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Introdu
tionStudies on disordered systems in Statisti
al Me
hani
s, like spin glasses and random models,have developed and re�ned in the last thirty years a set of sophisti
ated and useful means fordealing with a wide range of 
omplex phenomena, the Repli
a and the Cavity Methods beingparadigmati
 examples of these elaborate tools. These, in turn, opened new ways for representingand understanding the 
omplexity 
oming out in a lot of subje
ts of resear
h, not only as far asphysi
al matters are 
on
erned.Combinatorial Optimization is 
ertainly one of the natural �eld in whi
h su
h developments
ould be applied. So it is not surprising that one of the �rst a

ounts of su
h methods [1℄ devotedone se
tion to the appli
ations in optimization problems.Combinatorial Optimization deals with the sear
h and the analysis of e�e
tive algorithms forsele
ting obje
ts in a huge spa
e of feasible solutions given some variational prin
iples. Here wehighlight the good s
aling properties with the �size� of the problem, mainly in the worst 
ases
enario. Algorithms are then 
lassi�ed in a hierar
hi
 manner in some 
omplexity 
lass.While the Statisti
al Me
hani
s of disordered systems tries, through a probabilisti
 approa
h,to 
at
h a qualitative and stru
tural pi
ture of the whole spa
e of 
on�gurations, here we fo
uson the features of di�erent models that show some �universality� properties.Although the somewhat di�erent aims of these two �elds, a lot of problems 
ould be statedin a very uni�ed presentation, and the results of one dis
ipline 
ould be frequently transposed inthe proper language of the other one, leading to a fruitful interplay.This work pi
ks up a 
lassi
al subje
t of Combinatorial Optimization, the Assignment Prob-lem, and tries to design and analyze for it an algorithm inspired to the Cavity approa
h on therelated Statisti
al Me
hani
al model. The Assignment Problem 
onsists in �nding a minimumweight mat
hing in a weighted bipartite graph, i.e., loosely speaking, given a 
ost for every pairsbetween two set of obje
ts of equal size N ; the problem 
onsists in sele
ting N pairs so that thesum of their 
ost is minimal and ea
h obje
t is in one and only one pair.This problem is worth of study for di�erent reasons, among whi
h we 
an mention the pra
ti-
al appli
ations related to the swit
hing te
hnology and the image pattern re
ognition. Anotherinteresting feature is 
ertainly the polynomial time boundedness of available algorithms for thisv



CONTENTSproblem, that allows a 
ontrollable testing of the physi
al expe
tations for this model.Using the Cavity Theory for Random Models we investigated �nite-size behaviour in orderto design a 
ompetitive algorithm for optimal assignment given a random matrix. From CavityEquations for this model we derived a re
ursive map for �bias� �elds. Some interesting features
ame out:� a �xed point exists almost everywhere in the measure for the 
ost matrix using a parallelupdate for the �elds;� su
h �xed point is a delta fun
tion over the optimal 
on�guration� the attra
tion basin of this solution 
overs all the spa
e of initial values for bias �elds.Thus an exa
t algorithm is extra
ted from the Cavity Method for solving the random As-signment Problem. Similar analyzes are also found in [2℄, but some pra
ti
al aspe
ts for thealgorithm design are not addressed there. For example they do not provide an a priori (i.e.,instan
e independent) limit for the solution time. Also it la
ks a 
riterion for asserting that the�elds are su�
iently �
lose� to the asymptoti
 behaviour. Finally naïve solution time averagesare in�nite be
ause of non-integrable power tail distribution over the instan
es.A well-known algorithm for Assignment Problem (Hungarian Algorithm, [3℄) was studied inorder to underline similarities and di�eren
es with the Cavity algorithm, and through its studyit was possible to derive a solution 
erti�
ation for the Cavity algorithm.A heuristi
 for determining instan
es with anomalous long time 
onvergen
e and an ad ho
pres
ription for dealing with them were developed in order to get a total 
omputing time law
lose to the 
ubi
 power law of the Hungarian Algorithm.Some remarks are also dis
ussed for the pra
ti
al use of the Cavity algorithm. Even thoughthe Hungarian Algorithm behaves 
omparatively better as regards solution time, the 
avityapproa
h 
ould give fast sub-optimal heuristi
, and it is easier to implement in a parallel ar
hi-te
ture.The 
hapter stru
ture is as follows:� Chapter 1 deals with the typi
al phenomena of the random systems in Statisti
al Me
hani
s.It is a brief a

ount of 
on
epts and te
hniques often used in the other 
hapters.� Then in 
hapter 2, some ideas from the Combinatorial Optimization are presented su
has the hierar
hi
 stru
ture of the 
omplexity 
lasses and it is des
ribed in some details apolynomial algorithm for this problem: the Hungarian Algorithm.� In 
hapter 3 we give a better look at the Cavity Method for the Random AssignmentProblem, leading to the re
ursive map used in the algorithm.vi



CONTENTS� In 
hapter 4 is 
ontained the �nite-size analysis of the model, and some implementationdetails are dis
ussed together with the Belief Propagation interpretation for the CavityAlgorithm. Finally it is dis
ussed in some length the Repli
a Symmetry for our model.� Chapter 5 
ontains the main demonstration of the 
onvergen
e and of the features emergingin the stationary phase for the iterative map. A 
entral dis
ussion 
overs also the theoreti
albasis for the halting 
ondition and the optimality 
erti�
ate.� In 
hapter 6 are fa
ed some important aspe
ts for raising the heuristi
s des
ribed in theprevious 
hapters to an algorithm, and it is also analyzed the s
aling properties of thee�
ien
y of the algorithm.� Finally is in
luded a �
on
lusion and perspe
tive� 
hapter for dis
ussing and resuming theresults.

vii





Chapter 1Introdu
tion to 
on
epts of Statisti
alMe
hani
sThis 
hapter is a brief introdu
tion to the 
on
epts of disordered systems in Statisti
al Me
hani
s.It is mainly intended for people who la
k familiarity with these �elds, for example be
ause they
ome from a ba
kground in Computer S
ien
e. So, it is absolutely non-exhaustive, but we hopethat we su

eeded in giving a �avour of the main 
on
epts, with a spe
ial eye to those pointswhi
h will be reanalyzed, in a re�ned way, in the following 
hapters. Clearly, the reader familiarwith the theory of Spin Glasses 
an skip reading this part.First, the general framework of equilibrium Statisti
al Me
hani
s will be presented; thenwe will 
on
entrate on the ar
hetypal Ising Model, in order to introdu
e the subtle 
on
eptsof spontaneous symmetry breaking and phase transition through a pi
torial example. Finally,some models of disordered systems are presented, and some attempt to des
ribe the arising newfeatures is done.1.1 Equilibrium Statisti
al Me
hani
sThe 
ore subje
t of Statisti
al Me
hani
s is the bridge, built with probabilisti
 tools, betweenthe ma
ros
opi
 world of Thermodynami
s and the mi
ros
opi
 one, whi
h it is believed to obeyto some elementary physi
al law, su
h as those of Me
hani
s.Its redu
tionist resear
h program started in the eighteenth 
entury with the works of Boltz-mann, Maxwell, Gibbs and others, in order to �explain� the thermodynami
 laws empiri
allyobserved sin
e the seventeenth 
entury (su
h as the 
lassi
al ideal gas law) as ma
ros
opi
 ef-fe
ts of an underlying mi
ro-physi
s of �atoms� subje
t to the laws of Newtonian Me
hani
s.The mi
ros
opi
 state of a thermodynami
 system 
ould not be a

essed dire
tly through1



CHAPTER 1. INTRODUCTION TO CONCEPTS OF STATISTICAL MECHANICSmeasurements. Experiments 
an only gather statisti
al data 
on
erning the system as a ma
ro-state, and repeat measure pro
edures on a physi
al state prepared in a well de�ned manner(i.e., imposing a �nite set of thermodynami
 and boundary 
ondition su
h as pressure, volume,temperature, external magneti
 �eld. . . ).As they were fa
ing both the impossibility of �xing the mi
rophysi
al state through measure-ments, and the overwhelming di�
ulties in solving the equation of motion for a huge numberof 
oupled degrees of freedom, statisti
al me
hani
ists were for
ed in the use of a probabilisti
approa
h.Assuming that the relevant properties of a parti
le (su
h as position, momentum, spin, . . . )are des
ribed in a single-state spa
e X0, the mi
ros
opi
 state is fully des
ribed by an unknownpoint in a high-dimensional phase spa
e X = XN
0 (N ∼ 1023 on human-size experiments) pro-vided with a referen
e measure dx inherited from the one over X0. After the system preparation,in
luding a transient time of thermalization, it is assumed that the system rea
hes the thermalequilibrium, then a measure dµ(P,V,T,... ) (depending on a �nite set of thermodynami
 
onditions)des
ribes the physi
al system subje
ted to measurements.Observable quantities 
orrespond to real-valued fun
tions over the phase spa
e and their aver-age values over the equilibrium measure lead to quantities amenable of experimental 
omparison.

A : X → R, 〈A〉µ =

∫

X
dµ(x) A(x)For homogeneous systems, with short-range intera
tions (i.e. su
h that parti
les well in the bulkdo not �feel� the boundary), it is expe
ted that the lo
al properties of the system in the bulkdo not depend sensibly from the volume. For example, some water, at a given temperatureand pressure, will have a 
ertain density ρ regardless from the size and shape of the 
ontainer.Similarly, the mass M of water in the 
ontainer will be proportional to the volume itself, M = ρV .This trivial s
aling reasonings allow to distinguish physi
al observables into intensive, not s
alingwith the volume, like the density, and extensive, s
aling linearly with the volume, like the mass.The mi
ros
opi
 equation of motion is involved through the Hamiltonian fun
tion H thatrepresents the energy of the system and generates traje
tories of the mi
rostate in the phasespa
e. However, for reasons illustrated in the following, it makes sense to avoid a detaileddes
ription of the mi
ros
opi
 dynami
s, and introdu
e instead models of Statisti
al Me
hani
swith simpli�ed Hamiltonians. Nonetheless, in this step one should preserve some requirementson the Hamiltonian fun
tion based on physi
al grounds, su
h as lo
ality and mi
ros
opi
 time-reversal symmetry, where the latter is automati
ally implemented by respe
ting the detailedbalan
e: if Wx→x′ is the transition rate i.e., the probability that a mi
ros
opi
 
on�guration x2



1.1. EQUILIBRIUM STATISTICAL MECHANICSevolves to the state x′ after some time ∆t, the dynami
s has the following properties:
lim

|x−x′|→∞
Wx→x′ = 0 (lo
ality) (1.1)
Wx→x′

Wx′→x
= e−β(H(x′)−H(x)) (detailed balan
e) (1.2)In this pi
ture, the task of Statisti
al Me
hani
s 
an be divided in two parts: on the one hand,to derive the probability measure of the system at thermal equilibrium (i.e., after a su�
ient longtime); on the other hand, to 
ompute, even if in an approximate way, the ma
ros
opi
 propertiesas averages over that measure.The determination of the equilibrium measure dµ(V,P,T,... ) , given the Hamiltonian, is in gen-eral a deli
ate point. Nevertheless, under the ergodi
 hypothesis, whi
h roughly states that thetraje
tories in the phase spa
e under the dynami
s 
over uniformly the equilibrium measure, or,equivalently, that time averages 
oin
ides asymptoti
ally with averages over the measure

〈A〉µ =

∫

X
dµ(x)A(x) = lim

T→∞

∫ T

0
dt A(x(t)) ∀ observable A (1.3)it 
an be proved the existen
e of a unique equilibrium measure, i.e., the Gibbs measure for asystem in a heat bath at temperature T ∝ 1

β :
dµGibbs(x) =

e−βH(x)

Z(β)
dx (1.4)The failure of this hypothesis is the 
ore of 
ru
ial 
on
epts like spontaneous symmetry break-ing, as we will dis
uss in the following. One should however distinguish among the �simple�me
hanisms, dedu
ible a priori, su
h as the existen
e of some other 
onserved quantity (besidesenergy), whi
h determine a family of equilibrium measures, not parametrized by ma
ros
opi
external 
onditions, and some more �stru
tural� me
hanism, su
h that the ergodi
ity is brokenby some large-volume limit of the dynami
s, where the times required in (1.3) diverges with someexponential of the volume.In the Gibbs measure above, Z(β) is the partition fun
tion. Algebrai
ally it expresses thenormalization of the measure:

ZGibbs(β) =

∫

X
dx e−βH(x) (1.5)while its physi
al meaning 
omes from the following simple relations for the mean energy and itsthermal �u
tuations:

E(β) = 〈H〉µ = − ∂

∂β
ln(Z(β))

〈H2〉µ − 〈H〉2µ =
∂2

∂β2
ln(Z(β))Let us remark some important properties of generi
 Statisti
al Me
hani
s systems: 3



CHAPTER 1. INTRODUCTION TO CONCEPTS OF STATISTICAL MECHANICS� given a set of non-intera
ting systems X1,X2, . . . ,Xk (i.e., un
orrelated), the 
ompositepartition fun
tion is given by a produ
t over the 
omponents: Z =
∏k

i=1Zi;� the logarithm of the partition fun
tion is an extensive quantity (i.e., proportional to thesize of the system), and is 
alled free energy :
F(β) = − 1

β
ln(Z(β)) (1.6)Alongside with the free energy, another fundamental 
on
ept is the entropy of the system,de�ned as:

S[µ] = −
∫

X
dµ(x) ln(µ(x)) = −〈ln〉µ (1.7)where we use square bra
kets to underline its aspe
t of fun
tional over the spa
e of measuresin the phase spa
e. Its exponential �measures� the number of relevant states in the phase spa
efor the 
onsidered probability measure. The Gibbs measure satis�es the variational prin
iple ofmaximal entropy at given mean energy, or the prin
iple of maximal free energy, as it should beevident from the following relations for the entropy, the internal energy and the free energy:(entropy) S[µ] = −〈ln〉µ (1.8)(internal energy) E [µ] = 〈H〉µ (1.9)(free energy) F [µ] = E [µ]− S[µ]

β
(1.10)Moreover using the equilibrium measure it is possible to derive the following formulae

F(β) = − 1

β
ln(Z(β)) (1.11)

S(β) = −β2 ∂F
∂β

(β) (1.12)
E(β) = F(β) + β

∂F
∂β

(β) (1.13)Looking at them it should be 
lear how a thermodynami
 potential, su
h as the free energy,en
odes mu
h of the physi
s of the system. Furthermore, observables essentially of any nature
an be expressed through the 
al
ulation of a partition fun
tion for a su�
iently �generalized�model, extended to in
lude some sour
e terms,
〈A〉 = − 1

β

∂

∂j
ln(Z(β, j))

∣

∣

∣

∣

j=0

, Z(β, j) =

∫

X
dx e−β

(

H(x)+jA(x)
)

. (1.14)4



1.2. ORDERED SYSTEMS AND PHASE TRANSITION1.2 Ordered Systems and Phase TransitionIn this se
tion we set out to give a brief overview on an ar
hetypal toy model of ordered systems:the Ising Model, be
ause it provides an insightful example of some re
urrent features of Statisti
alMe
hani
s su
h as ergodi
ity breaking, phase transition and 
oexisten
e of pure phases.Ernst Ising developed the model in 1926 as part of his PhD dissertation. The 1-dimensionalIsing Model 
onsists of a linear 
hain, made up of parti
les having magneti
 moments 
alled�spins� that are able to take an up or down position. The spin of ea
h parti
le in�uen
es thespin moment of the ones bordering it.More generally, let us 
onsider a spin system on a d-dimensional regular latti
e of size L, inwhi
h ea
h site 
ontains a spin variable σ whose values lie in the single-state spa
e X0 = {±1}.The Hamiltonian fun
tion is:
H(σ) = J

∑

〈i,j〉

σiσj + h
∑

i

σi (1.15)where J represents the strength of the intera
tion between the sites of the latti
e, 〈i, j〉 meanssum over nearest neighbours, h is a site-independent external magneti
 �eld and σ = {σ1, σ2, . . . }indi
ates the 
on�guration of the mi
rostate in the phase spa
e X = {±1}N (with N = Ld).The 
al
ulation of the Gibbs partition fun
tion ZN :
ZN =

∑

σ

e−βH(σ) (1.16)results easy in 1-dimensional systems, but despite of a de
eiving simpli
ity, its analyti
al treat-ment leads to serious di�
ulties even in the 2-dimensional 
ase. This 
al
ulation was solvedwith no external magneti
 �eld through a mathemati
al tour de for
e by Onsager in 1944 [4℄. Inhigher dimensions other te
hniques should be tried, su
h as 
omputer simulations (like MonteCarlo methods or Transfer Matrix te
hniques), or analyti
al approximations (like Low and HighTemperature expansions, or a systemati
 Mean Field expansion of k-point 
orrelation fun
tions).In order to get a qualitative pi
ture of its behaviour, let us 
onsider the natural observableof mean magnetization, de�ned as
M = 〈m(σ)〉, with m(σ) =

1

N

∑

i

σi (1.17)Obviously, if h = 0, the Gibbs measure leads to zero mean magnetization for ea
h temperature,(disregarding thermal �u
tuation) due to symmetry reasons. Nonetheless, if the dynami
s sele
tsa region of the phase spa
e with (absolute value of) average magnetization |m(σ)| ∼ m∗, we wouldhave two �bubbles� in the phase spa
e, ea
h of them being ergodi
ally explored in short times,but the �tunnelling� from one to the other, requiring that the system explores highly improbable5



CHAPTER 1. INTRODUCTION TO CONCEPTS OF STATISTICAL MECHANICSregions of the phase spa
e for a large time, is possible in prin
iple, but suppressed by fa
tors
∼ exp(−βE) (with E some typi
al energy of this tunnelling pro
ess, whi
h is extensive).Performing an exa
t analyti
al 
omputation of M(T, h) using the true Gibbs Measure forthe Ising system is a hard task (ex
ept for the 1-dimensional 
ase, for whi
h the result is triv-ial). Nonetheless, the approximated Mean Field Theory give us the possibility of grasping itsqualitative behaviour.The Mean Field Approximation 
ould be derived from the variational prin
iple of minimalfree energy, when restri
ted to some simple measures (i.e., fa
torized ones, Z[z] =

∏

i zi(σi)),whi
h negle
t 
orrelations among spins.For example, for the Ising Model, one 
an 
hoose the single-spin measure to be su
h that theaverage magnetization is m

m = 〈σ〉 =
prob(σ = +)− prob(σ = −)

prob(σ = +) + prob(σ = −)
(1.18)then, self-
onsistently, one has that a spin experien
es an e�e
tive magneti
 �eld, being thesum of the external �eld h, and the average intera
tion from the 2d neighbours, 2dJm, whi
hdetermines

mmf = tanh(2βJdmmf + βh) . (1.19)It is also interesting to determine the partition fun
tion, highlighting the di�erent roles of energyand entropy. The number of a

essible 
on�gurations with average magnetization equal to m isgiven by a binomial 
oe�
ient, whi
h, by Stirling expansion, gives
S(m) =

N

2
((1−m) ln(1−m) + (1 + m) ln(1 + m)) , (1.20)while the average energy is

E(m) = N
(

hm + dJm2
)

. (1.21)Figure 1.1 gives hints about the free energy lands
ape of the Ising Model with zero external�eld, parametrized by the mean magnetization. In parti
ular the �gure shows that for systemswith temperatures under a 
riti
al point (The Curie Temperature, Tc), the minimal free energypoint is realized in two di�erent �phases�, symmetri
al w.r.t. inversion of all the spins. In otherwords, at h = 0 in dimension d > 1∗ Ising Model experien
es a Spontaneous Symmetry Breaking(SSB), sin
e the Hamiltonian fun
tion symmetry under the spin-�ip transformation (with h = 0)
∗note that MFT is too 
rude in the 1-dimensional 
ase to derive su
h result that 
ame by other te
hniques.A
tually MFT 
ould be seen as the zeroth order of approximation in a 1/d expansion leading exa
t results in the

d = ∞ limit.6



1.2. ORDERED SYSTEMS AND PHASE TRANSITION
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F
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Ising Mean Field: Free Energy vs Magnetization (h = 0)

T < Tc
T = Tc
T > Tc

Figure 1.1: Qualitative pi
ture of the Free Energy lands
ape in the MF Approximation with noexternal magneti
 �eld for temperature at, above and below Curie Temperature Tc.
ausing zero magnetization expe
tation at equilibrium, spontaneously∗ fails to happen in sub-
riti
al temperatures, due to the existen
e of two ergodi
ity basins for the dynami
s, su
h thatthe system gets trapped in one of them (for an in�nite time, in the thermodynami
 limit).At least in its dynami
 aspe
ts, the 
on
ept of pure phase is based on this ergodi
ity breaking†.For Ising Model, let us 
onsider these two limit measures:
µT

+(σ) = lim
h→0+

µ
(T,h)Gibbs(σ) µT

−(σ) = lim
h→0−

µ
(T,h)Gibbs(σ) (1.22)They 
learly do not 
oin
ide be
ause of 〈m(σ)〉+ = −〈m(σ)〉− > 0 (it even tends to 1 as T → 0),and, on the 
riti
al line (h = 0, T ∈ [0, Tc]) in the parameter spa
e (h, T ), the Gibbs measure,as well as any equilibrium measure allowed in the system, are a 
onvex 
ombination of them,and we say that there is phase 
oexisten
e, like, for example, in a 
losed 
ontainer at 100◦ anddensity intermediate between 0.001g/cm3 and 1.g/cm3, there is 
oexisten
e of water and vapour(see for example (1.3))

µT
(λ)(σ) = λµT

+(σ) + (1− λ)µT
−(σ) λ ∈ [0, 1] ; µT

(Gibbs)(σ) = µT
(λ=1/2)(σ) (1.23)

∗as opposed to an expli
it breaking via h 6= 0.
†with whi
h also the uniqueness of the equilibrium measure fails. 7



CHAPTER 1. INTRODUCTION TO CONCEPTS OF STATISTICAL MECHANICS
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Ising Mean Field: Free Energy vs Magnetization (h > 0)

T < Tc
T = Tc
T > Tc

 0

F
M

F

MMF

Ising Mean Field: Free Energy vs Magnetization (h >> 0)

T < Tc
T = Tc
T > TcFigure 1.2: Qualitative pi
ture of the Free Energy lands
ape in the MF Approximation withpositive external magneti
 �eld for temperatures at, above and below Curie Temperature Tc.It turns out that, when the SSB o

urs, one has an analyti
 signature of this phenomenon inthe expression for the free energy. Indeed, at �nite size the partition fun
tion is an integral ofa positive regular fun
tion (or a positive-
oe�
ient polynomial in algebrai
 variables, as in the
ase of dis
rete variables, e.g., in a spin system), and thus it must be in�nitely di�erentiable, aswell as its logarithm. Nonetheless, our statement on the fa
t that the free energy is extensiveis realized through a non-trivial me
hanism: it just states that the limit limN→∞F(β,N)/Nexists, but the limit of a sequen
e of di�erentiable fun
tions 
ould well be a non-di�erentiableone!What happens is that the points in the phase spa
e (e.g., in the plane (T, h)) at whi
h thefree energy fails to be analyti
 are the natural 
andidates for the ones at whi
h SSB o

urs.This phenomenon is pi
torially 
lear on our graphi
s for the mean-�eld Ising Model: what is
ontinuous is the free energy fun
tional 
al
ulated at the value m = 0, whi
h is the one sele
tedby the variational prin
iple for T > Tc, as well as at any di�erentiable 
urve m = m(T ) that one
ould 
hoose to follow. But the SSB 
auses a �fork� of the symmetri
 minimum m = 0 into thetwo minima m = ±m∗, ex
hanged by the symmetry, thus the position of the minimum along Tis not a di�erentiable fun
tion.Finally we spend some more words on the 
on
ept of pure phases, an how to 
hara
terizethem in those regions where there is 
oexisten
e of phases. As the �label� of the pure phase issome global quantity, it 
auses some 
ommon ba
kground for all the variables, being the e�e
t ofa lo
al 
ooperative behaviour of the degrees of freedom in the system, whi
h appears like breakingthe lo
ality 
ondition (two variables, well separated in spa
e and at the same time, know thatthey are in the same phase, even without sharing information through the propagators of thephysi
al dynami
s!). Clearly, there is no paradox in this, as our 
on
lusions, whi
h assumedthermalization and large-volume limit, imply that there is a
tually no information to �ex
hange�,8



1.3. DISORDERED SYSTEMS

Figure 1.3: Qualitative pi
ture of the Magnetization dependen
e on the parameters spa
e.be
ause the phase label is �xed. Nonetheless, this apparent breaking of lo
ality has a well-de�ned set of 
onsequen
es on the set of physi
al observables in the system, and, turning thingsupside-down, it allows to determine a non-ambiguous analyti
al re
ipe for 
hara
terizing the�pure phases�, i.e., the phases whi
h are not a non-trivial 
onvex 
ombination of other phases.This 
riterion 
omes under the name of 
luster property :Cluster Property Given an equilibrium measure µ, it des
ribes a pure phase if and only if, inthe thermodynami
 limit, given the lo
al observables Ai(x) � where �lo
ality� means that
lim

|x−x′|→∞
[Ai(x), Ai(x

′)] = 0 (1.24)
lim

|x−x′|→∞
(〈Ai(x)Aj(x

′)〉 − 〈Ai(x)〉〈Aj(x
′)〉) = 0 (1.25)1.3 Disordered SystemsGlassy systems are 
hara
terized by the presen
e of some sort of stru
tural disorder in additionto the thermal one. They arise as result of a range of phenomena like impurities or the fast
ooling of vis
ous materials whi
h prevent from the formation of the 
rystal latti
e. 9



CHAPTER 1. INTRODUCTION TO CONCEPTS OF STATISTICAL MECHANICSSpin glass models try to reprodu
e this feature through a mi
ros
opi
 lo
al �u
tuation of theparameters in the Hamiltonian fun
tion, that thus now 
ontains an extensive number of param-eters, whose knowledge is only probabilisti
 (for example 
oming from the various distan
es ofatomi
 positions in a glass). Standard treatments assume HJ(x) depending on these parame-ters, 
alled quen
hed variables J = {J1, J2, · · · , Jk} where k runs for example on the number oftwo-site intera
tions. They are 
alled quen
hed variables be
ause they arise typi
ally throughouta 
on
urrent pro
ess of di�erent time s
ales, like in a freezing pro
ess where the system remainstrapped in a metastable stru
ture, while thermalization to equilibrium of other sets of variablesis 
omparatively very rapid.Magneti
 systems are 
ommonly 
onsidered with typi
al Hamiltonian fun
tions like:
HJ(σ) =

∑

i,j

Jijσiσj (1.26)where spin variables take value in {±1}, while intera
tion parameters are random variables withsome assumptions about the �rst moments of their distribution. The analyti
al treatment israther di�
ult, so that simpli�
ations are essential for deriving any results from these models,Nonetheless, our analysis of the Ising example shows that even a 
rude simpli�
ation 
ouldmaintain some aspe
t of the desired original system. Di�erent models arise when 
hanging thedistribution of the quen
hed variables or the underlying graph of intera
tions. Here is a listof models widely studied in the spin glasses literature for their interesting properties under theMean Field Approximation:SK The Sherrington-Kirkpatri
k Model adopts a �normal� (i.e., Gaussian) distribution of thequen
hed random variables on every pair of spins. Varian
e is assumed to s
ale as 1/
√

N ,in order to have a good s
aling of the extensive quantities, su
h as the internal energy. Itis the random-intera
tion Ising system more �near� to the fully-
onne
ted system where,in the analogous �xed-J Ising model, the mean-�eld approximation is exa
t, thus it was
onsidered 
on
eivably as the easiest disordered system to study. However, as it is wellknown, this model shows new and 
omplex features, whi
h 
an be understood at the lightof the Parisi solution for the quen
hed free energy. In this 
ontext, the 
ru
ial 
on
ept ofspontaneous Repli
a Symmetry Breaking is introdu
ed [1℄.VB The Viana-Bray Model or Bethe Latti
e model has spin variables on a random latti
e,where z is the mean 
oordination of the graph, �nite in the N → ∞ limit. In this 
ase,just Nz/2 parameters are di�erent from zero, and this is expe
ted to reprodu
e some more�physi
al� situations, from 
ondensed matter physi
s, where z is related to the volume ofsome short range intera
tion. Nonetheless, the fa
t that the graph is random still keepssome analogy with a mean �eld approximation, in the fa
t that, on a �nite-dimensional10



1.3. DISORDERED SYSTEMSgeometry, the �neighbour of a neighbour of a neighbour. . . � of a site has a higher 
han
e ofbeing a neighbour of that site, w.r.t. the average. The higher is the dimension, the smallerthis e�e
t is, up to disappear at d =∞. But, as we said, this limit is another one in whi
hthe ferromagneti
 Ising model was exa
tly des
ribed by the mean-�eld solution.EA The Edwards-Anderson Model has pairwise intera
tions between nearest neighbours on aregular d-dimensional latti
e, just like the Ising Model, but where 
oupling parametersare random variables. This is the most �physi
al� example, but of 
ourse an impossible
hallenge at high dimension (d ≥ 3), where not even the regular 
ase is solved, while the
d = 2 
ase admits a spin-glass transition, if any, only at T = 0 (analogously to regularIsing in d = 1).A re
urrent phenomenon in these models is the frustration, i.e., the existen
e, in opposition to theordered models like Ising, of intera
tions whose tenden
y on the system is towards antagonisti

on�gurations. Frustration may emerge for example in the anti-ferromagneti
 (J < 0) IsingModel when it is applied to non bipartite latti
es (where a 
hessboard-like disposition is notpossible), su
h as a triangular latti
e. However frustration 
an also arise easily on arbitrary�loopy� graphs, when the intera
tions Jij are allowed to take values with di�erent signs.An extensive number of frustrated intera
tions is the mi
ros
opi
 root of the existen
e of avery rough free energy lands
ape for these models, where not only the number of pure phases
ould grow exponentially (with free energy shifts of order 1), but also it results very di�
ult toidentify some order parameter, like the mean magnetization for Ising, 
apable of distinguish andlabel the pure phases in a simple way.As standard thermodynami
s is involved in the 
al
ulation of the free energy for deriving aset of ma
ros
opi
 quantities from that, in the study of glassy systems it is very important the
al
ulation of the so 
alled quen
hed averages, as opposed to the usual and somewhat better-behaving annealed averages, de�ned as follows:
〈A〉quen
hed = A =

∫

dµ(J) 〈A〉J with 〈A〉J =
1

ZJ

∫

X
dσ e−βHJ (σ)A(σ) (1.27)

〈A〉annealed =
1

Z

∫

X
dσ

∫

dµ(J) e−βHJ (σ)A(σ) (1.28)It is relatively easier to deal with annealed averages, whi
h provide a bound to the analogousquen
hed ones, although often a quite poor one, and, in the 
ase of a 
riti
al phenomenon,they la
k to show the same non-analyti
ities of the quen
hed homologous. Understanding this�two-level� averaging seems thus to be a 
ru
ial point.A further intuition on this fa
t 
omes from the observation that thermodynami
 averages
ould be almost independent from the realization of the disorder, on average and in the thermo-11



CHAPTER 1. INTRODUCTION TO CONCEPTS OF STATISTICAL MECHANICSdynami
 limit � we say in this 
ase that these quantities are self-averaging, i.e. for a quantity A

lim
N→∞

(A− 〈A〉J)2

A2
= 0 (1.29)while other quantities 
ould �u
tuate extensively with the size of the system � we say in this
ase that these quantities are non�self-averaging. For example, the free energy is a self-averagingquantity in all �well-behaving� models, but the Parisi parameter q(x) is not self-averaging in theSK model.Random systems usually require a re�nement of the Mean Field Approximation or, some-times, new te
hniques su
h as the repli
a tri
k used to derive a solution for the SK Model. Inparti
ular, from the solution of this model very nontrivial 
on
lusions were derived about thestru
ture of the phase spa
e. The Repli
a hierar
hy was developed in order to get an overview ofthe many phases breaking and its ultrametri
 stru
ture. �Easy� systems are the ones respe
tingthe Repli
a Symmetry (RS) and they are 
hara
terized by the existen
e of an unique pure phase,while more 
omplex 
ases exist ranging from the 1-step repli
a symmetry breaking (or 1-RSB) to

∞-RSB, meaning for that the existen
e of graded levels of pure phases (
alled 
lusters of phases,and then 
lusters of 
lusters of phases, when pi
torially speaking, et
.).

12



Chapter 2Combinatorial OptimizationThe purpose of this 
hapter is to introdu
e 
on
epts and problems of Combinatorial Optimization,as this is the proper framework for dis
ussing the Assignment Problem.After that we will present the Hungarian Algorithm, a strongly polynomial algorithm for theAssignment Problem. Its interest is twofold: on the one hand it provides a meter of 
omparisonfor e�e
tive algorithms in this �eld, on the other hand its analysis introdu
es the dual problemrelated to the assignment, whi
h 
lari�es some stru
tural aspe
ts of the problem, and will leadto the determination of an optimality 
erti�
ate, also in our Cavity approa
h.2.1 Combinatorial OptimizationBasi
 ingredients of a 
ombinatorial optimization problem are (a) a set of input obje
ts de�ninga parti
ular instan
e to be solved, (b) a �nite spa
e of feasible solutions, typi
ally exponentiallylarge, and (
) a 
ost fun
tion over this spa
e to be minimized or maximized.For a pre
ise mathemati
al representation of these problems it is often used the graph theorylanguage. A graph G is de�ned by a set of points V , 
alled nodes or verti
es, and a set of edges
E linking 
ouples of them.Here is a list of prototype problems:Shortest Path Problem Find a minimal length path between two given nodes in a graph G.Travelling Salesman Problem Find a minimal Hamiltonian path in a graph G, i.e., a tourpassing through ea
h node exa
tly on
e and returning to the starting point.Chinese Postman Problem Find a minimal tour in a graph G passing through ea
h edge atleast on
e. 13



CHAPTER 2. COMBINATORIAL OPTIMIZATIONMax Flow Problem Given a �ow F , i.e., a graph and a numeri
al fun
tion from its edgesde�ning the �
apa
ities�, �nd a maximal numeri
al fun
tion from the edges with values lessthan those of 
apa
ities, i.e., a maximal �ow between a starting point (sour
e) and a �nalone (sink).Chromati
 Number Problem Find the 
hromati
 number of the graph G, i.e., the minimumnumber of 
olours su�
ient to 
olour ea
h node in su
h a way that no two adja
ent verti
esshare the same 
olour.All these problems share a �nite spa
e of feasible solutions so the emphasis is not too mu
habout the standard questions in mathemati
s, like existen
e and uniqueness, but rather on thesear
h and analysis of e�
ient re
ipes (algorithm) solving instan
es of these problems.An algorithm is, loosely speaking, a pro
edure for solving a problem. More pre
isely it is aset of instru
tions understandable by an appropriate automati
 ma
hine, su
h that, given someinput data in a �nite number of steps leads to some output. Inputs are a representation of aninstan
e of the problem 
laimed to be solved by the algorithm, as outputs are supposed relatedto the solution.A formal de�nition of algorithm is rather subtle and it is investigated by ComputabilityTheory via 
on
epts of the Universal Turing Ma
hine, λ-
al
ulus, and the theory of formallanguages (see for example [5℄). Here it su�
es to say that the Chur
h-Turing Thesis is thefundamental hypothesis in Computation Theory stating roughly that all possible 
omputation∗
an be performed by an algorithm running on 
omputers provided with an in�nite amount oftime and spa
e.However simple algorithms are known sin
e the dawn of mathemati
s, like the Eu
lid algo-rithm for the 
omputation of the GCD between two integers (∼ 300 BC):Algorithm 1 Eu
lid's algorithm1: pro
edure Eu
lid(a, b) ⊲ The g.
.d. of a and b, with a ≥ b2: r← a mod b3: while r 6= 0 do ⊲ We have the answer if r is 04: a← b5: b← r6: r ← a mod b7: end while8: return b ⊲ The g.
.d. is b9: end pro
edure
∗There are, of 
ourse, examples of impossible 
omputation like the Halting Problem, and others related to theGödel theorems about in
ompleteness.14



2.1. COMBINATORIAL OPTIMIZATIONThis simple example shows the basi
 features of the informal 
hara
terization of the algorithm
on
ept:1. a �nite set of input data (a, b) to be properly en
oded in order to make them �understand-able� from the 
al
ulating mat
hing,2. a �nite set of output data as b at line (8),3. a number of steps during whi
h the internal state of the 
al
ulating devi
e is 
hanged. Thissteps should be simple enough to be properly 
omputed in an automati
 way in a �nitetime by the underling 
al
ulator.A feature to be remarked is that the number of steps ne
essary to 
omplete the 
al
ulation isdependent on the input data, and, although in this 
ase, the �niteness of the number of stepsis beside any doubts, in general, it is not a simple question to determine if an algorithm willde�nitively stops on every possible input. Already in our easy example, the any 
ase �nitenessof the pro
edure is based on an elementary appli
ation of a subtle 
on
ept: the existen
e of a(stri
t) Lyapunov fun
tion, i.e., a fun
tion valued in N, su
h that the initial value is �nite, andin the given bounded-time pro
edure either the algorithm su

eeds, or the value de
reases by a�nite amount. In this 
ase, the value of variable a is a good Lyapunov fun
tion, w.r.t. the �while�loop.Many features of the algorithm determine its e�
ien
y, like storage required for the internalstate of the 
omputing ma
hine. But usually people tends to fo
us on the number of stepsrequired to 
omplete the 
al
ulation. Given an algorithm A adapt to run on a ma
hine M, wede�ne the integer fun
tion fAM(I) as the number of steps required to get the �nal answer fromthe input I, using the algorithm A implemented on a ma
hine M. Even if its a
tual form isrelatively of little interest, be
ause of its widely variability with the implementation details, andalso in the spa
e of the input data, nonetheless theoreti
al enquire 
on
entrates on its leadingterm in the s
aling behaviour with a proper size fun
tion of the input data. For the Eu
lid'salgorithm a natural 
hoi
e is the magnitude of the input numbers (a, b), for other problems, likethose reported at the beginning of the se
tion, 
ould be better using the size of the underlinggraph as the number of verti
es and/or the number of edges.In our Eu
lid 
ase, for example, the time spent inside any of the �while� loop depends onhow well is performed the integer division, but this is 
learly a te
hni
al point of small relevan
e.What is important is that we 
an prove that the �while� loop is invoked a number of timesbounded by some fun
tion of the input sizes a and b, namely, smaller than 2 log2 a (indeed, aftertwo steps one gets (at, bt)→ (bt, rt)→ (rt, ·) . . ., so that at+2 = rt: in the 
ase bt ≥ at/2 one gets
at+2 = rt ≤ at/2, while in the 
ase bt ≤ at/2 one gets at+2 ≤ at+1 = bt ≤ at/2 � this proves that
a, and even ⌊log2 a⌋ if we group loops in pairs, are Lyapunov fun
tions). 15



CHAPTER 2. COMBINATORIAL OPTIMIZATIONTheoreti
al treatment in Computer S
ien
e tends to 
on
entrate on the worst-
ase analysis,as de�ned from:
lim

N→∞
max
|I|=N

fAM(I) (2.1)where the limit pro
ess just suggests our interest in the asymptoti
 behaviour.Pra
ti
al 
onsideration may also be dire
ted to some form of average-
ase analysis, whi
hindeed is the prin
ipal 
ase for many real-life appli
ation, and meets the tools inspired by physi
s,an more spe
i�
ally by statisti
al me
hani
s:
lim

N→∞

∑

|I|=N

p(I)fAM(I) (2.2)where p(I) indi
ates a proper probability distribution in the input spa
e.As an example of the importan
e of implementations details of the underling ma
hine, 
on-sider the problem of numbers en
oding. Numbers enter in the 
al
ulation in a spe
i�
 repre-sentation, even if the mathemati
al formalization 
an hide this point. Usually three kinds ofen
oding are dis
ussed:unary en
oding when a natural number n 
ontributes with n at the determination of the inputsize, i.e., when one represents numbers like 5 as IIIII.binary en
oding a binary representation of an integer n 
ontributes with 1 + log2⌊n⌋ to theinput size (5 is en
oded as 101). This is the en
oding of �real-life� ma
hines.arithmeti
 en
oding in this 
ase any integer number gives a single 
ontribution to the inputsize.It should be 
lear that really di�erent behaviours emerge in the fun
tions (2.1) and (2.2) withrespe
t to di�erent en
oding paradigms. For example, our Eu
lid Algorithm is linear in binaryen
oding, but unbounded in arithmeti
 en
oding, while also vi
e-versa 
ould happen (algorithms
ould be e.g., polynomial in arithmeti
 en
oding, and unbounded in binary en
oding, 
fr. formore details [3℄, box 2B).The relevant 
on
ept of 
omplexity of an algorithm is a bit subtle, as it involves in some
onvoluted way worst-
ase reasonings and large-size limits. In order to better des
ribe the
on
ept, it is useful to introdu
e in the asymptoti
 analysis the so-
alled �big oh� notation,de�ned as follows:Given two fun
tions f and g, from N to N, we say that f = O(g) i� thereexists 
onstants c and n0 su
h that, for all n ≥ n0, f(n) ≤ c g(n).Big oh notation naturally 
reate an order stru
ture in the s
aling aspe
ts of the algorithms: anequivalen
e relation is de�ned as f = O(g) ∧ g = O(f) saying that f and g has the same rate16



2.2. COMPLEXITY CLASSESof growth (f ≍ g), and between equivalen
e 
lasses of rate of growth is de�ned a partial orderrelation as f 4 g if f = O(g).2.2 Complexity ClassesThanks to the big oh notation and the related partial order relation it is possible to 
lassifyalgorithm in 
omplexity 
lasses. We say that an algorithm A belongs to TIME(f) if
max
|I|=N

fA(I) = O(f(N)) (2.3)This in turn leads to a 
lassi�
ation for the problem itself, supposed to be solved by the algorithm
A, through:

min
A solving P

max
|I|=N

fA(I) = O(f(N)) (2.4)Complexity 
lasses 
an then 
lassify the subset of problems 
alled de
ision problems, i.e., prob-lems whose solution is just a binary information like true or false. In this sub
lass, the analysisis simpli�ed, be
ause there is a simple formulation in terms of formal languages. This is notthe 
ase in general for the more familiar fun
tion problems, i.e., those whose solution is a more
omplex output like a number, or a graphi
al stru
ture.For the moment let us observe that it's easy to derive natural de
ision problems from afun
tion problem, and also, that this distin
tion is weaker than it 
ould look. For example,in many 
ases a fun
tion problem 
ould be easily de
omposed into a set of de
ision problems.Consider the problem of �nding the set of boolean variables x = (x1, . . . , xn) su
h that the 
ostfun
tion C(x) : {0, 1}n → {0, . . . , 2m − 1} is minimized. Then, one 
ould 
onsider the de
isionproblem su
h that, for a value a and a subset of �xed 
onditions (S, y), with S ⊂ {1, . . . , n}and y = {yj}j∈S , asks whether there exists an assignment x su
h that xj = yj if j ∈ S, and
C(x) ≤ a. Then, by Newton method on a, one 
an determine the value of the minimum 
ost inat most m steps, while �xing re
ursively the variables one 
an also �nd a realization of x in atmost other n steps.Furthermore, even inside the 
lasses of de
ision or fun
tion problems (and for other 
lasses),there exists a relevant 
on
ept of �equivalen
e for what 
on
erns the 
omplexity� (up to somefa
tor), whi
h goes under the name of redu
tion. Say that, for two problems P and P ′, thereexists a way of formulating a whatever instan
e of the �rst one, of size n, as an instan
e of thelatter, of size ∼ na, in the sense that, if we 
ould solve the new instan
e, we would impli
itly solvethe original problem. Then, 
learly, if we 
ould prove that se
ond problem is, say, of polynomial
omplexity with degree c (i.e., times s
ale as nc in worst 
ase), then the 
omplexity of the originalproblem 
ould not be larger than polynomial of degree ac. In parti
ular, if a = 1 we would havea linear redu
tion, so that, if P 
an be redu
ed to P ′ and vi
e-versa, the two problems have the17



CHAPTER 2. COMBINATORIAL OPTIMIZATIONsame 
omplexity, while in the most 
ommon 
ase in whi
h a is �nite, although not ne
essarily1 (polynomial-time redu
tion), we would have that the �rst problem 
an not be �worse thanpolynomial� if the �rst one is polynomial.An example of linear redu
tion is the redu
tion of Assignment Problem to a 
ase of Min-
ost�Max-�ow Problem on a spe
ially stru
tured graph (namely, a 
omplete bipartite graph,plus one sour
e and one sink, atta
hed respe
tively to the left- and right-verti
es, and all unitary
apa
ities, 
fr. se
tion 2.3). Indeed, in this 
ase, the fa
t that the Edmonds-Karp algorithm
ould solve an instan
e of Min-
ost�Max-�ow in polynomial time is already a proof of the fa
tthat Assignment is polynomial, although the spe
ially-devised Hungarian Algorithm (a
tually inpart a spe
ialization of the Edmonds-Karp ideas) has slightly better performan
es.A look at the problems listed at the beginning of the 
hapter shows that a poor implemen-tation of a sear
hing pro
edure leads immediately to impra
ti
al solving times. The reason forthis lies in the size of the spa
e of feasible solutions, generally exponential in n, if not of order
n! (whi
h is even worse). This fa
t suggests that an exponential growth of solving time in de-penden
e of the input size is the hallmark of intra
table problems. On the other hand the set ofproblems with the hope of a �pra
ti
al solution� should behaves with a polynomial rate growthin the size of the input.The fa
t that implementation details 
an give to an algorithm a slightly better or worseperforman
e, and the fa
t that the 
ommon pro
edure of polynomial redu
tion �bridges� problemsin di�erent-degree polynomial 
lasses, suggests that one 
ould separate in a qualitative sense the
lass of tra
table and intra
table problems, where the �rst ones are polynomial ones, regardlessfrom their degree. So we have the 
lassesP: Polynomial time de
ision problems are de�ned as

P =
⋃

k∈N

TIME(nk) (2.5)and they form the 
lass of problems that, in our assumptions, have some pra
ti
al solvingalgorithm.EXP: Exponential time de
ision problems are de�ned as
EXP =

⋃

k∈N

TIME(2nk

) (2.6)and they form the 
lass of problems that, in our assumptions, are la
king of a pra
ti
alsolving algorithm.In parti
ular, a �loop� of polynomial redu
tion among k problems, and a proof that one of themis in P, automati
ally proves that all of them are in P, and similarly for EXP.18



2.2. COMPLEXITY CLASSESTheir relation is easily seen as a proper in
lusion: P ( EXP be
ause there are many examplesof problems that genuinely live in EXP.There are, however, many problems whose 
omplexity does not seem inherently non-polyno-mial, even if no polynomial algorithm is found for solving that problems. Besides a few ex
eptions(su
h as graph isomorphism), most of them are in a 
lass that we de�ne below, 
alled NP. Thismotivates us to re
all the 
on
ept of Non-deterministi
 Turing Ma
hine. The modelization ofan automati
 
al
ulating devi
e is done by an Universal Turing Ma
hine 
apable of 
hangingits internal status step by step with a fun
tional relation with the input data and the 
urrentstate. The non-deterministi
 Turing ma
hine is a 
on
eptual ma
hine 
apable of a non-fun
tionalevolution, maintaining at a generi
 step multiple 
opies of its internal state, and evolving themin parallel. In other words, a Non-deterministi
 Turing Ma
hine is one with the 
apa
ity ofbran
hing its pro
ess at no 
ost.This feature 
reates a parallel hierar
hy to that built upon TIME(f), where the basi
 
lassis repla
ed by NTIME(f), that is the 
lass of algorithm (or indire
tly problems) su
h that, ina framework of non-deterministi
 ma
hine, the rate of growth of time with the input size n isnot greater than f(n)∗. In parti
ular, all the reasonings about redu
tion translate immediatelyto these 
lasses (as, in translation, are just applied �in parallel� to the bran
hed pro
esses). Wehave thus NP and NEXP analogously to P and EXP dis
ussed above, and still one 
an prove, notonly that NP ( NEXP, but even that NP ⊆ EXP. Remark however the sequen
e of in
lusions
P ⊆ NP ⊆ EXP ⊆ NEXP (2.7)of whi
h we do not know if any of the in
lusion is stri
t (() or instead an equality. The �rstquestion, in parti
ular, whether P ( NP, is of quite large interest, as, through the strong 
on
eptof polynomial redu
tion, the 
lass NP results to be populated by a huge number of relevant
ommon-life problems (if you are 
urious, for the problems des
ribed at the beginning of the
hapter, the shortest path, Chinese postman and max �ow problems are known to be polynomial(and an algorithm is known for ea
h), while the travelling salesman and the 
hromati
 numberproblem are in NP).An insight of the NP ⊆ EXP in
lusion 
omes from the pi
torial intuition of the nondetermin-isti
 ma
hine through the bran
hed pro
esses: we know that the depth of the resulting �tree ofthe pro
esses� is polynomial, with some degree k, still we assume that every bran
hing is �nite,so that, w.r.t. the depth of the tree, the full size is at most exponential, with a �nite rate (e.g.,

2depth). Then, as a result, the whole 
omplexity on the deterministi
 ma
hine, whi
h is for
edto explore ea
h bran
h in sequen
e, is bounded by the size of the tree, whi
h is bounded by 2nk ,and thus is in EXP.
∗For this sometime TIME(f) is repla
ed by DTIME(f), for stress the deterministi
 feature of this 
lass. 19



CHAPTER 2. COMBINATORIAL OPTIMIZATIONThe 
omplexity 
lass NP aims to 
apture the set of problems whose solutions 
an be e�
ientlyveri�ed. The famous P vs NP question asks whether or not the two are the same. The resolutionof this 
onje
ture will be of great pra
ti
al, s
ienti�
 and philosophi
al interest. So, apart fromthe non deterministi
 Turing Ma
hine, it is possible to fully 
hara
terize NP as the 
lass ofproblems for whi
h su

in
t 
erti�
ates exist: appre
iate a Beethoven sonata is far easier than
omposing the sonata, verifying the proof of a theorem is easier than 
oming up with a proofitself, and so forth. The P vs NP question thus asks whether exhaustive sear
h 
an be avoidedin general.Informally speaking P is the 
lass of all sets L su
h that the membership of an element xin L 
an be tested e�
iently. On the other hand, NP is the 
lass of all sets M su
h that everyelement y in M has a su

in
t 
erti�
ate z that establishes the membership of y in M . Considerfor example the set C ⊂ N of 
omposite numbers. There is no 
lear way to test e�
iently whethera number, say 4,294,967,297 is 
omposite. However, every number in C does have a su

in
t
erti�
ate, su
h as 6,700,417 and 641 whose produ
t gives exa
tly 4,294,967,297. But �nding itmay be extremely hard∗.2.3 The Hungarian AlgorithmThe linear Assignment Problem is an optimization problem 
onsisting in �nding, given a n × nmatrix W = {wij}, with values in some numeri
al set†, a subset of elements in W , with exa
tlyone element in ea
h row and in ea
h 
olumn‡, for whi
h their sum is minimal.
W ∈Mn,n[X] �nd π∗ ∈ Sn su
h that

π∗ = min
π∈Sn

n
∑

i=1

wiπi
(2.8)A graphi
al representation 
onsists in a 
omplete bipartite graph G = (S, T ) with |S| = |T | =

n, over whose edges is de�ned a 
ost fun
tion w : S × T → X. The solution is the mat
hing Mwith minimal 
ost de�ned as: 
ost(M) =
∑

e∈M

w(e) (2.9)As the spa
e of perfe
t mat
hings in a 
omplete bigraph is n!, de�ning the spa
e of feasiblesolution a naïve sear
h leads to a non polynomial time (O(n!)), nevertheless strongly polynomialalgorithms are found 
apable to identify a solution in O(n3).
∗The above fa
torization was �rst dis
overed by the mathemati
ian Leonard Euler in 1732, a full 92 yearsafter Fermat had 
onje
tured that no su
h fa
torization existed.
†First studies fo
used on integers, or rational values, but also the real 
ase hides some remarkable features.
‡i.e., a permutation of n elements π ∈ Sn.20



2.3. THE HUNGARIAN ALGORITHMHere we want to present a very e�e
tive (a
tually O(n3)∗) and 
lassi
al† algorithm for theAssignment Problem. The algorithm dates ba
k in an arti
le of Harold Kuhn in 1955 ([6℄), andwas 
alled Hungarian as a tribute for the two main results on whi
h is based, dis
overed sin
ethe 1930s by two Hungarian mathemati
ians, K®nig and Egerváry.K®nig theorem fo
uses on a 
hara
terization of bigraph with a perfe
t mat
hing. Better, asexplained by Lovász, he dis
over a well-
hara
terization, meaning for this, a NP-property whosenegation is also an NP-property‡ (for an insightful exposition of this 
on
ept see box 1A in [3℄),this per se does not give rise to a polynomial algorithm for �nding a maximum mat
hing in abipartite graph. But its relevan
e is in the 
onstru
tive way with whi
h he demonstrates thetheorem. In parti
ular he introdu
es the fundamental 
on
ept of alternating path, whi
h playsa 
entral role in a plethora of 
ombinatorial results.Before of stating it let's remark a few of graph terminology: given a graph G = (V,E), thepoints i and j are said adja
ent if exists an edge e ∈ E joining them (in this 
ase we 
an use
e = (ij)); two lines whi
h share a point are also said to be adja
ent. A graph in whi
h every pairof nodes are adja
ent is said to be 
omplete. A set of lines in G is a mat
hing if no two lines havea point in 
ommon. The size of any largest mat
hing in G is 
alled the mat
hing number of G.If M is a mat
hing of G, any point i in the graph is either mat
hed, if some line exists in M thatis in
ident with i, or exposed if no line in
ident with i exists in M . A set of points S ⊂ V (G)is a point 
over of G if ea
h line in E(G) has at least one endpoint in S. The 
ardinality of anysmallest point 
over is the point 
overing of G. Finally, we indi
ates with Γ(S) the set of pointsadja
ent with any node in S.Theorem 1 (K®nig 1916) If the graph G is bipartite, then the mat
hing number ν(G) equalsthe point 
overing number τ(G):

τ(G) = ν(G) (2.10)Before to sket
h the proof let's formulate it in a other way that remarks its minimax aspe
t§:Theorem 2 Given a bipartite graph G = (S, T ;E), the minimum number µ(M) of exposedelements of S by a mat
hing M is equal to the maximum of the de�
it number h(X) = |X|−|Γ(X)|of a set X ⊂ S:
min
M

µ(M) = max
X

h(X) (2.11)In parti
ular, a perfe
t mat
hing is possible if and only if |Γ(X)| ≥ |X| for all X ⊂ S.
∗This s
aling is really 
lose to the fastest known algorithms for solving AP.
†As folklorist note, it 
elebrated its 50th birthday in 2005
‡i.e., it is in NP ∩ 
oNP, being 
oNP the 
lass of de
ision problems that ask for the non-membership of anelements in a NP-
lass problem. It 
ould be surprising, but a
tually an a
tive area of resear
h is involved indetermining whether these 
lasses indeed 
oin
ided.
§see [3℄ for an explanation of the relevan
e of minimax theorems. 21



CHAPTER 2. COMBINATORIAL OPTIMIZATIONThe 
onstru
tive proof runs as follows: given a mat
hing M 
onsider S′ and T ′, the sets ofexposed nodes in S and T by M . Build a Hungarian Forest Z with the following requirements:(1) every node in T has degree 2 and is in
ident with a mat
hing edge, (2) ea
h 
omponent in Z
ontains a point of S′. Pi
torially it 
ould be done superposing arrows on the edges in M toward
S, and on the edges out of the mat
hing toward T , then the Hungarian Forest is 
omposed byany edge rea
hable through a dire
ted path from a point in S′. By 
onstru
tion any path in
Z is M -alternating, i.e., it alternates edges in M and those in E r M . Now if V (Z) ∩ T ′ 6= ∅we 
an improve the mat
hing taking any of the alternating paths 
onne
ting S′ and T ′ andreversing the mat
hing membership in the alternating path (su
h a path is 
alled for obviousreasons augmenting path). Otherwise if Z ∩ T ′ = ∅, then L := (T ∩ V (Z)) ∪ (S − V (Z)) is aset of nodes 
overing all edges and |M | = |L|. In parti
ular the set of maximum de�
ien
y is
V (Z) ∩ S. �The idea of augmenting path presented in the proof 
an be easily applied for a maximummat
hing algorithm for bigraph:Algorithm 2 Algorithm for Maximum Mat
hing in a Bigraph1: pro
edure K®nig(S, T,E,M) ⊲ M 
ould be ∅2: S′ ← S − V (M), Z ← ∅3: for all i ∈ S′ do4: build a Hungarian Forest Z ⊲ BFS or DFS 
an be used5: if alt-path Ai ⊂ Z terminates in T ′ then6: Reverse M -membership of edges in Ai ⊲ M grows by 17: goto (2)8: else9: add Ai to Z10: end if11: end for12: return M and Z as Hungarian Forest13: end pro
edureEgerváry theorems, instead, uses the K®nig's results in weighted bigraph (over whi
h is de�nedthe Assignment Problem, and its 
onverse the Maximum Weighted Mat
hing Problem). The 
oreof his dis
overy lies in the 
on
ept of 
overing, that is a su

in
t 
erti�
ate of maximality for amat
hing. Let's state it:Theorem 3 (Egerváry 1931) Given a 
omplete bipartite graph G = (S, T ;E) with |S| = |T |,and an integer non-negative weight fun
tion w : E → Z+, let's 
all a weighted 
overing of G, a22



2.3. THE HUNGARIAN ALGORITHMfun
tion c from the set of nodes of G with non-negative integer values su
h that:
c : S × T → Z+ with c(i) + c(j) ≥ w(ij) ∀ (ij) ∈ E, (2.12)Then the maximum weight of a perfe
t mat
hing M is equal to the minimum weight of a 
overing

c. In formulae:
cost(M) =

∑

e∈M

w(e) ; cost(c) =
∑

v∈S∪T

c(i) ; min
c

cost(c) = max
M

cost(M) . (2.13)Assuming for the proof that c is a minimal weight 
overing of G. Consider then the set oftight edges, de�ned as those for whi
h holds c(j) + c(i) = w(ij), and the subgraph Gc of tightedges. If a perfe
t mat
hing in Gc exists, it is also a mat
hing for G, and its weight is 
learlyminimal. Suppose else, that no su
h a perfe
t mat
hing exists. Then K®nig's theorem guaranteesthe existen
e of a de�
ien
y set X ⊂ S su
h that |ΓGc(X)| > |X|, this in turn, allows us animprovement of the 
overing c: let's c′ equals to c for all nodes, but those in X ∪ΓGc(X), whereit takes the values of c in
remented by 1 over X, and de
remented by 1 over ΓGc . If su
h fun
tion
c′ is not a 
overing, be
ause of the possibility of −1 values in T , then in
rement by one all valuesof c′|ΓGc (X) and de
rement all those in c′|X . At this time we have a new 
overing c′ with weightsmaller than c resulting in a 
ontradi
tion with the minimality assumption for c. �The MWM algorithm resulting from the Egerváry theorem, easily extended to rational num-bers, is nonetheless only quasi-polynomial, even if it used maximum de�
ien
y set throughoutthe improvement pro
edure of re
overing. The 
lass of quasi-polynomial, as opposed to strongly-polynomial, time is related to the subtleties of information en
odingA strongly polynomial-time algorithm is one whose running time is bounded polynomiallyby a fun
tion only of the inherent dimensions of the problem and independent of the sizes ofthe numeri
al data. A pseudo-polynomial-time algorithm is one that runs in time polynomialin the dimension of the problem and the magnitudes of the data involved (provided these aregiven as integers), rather than the base-two logarithms of their magnitudes. Su
h algorithms arete
hni
ally exponential fun
tions of their input size and are therefore not 
onsidered polynomial.However, as Garey and Johnson (1979) observe, A pseudo-polynomial-time algorithm will display'exponential behaviour' only when 
onfronted with instan
es 
ontaining 'exponentially large'numbers.The situation is analogous to the well-known 
ase of maximum �ow: for integer or rational
apa
ities, the max-�ow algorithm of Ford-Fulkerson∗ (1956, [9℄) is �nite, but not strongly-polynomial, while with real 
apa
ities examples exists for whi
h the algorithm is not even �nite.The solving time a
tually depends on the size (magnitude) in value of the 
apa
ities. Nevertheless

∗whi
h uses a stri
tly related 
on
ept to that of augmenting paths, i.e., augmenting �ows. 23



CHAPTER 2. COMBINATORIAL OPTIMIZATION
Algorithm 3 Algorithm for Maximum Weight Mat
hing in a Bigraph1: pro
edure Egerváry(S, T,w, c) ⊲ 
overing c 
ould be trivial2: E ← ∅3: for all (ij) ∈ S × T do4: if w(ij) = c(i) + c(j) then5: add (ij) in E6: end if7: end for ⊲ Here I have Gc of tight edges8: Compute M with K®nig(S, T , E, ∅)9: if |M | = |S| then10: return M as MWM with 
overing c11: else12: �nd X ⊂ Gc : |X| < |ΓGc(X)|13: �nd d = min{c(j) + c(i)− w(ij) : u ∈ X, v ∈ ΓG(X)}14: for all v ∈ S × T do15: 
ase v ∈ X : c′(i)← c(i) + d16: 
ase v ∈ ΓG(X) : c′(i)← c(i)− d17: 
ase otherwise : c′(i)← c(i)18: end for19: c← c′20: goto (2)21: end if22: end pro
edure
24



2.3. THE HUNGARIAN ALGORITHMDini
 (1970, [10℄), and independently Edmonds-Karp (1972, [44℄) proved that with a spe
i�
re
ipe (Breadth First Sear
h for Edmonds-Karp) for sele
ting the augmenting �ows, the Ford-Fulkerson algorithm 
an be transformed in a strongly-polynomial one.In the 
ase of Assignment (or MWM) the works of Harold Kuhn ([6℄) �lls the gap:Algorithm 4 Algorithm for Maximum Weight Mat
hing in a Bigraph (Hungarian Algorithm)1: pro
edure Kuhn(S, T,w, c) ⊲ 
overing c 
ould be trivial2: E ← ∅3: for all (ij) ∈ S × T do4: if w(ij) = c(i) + c(j) then5: add (ij) in E6: end if7: end for ⊲ Here I have Gc of tight edges8: Compute M,Z with K®nig(S, T , E, ∅)9: if |M | = |S| then10: return M as MWM with 
overing c11: else12: �nd d = min{c(j) + c(i) − w(ij) : u ∈ Z ∩ S, v ∈ T − Z}13: for all v ∈ S × T do14: 
ase v ∈ T ∩ Z : c′(i)← c(i) + d15: 
ase v ∈ S ∩ Z : c′(i)← c(i) − d16: 
ase otherwise : c′(i)← c(i)17: end for18: c← c′19: goto (2)20: end if21: end pro
edureA 
lose look 
ould observe that the main feature here is the integration of two separatedparts of the Egerváry Theorem: 
omputing the de�
ien
y set and revising the 
overing. TheHungarian Algorithm 
ould easily 
he
ked to be strongly polynomial:1. there are at most |S| augmentation,2. being the sets of nodes rea
hable from S′ in Gc properly in
luded in those rea
hable in Gc′ ,after at most |S| re
overing an augmentation must happen,3. the BFS (Breadth-First-Sear
h) of nodes needs O(|E|) steps, then the overall bound is
O(|E||S|2) = O(n4). 25



CHAPTER 2. COMBINATORIAL OPTIMIZATIONAs it should be 
lear from the above exposition, the works of K®nig, Egerváry and Kuhn fa
ethree aspe
ts of the algorithm, namely:1. K®nig idea of alternating path provides a �lo
al� transformation in the mat
hing spa
e,su
h that starting from any mat
hing M , it gives rise to larger and larger mat
hing in apolynomial number of steps.2. Egerváry's 
overing de�nition translate the weighted problem into a dual problem, allow-ing a redu
tion from the problem in the 
omplete bipartite graph, to many unweightedproblems in a not 
omplete subgraph. This is possible thanks to the fa
t that the 
over isa 
erti�
ate of maximal weight of mat
hing in the subgraph of tight edges.3. Kuhn �nally addresses the subtle question of the possibility of a big numbers of improve-ments in the Egerváry's �gradient� driven algorithm. Physi
ally may be thought as animprovement in sele
ting the steepest des
ent step, granting a strong polynomial bound inthe number of steps.Our implementation follows also the Munkres te
hniques [7℄ for speeding up the re
overingpro
edure, as reported in Knuth [8℄, thus redu
ing the bound in O(n3). Over random instan
eswe derived the data presented in �gure 2.1.
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2.3. THE HUNGARIAN ALGORITHM
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Figure 2.1: Plot of average solution times in an algorithmi
 implementation of the HungarianAlgorithm, applied to random instan
es in the ensemble des
ribed in the body of the 
hapter. One
an evin
e that the average-
ase 
omplexity is analogous to the worst-
ase dis
ussed estimate,i.e., 
ubi
 in the size of the matrix. The algorithm follows the Knuth implementation (thesour
e 
odes 
an be found in the literature), so this should assure you that, in 
omparing theperforman
es of Cavity-inspired algorithms to the pre-existent Hungarian, we did not �
heat� byimplementing the latter in a sub-optimal way!
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Chapter 3Cavity Theory for the AssignmentProblemIn this 
hapter we introdu
e the Cavity Method, �rst through the Bethe Approximation for theIsing Model, then in a more general framework to �t the problems with randomness, and moregeneri
 forms of intera
tion. The method is developed only in the so-
alled Repli
a Symmetri
(RS) assumptions, relevant to our 
ase , while the 1-step Repli
a Symmetry Breaking equationsare not dis
ussed, as pertinent to other 
lasses of problems.In the se
ond part, we 
on
entrate on the Assignment Problem. We des
ribe the 
orrespond-ing statisti
al me
hani
s model, and we spe
ialize the 
avity equations following the generaltreatment.Finally, we add a few remarks on the goodness of the 
avity approximation for our problem,both w.r.t. 
orre
tions of �nite size, and to the stability of the assumption of the repli
a symmetry.3.1 Bethe Approximation for IsingThe Bethe approximation is a re�nement of mean-�eld theory, that negle
ts 
orrelations 
omingfrom loops in the intera
tions graph.Now we re
all mean �eld equation for Ising in order to stress the similarity with the Bethe re-�nement. For a subset of sites A = (i1, . . . , ik), we de�ne the marginal probabilities pA(σi1 , . . . , σik)of the variables σ at sites in A (but, for short, we will often denote pi(σ) ≡ p{i}(σ)).
pi(σ) =

1

Z
∑

σj :j 6=i

exp(−βH(σ|σi = σ)) ∝
∑

j∈∂i

p
(i)
∂i (σ∂i) exp(−βJ

∑

j∈∂i

σjσ − hβσ) (3.1)where we used ∂i as the set of indi
es nearest neighbour of i, while the supers
ript (i) indi
atesa system in whi
h intera
tion involving the variable at site i are removed. So p
(i)
∂i (σ∂i) indi
ates29



CHAPTER 3. CAVITY THEORY FOR THE ASSIGNMENT PROBLEMthe joint marginal probability of the variables {σj} for j in ∂i, in a system in whi
h the fa
-tors 
ontaining σi in the Hamiltonian are deleted (indeed in the expression (3.1) are expli
itlyexpressed apart) or, in other words, in a system in whi
h a 
avity is formed removing site i.In order to get an equation for the mean magnetization, is thus ne
essary 
ompute p
(i)
∂i (σ∂i),and mean-�eld approximation assumes a simple fa
torized form for that (whi
h a
tually negle
ts
orrelations):

p(σ)
MF
=

∏

j

pj(σj)⇒ p∂i(σ∂i)
MF
=

∏

j∈∂i

pj(σj) (3.2)This, in turn, together with the translational invarian
e of Ising, yields an expression for themean magnetization in a trans
endental equation:
m = tanh(βJzm + βh) (3.3)where we used z = |∂i| as the 
onne
tivity of node i (that in general d-dimension squared latti
eis equal to 2d).Not surprisingly this approximation is rather 
rude in low dimensional model. For examplethe 
riti
al temperature in the 
ase h = 0 and in dimension 1, leads to βc = 1/J , that is aquite disturbing result, provided that in the exa
t treatment βc should be ∞. Of 
ourse fordimension higher and higher the approximation improves, until rea
hing the 
orre
t result in the

∞-dimensional 
ase.Bethe approximation starts with a somewhat smaller �
avity�, that where a single link isremoved: a system in whi
h a single intera
tion is swit
hed o� having the Hamiltonian as
H(i,j)(σ) = H(σ) + Jσiσj = −J

∑

〈k,l〉
(k,l)6=(i,j)

σkσl − h
∑

k

σk (3.4)We 
an write the marginal probability of the two variables for whi
h their �inferen
e 
hannel� isinterrupted:
p(ij)(σi, σj) ∝

∑

σ∂jri

p
(j)
∂j (σ∂j) exp

{

βhσj + βJ
∑

l∈∂jri

σjσl

} (3.5)
∝

∑

σ∂irj

p
(i)
∂i (σ∂i) exp

{

βhσi + βJ
∑

l∈∂irj

σiσl

} (3.6)where the two 
hoi
es (3.5) and (3.6) di�er in whi
h variable among σi and σj has been marginal-ized �rst (let's name them for a moment �p(ij)
j;i (σi, σj)� and �p(ij)

i;j (σi, σj)� respe
tively). Cal
u-lating, for example, the magnetization on site i in the two frameworks leads to a 
onsisten
yrequirement
〈σi〉 =

∑

σi,σj=±1

σi p
(ij)
j;i (σi, σj) =

∑

σi,σj=±1

σi p
(ij)
i,j (σi, σj) (3.7)30



3.2. CAVITY METHOD IN GENERAL REPLICA SYMMETRIC MODELSwhi
h leads to a relation among marginal probabilities p
(j)
∂j (σ∂j) and p

(i)
∂i (σ∂i).However, these relations are not su�
ient to 
onstrain in a self-
onsistent way the variousrelevant marginals (or, in other words, the magnetizations of the various spins). This be
ause the�
avity system�, with respe
t to whi
h marginalizations are performed, are slightly di�erent, andbe
ause we need to disentangle the 
orrelation fun
tions. An approximation s
heme is needed,and the Bethe approa
h is to 
onsider de
orrelation between marginal probability of spins arounda 
avity at site i:

p
(i)
∂i (σ∂i)

Bethe
=

∏

j∈∂i

p
(i)
j (σj) =

∏

j∈∂i

eβh
(i)
j σj

2 cosh βh
(i)
j

(3.8)In su
h a way equation (3.7) 
ould be solved as:
M

(j)
i

Bethe
= tanh

{

βh +
∑

k∈∂i\j

atanh
[

tanh(βJ)M
(i)
k

]

}

. (3.9)In parti
ular for the homogeneous Ising Model, with degree 2d = z, the mean-magnetizationequations similar to (3.3) reads:
m = tanh

(

βh + (z − 1)atanh
(

tanh(βJ)m
)

) (3.10)In parti
ular for 1-dimensional latti
e the 
al
ulation of 
riti
al temperature gives the expe
tedresult βc = +∞. Indeed, it 
ould be proved that the Bethe Approximation is exa
t in dimension1, as its intera
tions graph is a tree (a
tually a linear 
hain), and the de
orrelation assumptionis exa
t.3.2 Cavity Method in general Repli
a Symmetri
 ModelsNow we want to give a somewhat more systemati
 and general treatment of the previous deriva-tion based on the framework of Cavity Theory.As usual 
onsider a model fully des
ribed by its Hamiltonian:
H(σ) =

M
∑

a=1

Ea(σi1 , . . . , σika
) +

N
∑

i=1

Wi(σi) (3.11)where there are N variable site σi ea
h in a proper one-parti
le spa
e X0, provided with a refer-en
e probability measure dσ . Fun
tions Wi : X0 → R represents N one-body intera
tion, whilefun
tions Ea : Xka
0 → R represent a set of multi-parti
le intera
tions labelled by a ∈ {1, · · · ,M}.As apparent the one-body intera
tion are extra
ted as requiring a parti
ular treatment just for
onvenien
e reasons. 31



CHAPTER 3. CAVITY THEORY FOR THE ASSIGNMENT PROBLEMQuite naturally in su
h a pi
ture a graphi
al stru
ture emerges, that of a fa
tor graph. This
on
ept was introdu
ed in Computer S
ien
e to study inferen
e networks and 
ould be des
ribedas follows. Given a fa
torization of a real fun
tion of real variables g : RN → R:
g(x) =

M
∏

j=1

fj(xj1 , · · · , xjk
) with ∀ j, fj : Rk(j) → Rwe 
onsider a bipartite graph G = (X,F,E) with N variable nodes, and M fa
tor nodes, and aset of edges E ⊂ X × F , su
h that node fj is 
onne
ted to node xi if and only if the fa
tor fjhas dependen
e from variable xi with respe
t to (3.2).Thus the fa
tor graph asso
iated to the Hamiltonian (3.11) is the 
orresponding fa
tor graphof the joint probability measure. For our purposes this graph does not have fa
tor of one-variable.Consider now a minimal modi�
ation on the Hamiltonian (3.11) where it is swit
hed o�one link, say, the dependen
e of the variable σi on the intera
tion Ea. It should be noted thatour statement is a bit more pre
ise with respe
t to the �swit
hing o�� pro
edure in the Betheapproximation, there, in fa
t, the removed link did not belong to the fa
tor graph, but just tothe latti
e (i.e., there the removing of an intera
tion involved modi�
ation to two links in the
orresponding fa
tor graph). Swit
hing o� pro
edure is done through the introdu
tion of anauxiliary variable σia that substitutes the variable σi in the fun
tional expression for Ea. Ourinterest in a minimal modi�
ation, leads to the 
hoi
e of not asso
iating any one-body term tothe new auxiliary variable introdu
ed, so the Hamiltonian reads:

Ha=i(σ ∪ {σia}) =
∑

i

Wi(σi) +
∑

b6=a

Eb(σ∂b) + Ea(σ∂ari, σia) (3.12)where we used ∂a as the set of variable nodes adja
ent to fa
tor Ea in the original graph, and
∂a r i, for the same set but element i.Composition of this minimal modi�
ation pro
edure leads to systems in whi
h all links fromvariable node i are removed, and those for whi
h all links to the fa
tor node a are suppressed.These systems are indi
ated as Hri and Hra respe
tively. In these systems, the 
ontribution ofsite i or that from intera
tion a is fully de
orrelated from the rest of the system, allowing thusa trivial fa
torization in the partition fun
tion.Now, following the pro
edure for the Bethe approximation, our goal is to derive some relationbetween marginal probability distributions in the modi�ed systems, and re
overing a set ofequations through some assumptions of de
orrelation.The marginal probability distribution 
ould be re
onstru
ted from a set of lo
al observablesover lo
al observables θα

i (σ) where i runs with the variable sites, and α parametrizes the set ofobservables needed for re
onstru
ting the measure dp (σ), i.e., a basis in the spa
e of normalizedprobability distribution over X0. Clearly, if X0 has 
ardinality q (e.g. we 
an identify X0 =32



3.2. CAVITY METHOD IN GENERAL REPLICA SYMMETRIC MODELS
ua→i

hi→a

a

ia

i

Ha=i

{hj→a}j∈∂ari

i

Hra

{ub→i}b∈∂ira

a

ia

Hri

Figure 3.1: A portion of the fa
tor graphs asso
iated to the 
avity Hamiltonians Ha=i, Har, and
Hir respe
tively for the left, middle and right drawings.
{0, 1, . . . , q − 1}), then q − 1 parameters will su�
e, for example the ve
tor (h1, . . . , hq−1) willdetermine a normalized probability distribution over X0 through

p(x;h) =

{

N−1 x = 0

N−1e−hi x = i > 0
N = 1 + e−h1 + . . . + e−hq−1 (3.13)In simple magneti
 systems, where the single-state spa
e has just two values (X0 = {±1}), amarginal distribution is parametrized by a single real number. Furthermore, if there is someunderlying symmetry under inversion of all spins, it would be ni
e to preserve it �at sight� inthe parametrization. Thus, in analogy with the 
ase of an isolated magneti
 spin subje
t to anexternal magneti
 �eld h, we will parametrize in this 
ase the probability distribution as

p(σ) =
eβhσ

2 cosh(βh)
(3.14)The terminology will thus be inspired by the one of magneti
 systems, although we should keepin mind that more general parametrizations are possible, and the theory extends to these 
asesimmediately.So, Cavity Equations are usually expressed in term of su
h generalized magneti
 �elds:magneti
 �eld hi : the element hi in the parameters spa
e of probability distributions over X0
orresponding to the marginal probability distribution over site i in the original system

p{i}(σ) (in magneti
 systems: p{i}(σ) = phi
(σ), with tanh(βhi) = 〈θi(σ)〉).
avity �eld hi→a : the element hi→a in the parameters spa
e of probability distribution over X0
orresponding to the marginal probability distribution over site i in the modi�ed system33



CHAPTER 3. CAVITY THEORY FOR THE ASSIGNMENT PROBLEMwhere the link a ↔ i is swit
hed o�, pa=i
{i} (σ) (that is, in magneti
 systems, pa=i

{i} (σ) =

phi→a
(σ), with tanh(βhi→a) = 〈θi(σ)〉a=i, i.e., the expe
tation value of magnetization forsite i for a system de�ned by Hamiltonian Ha=i).
avity bias ua→i : is the element in the parameters spa
e for distribution over X0 that 
or-responds to the marginal probability distribution for the auxiliary site ia in the systemin whi
h the inferen
e 
hannel a ↔ i is swit
hed o�, pa=i

{ia}
(σ) (that is, in magneti
 sys-tems, pa=i

{ia}
(σ) = pua→i

(σ), with tanh(βua→i) = 〈θia(σ)〉a=i i.e., the expe
tation value ofmagnetization for the auxiliary site ia for a system de�ned by Hamiltonian Ha=i).So, from an inspe
tion of the marginal probability distribution in the various 
avity systems, thefollowing relations 
an be derived:
pa=i
{i} (σ) ∝ pri

∂ira(σ∂ira) e−βWi(σ) (3.15)
pa=i
{ia}

(σ) ∝
∫

dσ pra
∂ari(σ∂ari) e−βEa(σ∂ari,σ) (3.16)The proportionality fa
tors in the relations above are not relevant in the RS treatment that weperform. They have a role in the �reweighting� fa
tor, in 1RSB treatment, as they are in relationwith the shift in free energy 
aused by the introdu
tion/removal of a 
avity in the system, and,in the 
ase in whi
h there are more pure phases in the system with di�erent free energies, itwould be important to weight them with the appropriate Gibbs fa
tor.For deriving the (RS) 
avity equation is now ne
essary to introdu
e the de
orrelation as-sumption:

pri
∂ira(σ∂ira)

Cavity
=

∏

b∈∂ira

pri
ib
(σib) (3.17a)

pra
∂ari(σ∂ari)

Cavity
=

∏

j∈∂ari

pra
j (σj) (3.17b)alongside with the assumption that a larger 
avity does not a�e
t sensibly the marginal proba-bility of variable sites far away from the 
avity

pri
ia

(σ)
Cavity

= pa=i
ia (σ) (3.18a)

pra
i (σ)

Cavity
= pa=i

i (σ) (3.18b)These assumptions applied to equations (3.16) lead to the 
avity equations:


















p(σ, hi→a) ∝ e−βWi(σ)
∏

b∈∂ira

p(σ, ub→i)

p(σ, ua→i) ∝
∫

e−βEa(σ∂ari,σ)
∏

j∈∂ari

(

p(σj , hj→a) dσj

) (3.19)34



3.2. CAVITY METHOD IN GENERAL REPLICA SYMMETRIC MODELSThese equations allow in prin
iple to determine the �elds {hi→a, ua→i}(ia)∈E , although one shouldfa
e both the te
hni
al problem of solving a large system of non-linear equations (and provingthat the solution is unique), and the �physi
al� problem of justifying the assumptions donealongside the derivation.So, given the solution of (3.19), and within our assumptions, we 
an then re
onstru
t themarginal distribution for any site, in the original system. For example, for site i, taking anyneighbouring fa
tor node a, we would have that
p{i}(σ) ∝ pa=i

{i} (σ, hi→a) pa=i
{ia}

(σ, ua→i) (3.20)This would allow to determine re
ursively an exa
t sampling of the 
on�gurations, with theGibbs measure at temperature β, and, as a 
orollary, to identify a ground state of the system,by performing the pro
edure in a limit β →∞.It is worthwhile to spend here some more words on the physi
al nature of the assumptionsabove. The ones in equations (3.18) are relatively inno
ent, as well as all the paths whi
hrelevantly propagate inferen
e from the 
avity to the marginalized spin are long in 
omparisonwith the 
orrelation length in the system. As the 
avity is �nearby� to the spin in the originalsystem, before 
reating the 
avity, we identify the distribution of lengths for these paths withthe one for the loops on the original fa
tor graph. This assumption, on the fa
t that averageloop lengths are su�
iently large, is 
ru
ial to all the method, and relatively well 
ontrolledon many natural families of random graphs (in parti
ular, for Erdös-Renyi graphs with �niteaverage degree, where typi
al loop lengths s
ale as O(ln N)).The assumption (3.17), on the fa
t that joint probabilities on more than one variable arealmost fa
torized, relies on two points. One, again, is the assumption of �long loops�, whi
h allowsto state that the sites are on average far apart on the 
avity system. The se
ond one however ismore subtle: in small words, it states that variables far apart do not intera
t relevantly, and thustheir 
onne
ted 
orrelation fun
tions are negligible. However, for statisti
al-me
hani
s systemswhi
h 
an undergo a phase transition, it is well known that this property holds only within a purephase, and in parti
ular it holds if we are in a region of thermodynami
 parameters su
h thatthere is a single phase in the system (this fa
t is 
alled Cluster Property). In order to see how thisme
hanism 
ould fail, assume we have some lo
al variable σi, in a homogeneous system, su
h thatits average is a good order parameter for the system (i.e. that m = 〈σ〉 assumes di�erent values
mα under di�erent phases α, in the region where the ergodi
ity is broken). Then we have thatwe 
an not hope p{i,j}(σi, σj) ≃ p{i}(σi)p{j}(σj) if it is not true that at least 〈σiσj〉 ≃ 〈σi〉〈σj〉,but we have that ea
h phase α 
ontributes to the 
onvex 
ombination with its fa
tor λα (so that,we re
all, λα ≥ 0 and ∑

alpha λα = 1), in parti
ular, in terms of the free energies Fα inside aphase and F for the whole system, for the Gibbs measure we have λα = e−β(Fα−F ). Then we35



CHAPTER 3. CAVITY THEORY FOR THE ASSIGNMENT PROBLEM
an see that
〈σiσj〉 =

∑

α

λα〈σiσj〉α =
∑

α

λα

(

m2
α + 〈σiσj〉conn.

α

)

≃
∑

α

λαm2
α (3.21)if |i− j| ≫ ξ, where ξ is the 
orrelation length in the system. Instead

〈σi〉 =
∑

α

λα〈σi〉α =
∑

α

λαmα (3.22)so that
〈σi〉〈σj〉 =

∑

α,β

λαλβ mαmβ (3.23)and in general the two quantities (3.21) and (3.23) will be in general di�erent, unless we are ina pure phase, (λα∗ = 1, and λα′ = 0 for α′ 6= α∗, if any), so that both of them are just m2
α∗ .An example where �things go wrong� is the Gibbs measure in a ferromagneti
 Ising Model attemperatures showing spontaneous magnetization, where we have two phases with the same freeenergy and opposite mα, and the quantities (3.21) and (3.23) spe
ialize to m2 and 0.3.3 Cavity Method for the Assignment ProblemA �matrix� formulation of the Assignment Problem 
ould be as follows: given ε a positive, realvalued N ×N matrix de�ning the instan
e of the problem, we sear
h for the N ×N matrix nij,valued in {0, 1}, whi
h minimizes the 
ost fun
tion de�ned by

Hε({nij}) =
∑

ij

εijnij . (3.24)Moreover, there are 
onstraints on the set of feasible nij, in order to enfor
e the 
orresponden
ewith a permutation, i.e.:
{nij} ∈ NN su
h that ∀ j :

∑

i

nij = 1 and ∀ i :
∑

j

nij = 1 (3.25)Thus a bije
tion exists from the spa
e of permutations of N elements and the subset of GLN ({0, 1})de�ned by (3.25):
F : SN → NN , F (π) = {nij} with nij =

{

1 if π(i) = j

0 if π(i) 6= j
(3.26)We 
an thus study the statisti
al properties of some random ensemble. We will 
hoose a measurefa
torized over the entries, d~µ({εij}) =

∏

i,j dµ(εij), furthermore we will assume that dµ(ε) hassupport over some subset of R+, so that it is �nite and 
ontinuous in ε = 0. Our 
on
rete 
hoi
e36



3.3. CAVITY METHOD FOR THE ASSIGNMENT PROBLEMin numeri
al analysis was just the �at measure over the interval [0, 1], i.e. dµ(ε) = θ(ε)θ(1−ε)dε .A se
ond interesting 
hoi
e is dµ(ε) = e−εdε , whi
h allows for a rigorous probabilisti
 analysis[12, 11℄.Strong statements 
an be done for our problem, in order to justify this 
hoi
e. A �rsttrivial remark is the 
ovarian
e of the problem under translation of the measure: if one uses
dµ′(ε) = dµ(ε − a), all the energies are shifted by a 
onstant, Na, and all 
orrelation fun
tionsbetween variables (e.g. nij) remain un
hanged. So, assuming that the minimum of the supportis in 0, provided that the support is bounded from below, is not relevant.A se
ond qualitative remark is that a support bounded from below, and step-like in itsneighbourhood, is indeed the most relevant 
ase. A support with a �tail� on the left would 
reatestrong preferen
es towards 
ertain 
hoi
es: in turns, a fra
tion of the proper assignments nij = 1would be done with relatively small e�ort, w.r.t. our random 
ase, while the remaining part ofthe problem will be just �typi
al�, but de
imated. The 
ase in whi
h, in a neighbourhood of theleft endpoint of the support (say, 0), the measure has a power law dµ(ε) ∼ εa has been studiedin [13℄.A last remark is the fa
t that, provided that the limit in 0 exists and is �nite (together withits derivative), the k smallest values e.g. of a row (with ln N ≪ k ≪ N) will be distributedlike the �rst k values of a Poisson Point Pro
ess, i.e., 
alling them (ξ1, . . . , ξk), we would havethat ξ1, ξ2 − ξ1, . . . , ξk − ξk−1 would be i.i.d., and exponentially distributed, p(ξ) = a exp(−aξ).As the 
onstant a is the same for all rows and 
olumns, and as the problem is on the reals, weunderstand that, if we prove 
onsistently that the �rst k values are the only relevant ones forthe statisti
al properties in a low-temperature regime, we also dedu
e that statisti
al propertiesof random ensembles whi
h di�er only in their limit limε→0 dµ(ε) are the same up to a trivialres
aling. This self-
onsisten
y proof 
an be done. For example, one �nds that the probabilitythat the k-th smallest value in a row parti
ipates to the optimal assignment is 2−k, in the limitof large N .In physi
al terms, the problem of �nding the minimal 
ost 
on�guration, is related to the
ollapse of the allowed 
on�guration in the limit for zero temperature onto the ground state, i.e.,the state at minimal energy∗.It is 
lear that, rigorously speaking, with a fa
torized measure over real numbers like theones dis
ussed above, there is zero probability (in �measure theory� sense) for having instan
eswith a degenera
y, as the di�eren
e of 
ost between two 
on�gurations is a non-empty linear
ombination of the εij 's with 
oe�
ients in {0,±1}. As we will see, and as is dis
ussed in [2℄,

∗In general many states of minimal energy 
ould exists. In su
h a 
ase we say that the ground state isdegenerate. For example an Ising Model with inhomogeneous 
ouplings Jij , but no external �eld h, has at leasttwo states of minimal energy, as 
on�gurations ex
hanged by the �global spin �ip� transformation 
learly havethe same energy. 37



CHAPTER 3. CAVITY THEORY FOR THE ASSIGNMENT PROBLEMthe absen
e of degenera
y plays some te
hni
al role in this problem, and even the Munkres'(or Knuth's) 
ode, based on the Hungarian Algorithm, needs some extra pro
edure in order todeal with possible degenera
ies. To be honest, the �analyti
� justi�
ation above is a too 
heapshort
ut to the problem, and even the 
heap justi�
ation of saying that there is no degenera
yup to adding some �in�nitesimal� un
orrelated real-valued noise to the input instan
e, and then
he
k ba
k at the end that the solution is valid also on the original instan
e, in a weak argument,be
ause, as intrinsi
 in the pro
edure of [2℄, the solution times diverge also if we have quasi-degenera
y, with an inverse power of the splitting between the two 
osts. Remarkably, this isnot true for the Hungarian Algorithm, whi
h is polynomial even in arithmeti
 en
oding.Howeverwe expe
t that a re�ned 
avity algorithm, beyond the one depi
ted in [2℄ and inthe dire
tion of the �fork pres
riptions� we use for slow instan
es, it should be possible in thedegenerate 
ase to obtain one solution in average-
ase times similar to the non-degenerate 
ase,and all solutions in an instan
e with �moderate� degeneration g, in average times bigger just ofa fa
tor g, just following exhaustively the full forking pro
edure, and proving that the fork-to-solution ratio is bounded.Here we just give a hint on how this potential problem of degenera
y is more �te
hni
al� than�stru
tural�. Say that a non-trivial linear relation among the εij 's, like the one dis
ussed abovefor having degenera
y, is improbable with some small fa
tor of order δ, then one 
an argue thathaving degenera
y g is improbable with a fa
tor of order δ⌈log2 g⌉ or smaller. The reason for thisis that the union of the symmetri
 di�eren
es for all the pairs of solutions is a subgraph (of theoriginal 
omplete bipartite graph) in whi
h all verti
es have degree di�erent from 1 (as it is theunion of 
y
les). If the 
y
lomati
 number of this graph is L, then the probability of havingsu
h a graph is of order δL (as the 
y
lomati
 number is exa
tly the dimension of the spa
e ofpertinent linear relation among the parameters). But L is also the dimension of the spa
e offun
tions, from the set of edges to GF (2), satisfying some parity 
onstraints at the verti
es (i.e.,the 
ardinality of the set of su
h fun
tions is 2L), while the set of e�e
tive solution is a subset ofthis, as the parity 
onstraints are repla
ed by some 
onsistent � · = 1� or � · = 0� 
onstraints (1 forodd, and 0 for even). So that g ≤ 2L, equality being realized in the 
ase in whi
h the subgraphdes
ribed above is a set of disjoint 
y
les (then the set of solutions is a hyper
ube w.r.t. thestru
ture indu
ed by symmetri
 di�eren
e).Having dis
ussed this te
hni
al point, we 
an now go ba
k to the problem of spe
ializing thegeneral 
avity framework of the previous se
tions to our problem of assignment.Casting the 
ost fun
tion in the general form (3.11) for the statisti
al me
hani
s models,requires the introdu
tion of intera
tion that for
e the spa
e X = XN2

0 = {0, 1}N2 to satisfy the38



3.3. CAVITY METHOD FOR THE ASSIGNMENT PROBLEM
onstraints (3.25), so we introdu
e the following formal terms in the joint probability fun
tion:
∀i ∈ {1, · · · , N} e−βE

(row)
i (ni1,ni2,··· ,niN ) = δ

(

∑

j

nij, 1
) (3.27)

∀j ∈ {1, · · · , N} e−βE
(
ol)
j (n1j ,n2j ,··· ,nNj) = δ

(

∑

i

nij, 1
) (3.28)While the one-body terms just representing the 
ost of the assignment:

∀(ij) ∈ {1, · · · ,N}2 W(ij)(nij) = εijnij (3.29)The fa
tor graph is thus 
omposed of two kinds of intera
tion nodes, those for the 
onstraints onthe rows, and those for the 
olumns, ea
h joining N variable nodes. They are of the same nature,but globally identify a further bipartition of the set F of fa
tor nodes in the graph. Consequentlyea
h of the N2 variable nodes is linked with two fa
tor nodes, one �row� and one �
olumn�.As variables live in a single-state spa
e X0 = {0, 1}, the marginal probability distributionsare parametrized by a single real number:
p : X0 → R p(n) =

{

p1 if n = 1

p0 if n = 0
with p0 + p1 = 1 (3.30)For 
onvenien
e our parametrization h is as follows:

p1 =
e−βh

1 + e−βh
, p0 =

1

1 + e−βh
, i.e., p(n, h) =

e−βhn

1 + e−βh
, (3.31)where the probability whi
h �xed a variable to 1 or 0 is the limit for the parameter h→ −∞ or

h→ +∞ respe
tively. Considering the spe
ialization of general notation for the AP:
{

i→ (ij)

a→ irow or jcol

{

∂a r i→ (ij′) : j′ 6= j or (i′j) : i′ 6= i

∂i r a→ jcol or irowSo the 
avity equations (3.19) are 4N2 equations binding an equal number of parameters ofmarginal probability distributions in X0, i.e., {h(ij)→irow , h(ij)→icol , uirow→(ij), uirow→(ij)}


























p(n, h(ij)→irow) = f(n, ujcol→(ij))

p(n, h(ij)→jcol) = f(n, uirow→(ij))

p(n, ujcol→(ij)) = g
(

n, {h(i′j)→∂jcol}(i′j)∈∂jcolr(ij)

)

p(n, uirow→(ij)) = g
(

n, {h(ij′)→∂irow}(ij′)∈∂irowr(ij)

)

(3.32)and using some algebra and the relation between the parameter and the probability values:
h = − 1

β
log

(p1

p0

) (3.33)39



CHAPTER 3. CAVITY THEORY FOR THE ASSIGNMENT PROBLEMthey 
ould be written as:


















h(ij)→irow = εij + ujcol→(ij)

ujcol→(ij) = − 1

β
log

∑

nij′
δ
(

1 +
∑

nij′ , 1
)

exp
(

− β
∑

h(ij′)→irownij′
)

∑

nij′
δ
(

∑

nij′, 1
)

exp
(

− β
∑

h(ij′)→irownij′
)

(3.34)and the 
orresponding ones with �row� and �
ol� inter
hanged, and matrix indi
es transposed.In order to 
lean the notation for our problem, and solve the �rst trivial equation in (3.34),let's rede�ne the bias �elds in a 
ompa
t way:
{

gi→j := uirow→(ij)

hj→i := ujcol→(ij)

(3.35)Then the 
avity equation for the AP 
ould be expressed in terms of 2N2 equations for the bias�elds only






















gi→j =
1

β
log

∑

j′ 6=j

e−β(εij′+hj′→i)

hj→i =
1

β
log

∑

i′ 6=i

e−β(εi′j+gi′→j)
(3.36)Taking the limit β →∞, they redu
e to:











gi→j = max
j′ 6=j

(−εij′ − hj′→i)

hj→i = max
i′ 6=i

(−εi′j − gi′→j)
(3.37)
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Chapter 4Analysis of the dis
rete mapIn this 
hapter we 
on
entrate on the dis
rete-time map for the bias �elds derived from the CavityEquation (3.37). In a �rst moment some details of the possible implementations are 
onsidered,and the interpretation as algorithm of Belief Propagation (BP) is des
ribed. Then an analyti
aland numeri
al investigation on the distribution of bias �elds at zero temperature and at �nitesize is presented.4.1 Parallel or Sequential updateSolving the Cavity Equations (3.37), even in RS framework and at zero temperature, is inprin
iple a hard task. Indeed, the equations are not linear, ex
ept that in those neighbourhoodsin whi
h the argmax of the equations do not 
hange (but there is in prin
iple a huge numberof those regions, ∼ N4N ), and some numeri
al idea should be adopted. A 
ommon tool in this
ase is to reinterpret the 
onsisten
y equations as a dynami
s, by introdu
ing a �
titious time t,integer-valued, and write that the �elds at time t + 1 (the ones on the left side of the (3.37)) aresome fun
tional, 
ompli
ated and non-linear but well known, of the ones at time t.
{

gi→j, hj→i

}(t+1)
= Φ

(

{

gi→j , hj→i

}(t)
) (4.1)Then, iterating the map is 
omputationally easy, and all the di�
ulty is 
on
entrated on un-derstanding how and why su
h a map 
ould eventually rea
h a �xed point, and this should
orrespond, among the possibly-many �xed points, to the physi
ally-relevant one.Di�erent implementations of the dynami
s 
ould lead to di�erent average-
ase behaviour of
onvergen
e, and, as this issue is theoreti
ally not well 
ontrolled, some heuristi
s and the sakeof experien
e should be used. Common wisdom is that the so-
alled sequential update, in whi
hat every time step a single �eld, pi
ked at random, is updated a

ording to its Cavity Equation,should give less stress to the pathologi
al feedba
k e�e
t due to short loops in the graph (whi
h41



CHAPTER 4. ANALYSIS OF THE DISCRETE MAPmake the true-life problem more distant from the realization on a tree, where the method wouldhave been exa
t), and furthermore should avoid some 
olle
tive modes whi
h 
ould arise in theopposite 
hoi
e, of simultaneous update of all the �elds (parallel update). For this reason, thesequential update is often the favourite one.It pays, of 
ourse, the fa
t that now the method is intrinsi
ally randomized, as in the de�nitionof the dynami
s we need to pi
k up indi
es in a set. Conversely, the sequential update 
an bemade randomized, for example by 
hoosing randomly the initial 
onditions, but it is also well-de�ned as a deterministi
 pro
edure (for example, starting from all zero �elds).As we will see, our problem is a remarkable ex
eption: while the sequential update works justde
ently well, the parallel update works so well that it 
an be turned into an exa
t algorithm,an ex
eptional 
hara
teristi
 for an optimization problem (in 
omparison, a de
ision problemis stru
turally easier, it su�
es to �nd one solution in a possibly large set, while optimizationrequires to identify that single optimal 
on�guration!). Indeed, the reason for this strikingproperty is related to the one whi
h often leads to disregard the option of parallel updating: thesensibility to feedba
k 
y
les. In our 
ase, we 
an 
erti�
ate that, although the dynami
s su�ersfrom strong os
illations due to the spurious information propagated along the 
y
les, there existsone privileged 
y
le, whi
h �talks louder� than the others, and in whi
h the travelling information
auses a virtuous e�e
t of reinfor
ement on the solution.Another 
hoi
e for a dynami
s, possible in prin
iple but not mu
h widespread, is the one of
ontinuous-time dynami
s. Instead of modifying an equation into a dis
retized dynami
s like
~x = Φ(~x) (4.2)into

~x(t + 1) = Φ(~x(t)) (4.3)one 
an take the variant
~x(t + dt ) = ~x(t) + dt (Φ(~x(t))− ~x(t)) −→ d

dt
~x(t) = Φ(~x(t)) − ~x(t) (4.4)There is an obvious reason for this: if the fun
tional Φ is 
ompli
ated, integrating a di�erentialequation is 
omputationally heavy, and, although 
onvergen
e and stability issues of 
ontinuousmaps are often easier to address than the analogous for dis
rete times (as one 
an rely on 
onti-nuity of the evolution, and on the fa
t that �ow lines do not 
ross), these theoreti
al advantagestend to be negligible w.r.t. the numeri
al disadvantages.Our 
ase is an ex
eption also under this aspe
t: the fa
t that the equations are lo
allylinear, ex
ept that at those interfa
es where some argmax 
hanges, makes the integration of the
ontinuous-time dynami
s an easy task interval by interval. Again, this dynami
s 
an be de�ned42



4.2. BELIEF PROPAGATION INTERPRETATIONin a deterministi
 way, so it is in a sense more similar to �parallel�, than to �sequential�, so it hassome hope of leading, at least in prin
iple, to an exa
t algorithm.We believe that it is the 
ase, although the work on this point is still in progress. As a hintof this fa
t, 
onsider the following 
onstru
tion. At ea
h time t, there is a 
ertain set of argmaxin the equations, whi
h identi�es a web of �who propagates messages to whom�. This web isa subgraph of the original graph, and, more pre
isely, it is an oriented subgraph, in whi
h thein-degree of ea
h vertex (who am I listening to) is 1 ex
ept that at an interfa
e, and thus theout-degree is 1 on average. Thus, negle
ting some ex
eptional points, this graph has no morethan one 
y
le per 
omponent (we 
all these 
omponents �uni
y
les�. The time dynami
s issolved by some easy spe
tral te
hniques, by introdu
ing a proper Fourier basis, and it resultsthat the lowest frequen
y is asso
iated to the alternated-sign sum of the weights along the 
y
le.There is however a fa
tor 1/ℓ, if ℓ is the length of the 
y
le, due as always to the normalisationin the Fourier anti-transform. So, surprisingly, we re
over the expression for the drift ∆ whi
his dis
ussed in se
tion 5.2.Still, di�erently from the dis
rete-time algorithm dis
ussed there, there is now a 
han
efor making the algorithm polynomial even in algebrai
 en
oding. Suppose that we have anex
eptionally slow instan
e, be
ause ∆ is very small: we need to perform many time iterationsbefore the message from the 
y
le is su�
iently enfor
ed. Nonetheless, for long sequen
es ofthese steps, the argmax in the equations are maybe 
onstant, so the analyti
al integration of the
ontinuous-time dynami
s, extrapolated up to a point where some argmax 
hanges, 
ould speedup the pro
edure.From the Cavity Equations (3.37) for bias �elds 
an be easily derived a dis
rete time iterativemap, hoping that for some domain it will eventually 
onverge to a �xed point whi
h determinea set of bias �elds solving the Cavity Equations.4.2 Belief Propagation interpretationBelief Propagation (BP) Algorithm refers, in a narrow sense, to an iterative pro
edure of messagepassing between nodes in a Bayesian network, whi
h allows to e�
iently solve a 
ertain 
lass ofinferen
e problems [14, 15, 16℄. In a wider sense, it refers to a 
lass of algorithms (also 
alledSum-Produ
t), developed in a number of di�erent 
ontexts, whi
h have been re
ognized to havea 
ommon root, and the potentiality of being applied in a broader 
ontext of situations, only inre
ent times.We will 
on
entrate on the Sum-Produ
t terminology∗, be
ause it is the most useful for our
∗As opposed to that of Bayesian inferen
e networks, Markov Pairwise Fields, et
. see, for example [14℄, [15℄,[16℄. 43



CHAPTER 4. ANALYSIS OF THE DISCRETE MAPpurposes. The main problem is that of 
al
ulation of marginals of fun
tions provided with afa
torization. Given g(x), a real valued fun
tion of N variables, suppose one 
an produ
e afa
torization of it, in lo
al fa
tors {fj}, depending on subsets Xj of the set X = (x1, . . . , xN ) ofvariables, where j runs on some set J :
g(X) =

∏

j∈J

fj(Xj) (4.5)In a fa
torization naturally emerges, as said in se
tion 3.2, a 
orresponding fa
tor graph, in our
ase with N variable nodes and |J | fa
tor nodes. Marginals gi : X ⊃ {xi} → R are de�ned inthe same way as marginal probability distribution, ex
ept for the normalization requirement:
gi(xi) =

∑

Xr{xi}

g(X) (4.6)The key observation for the Sum-Produ
t Algorithm is that in a 
y
le-free fa
tor graph its stru
-ture provides an operational indi
ation of how to perform marginal 
al
ulations, thanks, basi
ally,to the distributive law of sum and produ
t. This operative guide 
onsists in transforming thefa
tor graph in a tree rooted in xi, so that a �parenthood� relationship is well de�ned for ea
hnode (i.e., pi
torially like if the rooted tree is a genealogi
al tree). Let µx→f(x) a message fromthe variable node x to the fa
tor node f , and µf→x(x) a message on the same edge in the fa
torgraph but in reversed dire
tion Then the updating rules are:


















µx→f (x) =
∏

h∈∂xrf

µh→x(x)

µf→x(x) =
∑

Xr{x}

(

f(X)
∏

y∈∂frx

µy→f (y)
) (4.7)In order to 
ompute marginal at variable site xi is now required a message passing pro
edurealong following this pro
edure:1. Start from the leaves: ea
h variable node sends an identity fun
tion to its parent, whileea
h fa
tor node sends itself.2. Variable node sends produ
ts of messages arriving to it from its 
hildren.3. Fa
tor node f with a parent x forms the produ
t of f with all messages 
oming from its
hildren, and operate a summation over every variable but x, then pass it to its parent.4. Marginal at xi is 
al
ulated as produ
t of all messages hitting xi at any time.The Sum-Produ
t algorithm is based on the above pro
edure for 
omputing all marginals inthe fa
tor graph, but la
king in this 
ase a unique parenthood relationship, the parenthood isde�ned dynami
ally, so that any node �rst re
eives messages from all of its �
hildren�, then passa message to the remaining neighbour, its �parent�:44



4.2. BELIEF PROPAGATION INTERPRETATION1. All leaf nodes send messages to their parent.2. Every node waits for messages 
oming from all its neighbours but one, let's 
all this oneits �parent�, then it pass the 
omputed message to the parent.3. When the parent talks ba
k it re
ompute the messages for ea
h of its �
hildren�.4. The pro
edure terminates when all the edges in the fa
tor graph have broad
asted a messagein ea
h of the opposite dire
tions.Moreover the number of time steps in whi
h all nodes be
ome in 
ondition of talking∗ is twi
ethe diameter of the tree, i.e., the length of the longest path between two nodes.At the �nal stage, the marginals, or the beliefs in BP terminology, are then 
omputed as sumof all messages re
eived by a variable node:BEL(xi) =
∑

f∈∂xi

µf→xi
(xi) (4.8)A Max-Produ
t algorithm refers to a very 
lose te
hnique in whi
h sums at fa
tor nodes arerepla
ed by max operations. In this manner the purpose is not the 
al
ulation of marginals, butthat of the maximally probable 
on�guration. As it should be 
lear, maximization of marginalsvalues does not imply any maximum probable global 
on�guration. Max-Sum algorithm, in turn,is a variant that uses logarithms. Then, exploiting the monotoni
ity of logarithm and its formalproperties, leads to repla
e produ
ts with sums whi
h are 
omputationally more e�
ient.It should not be a surprise, then, re
ognizing that the Cavity Algorithm in its Repli
a-Symmetri
 formulation is essentially a Sum-Produ
t algorithm, where 
avity bias �elds shouldbe interpreted as messages running from fa
tor nodes to variable nodes. Furthermore, the zero-temperature limit would 
orrespond to the simpli�
ation of Max-Sum.In parti
ular, for our Assignment Problem, the updating rules in the Max-Sum algorithmare indeed the same as in the Cavity Equations we studied. Moreover, as in the fa
tor graphthe 
onne
tivity of variable nodes is equal to 2, their update rule is trivial, and it allows us to
onsider only bias �elds in the pro
edure.Of 
ourse, our problem seems ill-posed as BP, as the fa
tor graph is not a tree-like stru
ture,a situation that someone 
alls Loopy Belief Propagation (LBP). The theoreti
al status of LBPis far less 
lear than that of standard BP: as a matter of fa
t, messages 
ould 
arry endlesslyinformation through the 
y
les, giving rise to awkward beliefs 
onvergen
e issues. For somemodels, in some ensembles, it may 
onverge, while in other 
ases it may not, and it is not 
learat this time if there exist and, in the 
ase, whi
h are, the 
onditions granting a good behaviour

∗That is, a node should 
ompute and pass messages to another if it just re
eived all but one message from itsneighbours, or it just re
eived an �answer� from that neighbour to whi
h it passed a message in a previous step.45



CHAPTER 4. ANALYSIS OF THE DISCRETE MAPunder BP algorithm. The physi
al intuition on this point is that BP 
ould hope of �nding a goodapproximation of the marginals in a system, in the 
ase in whi
h the loops are su�
iently long onaverage, and in whi
h there is a single pure phase in the system (i.e., there is no repli
a symmetrybreaking), although these reasoning are still quite spe
ulative, and 
ould have ex
eptions.4.3 The distribution of bias �eldsIn order to derive the expe
ted distribution of bias �elds during the iterations of the re
ursivemap, 
onsider the exa
t Cavity Equations for bias �elds at zero temperature:










gi→j = max
j′ 6=j

(−εij′ − hj′→i)

hj→i = max
i′ 6=i

(−εi′j − gi′→j)
(4.9)In the thermodynami
 limit, the expe
ted distribution of �elds is derived by solving the followingdistributional equation:

x
d
= max

i
(−ξi − xi) (4.10)where {ξi} is a Poisson Point Pro
ess (PPP) of rate θ(ξ) and both x and the {xi}'s are distributedi.i.d. with f(x), a probability measure to be determined self-
onsistently.The fun
tion f is found as follows. The random variables {ξi + xi} are distributed as a PPPwith rate given by the 
onvolution produ
t (θ ∗ f)(x). Then, 
alled F the primitive fun
tionof f , the probability that the value x is the maximum in a PPP with rate F (−x) is 
learlyproportional to the probability of the joint event that the value −x o

urs and the probabilityof zero o

urren
es of values greater than −x:

Prob(x is maximum) ∝ F (−x)PR(0) with 













PR(k) = e−R Rk

k!

R =

∫ ∞

x
dt F (−t)

(4.11)Some algebrai
 manipulation leads to:
f(x) = F (−x)e−φ(−x) with {

F ′(x) = f(x)

φ′(x) = F (x)
(4.12)This equation is �bilo
al�, i.e., besides depending on f , F and φ, thus being a di�erential equation,it depends both on x and −x. Some tri
ks fa
ilitate the analysis: integrating both sides onegets F (x) = e−φ(−x), then, taking the ratio of the two equations, one determines that f(x) =

F (x)F (−x), so one 
an state that f is symmetri
, and F (−x) 
an be repla
ed by 1−F (x). Thismakes the equation genuinely lo
al, and the di�erential equation 
an be solved. One re
ognizes46



4.3. THE DISTRIBUTION OF BIAS FIELDSin the solution a spe
ial fun
tion named logisti
 distribution, and its �rst and se
ond primitivefun
tions:
f(x) =

1

4 cosh2(x/2)
=

ex

(1 + ex)2
(4.13)

F (x) =
ex

1 + ex
(4.14)

φ(x) = log(1 + ex) (4.15)From the distributional equation (4.10) one 
an dedu
e more than the distribution of the�elds. For example one 
an obtain the distribution p(ξ) for the entry ξ on whi
h the maximumof −ξi − xi is realized. This is of interest, be
ause it 
orresponds to the distribution of instan
eentries ǫij 
hosen in the solution, res
aled by a fa
tor N , and thus from this distribution we 
anextra
t the average value of the minimum energy, 〈Emin〉.The probability p(ξ) 
an be found by independen
e of Poisson Pro
esses. Say we ask for theprobability p(ξ, x) that the maximum value is realized for a given pair (ξ, x). The remainingentries (ξi, xi), 
onditioned to the presen
e of the entry (ξ, x), are still an independent pointpro
ess with rate ρ(ξ, x) = θ(ξ)f(x), thus the maximum of −ξi−xi over these remaining entriesis still distributed with f(x). So p(ξ, x) = prob(−ξ − x > x), with x and x i.i.d. with measure
f(x). After integration we �nd

p(ξ) = θ(ξ)

∫

dx

∫

dxf(x)f(x)θ(−ξ − x− x) = θ(ξ)
e−ξ − 1 + ξ

4 sinh2(ξ/2)
. (4.16)The average value of the minimum energy 
orresponds to the �rst moment of this distribution(the fa
tor 1/N for the res
aling of the entries 
an
els out with the fa
tor N of the sum):

〈Emin〉 =

∫

dξ ξ p(ξ) =
π2

6
, (4.17)whi
h is the 
elebrated Parisi 
onje
ture, now proved by Nair et al. [12℄.One 
ould question how the abstra
t in�nite-size limit of the Cavity Equation implied bythe distributional equations is related to the �elds one experien
es when really performing theanalysis. What happens is that the shape of the distribution f(x) is well veri�ed numeri
ally,up to a time-dependent translation fa
tor, whi
h is indeed responsible for the Cavity Equationsto �nd the exa
t ground state. This translation fa
tor is nonetheless on average �small� in N , sothat non-surprisingly the distributional equation does not predi
t it.We 
an 
onsider more 
arefully the iterative map derived from the Cavity Equations:











gi→j(t) = max
j′ 6=j

(−εij′ − hj′→i(t− 1))

hj→i(t) = max
i′ 6=i

(−εi′j − gi′→j(t)) 47



CHAPTER 4. ANALYSIS OF THE DISCRETE MAPIt is 
lear that, at every step, the matrix ht
j→i for ea
h 
olumn j will have only two values, say

{h(max)
j (t), h

(sec)
j (t)} (and the �rst one is repeated N − 1 times) de�ned as below:











h
(max)
j (t) = max

i
(−εij − gt

i→j)

h
(sec)
j (t) = 2ndmax

i
(−εij − gt

i→j)A similar argument goes for the matrix gt
i→j . The �rst of these two equations may be reasonablyassumed similar to the distributional equation of the analyti
al model in the thermodynami
limit, provided that:1. The matri
es gi→j share the same distribution of hj→i (here the point is an assumptionof independen
e from the initial 
hoi
es for hj→i, for the equations are 
learly symmetri
with respe
t to the two matri
es).2. At least during the �rst iterations the distribution of h

(max)
j is predominant over h

(sec)
j inthe 
ompound distribution, be
ause of its weight of (N − 1)/N against 1/N .We will see in se
tion 5.1 that, instead, for long times the se
ond point fails, be
ause the�se
� �elds will �speak� half of the times. This is not surprising, as, when we almost dete
ted asolution, it is reasonable that the entries whi
h speak are the most reasonable ones, among the

N of a row, most of whi
h 
learly of too high weight.Assumed that these two points are valid for some transient times, and not required anymoreafter, when the distribution will remain quen
hed up to translation, it is reasonable to expe
t alogisti
 distribution for the {h(max)
j }'s. But in this 
ase also the se
ond equation takes a simpleform, be
ause it is just the distribution of:

y = 2nd max
i

(−ξi − xi)where {ξi} are random variables from a Poisson Point Pro
ess of rate θ(ξ) and {xi} randomvariables i.i.d. with the logisti
 distribution.We 
an derive the a
tual form for a generi
 distribution pk(y) solving
y = kth max

i
(−ξi − xi)of whi
h the logisti
 is a spe
ial 
ase, f(x) = p1(x). We have only to adapt equation (4.11) fornon-zero integer values in the Poissonian distribution, yielding:

pk(y) = f(y)
log(1 + e−x)k−1

(k − 1)!
(4.18)48



4.3. THE DISTRIBUTION OF BIAS FIELDSIn parti
ular the expe
ted distribution for h
(sec)
j is given by:

p2(y) =
log(1 + e−x)

(1 + e−x)(1 + ex)
(4.19)A remark about this fun
tion should be made for its average value:

〈y〉 =

∫

R

dxx p2(x) = −π2

6
(4.20)Together with the fa
t that the average value in p1, i.e., in f , is zero be
ause the fun
tion issymmetri
, this result is allusive of the known result for the average minimum energy. This ismore than a 
oin
iden
e: we will see that a 
ertain 
ombination of �max� and �se
� �elds leads toa weighted 
overing of the graph, in the Egerváry sense of se
tion 2.3, so exa
tly at �xed instan
ethe minimum energy is equal to (minus) the sum ∑

i(h
(max)
i + g

(sec)
i ), averaged over a 
ertaininterval of times. So, the result above on the �rst value of p2 is now read as an independent
he
k.
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Figure 4.1: Expe
ted distributions for hmax and hsec.We investigated numeri
ally whether our expe
tations on the distribution of �max� and �se
��elds were right. A plot of these distributions and their 
umulant is in �gure 4.1, where the sizeof the instan
e is already su
h that the statisti
al noise on the data is not even re
ognizable withthe eye. 49



CHAPTER 4. ANALYSIS OF THE DISCRETE MAPThese hypotheses agree well with the data from a
tual 
omputations as shown in the �gure(4.2) whi
h reports the K-S test∗ distan
e and signi�
an
e level of the observed distributionswith respe
t to the expe
ted ones. In parti
ular, one sees a rapid growth (on times of order 1)in the signi�
an
e from the initial values (identi
ally zeroes), followed by randomly �u
tuatinghigh values on some transient times, eventually taking a periodi
 behaviour, as a 
onsequen
e ofthe fa
t that the set of �elds itself be
omes periodi
, and we took out the overall translation.
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Figure 4.2: K-S distan
e and signi�
an
e level between data and expe
ted distributions for h(max)and h(sec) for an instan
e of size N = 4096.A point is still a bit mysterious, on these parameters of translation: one 
ombination of thetwo, 〈h(max) + h(sec)〉, has been already justi�ed in terms of expe
ted energy of the minimum,but the other 
ombination, i.e., the extrapolation of 〈h(max) − h(sec)〉, whi
h has asymptoti
allya linear behaviour, ba
k to time t = 0, seems to be not 
onstrained by any reasoning, and thepredi
tion 
oming from the assumptions above seems to be wrong. Furthermore, this value seemsto be not symmetri
 for h↔ g, and not even self-averaging over the instan
es, for these reasonswe interpreted it as a feature of the initial transient part in the 
avity iterations, with smalltheoreti
al and pra
ti
al signi�
an
e.Looking at the evolution of these average values and at their sum in �gure (4.4), it is possible
∗Kolmogorov-Smirnov test is a 
ommon tool to analyze the agreement between some data with an expe
teddistribution. For a further treatment of K-S test see [18℄.50



4.4. SOME REMARKS ON THE REPLICA SYMMETRY FOR THE ASSIGNMENT PROBLEM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20 -15 -10 -5  0  5  10  15  20

t = 5
t = 1000

t = 10000

Figure 4.3: Cumulant distributions for hmax and hsec for an instan
e of size N = 4096 duringthe evolving of the re
urren
e map.to see, after a transient stage a 
onstant and periodi
 behaviour, suggesting a sort of freezingof the distributions of �elds during some time in the transient phase. An inspe
tion of thisbehaviour requires a better analysis of the me
hanism through whi
h the values of the CavityFields 
hange during the re
urren
e map.4.4 Some remarks on the Repli
a Symmetry for the AssignmentProblemIn all of this work, and mainly in using the Cavity Equations in our form, we assumed that theassumption of Repli
a Symmetry is 
orre
t for the Random Assignment Problem. There aremany justi�
ations of this fa
t, more or less heuristi
, whi
h 
an also be found in the literature,and we will dis
uss a few of them here. But, in parti
ular, we will also show some �analyti
alproof�, in the framework of the full (modern) Cavity Theory, at the end of the se
tion.First of all, in the original repli
a 
al
ulation of Parisi and Mézard, the variational spa
e of1RSB solutions for the problem has a minimum at the RS point. These 
al
ulations are howeverboth hard to follow, and partially hard to justify in all mathemati
al rigour.Some numeri
al investigations have been performed some time later [19℄, and, although they51



CHAPTER 4. ANALYSIS OF THE DISCRETE MAP

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  200  400  600  800  1000

hmax
hsec

hmax + hsec

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  200  400  600  800  1000

hmax
hsec

hmax + hsec

Figure 4.4: Average values for hmax and hsec for two instan
es of size N = 4096 during theevolving of the re
urren
e map. Where useful, a verti
al o�set between the 
urves has beenadopted.are not very extensive, they suggest however in a reasonable way that there is a single purephase. We 
ould easily reprodu
e for given instan
es, as a by-produ
ts of some of our 
odes, thedistribution of the overlap on exa
tly the �rst N 
on�gurations in the spe
trum, and a few ofthese 
urves, at various sizes, are shown in �gure 4.5Indeed, also the algorithmi
 part of our work on the use of Cavity Equations as a solutionalgorithm, has, as a 
orollary, some impli
ations on the fa
t that there should be a single purephase � at least, with some �epsilon and delta's�, in a 
ertain �nite-size analysis. Indeed, weproved that the (parallel update) Cavity Equations 
an identify the optimal mat
hing startingfrom any initial 
onditions, thus proving that almost every measure on the phase spa
e is dynam-i
ally attra
ted to the same �xed-point measure, whi
h should thus des
ribe the only basin ofattra
tion with extensive size. The fa
t that this happens at �zero temperature� (i.e., in identi-fying the ground state) should imply that it happens a fortiori at �nite temperature, be
ause ofbasi
 thermodynami
s disequalities (the disordered paramagneti
 phase is always in a 
onne
tedneighbourhood of the in�nite-temperature point).Furthermore, even the Hungarian Algorithm provides eviden
e for a single pure phase, al-though not so striking as with other argumentations. Indeed, 
onsider the output of the al-gorithm, and the �transformed� instan
e, where entries are shifted by the Egerváry 
overingweights:
ε′ij = εij − λi − µj (4.21)su
h that ε′iπ(i) = 0 and ε′ij ≥ 0 for all pairs (furthermore, in the ones we 
an 
onstru
t throughour 
overing fun
tion, of 
avity �elds averaged over a period, ε′ij ≥ ∆ for pairs (ij) not in themat
hing). Not only this 
erti�
ates that π is optimal, but it also provides a strong intuition on52
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Figure 4.5: Distribution of the distan
e for all pairs of 
on�gurations, among the �rst 500 in thespe
trum, for 6 random instan
es, 2 per size, at sizes N = 32, 64, 128 (
olours respe
tively red,orange and green). For sizes di�erent from 32, a res
aling proportional to √

N/32 is understood.So, as the s
aling exponent is 1/2, i.e., smaller than 1, we re
over the result of [19℄ on thefa
t that the distribution of the overlap tends to a delta in 1 for large sizes. The 
urves arewell �tted by Gaussian 
urves, but the parameters seem to be a bit non�self-averaging, and themean-to-varian
e ratio is not 
ompatible with a binomial distribution.the stru
ture of the spe
trum. The symmetri
 di�eren
e of any two mat
hings π′ and π′′ is aset of disjoint self-avoiding 
y
les. Ea
h of them 
ontribute to the di�eren
e in 
ost of the two
on�gurations, by the alternated-sign sum of the weights. If one of the mat
hings is the optimalone π, all these summands are positive. Indeed, all the intermediate 
on�gurations, in whi
hsome 
omponents are like in π and some like in π′, do exist, and if it were not the 
ase that allthe summands are positive, we would �nd a better mat
hing among the intermediate ones. As a
onsequen
e, if a large fra
tion of relevant ex
ited states at high distan
e from π 
ontains morethan one 
omponent in the di�eren
e with π, (or, more strongly, with one of the few low-energystates nearest to the ground state), it would hardly be possible that there are �valleys� far fromthe one 
ontaining π, be
ause, given another lo
al minimum, we would have a large number of
on�gurations at intermediate distan
es, and with intermediate 
osts.The idea of the existen
e of many 
omponents, if the distan
e is of order N , relies on anobservation of the fa
t that 
losing alternating 
y
les on a good mat
hing typi
ally leads to
y
les with length of order √N (
fr. for example the dis
ussion and the data in se
tion 6.2. 53
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Figure 4.6: Diagrams for the overlap patterns with the ground state, for the instan
es in 4.5.Sizes are in in
reasing order from top to bottom. Remark the �strips� of indi
es with relativeabundan
e of bla
k entries.So, this analysis does not ex
lude the possible appearan
e of �pseudo-1RSB� stru
tures, withan anomalous �nite-size s
aling (with exponent 1/2 instead of 1) for the distan
es, so that thevalleys 
orrespond to alternating 
y
les on the optimal mat
hing whi
h are quite reasonable toswit
h.More 
onvin
ingly, we 
an show a representation of the full pattern of overlap with the groundstate, obtained still by exa
t investigation of the spe
trum: a bla
k entry in row i and 
olumn
j stands for the fa
t that entry π′(i) is di�erent from π(i), for π′ being the j-th state in thespe
trum, and the rows i have been ordered w.r.t. the stru
ture of the diagram (topmost arerows whi
h happen to be di�erent from the optimal one before in the spe
trum). For the sameinstan
es in �gure 4.5, these graphi
s are reported in �gure 4.6, while, for ea
h row-index i, thefra
tion of the �rst 500 
on�gurations in whi
h it appears with a di�erent mat
hing w.r.t. theground state makes histograms, whi
h are reported in �gure 4.7. Remark in this last �gure howthe 
urves �u
tuate over many indi
es, 
orresponding to indi
es in the same 
y
le 
orrespondingto some �translation� into a di�erent �quasi-valley� with separation of order √N from the groundstate.Now we 
ome to some less qualitative and more analyti
al treatment, although dire
tly atin�nite size, on the distributional equations. We know that the equation whi
h determines the54
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Figure 4.7: Histograms for the fra
tion of bla
k entries in the diagrams of �gure 4.6. They arequite non�self-averaging, in some allusive analogy with a Parisi fun
tion q(x), and suggest some�quasi-valley� stru
ture.distribution of 
avity �elds is the following
x

d
= max

i
(−ξi − xi) (4.22)whi
h 
ome as a zero-temperature limit of the �nite-temperature

x
d
=

1

β
ln

∑

i

exp(−β(ξi + xi)) (4.23)A lo
al-RS-stability 
riterion in the analysis of the equation for the 
avity �elds 
onsists instudying how a lo
al in�nitesimal perturbation in the in
oming �elds (on the right side of theequation) propagates onto the outgoing �eld (on the left). The fa
t that the treatment is lo
alallows us in turn to linearize the e�e
t of the perturbation, so that we are redu
ed to studythe spe
tral properties of some random linear operator: if all the eigenvalues are inside a disk of55



CHAPTER 4. ANALYSIS OF THE DISCRETE MAPradius 1, the e�e
t is dumped, and a perturbation would not propagate, while if some eigenvalue isoutside the disk, a perturbation with a non-zero 
omponent along the 
orresponding eigenve
torwould explode exponentially, and lead to an instability of the RS solution, typi
ally interpretedas the possibility of many �xed points, in 
orresponden
e with the many pure phases of a 1RSBstru
ture [20℄.So, we 
all ǫi the in�nitesimal perturbations of the in
oming �elds xi, and ǫ the outgoingperturbation. We get
ǫ =

∑

i

ǫi
∂x

∂ǫi
=

∑

i

ǫi
exp(−β(ξi + xi))

∑

j exp(−β(ξj + xj))
=:

∑

i

ǫi yi (4.24)where we introdu
ed a short
ut y for the derivatives. These quantities have the strong propertiesof being all positive at sight, and of summing up to 1. So, if we want to analyze whether the
L2 norm of the �u
tuations in
reases or de
reases (we need to square them, be
ause the averagemust be zero from the assumption of being at the �xed point of the distributional equation), wewould get in the worst 
ase

max
{ǫi}

ǫ2

∑

i ǫ
2
i

= max
{ǫi}

∑

i,j ǫi(yiyj)ǫj
∑

i,j ǫiδijǫj
(4.25)i.e., the maximum eigenvalue of the rank-1 matrix Mij = yiyj (whi
h is obviously also the onlyone di�erent from zero). Indeed we easily get for the 
hara
teristi
 polynomial

P (λ) = λN−1
(

λ−
∑

i

y2
i

) (4.26)but, as the yi are all positive and sum up to 1, the sum of their squares is always smallerthan 1, and equal in the 
ase of a single value equal to one, and all the others vanishing. Sothe RS phase is always stable or at most marginally stable/unstable (still to be determined).Furthermore, it is easy to re
over that the 
ase of equality happens if one of the summands in(4.24) is dominant, whi
h is always the 
ase if the various (ξi + xi) are di�erent, and β → ∞,i.e., in our zero-temperature random-real-ensemble 
ase: we thus learn that RS is stable at �nitetemperature, and marginal at zero temperature. We 
an interpret this result of marginality asthe distributional-equation signature of the �quasi-valley� stru
ture qualitatively depi
ted above,where we lose the fa
t that the valley are separated by distan
es of order √N , instead of theappropriate extensive s
aling, from the fa
t that the distributional equation has lost the subtler
ontrol on �nite size.The issue of marginality in the limit β → ∞ is a bit te
hni
al. Indeed, we have that thevariation of ǫ2 at the third order in the ǫi's is
2β

∑

i,j,k

ǫiǫjǫk(yiyjyk − δijyiyk)56



4.4. SOME REMARKS ON THE REPLICA SYMMETRY FOR THE ASSIGNMENT PROBLEMand, as evident from the study of the linear operator Mij above, the most relevant dire
tion,
orresponding to the main eigenve
tor, is ǫi = kyi. In the limit of β →∞ we 
an keep a ve
tor yof the form (1− a, a, 0, . . . , 0), with a in�nitesimal (and, say, b ≡ 1− a) and get for the variation(up to the positive fa
tor 2β overall) the expression
∑

i,j,k

ǫiǫjǫk(yiyjyk − δijyiyk) = k3
(

(a2 + b2)3 − (a4 + b4)(a2 + b2)
)

= k3
(

2a2b2(a2 + b2)
)

= k3 · 2a2(1− a)2(1− 2a) (4.27)so, no surprises that the value of ǫ in
reases/de
reases if the sign of the main ǫi is posi-tive/negative, and, as the signs 
hange at ea
h passage, the overall e�e
t is zero at this order (ithad to, be
ause odd terms 
an not survive), Nonetheless, this 
al
ulation was propedeuti
al tothe one for the next even order, the fourth, for whi
h we get, up to positive fa
tors,
∑

i,j,k,h

ǫiǫjǫkǫh(5yiyjykyh − 8δijyiykyh + δijδkhyiyk + 2δijδikyiyh)Now fa
tors of k 
ome with an even power, and are not relevant. With 
al
ulations similar tothe ones above, although more involved, one gets a polynomial in a of the form
−a(1− a)(1− 2a)4(2− 5a + 5a2)whi
h is thus negative for in�nitesimal values of a. From this we 
an 
on
lude that also at T = 0the RS solution is marginally stable.

57





Chapter 5Cavity equations as a �good� algorithmIn this 
hapter, the 
onvergen
e proof for the dis
rete map is �rst outlined, and then rigorouslyproved. The proof uses some ideas of the Bayati, Shah and Sharma's work [2℄, but enhan
estheir 
on
lusion with a better bound, and a really more pre
ise set of statements about thestationary phase. This in turn, should be regarded as an useful addition, be
ause 
onvergen
eper se does not help in designing an algorithm whi
h yearns for be an exa
t method. Instead afull des
ription of the stationary dynami
s 
ould provide, and indeed does provide, expe
tationsamenable of runtime 
he
k, in order to a

omplish a halting 
ondition.5.1 Some remarks on the 
onvergen
e me
hanismThe numeri
al analysis of the bias �elds emphasizes the following features:1. the two sets of values {hmax
j } and {hsec

j } are moving in opposite dire
tion,2. there is an instan
e-dependent speed, whi
h, after a 
haoti
 transient phase, 
onverges toa 
lear value, eventually driving bias �eld values in a linear movement,3. in the stationary phase, at large times, there is a periodi
 os
illation superimposed to thelinear drift, with period instan
e-dependent, but shorter than the instan
e size.Now we 
ould write the 2-step map:










g
(t)
i→j = max

j′ 6=j
min
i′ 6=i

(−εij′ + εi′j′ + g
(t−1)
i′→j′)

h
(t)
j→i = max

i′ 6=i
min
j′ 6=j

(−εi′j + εi′j′ + h
(t−1)
j′→i′)

(5.1)59



CHAPTER 5. CAVITY EQUATIONS AS A �GOOD� ALGORITHMand spe
ializing it, in the long run assumption, i.e., when a separation of values is present, forproper indexes k̄, k, l̄ and l:
{

hmax
j (t) = −εk̄j + εk̄l + hmax

l

hsec
j (t) = −εkj + εkl̄ + hsec

l̄

(5.2)and similar equations for gmax and gsec.Let's introdu
e the indexes fun
tion related to the bias �elds set {hmax, hsec, gmax, gsec}:










lmax
i (t) := arg max

j
(−εij − h

(t−1)
j→i )

lseci (t) := 2ndmax
j

(−εij − h
(t−1)
j→i )











kmax
j (t) := arg max

i
(−εij − g

(t)
i→j)

ksec
j (t) := 2ndmax

i
(−εij − g

(t)
i→j)

(5.3)So it is reasonable to suppose that in the asymptoti
 behaviour are valid the following state-ments∗:1. {kmax, lmax} be
omes 
onstant for large times, and they de�nes the optimal mat
hing π,being one the inverse permutation of the other.2. A subset of {ksec, lsec} also be
omes 
onstant, and their elements de�ne, together withthe previous permutation, a �
ompetitive� mat
hing π′ on the 
omplete bipartite graph,indi
ating the best alternatives to some of the elements 
hosen by π.3. The di�eren
e between π and π′ de�nes a 
y
le (i1j1)(i2j1)(i2j2)(i3j2) · · · (i1jp) of p (2 ≤
p ≤ N) length, either π-alternating, and π′-alternating, with minimal slope whi
h drivesall {hmax, gmax} values to a positive and 
onstant drift, and all {hsec, gsec} values to anidenti
al drift, but with reversed slope.4. the �stationary� behaviour is des
ribed by a small set of parameters 
oming from the bestmat
hing and an ex
ited energy mat
hing, with minimal drift de�ned as:

∆ε
π′ =

∑

e∈π′rπ

εe −
∑

e∈πrπ′

εe (5.4)So the stationary evolution of the map is reasonably assumed follow:
∀t > t0,















hmax
j (t) = +

∆ε
π′

p
t + Cmax

j (t mod p)

hsec
j (t) = −∆ε

π′

p
t + Csec

j (t mod p)

(5.5)
∗Indeed, they are also well-supported by numeri
al analysis60



5.2. PROOF OF THE MAIN THEOREM5.2 Proof of the main theoremWe re
all the �parallel dis
rete-time iterated map� form of our 
avity equations










g
(t)
i→j = max

j′ 6=j
(−εij′ − h

(t−1)
j′→i )

h
(t)
j→i = max

i′ 6=i
(−εi′j − g

(t)
i′→j)with the initial 
ondition hj→i = 0 at t = 0 (or, more generally, some h

(0)
j→i initial 
onditions).Say that the optimal mat
hing (assumed here to be unique) is the one 
orresponding to thepermutation π, so that, for β → ∞, re
alling that our g's and h's are �
avity biases� in thegeneral language of se
tion 3.2, the 
avity �elds identify the ground state if, for ea
h (i, j),

εij + gi→j + hj→i :

{

< 0 j = π(i)

> 0 j 6= π(i)
(5.6)What we will see is the stronger statement that, indeed, for any instan
e, the quantities abovefor the �elds at time t will drift, linearly in time with some instan
e-dependent drift parameter

∆, to ±∞, and with the proper signs in order to have that the quantities above diverge as ±2t∆.Unfortunately, the parameter ∆ 
an be arbitrarily 
lose to zero, and some re�nements in thepro
edure are required in order to have e�e
tive 
onvergen
e times.We will be now more pre
ise on what ∆ is. Given π, 
onsider the set of all other permutations
π′. Say that their �distan
e� ℓ(π, π′) is the number of indi
es i on whi
h they di�er (whi
h isthus an integer in {2, . . . , N}. It is indeed a good distan
e in the mathemati
al sense. Then,de�ne the quantity E(π′) = cost(π′) − cost(π), whi
h is thus stri
tly positive be
ause of ourassumption of non-degenera
y of the ground state. De�ne (∆1,∆2, . . . ,∆N !−1) the ordered setof the {E(π′)/ℓ(π, π′)}π′∈S(N)rπ. Then, our drift parameter is ∆ = ∆1 > 0, and only another
ombination, ∆12 := ∆2−∆1, will play a role in the dis
ussion. We will assume in the followingthat also ∆12 > 0.Remark that if the symmetri
 di�eren
e between π and π′ has more than one 
omponent,
E(π′) takes a positive 
ontribution from all the 
omponents. Put then in (E1, ℓ1) the 
ontributionto E and ℓ 
oming from the �rst 
omponent, and in (E2, ℓ2) the 
ontribution from all other
omponents. All of the four involved numbers are positive. This gives

E1 + E2

ℓ1 + ℓ2
≥ min

(

E1

ℓ1
,
E2

ℓ2

) (5.7)whi
h results from the fa
t that the two di�eren
es are both proportional to the same 
rossedfa
tor (E1ℓ2 − E2ℓ1), multiplied in the two 
ases by fa
tors at sight of opposite sign. As a
onsequen
e, for the π′ realizing the minimum ∆, the symmetri
 di�eren
e with π must 
onsist61



CHAPTER 5. CAVITY EQUATIONS AS A �GOOD� ALGORITHMof a single 
y
le. Similarly, for the π′′ realizing the se
ond ∆, it is either 
omposed of a single
y
le, or of two 
y
les, of whi
h one is the one of π′.Indeed, our aim is to prove that, by iterating the 
avity equations above for a number of steps
t larger than some 
onstant, times some inverse powers of ∆ and ∆12, one rea
hes a situationin whi
h the 
avity �elds h and g have some striking �quasi-periodi
ity� property, with period Tequal to the distan
e ℓ(π, π′) for π′ realizing ∆1. Averaging the �nal 
avity �elds over one period,one obtains some {g(aver)

i→j , h
(aver)
j→i } whi
h identify the optimal assignment π through the �sign�re
ipe des
ribed above, and provide a valid set of dual variables, in the sense des
ribed in se
tion2.3, whi
h 
erti�
ates the optimality of π. As a 
orollary, as the quasi-periodi
ity 
ondition iseasily tested on the run at every time step of the algorithmi
 pro
edure, this also provides ahalting 
ondition for the 
avity algorithm, whi
h was la
king in the original suggestion of [2℄.The 
erti�
ate is 
lear in its meaning: the 
ombinations {εij + g

(aver)
i→π(i) + h

(aver)
j′(i)→i} (where

j′(i) is some arbitrary index di�erent from π(i)) are exa
tly zero on the pairs (i, π(i)), and
≥ 0 on the other entries, and this proves at sight that π is optimal, as a restatement of theEgerváry's theorem. It is interesting, also from the theoreti
al and spe
ulative point of view, toremark the relation among the �physi
ally inspired� 
avity biases and the �
omputer s
ien
e� dualvariables, in parti
ular at the light of the fa
t that rigorous understandings on the �heuristi
�(and approximated on non-tree stru
ture) 
avity equations 
ould allow to shed more light ontheir me
hanisms, and maybe devise better strategies for appli
ations even beyond the spe
i�

ase of Assignment Problem.All our statements above will be proved through a sequen
e of lemmas. The �rst one is
ontained in [2℄, and a few of the other ones either were in part impli
it there but not stated, orare derived applying some variation of the two key ingredients:� the 
orresponden
e with the tree-like unwrapped graph, and the fa
t that Belief Propaga-tion is exa
t on that;� the fa
t (obvious a posteriori, but still one should have had thought to that!), that pathson a �nite graph, at the aim of the o

upan
y numbers on the edges, 
an be de
omposed,e.g., through 
y
le-popping, into a set of self-avoiding 
y
les, and an open path of lengthsmaller than the number of verti
es in the graph.So, given an integer t, an ordered pair (i, j), and a �binary 
hoi
e� among �row� and �
ol�,de�ne the unwrapped graph T (t; i, j, �
ol�) (or the analogue for �row�) as the rooted tree, in whi
hthe root, at the top, is a 
opy of vertex �
ol j�, it is 
onne
ted only to a 
opy of vertex �row
i�, the latter is 
onne
ted to other N − 1 verti
es, 
opies of �
ol j′� for j′ 6= j, ea
h of them is
onne
ted to other N −1 verti
es �row i′�, for i′ 6= i, and so on for 2t levels (t with �row� verti
es,and t with �
ol� ones). At the last level, we just have leaves. So we have a set of leaves (the last62



5.2. PROOF OF THE MAIN THEOREMlevel, plus the root), and a set of internal verti
es, all of 
oordination N , and, w.r.t. the orderingindu
ed by the rooting, N − 1 of the neighbours are in a lower level, and one is in a higher level.On this graph, it is understood a weight fun
tion on the edges, indu
ed by the one on theoriginal graph (if an edge in the unwrapped graph 
onne
ts a 
opy of row i to a 
opy of 
ol j,the weight is of 
ourse εij). For future use, we also de�ne the fun
tion on the edges me ∈ {0, 1},whi
h is valued to 1 if the image of edge e on the original graph is o

upied by the optimalmat
hing. Then, we de�ne a new mat
hing problem on the unwrapped graph, stating that wesear
h for the subset of edges su
h that:� ea
h internal vertex is 
overed exa
tly on
e;� ea
h leaf is 
overed either by one edge, or by no edges;� the sum of the weights on 
overed edges is minimal in this set of feasible 
on�gurations.A few observations 
an be done at this point. First, the 
avity �eld ĝ
(t)
i→j on the top edge-o

upan
y variable n

(t)
ij (
oming from below, while from above the leaf do not send any message)
oin
ides with the time-t 
avity �eld g

(t)
i→j in the iteration of the equations for the originalproblem. Then, the 
avity �eld for the unwrapped problem is exa
t, as we know that BeliefPropagation is exa
t in this 
ase.The lemma states thatLemma 1 If t ≥ N Const/∆, where the 
onstant is of small relevan
e and is dis
ussed below,the sign of ĝ

(t)
i→j is negative or positive respe
tively if π(i) = j or not.The proof works through a 
onstru
tive absurd: if the thesis were false, one 
ould build analternating path on the unwrapped graph, 
onne
ting the root to one of the bottom leaves, su
hthat, by studying the image of the path on the original graph, one would determine that invertingthe o

upan
ies on the path would improve the 
ost of the mat
hing for the unwrapped problem,in disagreement with the fa
t that Belief Propagation is exa
t on the tree.First we observe that, given any pair of allowed 
on�gurations n1, n2 for the unwrappedproblem, their symmetri
 di�eren
e is the union of some self-avoiding even-length 
y
les, andpaths 
onne
ting two leaves, with edges o

upied alternately in n1 and n2. Call n(1) and n(0) thetwo optimal 
on�gurations, 
onstrained to have respe
tively n

(t)
ij = 1 or 0. Clearly, one of them isalso the global optimum. Furthermore, for what we said above, n(1) is the global optimum if andonly if the sign of ĝ

(t)
i→j is positive. The symmetri
 di�eren
e of n(1) and n(0), that we denote with

n(1) △ n(0), must thus have a path 
onne
ting the root to some other leaf, and this path mustbe of length exa
tly 2t. More pre
isely, as both 
on�gurations are optimal in their subensemble,the symmetri
 di�eren
e must be 
omposed only of this path: no other paths between bottom63



CHAPTER 5. CAVITY EQUATIONS AS A �GOOD� ALGORITHMleaves, or 
y
les, are possible, be
ause in one of the two 
ases there would be a net gain. Asimilar statement holds if we 
onsider a third 
on�guration, the one with nij = mij, built byunwrapping the optimal mat
hing on the original problem∗. In this 
ase, for both the symmetri
di�eren
es of m with n(1) and n(0), there 
ould be an arbitrary number of disjoint paths, but nointernal 
y
les. In n(1) △ n(0), and one among the two n(1) △ m and n(0) △ m, there must bea path 
onne
ting the root to a leaf in the bottom, while the portions of the two paths whi
his not in 
ommon makes a path �bottom-to-bottom� in the other di�eren
e. (We negle
t herethe possibility that the optimum 
on�guration is degenerate on the unwrapped problem. In this
ase one should modi�ed the statement into �one 
an 
hoose an optimal n(1) and an optimal n(0)su
h that. . . �.)Another relevant point is the fa
t that this bottom-to-bottom path is bounded in length, by
2N , be
ause, if proje
ted onto the original problem in su
h a way that it is not self-avoiding,it would lead to a gain move in the pertinent n(·), without tou
hing the o

upan
y at the root,thus 
ontradi
ting the optimality hypothesis. So the part of the path in this �⋋-shaped� diagramwhi
h goes from the 
rossing to the top is long at least 2t−N .The di�eren
e in 
ost between the two 
on�gurations is given by the alternated-sign sum ofthe weights εij along the path. Here there is the 
ru
ial point: in the absurd hypothesis that thesign of ĝ is not in a

ord with the original-problem o

upan
y mij , the signs on the portion ofthe path of length larger than 2t−N are alternating in su
h a way that on any 
losed 
y
le theloss is in the dire
tion of 
ontradi
ting the assumption of global optimality. On ea
h 
losed 
y
le,the loss per level is at least ∆ (be
ause of the de�nition of the quantities ∆i: remark how thedivision by ℓ(π, π′) was pertinent). On the other side, there is no 
ontradi
tion still as long asthe other summands 
ould re
over this loss. But, by a 
y
le-popping argument on the path, wesee that both the 
ontribution 
oming from the bottom part of the ⋋, and the one 
oming fromwhat remains of the top part after the 
y
le-popping, are bounded by the di�eren
e in energy inthe alternated-sign�sum along an open self-avoiding path on the original graph, and this quantity
an be evaluated easily at given instan
e, then maximized over pairs (ij), or otherwise boundedeasily a priori by a fa
tor proportional to N in the 
ase of a bounded measure on the εij . So,the loss 
an not be 
ompensated for t su�
iently large w.r.t. this fa
tor, proportional to N/∆.This 
on
ludes the proof of the lemma. �However one should remark that the value of ∆ is both arbitrarily 
lose to zero, and impos-sible to dedu
e from the instan
e, unless with some pro
edure whi
h is essentially equivalent tosolve the problem otherwise (e.g., by applying multiple times† in a smart way the Hungarian

∗Remark that, as for internal verti
es we have the same 
onstraints as in the original problem, and on theleaves we have relaxed the 
onstraint, this 
on�guration m is in the set of feasible ones.
†Not being ∆ determined by the �rst ex
ited state of the spe
trum, it is not su�
ient 
al
ulate it, but asmu
h ex
ited states as it needs for the last 
al
ulated ex
ited energy divided by N is greater than the 
andidate64



5.2. PROOF OF THE MAIN THEOREMAlgorithm), so we both do not have a bound on the running time, and not even a 
erti�ed�xed-instan
e threshold time su
h that, stopping the algorithm after that time, we 
an safely
on
lude that the re
onstru
ted mat
hing is optimal.For this reason we go further with our analysis of the me
hanisms of the problem. We 
an
all t∗ a time su�
ient at the purposes of lemma 1. As the 
avity equations at zero temperatureare of our spe
ial form maxi(· · · ), it makes sense to 
onsider the argmax at ea
h node. Againfor simpli
ity negle
t the possibility that at some nodes there 
ould be degenera
y (it 
ould beni
e to know that this never happens in measure for the 
ase of random real-valued instan
es).Still, 
onsider the messages propagating upwards, to the root of the tree. So we 
an say that, ofthe N − 1 downward neighbouring edges, one of them is the �speaking edge�, if it is the one withlabel 
orresponding to the argmax of the Belief Propagation equations at that node and at the�xed point.A simple fa
t is the followingLemma 2 For ea
h t ≥ t∗, for all the �rst t− t∗ levels of the tree (the nearest ones to the root),all the edges e with me = 1 are speaking edges.This is impli
it from the stru
ture we 
onstru
ted through the �rst lemma, plus the observationthat, through the thesis of the lemma 1, the edges in the mat
hing of the original problem senda message with positive sign, while all the other N − 2 in
ident edges send a negative message.
� Still, this determines only �half� of the speaking edges: alternately along the path, the edgespeaking to one su
h that me = 1 is not still �xed.Another useful remark, impli
it in the 
onsequen
es of the lemma, is the fa
t that, within thenotations of se
tion 4.3 where the �elds g

(max)
i (t) and g

(sec)
i (t) are introdu
ed (and analogouslyfor h's), we see that in the upper t−t∗ levels of the tree, i.e., after t∗ iteration steps on the originalsystem, we are in a regime su
h that the �max� messages speak to �se
� ones and vi
e-versa.We have now all the ba
kground ne
essary to prove the followingLemma 3 For t > t∗∗ = (Const1 t∗ + Const2 N)/∆12, where the irrelevant 
onstants are de-s
ribed below, and for T being the length of the 
y
le realizing the drift ∆, the set of 
avity �elds

{ĝ(t)
i→j , ĥ

(t)
j→i} have the quasi-periodi
ity property

ĝ
(t+T )
i→π(i) = ĝ

(t)
i→π(i) − T ∆; ĝ

(t+T )
i→j = ĝ

(t)
i→j + T ∆ for j 6= π(i); (5.8)

ĥ
(t+T )
j→π−1(j)

= ĥ
(t)
j→π−1(j)

− T ∆; ĥ
(t+T )
j→i = ĥ

(t)
j→i + T ∆ for i 6= π−1(j). (5.9)The proof 
ould be 
on
eptually divided into two steps. One is just te
hni
al, and analogous tothe te
hnique devised in lemma 1: it requires to prove that an alternating path from the new rootdrift to that moment. 65



CHAPTER 5. CAVITY EQUATIONS AS A �GOOD� ALGORITHMto a level down to t∗ from the bottom must go through the optimal 
y
le with drift ∆ for almostthe whole fra
tion of its length, otherwise the loss for not doing so (but following, for example,the se
ond-optimal 
y
le with drift ∆ + ∆12) 
ould not be 
ompensated by the boundary e�e
tsof the self-avoiding open path resulting from the 
y
le popping.The �rst step, however, should 
ome before. Why should we 
are for some �global optimality�
ondition, like the fa
t that the result of �ipping a whole path has de�nite sign, while thestatement we want to prove 
on
erns a 
avity �eld, determined through a �lo
al� pro
edure ofwho's speaking to whom? This is the 
ombined result of the small lemma 2 above, and of thefa
t that, be
ause of the �max� nature of the 2-step 
avity equations. Consider indeed a diagramlike
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

@

@
@

@@

�
�

��where the segments stand for portions of alternating paths on the unwrapped graph, and theheights of the nodes where paths meet have the same parity (even). One 
an devise a globalquantity on the paths from the root to some �xed level, obtained as a 
ertain lo
al 
ombinationof the 
osts on the 
rossed edges, in su
h a way that minimizing this quantity sele
ts the pathof speaking edges from the given layer to the root. Indeed, assume indu
tively that this is trueup to a height 2h, then we want to prove it up to level 2h + 2. We 
an have a look ba
k at the
avity equation, and nest them in two steps:
gi→j(t + 1) = max

j′ 6=j
(−εij′ − hj′→i(t)) = max

j′ 6=j

(

− εij′ −max
i′ 6=i

(−εi′j′ − gi′→j′(t))
) (5.10)As we have a minus sign in between the two max operators, we 
an not redu
e it to a simplemaximization (whi
h would have been an unrealisti
 trivialization of the pro
edure), and ouridea of devising a global quantity to maximize, at least in this approa
h of looking at quantitieswhi
h are natural in 
avity framework, seems unfeasible. Nonetheless, as we said above, we are
erti�
ated in a regime su
h that �max� speak to �se
�, whi
h speak to �max� and so on, andalso, one every two indi
es is known rigorously to be the one suggested by the optimal mat
hing

π, so that we 
an spe
ialize the equation above to this regime
g
(max)
i (t + 1) = max

j′ 6=j
(−εij′ − h

(sec)
j′ (t)) = max

j′ 6=j

(

− εij′ − 2nd max
i′

(−εi′j′ − g
(max)
i′ (t))

) (5.11)(be
ause the argmax over i′ is realized on i), so
g
(max)
i (t + 1) = max

j′ 6=j

(

− εij′ + επ−1(j′)j′ + g
(max)
π−1(j′)

(t))
)

. (5.12)66



5.2. PROOF OF THE MAIN THEOREMThis expression proves our statement, on the fa
t that, at the aim of determining the value ofthe 
avity �eld on the root at a 
ertain time t, given the input 
avity �elds at level t∗ from thebottom, it su�
es to determine the (maximum value of the) alternated-sign sum of the weightson the path, starting from a leaf at this level and rea
hing the root. This is true simultaneouslyfor all pairs (ij). Furthermore, as the value of the �eld 
omes from the sum of lo
al quantitieson the graph, optimized in some way, it must be that for large times it rea
hes a linear regime(i.e., the one for whi
h, for most of the time, it applies the optimal strategy). Finally, for every
onne
ted 
omponent (and, in our 
ase in whi
h all weights εij are �nite, de�nitely for all pairs),the slope of the linear regime must be the same for all the pairs.A 
andidate for this slope is of 
ourse our drift parameter ∆. We 
an easily 
onstru
t, forexample, a whatever path whi
h rea
hes the drift 
y
le in some �nite number of steps, then walkson it for all the time steps down to t∗. Then, as ∆ is the minimum drift, no other values arepossible without violating the optimality 
ondition. A �se
ond better� 
ondition is that almostall the paths follow, as mu
h as possible, the optimal 
y
le, while one or more of them, for sometime interval, follow the se
ond-optimal 
y
le.Consider now two 
ases:� For some time interval {t, t + 1, . . . , t + T} all the paths have followed the optimal 
y
le.In this 
ase, we would enter the quasi-periodi
 regime des
ribed above, as results evidentfrom the 
avity equations, spe
ialized to the fa
t that �max� speak to �se
� and vi
e-versa.� For all time intervals of the for above, at least one path has done at least one step outof the optimal 
y
le (say, in the sub-optimal one). Then, on average, the drift would be
∆ + ∆12/(T · 2N) > ∆ + ∆12/(2N

2) > ∆ (remark, stri
tly larger), this violating our
ondition on the fa
t that the drift must be optimal.This proves also the present lemma. A te
hni
al �nal point 
onsists in estimating a time t∗∗,depending from ∆12, N and the values of the 
avity �elds at level t∗ (whi
h are easily andgenerously bounded by a fa
tor proportional to t∗), and this leads to our estimate in the statementof the lemma. �Now everything is essentially done: as we are for
ed to enter a quasi-periodi
 regime, andas su
h a fa
t is easily dete
ted in an algorithmi
 implementation (for example, through a hashfun
tion of the kind
fλ(g, h; t) =

∑

i

(λig
(max)
i (t + 1) + λ′

ih
(sec)
i (t)) (5.13)where the λ'a are real numbers su
h that ∑

i λi =
∑

i λ′
i but have no other linear relationwith rational 
oe�
ients), and as we know in this 
ase that the asymptoti
 behaviour easilyextrapolated from the argmax in the 
avity equations will de�nitely lead, when t = t∗, to67



CHAPTER 5. CAVITY EQUATIONS AS A �GOOD� ALGORITHMidentify the same optimal mat
hing suggested by the present set of argmax indi
es, we have nowa 
riterion for safely halt the pro
edure, and output the result.Nonetheless, this idea of extrapolating up to t∗ (whi
h, in prin
iple, 
ould be larger than thetime at whi
h quasi-periodi
ity is dete
ted) is a bit disturbing in its la
k of elegan
e. We wantto prove in a �nal lemma that, already through the �elds in our interval of quasi-periodi
ity
{t, t + 1, . . . , t + T}, the optimal mat
hing has been identi�ed by the 
avity equations be
auseof some stru
tural reason. Indeed we haveLemma 4 In quasi-periodi
 regime, the quantities {g(aver)

i→j (t), h
(aver)
j→i (t)} de�ned as

g
(aver)
i→j (t) =

t+T−1
∑

t′=t

gi→j(t
′) ; h

(aver)
j→i (t) =

t+T−1
∑

t′=t

hj→i(t
′) ; (5.14)are a good set of dual variables, in the sense of se
tion 2.3, and thus provide a 
erti�
ate ofoptimality of the permutation π that they identify.Call ε′ij the weights shifted by the dual variables, i.e., εij + g

(aver)
i→j (t) + h

(aver)
j→i (t). We have toprove two statements, �rst that ε′iπ(i) is exa
tly zero for ea
h i, then that ε′ij ≥ 0 for ea
h pair ofindi
es. For the �rst 
ase we have

ε′iπ(i) = εiπ(i) +
1

T

t+T−1
∑

t′=t

(

g
(sec)
i (t) + h

(max)
π(i) (t)

)

= εiπ(i) +
1

T

t+T−1
∑

t′=t

(

g
(sec)
i (t) + (−g

(sec)
i (t)− εiπ(i))

)

= 0

(5.15)while for the se
ond 
ase, with j 6= π(i), we have
ε′ij = εij +

1

T

(

h
(max)
j (t + T − 1) + g

(sec)
i (t) +

t+T−1
∑

t′=t+1

(

h
(max)
j (t− 1)g

(sec)
i (t)

)

)

= ∆ +
1

T

t+T−1
∑

t′=t

(

g
(sec)
i (t) + (εij + h

(max)
j (t− 1))

)

(5.16)but, be
ause of the 
avity equations, ea
h of the summand is at sight positive (and zero if j isthe �arg-se
ond� index at all times of the period).
68



Chapter 6Statisti
al analysis of the CavityAlgorithmThanks to the 
onvergen
e of the bias �elds to an optimal assignment, it is possible to address aset of questions of primary importan
e in the dis
ussion of a pra
ti
al algorithm. First we presenta numeri
al analysis of the 
onvergen
e time distribution and its s
aling behaviour with the sizeof the instan
es. The problem of algebrai
 tail in the solution times, is then fa
ed suggesting apossible workaround.6.1 Convergen
e time analysisHelped by the existen
e of a very e�e
tive algorithm for solving the Assignment Problem, theHungarian Algorithm, even in the �basi
� implementation of the 
avity algorithm, like e.g., ina framework of [2℄, where we do not have neither a 
erti�
ate, nor even a halting 
ondition, itmakes sense to study the �optimisti
 lower-bound� to the solution time, i.e., the iteration time atwhi
h for the �rst instant the optimal solution is identi�ed. More or less optimisti
 
riteria 
an bede�ned, and have been studied, as des
ribed in greater detail below, while the numeri
al analysisof the 
onvergen
e time is shown in �gure 6.1. The 
omparison with the optimal mat
hing π isdone via the argmax fun
tions over the bias �elds k̄j(t) and l̄i(t):










l̄i(t) = arg max
j

(−εij − h
(t−1)
j→i )

k̄j(t) = arg max
i

(−εij − g
(t)
i→j)

(6.1)Three 
riteria have been used in order to de�ne a �solution time�:1. A �rst threshold t0 is pla
ed in the �rst time after whi
h the argmax fun
tions over thebias �elds 
oin
ide with the optimal solution for a number of iterations of order O(N),69
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Figure 6.1: Solving time distribution for an ensemble of instan
es at size 32. On the x-axis thereis the natural logarithm of solving times, while on the y-axis is represented the natural logarithmof the number of instan
es fallen in the interval of the histogram.with N the size of the 
ost matrix (i.e., it �nds the solution in a persistent way)
t0 = min

t

{

t ∈ N : ∀τ ≤ N,∀i, j, l̄i(t + τ) = πi ∧ k̄j(t + τ) = π−1
j

} (6.2)2. A weaker form sele
ts the �rst time in whi
h the 
ondition is satis�ed, even if not inpersistent way
t1 = min

t

{

t ∈ N : ∀i, j, l̄i(t) = πi ∧ k̄j(t) = π−1
j

} (6.3)3. Another still weaker form allows some a number of order 1 of nodes 
onstraints to beunsatis�ed (2, in our numeri
s)
t2 = min

t

{

t ∈ N : ∀τ ≤ N, for at least N − 2 indi
es i l̄i(t + τ) = πi

∧ for at least N − 2 indi
es j k̄j(t + τ) = π−1
j

} (6.4)Remark that these weak 
riteria are very �generous�: for example, allowing for a few errors
orresponds to the assumption that one 
ould re
over the true solution from an almost-good70
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Figure 6.2: Distribution of solving times in a log-log representation. Only peaks are shown.one with some polynomial pro
edure, still to identify. Still, no one of the generous 
riteria weused is signi�
antly better than the original one, and in parti
ular all of them show intra
tablenon-integrable algebrai
 tails in the distribution of the solution times � our estimate for theexponent is −1.018 ± 0.022, 
al
ulated with the proper pres
ription of statisti
al data analysis:














α = 1 + n
(

∑

i

log
xi

x0

)−1

σ =
1 + α√

n

(6.5)where x0 represents the 
uto� from whi
h the tail is 
onsidered, n the size of the sample, and σthe varian
e or error. The �intuition� on this exponent is on the fa
t that, as in the estimates ofthe proof, the slow instan
es are the ones in whi
h a parameter ∆, 
ombination of our weights,and thus in R, and positive by de�nition, is very near to zero. In this 
ase, the solution times
ould slow up to times of order ∆−1. If the distribution of the ∆ has �nite support at ∆ = 0 (asit 
learly does, 
fr. the numeri
s below), one would thus experien
e an exponent exa
tly −1.A 
omparison at di�erent sizes is shown in �gure 6.2 alongside with a tempted �nite sizes
aling analysis in �gure 6.3. 71
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ollapse 
urve for the previous distributions for the followingtransformation: (t; p(t)) 7−→ (log10 t− 0.7 log10 N ; log10 p(t) + 0.6 log10 N).These preliminary 
onsiderations are useful to stress that even if a 
onvergen
e proof exists,nonetheless proje
tion on minimal 
ost 
on�guration happens in a very awkward way, even inthe most favourable 
ase like those in the weaker 
riteria. Letting alone the 
riteria with a prioriknowledge of the solution, surely it is important to have an optimality 
erti�
ate, that does notrequire hard test on the stationary phase phenomena. Thus the 
erti�
ate presented in se
tion5.2 is the key for the a pra
ti
al algorithm, but, in order to address the e�e
tiveness, we should�rst understand in more details whi
h are the 
auses at the root of slow instan
es.6.2 Statisti
al properties of 
onvergen
e parametersThe distribution of the drifts ∆ has been investigated numeri
ally. As the 
osts at given instan
eare some random pro
ess, although 
orrelated, and ea
h 
ost is the sum of N real numbers, we
ould expe
t that single 
onse
utive spa
ings (su
h as ∆ is) are random in some way analogousto a Poisson Pro
ess (although on long sequen
es of 
osts we would not expe
t su
h an idea to bevalid). Indeed, 
olle
ted data for 105 random instan
es, of sizes N = {32, 64, 128, 256} (
fr. �gure6.4), show quite evidently a distribution of drifts ∆ at size N 
ompatible with an exponential of72



6.2. STATISTICAL PROPERTIES OF CONVERGENCE PARAMETERSwidth 2/N2. We do not have however analyti
al arguments for justifying the exa
t value of 2,although maybe arguments in the fashion of [21℄ 
ould su

eed in this.The distribution of the se
ond spa
ing, 
alled ∆12 in the dis
ussions of se
tion 5.2, is howevernot well �tted by a single exponential, and seems to be spe
trally ri
her. Nonetheless, it seemsquite well veri�ed that the pairs (∆,∆12) are almost de
orrelated. At support of this 
laim, weshow, for a list of about 105 instan
es of size 256, the plot of the pairs (i, j) su
h that for thegiven seed ∆ is the i-th of the sorted list, and ∆12 is the j-th (a
tually, with normalized entries),and we interpret the results from the fa
t that no spe
ial stru
ture seems to arise (
orrelation oranti
orrelation would 
on
entrate the points on one or the other of the two diagonals).
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The distribution of periods in the drift 
y
le, i.e., the parameter ℓ(π, π′) realizing the minimumdrift ∆, in the notations of se
tion 5.2, or equivalently the number of iterations T in the re
ipefor the 
erti�
ate of equation (5.8), have been studied at various sizes (N = {32, 64, 128, 256}),and a s
aling analysis has been performed, assuming a Gaussian form like
prob(T ;N) ∝

√

1

N
exp

(

− T 2

αN

) for T integer ≥ 2. (6.6)with α some 
onstant not determined. The 
ollapse of the 
urves is quite good (with numeri
alestimate of α = 1.40 ± 0.05), and is shown in �gure 6.5.The guess of a Gaussian �t was also suggested by a naïve argument: at the end of the 
avityalgorithm, the set of �speaking� edges 
onsists of a Hungarian tree (it is in general a Hungar-ian Forest at the end of the traditional Hungarian Algorithm, but our pres
ription produ
es a�
ondensation� of the 
omponents). The drift 
y
le is all 
ontained in the tree, ex
ept for asingle edge not in the mat
hing. If we also in
lude this edge, we have a �Hungarian uni
y
li
�.Assuming (in a totally unjusti�ed way) an uniform distribution over the possible uni
y
li
s on73
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Figure 6.4: Cumulant distribution of the quantities N2∆ for random instan
es at size N (i.e., f(x)is the probability that N2∆ > x). Sizes are N = {32, 64, 128, 256} (with 
olours respe
tively:red, orange, green, blue). The �t with an exponential of width 2 has not been reported, be
auseindistinguishable from the numeri
al data.the 
omplete bipartite graph, we obtain that relative probabilities for 
y
les of length 2T go like
prob(T ;N) ∝ N(N − 1) · · · (N − T + 1)

NT
≃ e−

1
N
− 2

N
−···−T−1

N ≃ exp

(

−T (T − 1)

2N

) (6.7)whi
h appears to be qualitatively 
orre
t, although it does not estimate the proper value of α.6.3 Fast solution of slow instan
es: the fork-after-warning pro
e-dureAs explained, the dynami
s of bias �elds is led by the passing of messages through some alter-nating 
y
les between mat
hings in the bipartite graph. Every 
y
le has a proper weight thatdetermines its likely to be an a
tive 
hannel for the messages, this weight being the alternatingsum of edge weights in one or in another mat
hing. The 
avity equations, through the lo
aliterative map, sele
t those 
y
les whose total drift, i.e., weight divided by the 
y
le length, isminimal. Very small drifts thus, 
ause a slowing down of the 
onvergen
e pro
ess, but thereis also another 
ause, not so mu
h with respe
t to the sele
tion of the minimal mat
hing, butrather for the sele
tion of the �rst ex
ited 
y
le, being their di�eren
e ∆12 in the driving for
etoward equilibrium. That should not mislead: the sele
tion of the minimal mat
hing, 
auses the74



6.3. FAST SOLUTION OF SLOW INSTANCES: THE FORK-AFTER-WARNING PROCEDUREsystem to evolve towards 
on�gurations with the optimal mat
hing, but, for the 
erti�
ation,i.e., for rea
hing the proper stationary phase, also the se
ond mat
hing should be �xed by thedynami
s. It is thus not surprising that instan
es 
ould exists with very long 
erti�
ate time,even if, maybe, the spread between the ground state and the �rst ex
ited mat
hing is not sosmall. Su
h 
onsiderations 
ould be explained through �g. 6.6.We re
ognize a dense ellipse of �typi
al� 
ases, with some 
orrelation, and three �tails�: oneshows strong 
orrelation: we had a long time �be
ause� ∆ or ∆12 (resp. if red or green) wereanomalously small; one is almost horizontal (but only green) and 
orresponds to parameters
∆12 anomalously small, whi
h did not 
ause the instan
e to be slow; one is almost verti
al,
orresponds to slow instan
es, whi
h were not anomalous in respe
t to ∆ or to ∆12, and ispotentially dangerous, as, if it turns out that some of these instan
es were slow although both ∆and ∆12 were typi
al, we would have failed in dete
ting all the possible 
auses of slow instan
es.For this reason, on the bottom of the �gure, we plot a subset of the red (resp. green) points,sele
ting only the ones in whi
h the parameter ∆ is smaller than ∆12 (or vi
e-versa). Theverti
al tail has disappeared, so that we 
an guess that all slow instan
es were indeed 
aused byan anomalously small value of min(∆,∆12).We 
an now suggest a quite simple idea with relevant 
onsequen
es: what if a better inspe
-tion of the transient phase, say, of the �rst O(N) iterations or even less, almost always su

eed inidentifying the presen
e of a 
y
le with drift anomalously small, and did not �nd a large fra
tionof spurious irrelevant small-drift 
y
les?In this 
ase, we would have �morally� identi�ed the reason for the future slowing of thealgorithm, within a typi
al solution time, and we 
ould adopt a whatever reasoning for 
ir
umventthis to happen. The 
on
eptually more e
onomi
 way is to �fork� the pro
ess: take a whateveredge of the dangerous 
y
le, say the one 
onne
ting row i to 
olumn j, and 
hange its weightto, e.g., a quite large value (so that one restri
ts to 
on�gurations π in whi
h π(i) 6= j). Thensolve the resulting instan
e, say �nding a minimum energy E1, most probably in a �typi
al� time.Then, for the same edge, shift up of a large amount the weight of all the other entries (i, j′) with
j′ 6= j (so that one restri
ts to the 
omplementary set of 
on�gurations π in whi
h π(i) = j).Then solve also this resulting instan
e, say �nding a minimum energy E2, again most probablyin a �typi
al� time. The 
on�guration 
orresponding to the minimum energy among E1 and E2is thus the global minimum of the original instan
e, and has been found within three typi
altimes. This would kill any algebrai
 tail, and 
ause an almost-gaussian distribution of solutiontimes, analogously to the Hungarian Algorithm.
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Figure 6.5: Top: distribution of the periods for random instan
es of sizes N = {32, 64, 128, 256}(
olours respe
tively: red, orange, green, blue); on x axes: the period in units of intera
tions,on y axes: logarithm of the fra
tion of events. Bottom: 
ollapse of the 
urves, and �t of thesingle-size data with a Gaussian. Values on y axes have been shifted of log2(N/2), while valueson x axes have been s
aled of fa
tors √

512/N .
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Figure 6.6: Plot, in log-log s
ale, of the number of iterations required in our �basi
� algorithm inorder to rea
h a 
erti�
ate (i.e., in our algorithm, without the te
hnique of �fork-after-warning�des
ribed below). Times are the y 
oordinate of ea
h point. On the x axes is reported thelogarithm of the parameter ∆ (red point), or of the parameter ∆12 (green point).
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Con
lusion and perspe
tiveAs was pointed out in some re
ent papers [22℄ the Cavity Equations (i.e., the auto
onsisten
iesequations for the 
avity �elds introdu
ed in 
hapter 3) are powerful tools to solve some problemsof Combinatorial Optimization. But, in spite of the fa
t they help us to solve some problemsalso in the hard regions, not mu
h is known about the existen
e of a solution and an eventual
onvergen
e towards this solution. Only for a few set of problems we know that a solution of theCavity Equations exists and 
an be rea
hed. Among this problems there are all the ones that
an be expressed as an Hamiltonian with a tree-like Fa
tor Graph.In this thesis we studied how the Cavity Equations works on the assignment problem that isa polynomial problem, i.e., it has been showed [6℄ an algorithm able to solve all the instan
es in atime that grows polynomially with the problem size. This problem 
an not be des
ribed in termsof a Hamiltonian with a tree-like Fa
tor Graph, so we had no guarantee of existen
e of a �xedpoint or 
onvergen
e to the solution. The Assignment problem is interesting for its pra
ti
alappli
ations, but also for its theoreti
al properties. In fa
t applying the Cavity Equations asre
ursive equations on the �elds whi
h live on the dire
ted edges of the fa
tor graph it wasobserved that after a transient time a set of �elds begins to drift towards +∞ and another setdrift towards −∞. The set of �elds that goes negatively to in�nity results to be the �elds onthe site of the fa
tor graph that should be set to the 
on�guration. This fa
t, up to what weknow, is the only one 
ase were a similar behaviour happens. As we showed the presen
e ofloops (normally dangerous for the sear
h of solution via Cavity Methods) here happens to playan important role in determining the spe
i�
 behaviour of the evolution of the Cavity Fields.An extensive analysis of the average and typi
al times involved in the dynami
s of the al-gorithm on a random set of instan
es was done so to give us a deeper 
omprehension of thephenomenon and of its �nite size-s
aling behaviour. The problem in the in�nite size limit resultto have an in�nite transient time.We observed that a me
hani
al implementation of the equations is not an algorithm. As amatter of fa
t, it 
an not output the solution in any way, also if it �found� the right answerand the mean time needed to �nd this solution is in�nite (due to rare instan
es of very slow
onvergen
e time), in other words there was not a re
ipe to stop the algorithm whenever it �nds79
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Figure 6.7: In �gure you 
an �nd a 
omparison of the solving times between Hungarian Algorithmand the 
avity one. Ea
h point represents an instan
e (di�erent 
olours are user for di�erent sizes:
N = {32, 64, 128, 256} 
orrespond to red, orange, green and blue points), whose abs
issa value
orrespond to the 
omputing time with the Cavity Algorithm, while in its ordinate value is theHungarian Algorithm 
omputing time. Times are s
aled, both in x and y dire
tions, by a fa
tor
∝ N3. Sub-�gures in quadrant II and IV 
orresponds to Hungarian and Cavity 
omputing time
umulant distributions. The algebrai
 tail in bare Cavity Algorithm is evident, while Hungariantimes are Gaussianly 
on
entrated.the solution, be
ause there was not a way to re
ognize that the one found was the solution. Thetime needed to solve an instan
e was �nite but arbitrarily long, so that the average time resultedto be in�nite on the spa
e of random instan
es in whi
h ea
h entry of the 
ost matrix is a randomnumber with a given distribution, independent on ea
h entry, not 
on
entrated and not null onzero).One of our main 
ontribution is to have written a working algorithm for the Assignment,with Cavity Methods, meaning an algorithm that gives always a solution and do it in a �nite.In fa
t we found an halting 
ondition, i.e., the algorithm is now able to say if a feasible solutionis a solution and we showed that this happens always (the algorithm is always able to �nd this
erti�
ate). We found how to speed up the rare very-slow instan
es (the ones responsible forthe in�nite mean time), so to make the solution time �nite on average and not only for ea
hinstan
e.80



6.3. FAST SOLUTION OF SLOW INSTANCES: THE FORK-AFTER-WARNING PROCEDURESo, after to have given a physi
al formulation of the problem (in terms of the Hamiltonianon the fa
tor graph and of the gauge �elds) we found the me
hanism governing the evolution forthe Assignment Problem, we found a Cavity Algorithm working on this problem, able to �ndthe solution in a �nite time and we extensively studied the behaviours of all the quantity relatedto the �elds dynami
s.We were interested on the theoreti
al properties of the problem in its formulation as a dis-ordered system. But the advantage (in te
hnologi
al terms) that the Cavity Algorithm presentson the 
lassi
al ones is to be more easy to implement (it's a sequen
e of few and very easyoperations) so that it's possible to think to an hardware implementation of a Cavity Algorithm.What would be interesting to determine is if there is the possibility, by using some tri
ksto write an algorithm 
ompetitive with the famous one written by Kuhn (this is a di�
ult taskbe
ause the existing algorithms use some strong properties of the mat
hing among bipartite set).The use of these properties makes the algorithm very e�
ient but more involute that the 
avityone.One important open point remains: if and how it is possible to export the tools we foundedfor the Assignment problem to other problems. We do not know any problem whose dynami
sexhibits the same spe
i�
 properties of the Assignment (like the drifting �elds), but it would bean interesting task to for
e another problem to have the same obje
ts that generate this pe
uliardynami
s so to obtain the same behaviour and to make it possible an e�
ient solution via theCavity Equations.Looking at �gure 6.7, one 
ould grasp an overall 
omparison with the exa
t Hungarian Al-gorithm. Even if it seems 
lear that the Hungarian Algorithm has globally better performan
e,it should be also noted that the Cavity Algorithm has two features of great interest:� It seems better suited for a hardware implementation, either parallel, or not, for the Hun-garian Algorithm, being rooted in graph theory, is relatively a 
omplex algorithm, requiringa set of nontrivial 
omputing stru
tures. In this 
omparison, the ar
hite
ture of the CavityAlgorithm, instead, is mu
h simpler, involving, in its 
ore, just additions and maximumoperation over matrix elements.� Se
ond, it should be noted that the Hungarian Algorithm 
omputes a dynami
s in themat
hing spa
e with no guarantee of 
loseness to the best solution, thus, in realtime ap-pli
ation 
an perform quite badly. On the 
onverse, the global updating pro
edure ofthe Cavity Algorithm, let hope to derive simple re
ipes to extra
t from transient time
on�gurations a good, but maybe suboptimal, 
andidate assignment.
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