons, has Nφ = 18 and then NH = 18564.
Such a matrix can be diagonalized numerically, but for a larger electron number
we are hopeless. Fortunately we can use various symmetries of the problem to
block-diagonalise the Hamiltonian and so the number of electrons we can handle
increases sensibly (up to 10).

Within this of approach, two important results has been obtained:

• A priori one can suppose that the ground state of a system of interacting
electrons with Hamiltonian (1.33) is a Wigner crystal, i.e. a state in which
each electron is localized in a regular-lattice site. It is natural to expect
something similar, because the electrons could minimize the long-range
repulsion of the Coulomb potential by forming a Wigner crystal . The
first result following from the exact diagonalization method is that the
ground state is a liquid state, i.e. a state without a long-range order. This
remains true for filling factor not too small: when ν is smaller than about
1/7, a Wigner crystal is realized as ground state;

• This liquid has the property of incompressibility, i.e. we need an infinite
change in the pressure in order to modify the density of the system. This is
obtained as a consequence of the important observation of a discontinuity
of the energy per electron as function of the filling factor. So there is an
energy gap at the filling factors of the form ν = p/q for which FQHE is
observed.

As we have seen, this method cannot be used to describe systems with a large
electron number. This motivated the introduction of other methods, but the
importance of the exact diagonalization goes beyond the results just presented.
As a matter of fact each FQHE theory proposed must pass as first examina-
tion the comparison with the exact diagonalization results. The calculation of
the overlap between the exact diagonalization wave function and the one ob-
tained from the theory proposed (for small electron number) cannot give us the
certainty that this theory is correct, but it can be an useful “rule of thumb”.

1.3.3 Variational method: Laughlin’s wave function

Another powerful method to investigate the FQHE system is the variational
ansatz. Concretely, we take a trial wave function ψ(α) with a set of parameters
indicated by α. The value of

E(α) =
⟨ψ(α)|H |ψ(α)⟩
⟨ψ(α)|ψ(α)⟩ (1.37)

is larger than or equal to the ground-state energy, so we can find the value
α̃ which minimizes E(α) and in such a way we obtain our guess ψ(α̃) for the
ground state wave function.

The success of this method strongly depends on the form of the trial wave
function initially chosen.

Laughlin was the first who understood how to generalize this method for the
FQHE. The three following considerations allowed him to win the Nobel Prize
in 1998:
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1. We are studying the LLL, in which single-particle states are given by

η0,m(r) =
zm

Nm
e−

|z|2
4 , (1.38)

where Nm is the suitable normalization coefficient, which we will neglect
from now on. We will therefore obtain un-normalized wave functions. A
many-electrons wave function can be expressed on the basis of Slater deter-
minants constructed using the single particle state, so it must necessarily
be of the form

ψ(z1, . . . , zNe
) = FA(z1, . . . , zNe

) e−
1
4

∑
i |zi|2 , (1.39)

where FA(z1, . . . , zNe
) is an anti-symmetric polynomial, due to the Pauli

principle.

2. The generic term of FA is a
∏

i z
mi
i , in which the i-th electron has an

angular momentum −~mi. Then a state of this kind has total angular
momentum −~

∑
imi. Now, the Hamiltonian (1.33) is invariant under

full-system rotation and so the total angular momentum is a good quan-
tum number, i.e. we can choose the basis which diagonalizes simultane-
ously the Hamiltonian end the total angular momentum operator. The
states of this basis are the Slater determinants we are using, and so we
notice that FA has to be an homogeneous polynomial.

3. The Coulomb interaction tends to separate the electrons and then the
wave function must be smaller when two electrons approach each other.
The following step is the core of Laughlin’s ansatz: inspired from this
consideration, he assumed that the polynomial FA is of the form

FA(z1, . . . , zNe
) =

∏
i,j

f(zi − zj), (1.40)

with f(0) = 0. A function of this kind is called Jastrow function.

These three observations strongly constraint the form of the wave function,
which has to be the celebrated Laughlin’s ansatz:

ψq(z1, . . . , zNe) =
∏
i<j

(zi − zj)
q e−

1
4

∑
i |zi|2 , (1.41)

where q is an odd integer and it should be the variational parameter. We notice
that the maximum angular momentum an electron can have (i.e. the highest
degree of its coordinate in equation (1.41)) isM = (Ne−1)q. Then in the circle
with radius

√
2Ml there are Ne electrons, and so we can write for the filling

factor

ν = 2πℓ2
Ne

S
=
Ne

M
≃ 1

q
, (1.42)

where we used that Ne ≫ 1. Therefore we have not variational parameters and
the Laughlin’s wave function ψq is our guess for the description of the FQHE
state with filling factor 1/q, with q odd.

This is Laughlin’s great result, supported by the absence of observed plateaux
at filling factor with even denominators. The so-called electron-hole symmetry,
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which is revealed inserting b†m = am and bm = a†m in equation (1.29) and ob-
serving that the Hamiltonian is invariant for such a transformation, allows the
Laughlin wave function to take care also of filling factors of the form 1 − 1/q.
However, many fractions which are not of the forms 1/q and 1−1/q are observed
in the LLL, so the Laughlin’s theory is not complete.

Another reason for the great success of the Laughlin’s wave function is that
its overlap with the predicted wave function obtained via the exact diagonal-
ization method (i.e. the value of ⟨ψExDiag|ψLaugh⟩) is impressively good: for
ν = 1/3, e.g., the overlap is greater than 0.99 for electron number from 4 to 9
(we remember that the exact diagonalization method allow us to compare wave
functions only for small electron number). This overlap remains good for filling
factor of the form 1/q (or 1 − 1/q) provided that they are greater than about
1/7.

The obtained wave function (1.41) had great success, and it sets the basis
for our theoretical understanding of the FQHE. But it is not the exact wave
function, as we can intuitively see from the way we have obtained it: we have
considered only the short-range effect of the Coulomb interaction, which is in-
deed a long-range interaction. This can be understood following Haldane [21]
and constructing the model for which the wave function (1.41) is the exact
ground state. This is done in the following section.

As a last observation, we notice another feature of the Laughlins ansatz.
What if we take an even q? We are again describing a state for which each point
of Laughlin’s deduction holds, except that now the resulting wave function is
symmetric under exchange of coordinates. Then we are describing hypothetical
bosonic FQHE states. Of course electrons are fermions, and so there are not
states of this kind, but we will see in the following that this concept of bosonic
FQHE states can be useful.

1.3.4 Haldane pseudopotentials

We want to restart our study from the Hamiltonian of two particles in a magnetic
field (the generalization to a larger electron number is straightforward). Then
we have our Hamiltonian

H =
1

2m1
(p1 +

e

c
A(r1))

2 +
1

2m2
(p2 +

e

c
A(r2))

2 + V (r1, r2) . (1.43)

We restrict our system in two dimensions3, so p = (px, py) and r = (rx, ry).
As we have done previously, we use the symmetric gauge, where

A =
B × r

2
=
B

2
(−y, x, 0) . (1.44)

Following the same steps, the kinetic part of the Hamiltonian (1.43) is given by
(dropping every dimensional coefficient):

Hk =
1

2

[(
−i ∂
∂x1

− y1
2

)2

+

(
−i ∂
∂y1

− x1
2

)2
]
+ (same with 1 ↔ 2) . (1.45)

3 as always, the particles are confined in two dimensions, but we want to use the third one
as the magnetic field direction.
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Now the usual change of variables is done for each particle, i.e.:

zn = xn − iyn = rne
iθn ; z̄n = xn + iyn = rne

−iθn . (1.46)

Each single-particle term in the kinetic Hamiltonian is given by:

Hk =
1

2

[
−4

∂2

∂z∂z̄
+

1

4
zz̄ − z

∂

∂z
+ z̄

∂

∂z̄

]
. (1.47)

We can decouple the center-of-mass term of the Hamiltonian and the relative
term, using the following variables:

Z =
z1 + z2

2
; z = z1 − z2 . (1.48)

Using these variables, we can now obtain the same form of equation (1.47) for
the (now decoupled) center-of-mass and relative degrees of freedom.

Now we introduce (as we have done in equation (1.10))

bR =
1√
2

(
Z̄

2
+ 2

∂

∂Z

)
,

b†R =
1√
2

(
Z

2
− 2

∂

∂Z̄

)
,

a†R =
1√
2

(
Z̄

2
− 2

∂

∂Z

)
,

aR =
1√
2

(
Z

2
+ 2

∂

∂Z̄

)
,

(1.49)

and an analogous set of operators for the relative coordinate. With this defini-
tions, one can easily verify that [a, a] = 1 and [b, b] = 1 if they are related to the
same set of coordinate (relative or of center-of-mass), and all other commutators
are zero.

So the kinetic term is given by:

Hk = a†RaR + a†rar + 1. (1.50)

As we have done for the single-particle case, we obtain the (third component

of) total angular momentum LR = −(b†RbR − a†RaR) and the relative one Lr =
−(b†rbr − a†rar).

We want to consider only the LLL, in which a complete set of two-particle
states is given by

|M,m⟩ = (b†R)
M (b†r)

m

√
M !m!

|0, 0⟩. (1.51)

Now we consider the potential term of the Hamiltonian (1.43). We assume
that V (r1, r2) = V (r1 − r2) = V (|z|). In this case, the potential is isotropic4

and so in the basis (1.51) we obtain

⟨M ′,m′|V |M,m⟩ = δMM ′δmm′⟨m′|V |m⟩ (1.52)

4it is invariant under rotations, which keep lengths unchanged.
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because V acts only on the modulus of the relative coordinates, and the angular
integral in ⟨m′|V (|z|)|m⟩ produces zero unless m = m′. So we can write:

V =
∑

M ′,m′

∑
M,m

|M ′,m′⟩⟨M ′,m′|V |M,m⟩⟨M,m|

=
∑
M,m

|M,m⟩⟨m|V |m⟩⟨M,m|

=
∑
M,m

VmPM,m ,

(1.53)

where Vm = ⟨m′|V |m⟩ and PM,m = |M,m⟩⟨M,m|. The parameters Vm are
called Haldane pseudopotentials.

If we use this equation, we can write the potential in a second quantized
form, in the Hilbert space restricted to the only LLL:

V =
1

2

∑
m1,m2,m3,m4

⟨m1,m2|V |m3,m4⟩a†m1
a†m2

am4
am3

=
∑

m1,m2,m3,m4

∑
M,m

Vm
2

⟨m1,m2|M,m⟩⟨M,m|m3,m4⟩a†m1
a†m2

am4
am3

,

(1.54)

where a†m is a creator of a particle with angular momentum m (in the LLL),
and am is its destructor.

Now, the Haldane pseudopotentials can be evaluated for any given interac-
tion, but we are mainly interested in simpler model cases, of two kinds: the first
has Vk = 1 for all k even and k ≤ n with n an even integer, and all the other
Vm = 0. The second family of models is that with Vk = 1 for all k odd and
k ≤ m with m an odd integer.

The first case describes bosons, as one can see using

⟨z1, z2|m1,m2⟩ =
zm1
1 zm2

2

Nm1
Nm2

e−
1
4 (|z1|2+|z2|2),

⟨z1, z2|M,m⟩ = (z1 + z2)
M (z1 − z2)

m

NM Nm
e−

1
4 (|z1|2+|z2|2),

(1.55)

where Na is given by
Na =

√
2π 2a a!. (1.56)

Therefore in the case in which all the m are even integer numbers,

⟨m1,m2|M,m⟩ =
∫

dz1 dz2 ⟨m1,m2|z1, z2⟩ ⟨z1, z2|M,m⟩ (1.57)

is symmetric for exchange of m1 and m2. So, only if [a†m1
, a†m2

] = 0 we can have
a non-zero potential term. In the same way, one can see that the other family
of models concerns fermions.

An interesting feature of this form of the FQHE Hamiltonian is the following:
it has been proved that the Laughlin’s wave function with filling factor 1/q is
the exact ground state of the model with Vk = 1 for all k with the same parity
of q and k < q [5]. Therefore this property holds for fermionic and bosonic
Laughlin’s wave functions.
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Performing the calculation of equation (1.57), we obtain the coefficients of
the pseudopotentials:

⟨m1,m2|M,m⟩ =
M∑
k=0

m∑
j=0

(
M

k

)(
m

j

)
2−(M+m)/2(−1)j ·

·
√

(M +m− k − j)! (k + j)!

M ! m!
δm1,M+m−j−k δm2,j+k.

(1.58)

Now we can insert this coefficient in equation (1.54). We are free to decide
which summation indexes to eliminate using the deltas, so there are many way
to proceed, some more enlightening than others. We notice that, because of the
deltas in (1.58), we have

⟨m1,m2|M,m⟩ ⟨M,m|m3,m4⟩ ∝ δm1+m2,m3+m4 , (1.59)

i.e. the operator |M,m⟩ ⟨M,m| preserves the angular momentum of the two
particles on which it acts. Using this delta in equation (1.54) and changing the
summation indexes in the following way

m1 = s+ t, m2 = s+ u, m4 = s, (1.60)

we obtain:

V =
∑
m

Vm
2

∞∑
s=0

∞∑
t=−s

∞∑
u=−s

C a†s+t a
†
s+u as+t+u as

=
∑
m

Vm
2

∞∑
s=0

(

∞∑
t=0

∞∑
u=0

(δt,0 + δu,0) +

−1∑
t=−s

−1∑
u=−s

+

∞∑
t=1

∞∑
u=1

)C a†s+t a
†
s+u as+t+u as,

(1.61)

with some coefficients C which depends on the summation indexes. We notice
that when t + u < −s we always obtain zero, because there are not particles
with negative angular-momentum quantum number in the LLL.

We can describe the action of the four-particle operator a†s+t a
†
s+u as+t+u as

by saying that it destroys two particles with angular momenta5 s and s+ t+ u
and creates two particles with angular momenta s + t and s + u. Therefore
if we consider a one-dimensional lattice and we label its sites with integers,
a particle with angular momentum m can be seen as a particle in the m-th
site of this lattice. In the LLL the lattice is semi-infinite, and the first site is
labelled with the number zero. Within this picture, the operator re-creates the
destructed particles shifting them of t sites. In particular, if t = 0 or u = 0
the particles are respectively not moved or swapped, if t and u are positive
they are squeezed toward each other and if t and u are negative they are moved
toward the “external” of the lattice or anti-squeezed. Figure 1.4 illustrates the
squeezing operation, while anti-squeezes are obtained following this process in
the opposite direction.

We will refer to a†s+t a
†
s+u as+t+u as as the squeezing operator (although

it also anti-squeezes particles) and we will discuss it in detail in the following
chapters.

5as we have seen, a particle in the state |n,m⟩ has angular momentum −~m. However, for
brevity, we will often refer directly to m as the angular momentum of the particle.
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(a)

(b)

(c)

Figure 1.4: In the one-dimensional lattice represented by grey circles, each
site corresponds to an angular momentum state in the LLL. (a) and (b) are
two possible squeezes in which the particles are moved toward each other of
one and two positions respectively, under the action of the squeezing operator
a†s+t a

†
s+u as+t+u as, while (c) is a squeeze not allowed.

1.3.5 Other filling factors, plateaux formation and Com-
posite Fermions theory

In this section we review briefly some other important facts concerning the
FQHE. The topics discussed here are not used anywhere in this work, but we
discuss them for completeness, including the proper references that might be
used by the interested reader.

Other filling factor in Laughlin’s theory

As we have seen, Laughlin’s wave functions (1.41) are good approximations of
the true ground states for filling factors of the form 1/q (and 1− 1/q, but from
now on we will consider only filling factor lesser than 1/2, because the others
are obtained from the electron-hole symmetry). What for the other observed
fractions? A theory due to Haldane [21] predicts the formation of plateaux at
all the filling factors of the form6

2p

2pq ± 1
. (1.62)

A quick look at this explanation follows. A characteristic of the Laughlin’s wave
functions with filling factor 1/q is that their product for

∏
i(zi − z0) describes

the presence of a quasihole, i.e. a particle with fractional charge e∗ = e/q, with
coordinates z0. An analogous but more complicated operator applied to the
wave function describes the introduction of a quasielectron of charge e∗ = −e/q.
In the Haldane’s theory these quasi-particles are treated as bosons. The wave
function of Nqh quasiholes formed and Ne electrons with filling factor 1/q is
then ∏

i

(zi − z01)
∏
i

(zi − z02) · · ·
∏
i

(zi − zqh)ψq, (1.63)

where ψq is given by (1.41). The quasiholes are charged particles in a magnetic
field (it can be proved that the Laughlin state at filling factor 1/q is an uniform-
density state, so the quasi-particles do not interact with electrons) and then the
usual Landau levels are formed. Moreover, from equation (1.63) we see that the

6most of the observed filling factor can be written in this form (but not all of them).
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highest degree of each quasihole coordinate is Ne and so there are Ne+1 possible
state in the Landau level. We notice that the wave function (1.63) is invariant
under exchange of quasihole coordinates, as expected from their bosonic nature.
We can expect that a Laughlin state of quasiholes is realized when the filling
factor is 1/2p, where p is an integer. In this case, the relation Nqh = (Ne+1)/2p
holds.

For each electron, the highest degree of its coordinate in (1.63) is M =
(Ne − 1)q +Nqh and the filling factor of this state is ν = Ne/M . Putting these
together and considering Ne ≫ 1, we get:

ν =
Ne

M
=

2p

2pq + 1
. (1.64)

Using quasielectrons instead of quasihole we obtain the fractions of the form
ν = 2p/(2pq − 1).

Plateaux formation in Laughlin’s theory

In this section we want to understand intuitively the mechanism which brings
to the plateaux formation in the FQHE. The classical formula (1.3) for the Hall
resistance states that at filling factor ν = 1/q we have RH = q~/e2. Now we
imagine to decrease the magnetic field (or equivalently increase the electron
number) by a small amount. The following fraction of the form 1/q is not
compatible with the actual filling factor, so the system creates a finite density
of quasiparticle to “adjust” the filling factor according to equation (1.64). If now
we insert an impurity potential, the quasiparticles localize, until their density
increase to the point in which their interaction (repulsive) is stronger than the
trapping potential due to the impurities.

There is an energy gap for each filling factor observed, therefore the intro-
duction of a small impurity effect does not mixes the energy levels.

As long as the quasiparticles are localized, one can prove that the Hall re-
sistance remains fixed to the value one can calculate using the original filling
factor, without the impurity potential. Therefore a plateau at the correct value
of RH has formed, and the system passes to the next plateau (i.e. the next
filling factor of the form 2p/(2pq ± 1)) when the quasiparticle interaction wins
over the impurity potential and a Laughlin state of quasiparticle is created.

Jain’s composite fermions theory

Here we present in a qualitative and intuitive way the ideas behind the compos-
ite fermions theory, mainly due to Jain. For a comprehensive explanation we
suggest the excellent Jain’s book [4].

A composite fermion is the bound state of an electron and an even number
of flux quanta (called φ0 in the previous sections). We notice that a FQHE
state at filling factor 1/q has, as observed before in section 1.2.1, q flux quanta
for each electron. We can attach some of this quanta to the electrons7, and
reformulate our theory passing from electrons to composite fermions: in this
case, if each electron has 2k flux quanta attached, the composite fermions feel

7this is a delicate passage and many question about why an electron binds with a flux
quanta could arise, but here we want just to give an idea of the path followed. All the answers
can be found in [4].
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a magnetic field B∗ = B − 2kρφ0, i.e. there are q − 2k flux quanta for each
composite fermion.

The composite fermions form Landau-like levels, called Λ levels, and allow
to link the FQHE states with the IQHE ones. In order to see it, we can consider
the case in which q − 2k = 1: in this case the effective filling factor of the
composite fermions is 1, i.e. they are in an integer quantum Hall state. Vice
versa, if we consider composite fermions in an IQHE state with filling factor
ν∗ = n, they feel an effective field B∗ which correspond to 1/n flux quanta per
particle. When we go back to the original electron picture, the magnetic flux
per particle is given by 2k + 1/n and so the filling factor is

ν =
1

2k + 1/n
=

n

2kn+ 1
. (1.65)

Some important features of the composite fermions theory are the following:

• it allows quantitative calculations and the predictions made with the com-
posite fermions theory are more accurate than those obtained with other
(for example Laughlin’s) theories;

• the wave functions of all the states with filling factor of the form n/(2kn+
1) can be written easily;

• in this theory there are not a hierarchical deduction of the filling factor,
differently from the Laughlin-Haldane’s theory.

Even though almost all the observed filling factors can be written in the form
of equation (1.65), with the recent observation of a number of new fractions
indicating FQHE states, it seems that even the Composite Fermions theory is
incomplete.
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Chapter 2

Symmetric functions and
Jack polynomials

In this chapter we discuss the mathematical background we need to develop
our theory for the Fock-space operatorial construction of the FQHE states.
Moreover, the partitions formalism used here proves to be useful also in the
following, so particular emphasis is given to its presentation.

The main goal of this chapter is the introduction of Jack polynomials. They
belong to a wide class of special functions, the symmetric functions. We will
develop some preliminaries to define Jack polynomials and to show some of their
properties.

2.1 Partitions

A partition λ is a non-increasing, definitively null sequence of integers. We call
the lenght l(λ) of the partition the (finite) number of its non-null entries.

Partitions are represented in various ways:

• indicating all the non-null (and possibly also part of the null) entries in
decreasing order, (λ1, . . . , λl(λ), 0, . . . , 0), with λ1 ≥ λ2 ≥ · · · ≥ λl(λ);

• indicating all the entries in a contracted form and in decreasing order,
using exponents to indicate the number of repetitions of a certain compo-
nent, (λn1

1 , . . . , λ
nl(λ)

l(λ) ), again with λ1 ≥ λ2 ≥ · · · ≥ λl(λ);

• using the multeplicities ni(λ) (number of appearances of i in λ), i.e.
(n1(λ), n2(λ), . . . , ni(λ), . . . ).

For example, the partition1 (663100 . . . ) can be written also as (623111) or
as (1010020 . . . ) (see also figure 2.1).

We will refer to the sum
∑l(λ)

i=0 λi as |λ|.
Partitions are particularly useful especially because several bases of polyno-

mial spaces are in one to one correspondence with them. Let us consider the
third representation given for partitions, in the example above (1010020 . . . ).

1 sometimes we do not separate the partition entries with a comma in order to make it
more readable. In these cases, each digit is a partition entry.
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1 2 3 4 5 6 7

(6, 6, 3, 1)

(1, 0, 1, 0, 0, 2, 0, . . . )

Figure 2.1: Example of different notation for partitions: the upper is the usual
representation, the lower is the occupation numbers one.

This is formally equivalent to a N -particles state expressed in the occupation
numbers basis. In this case, we have 1 particle in the first single-particle basis
state, 1 in the third and 2 in the sixth. Within this picture, also the other
representations of partitions assume physical meaning: (6631 . . . ) lists in de-
creasing order which single-particle states are occupied by every single parti-
cle, and (623111) does the same in a contracted way. With this idea in mind,
we can write N -particle states of the occupation number basis as |λ⟩, with
l(λ) = N . We notice that the fact that partitions are ordered sequences accounts
for the permutation symmetry of identical particles. Within this picture, the
one-dimensional lattice view of the LLL sketched in the end of section 1.3.4 be-
comes more transparent: single-particles basis states are labelled by the angular
momentum eigenvalue m. For instance, the partition (1010020 . . . ) represents a
state in which one electron has vanishing angular momentum, one electron has
Lz = −2~ and two electrons have Lz = −5~. Accordingly, (6631) is the list of
electrons’ angular momenta, in decreasing order. We notice that |λ| is the total
angular momentum of the system.

From now on, we will refer to the decreasing listing representation as the
usual representation (λi will indicate the i-th component of λ). We will refer to
the multeplicity representation as the occupation numbers representation.

2.1.1 Squeezing

Equipped with the partition formalism, we can now reformulate with more preci-
sion the concept of squeezing. Given a partition λ, two integers 0 ≤ i ≤ j ≤ l(λ)
and an integer 0 ≤ s ≤ λi − λj , the squeezing operator Rs

ij acts as

Rs
ij(λ1, . . . , λi, . . . , λj , . . . ) = (λ1, . . . , λi − s, . . . , λj + s, . . . )∗, (2.1)

where the ∗ means that we may have to reorder the final partition to restore
the decreasing order. We notice that squeezings preserve |λ|. Two admitted
squeezing and a not-admitted one are shown in figure 1.4, while figure (2.2)
focuses on the usual and the occupation numbers partition representation, and
on their use in order to describe squeezings.

In the right representation of figure (2.2), we can easily give a physical
interpretation of squeezing operations: two particles, the i-th and j-th, are
moved inward by s steps from their sites.

2.1.2 Ordering

We can establish several ordering relations on the set of partitions. Of particular
importance for this work is the squeezing induced ordering, also called natural
or dominance ordering. This is a partial ordering relation, which is defined
equivalently as:
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• two partitions λ and µ are such that λ > µ if µ can be derived from λ
with a finite number of squeezings. This implies that if |λ| ≠ |µ|, λ and
µ are not comparable (but also two partition with |λ| = |µ| can be not
comparable);

• two partitions λ and µ are such that λ > µ if |λ| = |µ| and ∑r
i=1 λi ≥∑r

i=1 µi, ∀r > 0.

We can introduce a total ordering relation on partitions, following Stanley
[22]. This is the reverse lexicographic ordering: two partitions λ and µ are such

that µ
R
≤ λ if the first non-vanishing term λi − µi is positive. This is a total

ordering, compatible with the dominance ordering.
In the following, we will use dominance ordering, as squeezings are closely

related to some important properties of Jack polynomials.

2.2 The ring of symmetric functions

Symmetric functions generalize polynomials by removing any constraint on the
number of independent variables. This generalization can be useful if we want
to describe wave functions of very large many-body systems.

We call Λn the ring of symmetric polynomials in n independent variables,
with coefficients in a generic commutative ring R (in the following, R = Z).

We notice that Λn is a graded ring: indeed, Λn =
⨁

r≥0 Λ
r
n, where Λ

r
n is the

subring of symmetric homogeneous polynomials of degree r (by convention, 0 is
homogeneous of every degree).

We construct a collection of surjective homomorphisms (of graded rings) in
the following way: we define ω : Λn+1 → Λn by ω : f(x1, . . . , xn, xn+1) →
f(x1, . . . , xn, 0) for every f ∈ Λn+1. The restriction of ω to Λr

n is again surjec-
tive, and it is a bijection if and only if r ≤ n. These homomorphisms allow for
the construction of the space Λr, composed by elements f ∈ Λr which are limits
of sequences {fn}n≥0 such that:

λ1 λ2 λ3 λ4

6 6 3 1

2

λ1 λ2 λ3 λ4

6 4 5 1

∗

λ1 λ2 λ3 λ4

6 5 4 1

λ

R2
2,3

µ∗

∗
µ

n1 n2 n3 n4 n5 n6 n7

λ4 λ3 λ2λ1

n1 n2 n3 n4 n5 n6 n7

λ4 λ3λ2 λ1

n1 n2 n3 n4 n5 n6 n7

µ4 µ2µ3 µ1

(6631)

(6451)∗

(6541)

(1010020 . . . )

(1001110 . . . )

(1001110 . . . )

Figure 2.2: Example of squeezing. On the left, we see the squeezing in the usual
representation. First, we perform the rough squeeze as defined in equation (2.1).
Then, we need a reordering to restore decreasing order. On the right, we see
the occupation number counterpart of the same squeezing.
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• fn ∈ Λr
n for each n ≥ 0;

• fn = ωfn+1.

In more technical words we say that Λr is the inverse limit of Λr
n, i.e. Λr =

lim
←
n

Λr
n.

Λr is again a ring, which we call the ring of homogeneous symmetric functions
of degree r. Finally, we define the ring of symmetric functions as Λ =

⨁
r≥0 Λ

r.
This is a very strict mathematical construction. We can summarize it saying

that symmetric functions are the limits of sequences of regular polynomials, each
one with an additional variable. Thus, symmetric functions can be regarded as
polynomials in infinitely many independent variables.

In the following, we will explicitly indicate with the symbol ΛR which ring
of coefficients we take into account.

2.2.1 Relevant basis

Monomial symmetric functions

Given a partition λ, we define a monomial as xλ = xλ1
1 xλ2

2 . . . . We callmonomial
symmetric function mλ =

∑
σ x

σ(λ) the sum of all distinct monomials obtainable
from λ permuting (with the permutation σ) the variables.

For example:

m(1,2) =
∑
i̸=j

xix
2
j ,

m(1,1) =
∑
i<j

xixj .
(2.2)

We remark that the monomial symmetric functions mλ form a Z-basis of
ΛZ. For example, in the 3 variables case (x1, x2, x3) = (x, y, z),

x2y2z2 + 4xyz + 5xy + 5xz + 5yz = m(2,2,2) + 4m(1,1,1) + 5m(1,1,0).

We notice another important fact: if we are considering N bosons in the
LLL, apart from the usual exponential factor and for the normalization, the
single-particle wave functions are of the form seen previously, i.e. zm. In order
to describe the N -particle state, the single-particle wave functions have to be
symmetrized for particle exchanges, and therefore a basis for the Hilbert space
of states is given precisely by symmetric homogeneous monomials of degree M
(which is the total angular momentum of the system), i.e. monomial symmetric
functions labelled with partition of lengthM . This means that we can label the
elements |λ⟩ of a basis of the N -particles LLL bosonic states with the partitions
λ which correspond to the correct monomial function. In this case, λi are the
angular momenta of the N particles and |λ| is the total angular momentum of
the system.

Power sum symmetric functions

If we have λ = (r), we call mλ the r-th power sum symmetric function pr. For
a generic partition λ, we define pλ = pλ1

pλ2
· · · . It can be shown (see [23]) that

pλ’s form a Q-basis of ΛZ.
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Examples of power functions are:

p1 = m(1) =
∑

xi,

p2 = m(2) =
∑

x2i ,

p(2,1) = p2p1 =
(∑

x2i

)(∑
xi

)
.

(2.3)

Using power sum symmetric functions, we introduce a scalar product ⟨·, ·⟩
on Λ such that:

⟨pλ, pµ⟩ = δλµzλ, (2.4)

where δ is the Kroneker’s delta and

zλ =
∏
r≥1

rnr(λ)nr(λ)! = 1n1(λ)2n2(λ) . . . n1(λ)!n2(λ)! . . . (2.5)

Schur symmetric functions

We consider a partition λ and the function Dλ = det
(
x
λj+n−j
i

)
, where n is

the number of variables (or the length of the partition). By the properties
of determinants, we know that Dλ vanishes every time xi = xj . Thus, it is
divisible by the Vandermonde determinant V . Schur functions are defined as
Sλ = Dλ/V . We notice that, since Dλ and V are two antisymmetric functions,
Sλ is a symmetric function.

It can be shown (see [23]) that Schur symmetric functions are characterized
uniquely by the following properties:

• Sλ = mλ +
∑

µ<λKµλmµ;

• ⟨Sλ, Sµ⟩ = 0 for λ ̸= µ.

i.e. they are an orthogonal system with a particular “triangular” form when
written on the monomial basis.

An important property of the Schur functions Sλ is that they provide a linear
basis for the space of symmetric polynomials of homogeneous degree

∑
i λi.

2.3 Jack polynomials

Let us consider α ∈ R, α > 0. We define an α-dependent scalar product
⟨pλ, pµ⟩α = δλµα

l(λ)zλ on ΛR.
We call Jack symmetric functions (or Jacks) Jα

λ those uniquely characterized
by the following properties:

• Jα
λ = mλ +

∑
µ<λ aµλ(α) mµ;

• ⟨Jα
λ , J

α
µ ⟩α = 0 for λ ̸= µ.

A proof of the uniqueness of those functions is given in [22].
We remark that given a symmetric functions, we can always reduce it to a

symmetric polynomial in N independent variables by setting xN+1 = xN+2 =
· · · = 0. As all the properties of symmetric functions are valid for an indefinite
number of independent variables, they will still hold in the polynomial case.
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Therefore we can pass from Jack functions to Jack polynomials (we will use the
word Jacks also to indicate the polynomials) with ease.

Jacks definition implies that Jα
λ are monic, i.e. the first coefficient of the

expansion on the monomial basis is 1. However, other normalizations are possi-
ble. One among the most used is defined by aλ,(1|λ|) = |λ|!. In the following we
will not specify which normalization we are using, because it can be understood
from the context.

2.3.1 Properties

Expansion on the monomial basis

A fundamental property of Jacks is already required in the definition

Jα
λ =

∑
cµλmµ,

cµλ ̸= 0 ⇐⇒ µ can be squeezed by λ.
(2.6)

We can describe this property saying that Jacks’ expansion on the monomial
basis has non-null coefficients only for those partitions µ that we can obtain
via squeezing from λ (the coefficients c are functions of the parameter α). This
means that, since squeezing implies |µ| = |λ|, Jacks are homogeneous symmetric
functions of degree |λ|, and therefore they are eigenstates of the operator

∑
xi∂i

with eigenvalue |λ|.
We provide an example of such an expansion for λ = (1001001):

Jα
(1001001) = c

(1001001)
(1001001)m(1001001) + c

(0110001)
(1001001)m(0110001)

+ c
(1000110)
(1001001)m(1000110) + c

(0101010)
(1001001)m(0101010)

+ c
(0011100)
(1001001)m(0011100) + c

(0003000)
(1001001)m(0003000).

Laplace-Beltrami operator

We could have defined Jack symmetric functions equivalently as the unique poly-
nomial eigenfunctions of the so-called Laplace-Beltrami operator. This opera-
tor is of great physical relevance in relation to integrable models (to be precise,
we refer to Calogero-Sutherland models, which describe N identical particles
which have pair-wise inverse-square interaction in a one-dimensional system).
The Laplace-Beltrami operator is defined as

Hα
LB =

∑
(xi∂i)

2 +
1

α

∑
i̸=j

xi + xj
xi − xj

(xi∂i − xj∂j). (2.7)

In [22] it is proved that Jacks are eigenvectors of Hα
LB with eigenvalue[∑

i

(
λ2i +

λi

α (N + 1− 2i)
)]
, i.e. the following relation hold

Hα
LBJ

α
λ =

[∑
i

(
λ2i +

λi
α
(N + 1− 2i)

)]
Jα
λ . (2.8)

We underline that this relation can be used as a definition for Jacks, if
equation (2.6) is also required. Moreover, we notice that if α → ∞, H∞LB =
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∑
(xi∂i)

2, which is diagonal on the monomial basis. This means that lim
α→∞

Jα
λ =

mλ, using also the fact that the eigenvalue of H∞LB corresponding to Jacks and
monomials are the same.

2.3.2 Negative parameter Jack polynomials

We have defined Jacks for positive α. However, we need to consider also negative
parameter Jacks for our purposes. In [24], it is shown that problems may arise
only for negative rational values of α, those of the form

α = −k + 1

r − 1
. (2.9)

For these values of the parameter, however, a criterion to select partitions whose
associated Jacks are regular was found. We refer to this condition as (k, r, N)-
admissibility. It describes a generalized Pauli principle, which prevents more
than k particles in a N -particles system to occupy r consecutive sites (or single-
particle states). Mathematically, this principle is formulated as λi−λj ≥ ⌊ j−i

k ⌋r
for each i < j and with ⌊ ⌋ being the floor function.

Our motivation for the introduction of negative parameter Jacks is the fol-
lowing. Haldane and Bernevig, in [25], first pointed out that Laughlin’s wave
functions (in their bosonic version, i.e. when they describe hypothetical FQHE
system formed of bosons), as well as other model wave functions, are particular
Jacks (see also section 3.1.1). We define bosonic Laughlin’s wave functions as
usual Laughlin’s wave functions divided by a Vandermonde determinant, i.e.
ψL =

∑N
i<j(zi− zj)r with r even. Haldane and Bernevig have shown that these

wave functions satisfy ψL = J
α1,r

λ0(1,r), where

• αk,r = −k+1
r−1 ;

• λ0(k, r) is the (k, r, N)-admissible partition which minimizes |λ0(k, r)|,
i.e. for k = 1 (10r−110r−1 . . . ).

The claim that ψL is a Jack is motivated in section 3.1.1, constructing HLB as
a sum of a constant and an operator which annihilates ψL.

We notice that, thank to the Jacks properties, the identification just de-
scribed is the key observation for the expansion of Laughlin’s wave functions on
the monomial basis, i.e. the non interacting N particle basis. This is discussed
in detail in section 3.1.1.

2.3.3 Jack antisymmetric functions

We have seen how Jacks can be useful for the study of bosonic systems, because
of their symmetry for the exchange of coordinates. We want to define an equiv-
alent class of antisymmetric functions to properly treat fermionic systems. We
can follow the same construction of Λ to construct the ring of antisymmetric
polynomials. A useful property of antisymmetric polynomials is that they are
divisible by the Vandermonde determinant, and that this ratio defines a symmet-
ric polynomial. Thus, we can build every antisymmetric function by multiplying
a symmetric function with the Vandermonde determinant. An useful basis of
antisymmetric functions are the Slater determinants slλ, which are nothing but
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completely antisymmetrized monomials. In particular, we remark that for N
fermions in the LLL, slλ’s play the same role as mλ’s for bosons. We also notice
that, as antisymmetrization (i.e. Pauli principle) prevents two variables to have
the same exponent in a homogeneous polynomial (i.e. two particles to be in the
same state), we can refer partitions to the partition of minimal degree (i.e. the
state of minimal angular momentum), which is (N −1, N −2, . . . , 2, 1, 0) if N is
the number of variables. Thus, we can rewrite a partition (λ1, λ2, . . . , λN ) for
N fermions as (λ1 − (N − 1), λ2 − (N − 2), . . . , λN ) without losing any kind of
information.

Now we want to define antisymmetric Jacks and the simplest (and with most
physical meaning) choice for this definition is (see [26])

Sα
λ′ = Jα

λ

∏
i<j

(zi − zj), (2.10)

i.e. the multiplication for a Vandermonde determinant, with λ′i = λi + N − i.
We can justify this by the fact that Laughin’s states and bosonic Laughlin’s
states differ only for the multiplication by a Vandermonde determinant. We are
using relative angular momenta λ′ as previously sketched.

In the following we will use Jacks properties that comes from the fact that
they are eigenfunctions of Laplace-Beltrami operator. Therefore we have to
construct an operator similar to the Laplace-Beltrami for antisymmetric Jacks.
The basic idea is to use equation (2.8) (where

[∑
i

(
λ2i +

λi

α (N + 1− 2i)
)]

=
Eα

λ ):

Eα
λS

α
λ′ = Eα

λ

∏
i<j

(zi − zj)J
α
λ

=
∏
i<j

(zi − zj)E
α
λJ

α
λ =

∏
i<j

(zi − zj)H
α
LB(J

α
λ ).

(2.11)

Then, by explicit calculation of (zi∂i)S
α
λ′ and (zi∂i)

2Sα
λ′ and some manipulations

(all the details are reported in [27]), we obtains that the right operator is

Hα
LB,F =

∑
i

(zi∂i)
2 +

1

2

(
1

α
− 1

)∑
i,j
i̸=j

[
zi + zj
zi − zj

(zi∂i − zj∂j)− 2
z2i + z2j
(zi − zj)2

]
,

(2.12)
with eigenvalues

Eα
λ′ =

∑
λ′i

[
λ′i − 2

(
1

α
− 1

)
i

]
+

(
1

α
− 1

)
[(N + 1)|λ′| −N(N − 1)] . (2.13)

Within this construction, Hα
LB,F is diagonal on Sα

λ′ with eigenvalue Eα
λ′ .

2.4 Jacks recursion law

The most important Jacks property for our purpose is that they admit a recur-
sion law for the coefficients of their expansion on the monomial basis. Because
of its importance in the following, we present the fundamental steps for its
derivation in this section (calculation details can be found in [27]). Moreover,
we present the analogue recursion law which exists also for the antisymmetric
Jacks we have just constructed (this relation is due to Bernevig, see [26]).
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2.4.1 Generic recursion laws

We say that an operator H acting on the symmetric/antisymmetric polynomials
has a triangular action on a particular basis {bλ} if

Hbλ = Cλ
λbλ +

∑
µ<λ

Cλ
µbµ, (2.14)

with Cλ
λ ̸= 0.

Let us consider such an operator H. We take an eigenvector fλ of H with
eigenvalue Eλ, i.e. Eλfλ = Hfλ. Moreover, we suppose that:

fλ = Xλ
λbλ +

∑
µ<λ

Xλ
µbµ with Xλ

λ ̸= 0, (2.15)

whereXλ
µ and Cλ

µ are suitable sets of coefficients. We notice that this hypothesis
is redundant, as triangularity and the eigenvector relation suffice to prove it.
Nevertheless, we have seen that this property is characterizing for Jacks and
thus we can use it directly in our manipulations.

Then, if we plug equation (2.15) into the eigenvector relation, we obtains:

Xλ
κ =

1

Eλ − Eκ

∑
µ

κ<µ≤λ

Xλ
µC

µ
κ , (2.16)

whose validity is guaranteed if Eλ’s are distinct for distinct λ’s. This relation
is recursive, and in particular we need an initial condition in order to use it.
When we deal with monic Jacks, this condition is Xλ

λ = 1.

2.4.2 Action of triangular operator

A physical point of view suggests us that we can understand two body operators
action on N particles by their action on 2 particles states (an example of this is
the second-quantization form of the two body operators). In polynomial spaces,
this means that we can study two body operators action on N variables basis
functions using their action on 2 variable basis functions.

Now we fix a particular {bλ} as the basis: in case of symmetric polynomials
we will use the symmetric monomial basis, in case of antisymmetric polynomials
we will use the slater determinants one.

We suppose that H satisfies

Hb(m,n) =

(m−n)/2∑
k=0

F
(m,n)
k b(m−k,n+k) for m > n,

Hb(m,n) = 0 for m = n.

(2.17)

The first requirement is the triangularity in 2 variables. The second one allows
us for a unified treatment of symmetric and antisymmetric cases. This further
hypothesis is automatically satisfied in the antisymmetric case; for the symmet-
ric one, in general it is not. However, if we take H as the Laplace-Beltrami
operator and bλ as the monomial basis, it is satisfied.

We use a “second quantization” formalism adapted to the polynomial ring
to study the action of H. This construction allows for the usage of physical
techniques and terminology to study polynomials. However, also an explicit
calculation bring to the correct result.
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Notations

We denote with Λ1 the space of one variable polynomials (with complex coef-
ficients and variables). We have seen how, having in mind the LLL, Λ1 can
be considered as a one particle Hilbert space. Its inner product is defined as
⟨r|s⟩ = δr,s, where |r⟩ = zr is the monomial basis (orthonormal for construc-
tion).

Analogously, we can see the space of k variable polynomials Λk as the k-
particle Hilbert space associated with Λ1, i.e. a space with a basis formed of
factored states |r1, . . . , rk⟩ = |r1⟩ ⊗ · · · ⊗ |rk⟩ = zr11 . . . zrkk and equipped with
the inner product ⟨r1, . . . , rk|s1, . . . , sk⟩ = ⟨r1|s1⟩ . . . ⟨rk|sk⟩ = δr1,s1 . . . δrk,sk .

We have now to choose the statistics of the particles: considering bosons
or fermions, we have indeed to restrict Λk to the spaces of, respectively, sym-
metric polynomials Λ+

k or antisymmetric polynomials Λ−k . Within this picture,
factored states |r1, . . . , rk⟩ and |s1, . . . , sk⟩ are different states only if {ri} is not
a permutation of {si}. We can then label factored states by partitions λ. These
partition must be such that l(λ) < k.

A basis for Λ±k is given by, respectively, the symmetric monomialsmλ = |λ+⟩
or the Slater determinants slλ = |λ−⟩. We notice that, due to symmetrization
and antisymmetrization procedures, the states |λ±⟩ are not normalized:

⟨
λ+
⏐⏐λ+⟩ = n1(λ)! . . . n∞(λ)!

k!
, (2.18)

⟨
λ−
⏐⏐λ−⟩ = 1

k!
. (2.19)

We can therefore normalize them using the correct coefficients.
We introduce creation and annihilation operators a†i and ai. In the fermionic

case, their action in the occupation number picture is:

a†i |n0, n1, . . . , ni, . . .⟩ = (−1)NSW |n0, n1, . . . , ni + 1, . . .⟩ ,

ai |n0, n1, . . . , ni, . . .⟩ =
{

|n0, n1, . . . , ni − 1, . . .⟩ for ni ̸= 0
0 for ni = 0

.
(2.20)

The same actions in the usual representation is:

a†i |λ⟩ = a†i |. . . , i, . . .⟩ = (−1)NSW |. . . , i+ 1, . . .⟩ ,

ai |λ⟩ = ai |. . . , i, . . .⟩ =
{

|. . . , i− 1, . . .⟩ for i ∈ λ
0 for i /∈ λ

,
(2.21)

The (−1)NSW is a statistics dependent factor due to the fact that construction
operators create a new particle in front of the partition. When we restore the
decreasing order, we have to perform a number NSW of swaps and we get the
factor because of the canonical anticommutation rules. For instance

a†2 |6, 3, 1, 0, . . .⟩ = a†2a
†
6a
†
3a
†
1 |0, 0, 0, 0, . . .⟩

= (±)2a†6a
†
3a
†
2a
†
1 |0, 0, 0, 0, . . .⟩ = |6, 3, 2, 1, . . .⟩ ,

(2.22)

where we have used the anticommutation rules.
We also introduce analogous creation and annihilation operators for the

bosonic case which satisfy the canonical commutation rules.
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Computation

Given a 2 body operator, its second quantization form is

H =
1

2

∑
r,s,m,n

⟨r, s|H |m,n⟩ a†ra†sanam, (2.23)

where a† and a are creation and annihilation operators we have defined above.
Here ⟨r, s| and |m,n⟩ are factored states, rather than (anti)symmetrized states.
This calculation is simpler if we use (anti)symmetric polynomials, and in order
to do this we notice that, as H is symmetric,

H =
1

2

∑
r,s,m,n

⟨r, s|H |m,n⟩ a†ra†sanam

=
1

2

∑
r,s,m,n

⟨r, s|S†±S±HS†±S± |m,n⟩ a†ra†sanam

=
1

2

∑
r,s,m,n

⟨r, s|±H |m,n⟩± a†ra†sanam,

(2.24)

where S± are (anti)symmetrization operators. Therefore we can without any
problem use (anti)symmetrized states in the calculation of the matrix element
⟨r, s|H |m,n⟩.

From now on we will drop the ± exponent of brakets, and we will consider
all brakets describing (anti)symmetrized states.

After the calculation of the matrix element, we obtain:

H |λ⟩ = 1

2

∑
r,s,m,n

⟨r, s|H |m,n⟩ a†ra†sanam |λ⟩

=
∑
µ≤λ

F
(m,n)
k (±)NSW |µ⟩ ,

(2.25)

where:

• the coefficients F
(m,n)
k are those introduced in equation (2.17);

• in the last line, µ = [λ1, . . . , λi − k, . . . , λj + k, . . . ] with λi = m and
λj = n, i.e., µ is a generic partition squeezed from λ;

• the factor (±)NSW , where + is for the bosonic case and − for the an-
tisymmetric, is caused by the reordering of µ after it is squeezed from
λ.

2.4.3 Jacks recursion law

We have defined Laplace-Beltrami operator Hα
LB as:

Hα
LB = K +

1

α
V =

∑
i

(zi∂i)
2 +

1

α

∑
i<j

zi + zj
zi − zj

(zi∂i − zj∂j). (2.26)

Now we have to calculate Hα
LB action on monomials mλ. We notice that K

is diagonal on each mλ with eigenvalue
∑

i λ
2
i . V is a two body operator. The
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explicit calculation of its action on two variables monomials m(n,p), by equation
(2.25), gives its action on generic monomials.

For this calculation, we suppose n > p:

V m(n,p) =

[
x+ y

x− y
(x∂x− y∂y)

]
(xnyp + xpyn)

= (n− p)

⎡⎣m(n,p) + 2

(n−p)/2∑
k=1

m(n−k,p+k)

⎤⎦ . (2.27)

Keeping the notation of the precedent sections, we have Cµ
κ = F

(n,p)
k =

2
α (n− p) for k ̸= 0 and F

(n,p)
0 = 1

α (n− p).

Now we can finally use equation (2.16) with Cµ
κ = F

(n,p)
k = 2

α (n− p) and we
obtain the Jacks recursion law

Xλ
κ =

2
α

Eλ − Eκ

∑
µ

κ<µ≤λ

Xλ
µ((κi + k)− (κj − k)), (2.28)

where κ = [κ1, . . . , κi, . . . , κj , . . . , κN ], µ = [κ1, . . . , κi + k, . . . , κj − k, . . . , κN ].

2.4.4 Antisymmetric Jacks recursion law

We have defined the antisymmetric Laplace-Beltrami operator Hα
F as:

Hα
F = K +

(
1

α
− 1

)
V

=
∑
i

(zi∂i)
2 +

(
1

α
− 1

)∑
i,j
i<j

[
zi + zj
zi − zj

(zi∂i − zj∂j)− 2
z2i + z2j
(zi − zj)2

]
.
(2.29)

Hα
F ’s action on Slaters slλ is calculated as for the bosonic case. K is again

diagonal on slλ with eigenvalue
∑

i λ
2
i . Regarding the two-particle part, the

calculation is similar to the bosonic one, and we obtain, supposing n > p and
using k = n− p:

V sl(n,p) = (n− p− 2)sl(n,p) + 2

(n−p)/2∑
l=1

(n− p− 2l)sl(n−l,p+l). (2.30)

Thus we have Cλ
µ = F

(n,p)
k =

(
1
α − 1

)
2(n − p − 2k) for k ̸= 0 and F

(n,p)
0 =(

1
α − 1

)
(n− p− 2).

Using equation (2.16) with Cµ
κ = F

(n,p)
k =

(
1
α − 1

)
2(n − p − 2k) we finally

obtain the recursion law for antisymmetric Jacks, i.e.

Xλ
κ =

2
(
1
α − 1

)
Eλ − Eκ

∑
µ

κ<µ≤λ

Xλ
µ(κi − κj)(−1)NSW , (2.31)

where κ = [κ1, . . . , κi, . . . , κj , . . . , κN ], µ = [κ1, . . . , κi + k, . . . , κj − k, . . . , κN ]
and NSW is the number of swap necessary to properly reorder the partition
after the squeeze.
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2.4.5 Remarks on recursion laws

The first remark we want to consider concerns the validity of the obtained
recursion laws. As we can see from equation (2.16), the recursion law are valid
if different Jacks have different eigenvalues. Otherwise, the denominator may
vanish. In [22], a lemma is given that solves the problem for positive α. It
states that if two partitions generate the same eigenvalue, the two partitions
are incomparable in the dominance order, thus they never belong to the same
“chain of squeezings”. For negative α, problems arise for the same negative
rational values we have discussed in section (2.3.2). In [26] it is shown that under
a limit prescription, every vanishing denominator is coupled with a vanishing
numerator, such that the coefficients are still finite numbers.

There is another observation regarding the recursion laws that we want to do.
They describe the decomposition of Jacks on the pure monomial basis. But we
have seen how LLL is generated by multiples of monomials. This is not relevant
in the following, nevertheless for completeness we write the decomposition on
normalized N particles wave functions:

Jα
λ =

∑
µ≤λ

cµ,λmµ =
∑
µ≤λ

cµ,λ
1

Nµ
Nµmµ =

∑
µ≤λ

cµ,λmµ, (2.32)

where cµ,λ = cµ,λ/Nµ are the coefficients of Jacks’ expansion over a differently
normalized monomial basis.
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Chapter 3

Fock-space construction of
Laughlin states

In this chapter we will use the theory of partitions, symmetric functions and
Jack polynomials in order to obtain the coefficients of the expansion of Laughlin
wave functions in the free-particles basis states. We will see that we are able to
pass from the recursion law obtained in the literature to a squeezing operator
which, acting on particular reference states, gives the Laughlin wave functions.
We will also use this operator to prove some symmetry properties of Laughlin
wave functions (which have been proved in the literature in other ways).

Finally we present another algorithm which can be used in order to obtain
the searched coefficients.

3.1 A long-standing problem

Laughlin’s wave functions (1.41) are the basis of our theoretical understanding
of the fractional quantum Hall effect. Although their explicit form as function
of the electron coordinates is available, when we deal with a large number of
particles it is rather difficult to use it, because of the computational difficulties
in manipulating large polynomials. Another possible way to write Lauhglin’s
wave functions is as their expansions in Slater determinants. As we have seen,
they are the anti-symmetrization of the factored single-particle states and they
form a basis of the Hilbert space (which in our case is restricted to the LLL).

An example of the usefulness of such an expansion is the following: if we want
to confront a model wave function (as Laughlin’s) with the result of the exact
diagonalization, we can profitably use the Slater determinants basis. Indeed
the matrix form of the Hamiltonian is computed usually using this basis, so the
overlap is easily evaluated if also the model wave function is expanded in Slater
determinants.

Another reason for finding the Slater determinant expansion is the calcula-
tion of expectation values of operators. In a second quantization formalism, we
write a single-particle operator as

O =
∑
k,k′

⟨k|O |k′⟩ a†kak′ , (3.1)
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where the index k labels a single-particle basis state. For simplicity, let us take
the case ⟨k|O |k′⟩ = o(k) δk,k′ , where δ is the Kronecker delta. Then we have

O =
∑
k

o(k) a†kak (3.2)

We have seen how Slater determinants in the LLL (i.e. for single-particle
functions of the form zm, without considering normalization and exponential
factor) are labelled by partitions. Therefore given the partitions λ and µ we
have the corresponding Slater determinant basis states |λ⟩ and |µ⟩, and

⟨λ|O |µ⟩ = δλ,µ
∑
i

o(λi), (3.3)

where λi are the entries in the usual representation, i.e. the angular momentum
of the particles. Writing Laughlin’s states |ψL⟩ as linear combination of Slater
determinants, i. e. |ψL⟩ =

∑
λ cλ |λ⟩, we can evaluate the expectation value

⟨ψL|O |ψL⟩ =
∑
λ

|cλ|2
(∑

i

o(λi)

)
. (3.4)

The important point is that this expectation value is obtained without any
integration or polynomial manipulation, when we have the expansion |ψL⟩ =∑

λ cλ |λ⟩.
The problem is that if we want to obtain such an expansion, we have to

expand the polynomial part of the Laughlin wave functions, i.e.
∏

i<j(zi− zj)q,
in the Slater determinant basis. In general, this requires the manipulation of
large polynomials. For instance, with two particles and filling factor ν = 1/3,
we have:

ψν=1/3(z1, z2) = (z1 − z2)
3 =

⏐⏐⏐⏐z31 1
z32 1

⏐⏐⏐⏐− 3

⏐⏐⏐⏐z21 z1
z22 z2

⏐⏐⏐⏐ = sl(3,0) − 3sl(2,1). (3.5)

When we consider just three particles, the expansion becomes more difficult

ψν=1/3(z1, z2, z3) =

⎛⎝⏐⏐⏐⏐⏐⏐
z21 z1 1
z22 z2 1
z23 z3 1

⏐⏐⏐⏐⏐⏐
⎞⎠3

=

⏐⏐⏐⏐⏐⏐
z61 z31 1
z62 z32 1
z63 z33 1

⏐⏐⏐⏐⏐⏐− 3

⏐⏐⏐⏐⏐⏐
z61 z21 z1
z62 z22 z2
z63 z23 z3

⏐⏐⏐⏐⏐⏐− 3

⏐⏐⏐⏐⏐⏐
z51 z41 1
z52 z42 1
z53 z43 1

⏐⏐⏐⏐⏐⏐
+ 6

⏐⏐⏐⏐⏐⏐
z51 z31 z1
z52 z32 z2
z53 z33 z3

⏐⏐⏐⏐⏐⏐− 15

⏐⏐⏐⏐⏐⏐
z41 z31 z21
z42 z32 z22
z43 z33 z23

⏐⏐⏐⏐⏐⏐
= sl(6,3,0) − 3sl(6,2,1) − 3sl(5,4,0) + 6sl(5,3,1) − 15sl(4,3,2).

(3.6)

Even using a dedicated computer program, this task becomes soon impossible
to be performed if we continue increasing the particle number.

However, in these two expansions we can see that the coefficients are always
integer numbers. This is an hint that a combinatorial interpretation of these

46



expansions may exists. Following this intuition, Dunne [13] found a formula
for the expansion coefficients which relies on the following observations. The
(polynomial part of) Laughlin wave functions are just V 2m+1, where V is the
Vandermonde determinant and m is an integer. So, dividing by V , we obtain

ψLaughlin

V
= V 2m =

∑
λ

aλSλ, (3.7)

where we have used that a symmetric function can be expanded in the basis of
Schur functions. Expanding the Laughlin wave functions in the Slater determi-
nant basis, we can also write

ψLaughlin

V
=
∑
λ

bλ
slλ
V

(3.8)

and so, because slλ/V = Sλ (using the Schur functions definition, given in
section 2.2.1) we have bλ = aλ. Therefore we can expand V 2m in the Schur
functions basis in order to obtain the coefficients. The expansion of V 2m in the
power sum basis is rather simple to obtain, as we can see taking for instance
m = 1:

V 2 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐
1 1 · · · 1
z1 z2 · · · zN
...

... · · ·
...

zN−11 zN−12 · · · zN−1N

⏐⏐⏐⏐⏐⏐⏐⏐⏐

⏐⏐⏐⏐⏐⏐⏐⏐⏐
1 z1 · · · zN−11

1 z2 · · · zN−12
...

... · · ·
...

1 zN · · · zN−1N

⏐⏐⏐⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐⏐⏐⏐
N p1 · · · pN−1
p1 p2 · · · pN
...

... · · ·
...

pN−1 pN · · · p2N − 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐
=
∑
σ

(−1)σpµσ ,

(3.9)

where the sum in the last line is done over the permutation of 1, 2, . . . , N and
the partition µσ is given by

µσ = {σ(1)− 1, σ(2), σ(3) + 1, . . . , σ(N) +N − 2}. (3.10)

From this expansion, the Frobenius’ formula allow us to pass in the Schur func-
tion basis, and we get (the details are explained in [13]) the final formula for
the coefficients

aλ = N
∑

σ with σ(1)=1

(−1)σχλ
µp

+
∑

σ with σ(1)̸=1

(−1)σχλ
µp
, (3.11)

where the χλ
µp

are given by the Frobenius’ formula, i.e.

pλ =
∑
µ

χλ
µSµ. (3.12)

These coefficients are called characters of the symmetric group and they are
always integers.

This algorithm has two main advantages:
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• it allows us to calculate the coefficients without making any manipulation
which uses polynomials;

• it makes us understand why all the coefficients of Laughlin expansion in
the Slater determinant basis are integers.

However, this method also has some limits:

• in order to use equation (3.11), we have to know the characters χλ
µp

and
an efficient algorithm for their calculation is not available;

• equation (3.11) gives us little information about the thermodynamic limit
(N → ∞), because we have not an explicit formula for the characters χλ

µp
.

This last point is the most problematic: indeed real systems have very large
N (typical electron densities in FQHE experiments are between 1015 and 1017

m−2) and so we are especially interested in results valid in this limit. Therefore
Dunne and other authors [14] have tried to use the just presented result in order
to find expressions for the coefficients which are valid for large N , without great
success.

There is also another problem: we know that Laughlin wave functions do not
describe all the observed plateaux and Dunne’s approach is difficult to generalize
to other proposed model wave functions.

These problems have encouraged the research for other possible paths and
the first big progress was made by Bernevig and Haldane [25], who recognised
Laughlin wave functions to be Jack polynomials.

3.1.1 Bernevig’s recursion law

Following Bernevig and Haldane [25], we show that bosonic Laughlin wave func-
tions are Jack polynomials. The first step is the definition of the operator

DL,r
i =

∂

∂zi
− r

∑
j(̸=i)

1

zi − zj
. (3.13)

Now, if ψr is the Laughlin wave function which describes the system at filling
factor 1/r, we can prove via direct calculation that

DL,r
i ψr = 0, (3.14)

where r is an even integer. Therefore the following relation holds:∑
i

ziD
L,−1
i ziD

L,r
i ψr = 0. (3.15)

Now the important remark is that
∑

i ziD
L,−1
i ziD

L,r
i is the Laplace-Beltrami

operator (2.7) with parameter α = −2/(r − 1), minus a constant E (which is
rN(N − 1)(N + 1 + 3r(N − 1))/12). Therefore we can write

(Hα
LB − E)ψr = 0 (3.16)

and so
Hα

LBψr = Eψr. (3.17)
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Then ψr is a Jack with parameter α = −2/(r − 1), but we need to find also its
labelling partition, which we will call root partition. We notice that the obtained
class of parameters α is the same of equation (2.9) with k = 1. Therefore, as
we have seen in section 2.3.2, there is a (k, r, N)-admissibility condition which
the root partition has to satisfy. Using this observation, we can obtain the
root partition. We know from the Laughlin wave functions, given in equation
(1.41), that ψr describes a state of total angular momentumM = N(N−1)r/2.
Therefore the root partition λ must have |λ| = M . Now, let us consider the
partition

λ0(1, r) = (1, 0, 0, . . . , 0  
r−1 times

, 1, 0, 0, . . . , 0  
r−1 times

, 1, . . . ), (3.18)

which satisfies the (k, r, N)-admissibility condition, with k = 1. For this
partition we have

|λ| =
∑
i

r(N − i) = r
1

2
N(N − 1). (3.19)

We can easily convince ourselves that this is the only partition which satisfies
the (1, r, N)-admissibility condition and has |λ| = M : if we move a 1 in the
occupation number representation (3.18), in order to keep |λ| constant we have
necessarily to violate the (1, r, N)-admissibility condition and vice-versa.

Since we have proved that bosonic Laughlin wave functions are Jacks, we
can use all the results presented in the previous chapter. In particular, we can
write the expansion

ψr = Jα
λ0
r
=
∑
µ≤λ0

r

cµ,λ0
r
mµ, (3.20)

where the sum involves only the root partition and all the partitions we can
obtain from it by squeezing. We also know that there is a recursion law which
allow us to write (from equation (2.28))

cκ,λ0
r
=

2/α

ρλ0
r
− ρκ

∑
µ

κ<µ≤λ

cµ,λ0
r
((κi + k)− (κj − k)) (3.21)

where κ = [κ1, . . . , κi, . . . , κj , . . . , κN ], µ = [κ1, . . . , κi + k, . . . , κj − k, . . . , κN ],
i.e. κ is squeezed from µ, and

ρλ =
∑
i

λi(λi −
2

α
i). (3.22)

The use of ρλ here instead of Laplace-Beltrami eigenvalues Eλ used in equation
(2.28) is justified because we can readily prove that

ρλ − ρµ = Eλ − Eµ (3.23)

if µ < λ.

3.1.2 Fermionic case

The results just obtained are valid only for the bosonic Laughlin wave functions,
but we know that the actual Laughlin wave functions are the fermionic ones.
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Thus, we can use the antisymmetric Jacks theory developed in the previous
chapter in order to describe such states. This approach is the same used in [26]
by Thomale, Estienne, Regnault and Bernevig. The key point is that

ψ2m+1 = V ψ2m, (3.24)

where ψq denotes the Laughlin state with filling factor 1/q, m is an integer and
V is the Vandermonde determinant. Using the definition of antisymmetric Jacks

(2.10) and the fact just proved that (r being an even number) ψr = J
α(r)
λ0
r

, we

obtain that ψr+1 is an antisymmetric Jack with parameter α = −2/(r− 1) and
root partition λ′0r+1 = λ0r +N − i, i.e. of the form

λ′0r+1 = (1, 0, . . . , 0  
r times

, 1, 0, . . . , 0  
r times

, 1, . . . ). (3.25)

We can expand ψr in the Slater determinant basis (here S denotes an anti-
symmetric Jack)

ψr = Sα
λ =

∑
µ≤λ

bµλslµ, (3.26)

where again the sum concerns only the root and the partition squeezed from it.
We notice that in the fermionic case each entry of the partition has to be 0 or
1 due to the Pauli principle.

Using the recursion law (2.31), we can write for the coefficient of the expan-
sion

bκλ =
2( 1

α − 1)

ρFλ − ρFκ

∑
µ

κ<µ≤λ

bκλ(κi − κj)(−1)NSW . (3.27)

where κ = [κ1, . . . , κi, . . . , κj , . . . , κN ], µ = [κ1, . . . , κi + k, . . . , κj − k, . . . , κN ],
NSW is the number of swap necessary to properly reorder the partition after
the squeeze and ρFλ =

∑
i λi(λi +2i(1− 1/α)). We notice that NSW is equal to

the number of fermions that the two particles involved in the squeezing process
have to pass through.

Now we present the advantages of this Jacks-based method:

• this algorithm is noticeably faster than Dunne’s approach and it has been
applied to increase the maximally reachable system in finite-size studies;

• in [25] and [26] it has been shown that not only the Laughlin wave functions
are Jack polynomials. For instance, we can describe with Jack also the
bosonic non-abelian Read-Rezayi states and their (as well as Laughlins’)
quasihole excitations. However, which FQHE states can be seen as Jacks
and which not it is not yet well understood;

• this kind of approach has allowed the discovery of a new symmetry of the
expansion coefficients, named “product rule”. This symmetry appears
when we consider a partition squeezed from the root that has the special
property that two parts of it can be identified as partition squeezed from
roots of smaller systems sizes. For example, we consider the partition
(0110000110), which is squeezed from (1001001001), i.e. the root partition
of the fermionic case with ν = 1/3, N = 4. The two sub-part (011000)
and (0110) can be seen as squeezed from (1001), i.e. the root of the case
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ν = 1/3, N = 2. The product rule symmetry says that the product of the
two coefficients obtained from the N = 2 systems gives the coefficient of
the N = 4 partition.

3.2 Beyond the recurrence relation: squeezing
operator

Until now there is a considerable difference between the bosonic and the fermionic
recursion laws, i.e. between equation (3.21) and (3.27). We can generalize these
recursion laws and eliminate this difference introducing the squeezing operator.

We introduce the creation and destruction operators a†x and ax which create
and destruct a 1 in the x-th position in the occupation number representation of
a partition (i.e. a particle with angular momentum x), with [ax, a

†
x]± = 1 where

the upper (lower) sign is for the bosonic (fermionic) case. These operators are
canonical and so their action is

a†i |n1, . . . , ni, . . .⟩ =
√
ni + 1 |n1, . . . , ni + 1, . . .⟩ ;

ai |n1, . . . , ni, . . .⟩ =
√
ni |n1, . . . , ni − 1, . . .⟩ if ni > 0;

ai |n1, . . . , ni, . . .⟩ = 0 if ni = 0

(3.28)

for the bosonic case, while for the fermionic case we have

a†i |n1, . . . , ni, . . .⟩ = (−1)n1+n2+···+ni−1 |n1, . . . , ni + 1, . . .⟩ if ni = 0;

a†i |n1, . . . , ni, . . .⟩ = 0 if ni = 1;

ai |n1, . . . , ni, . . .⟩ = (−1)n1+n2+···+ni−1 |n1, . . . , ni − 1, . . .⟩ if ni = 1;

ai |n1, . . . , ni, . . .⟩ = 0 if ni = 0.

(3.29)

We also introduce the squeezing operator :

U =

∞∑
s

∞∑
t=1

∞∑
u=t

(u± t) a†s+t a
†
s+u N as+t+u as , (3.30)

where the operator N is diagonal on basis states (Slaters or monomials) and it
is given by (n̂m = a†mam is the number operator)

N =
(√

(n̂s+u + 1) (n̂s+t + 1) (n̂s + 1) (n̂s+t+u + 1)
)−1

. (3.31)

We notice that the eigenvalue of N is always 1 in the fermionic case, while
in the bosonic case it exactly compensates the factors which come from the
creation/destruction operators, according to equations (3.29).

We have seen previously that the operatorial part a†s+t a
†
s+u as+t+u as (N is

diagonal, so it does not change the action of the operator except for a numerical
factor) represent a squeeze in which the particles in sites s and s + t + u are
moved of t sites toward each other (in figure 3.1, 3.2, 3.3, 3.4 and 3.5 there are
some example of squeezing chains obtained by repeated actions of the squeez-
ing operator). Therefore the operator (3.30) do all the possible squeezes to a
partition, weighing each squeeze with the initial or final distance (respectively
for bosons or fermions) of the two particles just squeezed.
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(420)

(330)

(321)

(411)

(222)

Figure 3.1: The whole graph obtained with the subsequent action of the squeez-
ing operator (3.30) for N = 3 bosons, with filling factor 1/2. On the left it is
represented the partition graph, in which each vertex contains a state, labelled
with a partition in the occupation number representation. On the right there is
the same graph, with the intuitive site and particle representation.

(1001001)

(0110001)

(0101010)

(1000110)

(0011100)

Figure 3.2: The whole graph obtained with the subsequent action of the squeez-
ing operator (3.30) for N = 3 fermions, with filling factor 1/3. Each vertex
contains a state, labelled with a partition in the occupation number representa-
tion. The red edges correspond to squeezes that make the two fermions squeezed
closer of more than one position.
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Considering fermions for instance, an example of the squeezing operator
action is (we recall that we can use a partition to label a Slater determinant
basis state):

U |1, 0, 0, 0, 0, 1⟩ = 3|0, 1, 0, 0, 1, 0⟩+ |0, 0, 1, 1, 0, 0⟩ . (3.32)

Finally we introduce the “weight” operator Qq
λ, defined by

Qq
λ =

k(q)

⟨λ| Q̃ |λ⟩ − Q̃
, (3.33)

where −k(q) is the largest odd integer for which it holds −k(q) ≤ q, 1/q is the

filling factor and Q̃ =
∑

s(s(s −
∑

t<s k(q) n̂t))n̂s. If we denote with ρν the

eigenvalue of Q̃ relative to its eigenstate |ν⟩, we obtain

Qq
λ|µ⟩ =

k(q)

ρλ − ρµ
|µ⟩ , (3.34)

where

ρλ(q) =

N∑
i=1

λi(λi − ik(q)). (3.35)

Therefore Qq
λ is a diagonal operator in the Slater determinant or permanent

basis, whose purpose is to “weight” these states, hence the name weight operator.
We remark that, with our definition of k(q), the difference ρλ − ρµ is a

generalization of the two differences in the denominators of equations (3.21)
and (3.27). Indeed k(q) is exactly 2/α for bosons and 2( 1

α − 1) for fermions, as
we can see from the following reasoning. Let us suppose that the filling factor
is ν = 1

q . We have obtained that in the bosonic case the corresponding Jack

is the one with α = − 2
q−1 , with q even. In this case, the factor 2

α in equation

(3.21) is therefore −(q − 1). On the other hand, in the fermionic case, we have
seen that if we have the filling factor ν = 1

q with q odd it holds:

α = − 2

(q − 1)− 1
= − 2

q − 2
. (3.36)

In this case the factor 2( 1
α − 1) in equation (3.27) is simply −q. So in both case

the factor in the recurrence relations and in ρ is the largest odd integer that
most approaches q, with a minus sign.

Now, let us define the state:

|ψ⟩ = (I−QU)−1|λ⟩ =
(
I+QU + (QU)2 + · · ·

)
|λ⟩ , (3.37)

where |λ⟩ is a state of the kind described in equations (3.18) and (3.25), i.e.
|λ⟩ =

⏐⏐1, 0q−1, 1, 0q−1, . . .⟩ for filling factor ν = 1
q .

We want to prove that the recurrence relation between the coefficients of the
state (3.37) expansion in the Slater determinant/monomial basis is given by

bµ =
k

ρλ − ρµ

∑
θ

µ<θ≤λ

(θi−θj)
(µi−µj)

bθ(±1)Nsw , (3.38)
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that is, the equations (3.21) and (3.27). In order to do it, we expand the state
(3.37) in the Slater determinant/monomial basis

|ψ⟩ =
∑
µ

bµ|µ⟩ (3.39)

and then, multiplying for ⟨ν| and using ⟨ν|µ⟩ = δνµ, we obtain:

bν = ⟨ν|(I−QU)−1|λ⟩ . (3.40)

Now there are two possibility: if ν = λ, we obtain bλ = 1 . If ν ̸= λ, ⟨ν|λ⟩ = 0
and so:

bν = ⟨ν|QU (I+QU + (QU)2 + · · · )|λ⟩ = ⟨ν|QU |ψ⟩ (3.41)

We can evaluate it using that:

⟨ν|QU =
[
(QU)†|ν⟩

]†
= [q(ν)U†|ν⟩]† (3.42)

where q(ν) is the eigenvalue of Q corresponding to the eigenstate |ν⟩. Therefore
we need to calculate U†|ν⟩. U† is the adjoint operator of U , namely the “anti-
squeezing” operator :

U† =
∞∑
s

∞∑
t=1

∞∑
u=t

(u± t) a†s+t+u a
†
s N as+t as+u. (3.43)

Applying that to |ν⟩ we obtain non-zero terms only when s + u = νj and
s + t = νi, with νi > νj and νi, νj any two filled sites of |ν⟩. Moreover, if we
are in the bosonic case, the eigenvalue of N exactly compensates the factors
which come from the action of the creation/destruction operators, while in the
fermionic case we obtain the familiar factor (−1)NSW because of their action.
We can then write the result as:

U†|ν⟩ =
∑
θ;ν>θ

(θi−θj)
(νi−νj)

(−1)NSW |θ⟩ . (3.44)

where the sum over the partition θ is another way to write the sum over index
i and j (namely, i and j are biunivocally linked to the partition θ that we get
after the anti-squeezing process). We can understand the difference between
the bosonic and the fermionic case by considering that t + u is the final (i.e.
after the anti-squeezing process) distance between the two squeezed particles
and t− u is the initial distance between them.

Using now the adjoint of equation (3.44) in the equation (3.41), we obtain:

bν = q(ν)
∑
θ;ν>θ

(θi−θj)
(νi−νj)

(−1)Nsw⟨θ|ψ⟩ (3.45)

and then, observing that ⟨θ|ψ⟩ = bθ, we obtain the recurrence relation (3.38).
Until now we have written the weight operator Q in a unified (i.e. in a

statistic-independent) fashion, but we can do the same for the squeezing oper-
ator U . In order to do this, we exchange indices t and u in the second term of
equation (3.30) to get

U =

∞∑
s

∞∑
t=1

∞∑
u=t

u a†s+t a
†
s+u N as+t+u as ±

∞∑
s

∞∑
u=1

∞∑
t=u

u a†s+u a
†
s+t N as+t+u as.

(3.46)
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The permutation of the creation operators in the second term compensates
the sign. Next, we exchange the order of the sums over t and u (

∑∞
u=1

∑∞
t=u =∑∞

t=1

∑t
u=1) and we get, adding the two terms (t = u is double term):

U =

∞∑
s=0

∞∑
t=1

∞∑
u=1

u a†s+t a
†
s+u N as+t+u as +

∞∑
s,t=1

t a†s+t a
†
s+t N as+2t as. (3.47)

The second term is non-zero for bosons, and describes a sum of squeezing oper-
ators: two particles are removed from s and s+ 2t and placed on site s+ t.

In conclusion, with the squeezing operator U written as in equation (3.47)

and with the weight operator Q
(q)
λ defined in equation (3.33) we can write in a

unified fashion bosonic and fermionic Laughlin wave function as:

|ψ(q)
L ⟩ = 1

I−QqU
|λ⟩ . (3.48)

where the partition λ is built up using q following the rule

|λ⟩ =
⏐⏐1, 0q−1, 1, 0q−1, . . .⟩ . (3.49)

3.2.1 Are we considering all the partitions?

We have seen that Jacks expansion involves the root partition and those squeezed
from it. In [26] the squeezing operation is defined as the movement of two parti-
cle one toward the other of one site. Our definition of squeeze is “more general”,
because the operatorial part of (3.47) moves the particles of t sites. The algo-
rithm presented in [26], however, use the first type of squeeze only to find the
involved partitions, thereafter all the types of squeeze are used in the coefficient
calculations. Therefore, if the state (3.48) has the correct terms, it also has the
correct coefficients, because they are univocally determined from the recursion
law and the fact that we take bλλ = 1.

In this section we prove that the operator (3.47) creates exactly the same
states that can be created using only the first type of squeeze. Indeed, we
just have to show that each squeeze in which the particles are shifted toward
each other of more than one unit in angular momentum (or lattice position or
quantum number) can be obtained composing squeezes in which the particles
are shifted toward each other of only one unit (see also figure 3.5).

A squeeze of the first type is obtained as the action of the operator:

As,u = a†s+1 a
†
s+u as+u+1 as . (3.50)

A squeeze of the second type is, in contrast, the result of the action of the
operator:

At
s,u = a†s+t a

†
s+u as+u+t as , (3.51)

with t > 1. In figure 3.2 we highlight with red edges some examples of second
type squeezes, while the black edges represent first type squeezes.

We want to prove that we can always obtain At
s,u with subsequent action of

As,u. There is a better notation for squeezing operators for our current purpose.
We denote with Aℓ

a,b the squeezing operator which squeezes the particles in sites
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1001001001

0110001001

0101010001

0011100001 0101001010
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0001111000

1000110001

1000101010
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1001000110

0100101100

0110000110

0011010010

0100110010

0010110100

Figure 3.3: The whole graph obtained with the subsequent action of the squeez-
ing operator (3.30) for N = 4 fermions, with filling factor 1/3. Each vertex
contains a state, labelled with a partition in the occupation number represen-
tation. Each edge corresponds to a squeeze.

10000100001

01001000001

0011000000101000100010

00100100100

00010101000

00001110000

10000010010

10000001100

00101000010

00011000100

01000010100

00100011000

Figure 3.4: The whole graph obtained with the subsequent action of the squeez-
ing operator (3.30) for N = 3 fermions, with filling factor 1/5. Each vertex
contains a state, labelled with a partition in the occupation number represen-
tation. Each edge corresponds to a squeeze. Comparing this graph with the
one in figure 3.2, we notice that if we increase the filling factor, the number of
involved partitions increases considerably.
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a and b, shifting them of ℓ steps toward each other (if no ℓ is specified, we imply
ℓ = 1).

We consider the state

|s⟩ = |µ1, . . . , µn, ν1, . . . , νm⟩, (3.52)

written in the usual representation, with N = n+m particles in lattice positions
µ1 > · · · > µn > ν1 > · · · > νm. We want to show that the action of operator
Aℓ

µ1,νm
can be obtained as subsequent actions of operators Aa,b, with ν1 <

µ1 − ℓ < µn and µn > νm + ℓ > ν1. We remark that before µ1 and after νm,
as between µ1 − ℓ and νm + ℓ, we can have anything: this do not change in any
way the proof we are giving.

Let us consider only the two more internal particles, i.e. the state |µn, ν1⟩.
Without any loss in generality, we suppose that µn − (µ1 − ℓ) > (νm − ℓ)− ν1.
If we apply the operator Aµn,ν1

, we get:

Aµn,ν1
|µn, ν1⟩ = |µn − 1, ν1 + 1⟩ . (3.53)

We can now apply the operator Aµn+1,ν1−1 and continue doing so, until we
reach the state |µn− ℓ′, ν1+ ℓ′⟩, with ν1+ ℓ′ = νm+ ℓ, and so ℓ′ = (νm+ ℓ)−ν1.
Therefore we have put the particle that was in ν1 in the position where, applying
Aℓ

µ1,νm
to the state |s⟩, would have jumped the particle that was in νm.

This is the trick: we shift (one at a time) µn and ν1 to the position (respec-
tively) of µn + ℓ and ν1 − ℓ. Thereafter we shift each other fermion labelled
with µ of the state |s⟩ to the position of the following and each other fermion
labelled with ν to the position of the preceding.

Therefore we proceed. Now we manage the state

|s′⟩ = |µ1, . . . , µn + ℓ′, [· · · ], ν2, . . . , νm⟩ (3.54)

([· · · ] denotes all the particles that we have already put in their final position) ex-
actly like the state |s⟩: we consider only the more internal part, |µn+ℓ

′, [· · · ], ν2⟩,
and we move the particle with first-type squeezes, until one of them reaches its
final position (which are, in this case, µn + ℓ and ν1).

We can iterate this process until we obtain the state (we suppose that in
the previous step we used µ1 in the squeezes and not νm, without any loss in
generality):

|s(n)⟩ = |µ1 + a, [· · · ], νm⟩ . (3.55)

Again we do first-type squeeze until one of the two particles reaches his
final position. The other will always do the same, because of the total angular
momentum (i.e. the sum of the partition entries) conservation. Indeed, the
states Aℓ

µ1,νm
|s⟩ and |s⟩ have the same total angular momentum, like every

state we can reach starting from |s⟩ and doing (any type of) squeezes. So the
final state too must have the same total angular momentum, and so if it has
N − 1 particles in the same position as Aℓ

µ1,νm
|s⟩, the N -th is fixed by the total

angular momentum conservation law.

3.3 Other results

3.3.1 Another proof of Bernevig’s product rules

Here we prove Bernevig’s product rules using our squeezing-operator formalism.
We consider a state |ν⟩ = |ν1ν2⟩ which can be obtained via squeezing from
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Figure 3.5: Part of the graph obtained with the subsequent action of the squeez-
ing operator (3.30) for N = 5 fermions, with filling factor 1/3. Each vertex con-
tains a state, labelled with a partition in the occupation number representation.
Each edge corresponds to a squeeze. In this graph only the squeezes that shift
the particles toward each other of one position are considered, in order to make
the graph human-readable. As proved in section 3.2.1, the partitions which are
linked by these squeezes are the same we would have obtained if we had used
all the possible squeezes.
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|λ⟩ = |λ1λ2⟩, where |ν1⟩ is a squeezed of |λ1⟩, |ν2⟩ of |λ2⟩. We define the
operator

S = I−QU (3.56)

where Q is the weight operator (3.33) and U the squeezing operator (3.30).
With these definitions, the coefficient bν of the partition |ν⟩ in Laughlin wave
function expansion is given by

bν = ⟨ν1ν2|ψL⟩ = ⟨ν1ν2|S−1|λ1λ2⟩
= ⟨ν1ν2|S−1S1 ⊗ S2

∑
µ1,µ2

|µ1µ2⟩⟨µ1µ2|S−11 ⊗ S−12 |λ1λ2⟩

=
∑
µ1,µ2

⟨ν1ν2|S−1S1S2|µ1, µ2⟩bµ1
bµ2

,

(3.57)

where S1 and S2 act respectively only on the first and the second sub-partition,
i.e. S1⊗S2 |µ1µ2⟩ = (S1 |µ1⟩)(S2 |µ2⟩). We notice that with the step ⟨µ1µ2|S−11 ⊗
S−12 |λ1λ2⟩ = bµ1

bµ2
, the sum now involves only the partitions µ1 and µ2 ob-

tainable by squeezing from λ1 and λ2. We explicit S1 = I−Q1U1 and same for
S2 and we obtain:

(3.57) =
∑
µ1,µ2

bµ1bµ2⟨ν1ν2|S−1(I−Q1U1 −Q2U2 +Q1U1Q2U2)|µ1, µ2⟩

=
∑
µ1,µ2

bµ1
bµ2

⟨ν1ν2|(I+O +QUO +QUQUO + · · · )|µ1, µ2⟩

= bν1
bν2

+
∑
µ1,µ2

bµ1
bµ2

⟨ν1ν2|O|µ1, µ2⟩+ . . . ,

(3.58)

where we have defined O = QU − Q1U1 − Q2U2 + Q1U1Q2U2. Now, we prove
that

∑
µ1,µ2

bµ1
bµ2

⟨ν1ν2|O|µ1, µ2⟩ = 0 if |ν1ν2⟩ is not-mixed, i.e. ν1 can be
squeezed from λ1 and ν2 from λ2 (we have never used this hypothesis until this
point). In this case we obtain the product rule, because for the generic term in
(3.58), the following relation holds:∑

µ1,µ2

bµ1
bµ2

⟨ν1ν2|QU · · ·QU
∑
η

|η⟩⟨η|O|µ1, µ2⟩ ∝
∑
µ1,µ2

bµ1
bµ2

⟨η|O|µ1, µ2⟩,

(3.59)
where, if |ν1ν2⟩ is not-mixed, |η⟩ is not-mixed too. Indeed ⟨ν1ν2|QU · · ·QU |η⟩ =
0 if one or more of QU mix, because a mixing squeeze increases the total angu-
lar momentum of a semi-partition (the one with lower angular momenta) and
decreases that of the other (the one with higher angular momenta).

So we just need to show that
∑

µ1,µ2
bµ1

bµ2
⟨ν1ν2|O|µ1, µ2⟩ = 0.∑

µ1,µ2

bµ1
bµ2

⟨ν1ν2|O|µ1, µ2⟩

=
∑
µ1,µ2

bµ1
bµ2

⟨ν1ν2|QU |µ1, µ2⟩ −
∑
µ1,µ2

bµ1
bµ2

⟨ν1ν2|Q1U1|µ1, µ2⟩+

−
∑
µ1,µ2

bµ1bµ2⟨ν1ν2|Q2U2|µ1, µ2⟩+
∑
µ1,µ2

bµ1bµ2⟨ν1ν2|Q1U1Q2U2|µ1, µ2⟩.

(3.60)
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Now, because of the recursion law, it holds that
∑

µ bµ⟨ν|QU |µ⟩ = bν . We
also notice that

U =

∞∑
s

∞∑
t=1

∞∑
u=t

(u− t) a†s+t a
†
s+u as+t+u as

=

⎛⎝N−1∑
s=0

N/2∑
t=1

N/2∑
u=t

+

∞∑
s=N

∞∑
t=1

∞∑
u=t

+

N−1∑
s=0

N/2∑
t=1

∞∑
u=N/2

⎞⎠ (u− t) a†s+t a
†
s+u as+t+u as

= U1 + U2 + Umix,

(3.61)

in the case in which l(λ1) = l(λ2) = l(λ)/2 (l(λ) is the length of the partition
λ). The numbers 1 and 2 refers to the first and the second half of the original
partition (but the same argument can be used to write U = U1 + U2 + Umix

when the partition is split in any point). Using this relation, we get

(3.60) =
∑
µ2

bν1
bµ2

⟨ν1ν2|QU2|ν1, µ2⟩+
∑
µ1

bµ1
bν2

⟨ν1ν2|QU1|µ1, ν2⟩ − bν1
bν2

= bν1
bν2

⟨ν1ν2|Q(Q−11 +Q−12 )|ν1ν2⟩ − bν1
bν2

(3.62)

(as intermediate step, we insert I = Q−12 Q2 between Q and U2, and the same
with the other term and we use again the recursion law).

Now, we assume that (we will prove this using the symmetry discussed in
the next section):

Q|a, b⟩ = k

ρλaλb
− ρab

|a, b⟩ = k

ρλa
− ρa + ρλb

− ρb
|a, b⟩, (3.63)

where k is a constant. So, because Q1|a, b⟩ = k
ρλa−ρa

|a, b⟩ and Q2|a, b⟩ =
k

ρλb
−ρb

|a, b⟩, we immediately get

⟨ν1ν2|Q(Q−11 +Q−12 )|ν1ν2⟩ = 1 (3.64)

and the product rules are proved.

3.3.2 Symmetries and the squeezing operator

In his work, Dunne proves a Laughlin wave functions symmetry that here is ob-
tained using our squeezing operator. This allow us to generalize this symmetry
to each FQHE state for which equation (3.48) holds.

We have seen before that a state that can be labelled by a partition can also
be seen as a sequence of empty/full sites (i.e. the partition in its occupation
number representation). In this case, the filling factor is related to the barycenter
of the state: indeed each state involved in the expansion of a Laughlin state at
fixed filling factor, has the same barycenter.

Now we define the operator I, that reverses the state with respect to its
barycenter. So, for example,

I|1000110⟩ = |0110001⟩. (3.65)
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Using the usual representation, the same example reads:

I|621⟩ = |540⟩. (3.66)

Now we want to show that the Laughlin state is invariant under this op-
erator. The squeezing operator commutes with I, because it only depends on
differences of angular momenta. On the other side, the weight operator is less
trivial: we need to prove that ρλ =

∑
i

[
λ2i + kiλi

]
is invariant under the ac-

tion of I. Explicitly, if the filling factor is ν = 1/q it holds that (in the usual
representation)

I|λ1, . . . , λN ⟩ = |[(N − 1)q − λN ], . . . [(N − 1)q − λ1]⟩. (3.67)

In this case we obtain∑
i

[(N − 1)q − λi] = (N − 1)2q2N − 2(N − 1)q
∑
i

λi +
∑
i

λ2i

=
∑
i

λ2i
(3.68)

where we have evaluated
∑

i λi using the root partition, so

∑
i

λi =

N−1∑
l=0

ql = q
1

2
N(N − 1). (3.69)

We also have∑
n

[(N − 1)q − λn] (N − n+ 1)

= N2(N − 1)q −
∑
n

n(N − 1)q −N
∑
n

λn +
∑
n

nλn +
1

2
N(N − 1)q

=
∑
n

nλn

(3.70)

where (N −n+1) is the position of the element [(N − 1)q − λn] in the inverted
partition, if n was the position of λn in the original partition, as we can see
from equation (3.67).

Now we are ready to prove the equation (3.63): using the definition of ρ
given in equation (3.35), we can easily verify that

ρλaλb
− ρab = ρλaλb

− ρaλb
+ ρλaλb

− ρλab. (3.71)

Moreover, always from the equation (3.35) follows that

ρλaλb
− ρaλb

= ρλa
− ρa. (3.72)

The other equation, i.e.

ρλaλb
− ρλab = ρλb

− ρb, (3.73)

follows instead from the symmetry argument just given: indeed ρλaλb
= ρλbλa

and ρλab = ρbλa
.
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3.3.3 A different algorithm for the coefficients

In this section we want to present another possible algorithm for the calculation
of coefficients of Laughlin wave functions expansion in the Slater determinant
basis. Unfortunately, we have not been able until now to complete the proof,
but numerical results seems to confirm the correctness of this algorithm.

A limit of the algorithm that use equation (3.27) is that in order to calcu-
late the coefficient of a given state |ν⟩ we have to know all the coefficients of
the states from which we can reach |ν⟩ with one squeeze. Increasing N , the
coefficients calculation rapidly became an impossible task even using the most
high-performance computers. If we want to find a better algorithm, we have to
introduce a new identity. It come from a study made by Seidel and Chen [28]
about the second-quantization form of the quantum Hall Hamiltonian and his
frustration-free nature. The fundamental result we need is the following: if we
define an operator

Qm
R =

∑
x

xmaR−xaR+x, (3.74)

and
⏐⏐⏐ψ(q)

L

⟩
is the Laughlin wave function at filling factor ν = 1

q , therefore

Qm
R

⏐⏐⏐ψ(q)
L

⟩
= 0 for all R, m for which 0 ≤ m < q and (−1)m = (−1)q.

(3.75)
The proof of this result can be found in [28] and we will not be presented it in
this work.

We use the fact that Laughlin wave functions are Jack polynomials, and so

|ψL⟩ = |λ⟩+
∑
µ<λ

bλµ |µ⟩ . (3.76)

We suppose q = 3, i.e. we are at filling factor ν = 1
3 . Because of equation

(3.75), for each partition µ̃ it holds (m = 1 is the only possible m if q = 3):

⟨µ̃|Q1
R |ψL⟩ = 0. (3.77)

Since the operator Q1
R destroys two particles, the partitions µ̃ for which the

equation (3.77) is not trivial are the ones with length N − 2.
Now, we consider a state |ν⟩ in the expansion (3.76) of |ψL⟩. We imagine

to calculate the expectation value in equation (3.77) using µ̃ = νij where the
subscript means that µ̃ is obtained from ν simply removing the i-th and the
j-th particles, with νi > νj . For example, if ν = (a, b, c, d, e, f), we have ν2,5 =
(a, c, d, f). We want to calculate the equation (3.77) with µ̃ = νij , so

⟨νij |Q1
R |ψL⟩ =

∑
µ≤λ

bλµ ⟨νij |Q1
R |µ⟩ . (3.78)

with bλλ = 1. Since this equation holds for each R, we choose R =
νi−νj

2 . We
notice that in this sum only the terms with the partitions µ obtainable from ν
by squeezing or anti-squeezing of the i-th and the j-th particles matter. Indeed
the operator Q1

R acts only on the two particles which it destroys, and so in order
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that the expectation value does not vanish, the particles different from the i-th
and the j-th must be in the same position in ν and in µ. Then

⟨νij |Q1
R |ψL⟩ =

∑
ν ij µ

bλµ
µi − µj

2
(−1)N

SW
µ , (3.79)

where the symbol ν ij µ stand for “µ is equal to ν or it is obtained from ν via

a single squeeze between the i-th and the j-th particle of ν” and NSW
µ is the

number of fermions the two particles squeezed have to pass through1.
Using the Seidel’s equation (3.75), we get∑

ν ij µ

bλµ (µi − µj)(−1)N
sw
µ = 0 for each partition ν ≤ λ. (3.80)

We stress that the equation (3.80) is completely non-trivial and indeed it rep-
resents the core of the new algorithm. However, another important ingredient
is missing: we conjecture that for each partition ν ≤ λ there is always a pair
of particles for which the sum in the equation (3.80) consist of only two terms,
i.e. the partition ν itself and the only partition µ from which ν is obtained by
a squeezing of the considered pair of particles. In that case, equation (3.80)
assumes its final form:

bλν = −bλµ
µi − µj

νi − νj
(−1)Nsw . (3.81)

This algorithm is considerably faster than the Bernevig’s one, because we
only need to know the coefficient of a partition to obtain the one of another
partition. It also explains why we obtain very simple coefficients after doing an
enormous number of sums using the equation (3.27).

However, the strength of the presented algorithm relies on the conjecture
that for each partition µ that can be obtained from the root partition λ by
subsequent squeezing, there is always (at least) one pair of particles which:

• cannot be squeezed further;

• can be anti-squeezed in only one way in order to give an “admissible”
partition.

We present two examples about the case N = 4:

• the partition is µ1 = (1, 0, 0, 0, 1, 1, 0, 0, 0, 1), the pair considered is the
second and the third particle: this pair can not be squeezed further
and the only possible anti-squeezing bring us back to the root parti-
tion. Indeed if we squeeze our pair of two units, we will get the partition
(1, 0, 1, 0, 0, 0, 0, 1, 0, 1) that is not admissible, i.e. can not be obtained
from the root partition using squeezes. So according to the formula (3.81),
the coefficient is:

bµ1
= −3

1
= −3. (3.82)

1in this case the factor (−1)N
SW
µ is due to the different action of the destructor of a particle

with quantum number x on a state with this particle in the position i or on another state with
the particle in the position i+ j: exactly a (−1)j factor of difference, according to equations
(3.29).
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• the partition is (0, 0, 1, 1, 1, 0, 0, 0, 0, 1), the pair considered is the first
and the second particle (but also the second and the third are a possible
choice). The only possible anti-squeezing of those two particles bring us to
the partition (1, 0, 0, 0, 1, 1, 0, 0, 0, 1) which coefficient is −3. In this case,
the formula (3.81) gives (the second particle passes through the third):

bµ2 = −(−1)bµ1

5

1
= −15. (3.83)

We have checked the formula (3.81) up to N = 4 and it seems correct. However,
until now we have not been able to prove our conjecture.

So far we have considered only the case q = 3. However it seems quite
simple to understand what happens with higher q. Let us take, for instance,
q = 5. In this case it is obvious that our conjecture cannot hold. Indeed
for each pair of particles in the root partition, we can always do at least two
squeezes. But we can state now that for a generic odd q there is always a pair
of particles for which the sum in equation (3.80) consist of (q − 1)/2 terms:
this conjecture is consistent with the previous one and more general. Assuming
that this conjecture holds, we notice that now there are exactly (q−1)/2 values
of m for which the equation (3.75) must holds, each of them giving a linearly
independent equation to solve. So we can only compute (q − 1)/2 coefficients
at a time, solving (q − 1)/2 linear equations. Thus our algorithm keep working
and it remains considerably simpler (and faster) than other known algorithms.
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Chapter 4

Conclusions and future
directions

4.1 Our results

The study of Laughlin wave functions is of central importance for our under-
standing of the fractional quantum Hall effect. In particular in this work we
have dealt with the Laughlin wave function expansion in the Slater determinant
or monomial (respectively for the fermionic and bosonic case) basis.

In the previous chapter we presented the recent discovery that Laughlin wave
functions (as other FQHE model wave functions) are Jack polynomials. Exploit-
ing their properties, a recursion relation for the coefficients of their expansion
in the single-particle state basis has been found.

With this work we have obtained an operator, called squeezing operator,
which is written in terms of creation and destruction operators and implements
this recursion law. We have proven that this operator gives us a new way to write
the Laughlin wave functions, i.e. as our operator acting on a reference Slater
determinant (in the fermionic case) or permanent (in the bosonic one). In this
sense, we have obtained a Fock-space operator contruction of Laughlin fractional
quantum Hall effect states. Moreover we have seen that this construction of
Laughlin wave functions is statistics-invariant, i.e. it is the same for both bosons
and fermions.

Our squeezing operator allowed us to prove other results known in the liter-
ature, i.e. the product rules and the symmetry for inversion with respect to the
partition barycenter, in an original way. Our demonstrations are more general
than those obtained in the literature, because now they are valid for both bosons
and fermions at once. Moreover they are also valid for any FQHE state which
can be written as our operator applied to a reference state: most of our proofs
do not depend on which reference state we choose and the remaining are easily
generalizable to other reference states.

Finally, using the fact that Laughlin wave functions are Jack polynomials we
have found a new algorithm for the calculation of the coefficients of the Slater
determinant expansion. This algorithm seems to be very promising because of
the simplicity of the final coefficient formula, although we have not succeeded
in giving a complete demonstration of it.
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4.2 Future directions

With this work we have not found a universal microscopic theory of the frac-
tional quantum Hall effect. However, our result could help the research of such a
theory. Indeed in a recent work by Rotondo, Molinari, Ratti and Gherardi [15],
a mapping has been found between the Hall Hamiltonian restricted to the low-
est Landau level and a long-range repulsive lattice gas model in one dimension.
Although this mapping is shown to be exact only in a particular limit, the so-
called thin-torus limit, the results obtained are encouraging: the predicted plot
of the Hall resistivity versus the magnetic field is in qualitative agreement with
the one experimentally observed, for a remarkable number of filling factor, as
shown in figure 4.1.
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Figure 4.1: Inverse filling factor 1/ν plotted against the magnetic field, as
obtained in [15] by Rotondo, Molinari, Ratti and Gherardi. The most visi-
ble plateaux are highlighted with their corresponding reference partition in a
empty/full site representation. This snapshot shows a qualitative agreement
with the experimental measures of Hall resistivity, both for the relative widths
of the plateaux and for the quasilinear trend of the landscape as a function of
the magnetic field. (Inset) A portion of the staircase is magnified and some
experimentally observed plateaux are marked.

The peculiar thing is that the ground state of such a lattice gas model are,
for filling factor 1/q, exactly of the form

|λ⟩ =
⏐⏐1, 0q−1, 1, 0q−1, . . .⟩ , (4.1)

i.e. they are the reference state used by Bernevig for Laughlin wave function
construction. However, the mapping provide us reference states for a large
number of filling factors, therefore the next step will be the use of our squeezing
operator and these reference states in order to obtain new model wave functions.
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There are other questions we can deal with using our formalism. For in-
stance, the simplicity of the resulting coefficients could be a hint of the fact
that a simpler form of the squeezing operator exists. This reasoning has taken
us to the discovery of the new algorithm presented in section 3.3.3, but it is not
yet clear if this algorithm can be written as an operator applied to a reference
state. Therefore, the research for a definitive proof of that algorithm and its
study are one of the future directions.
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