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Introduction

Over the last decades, it has been recognised that combinatorial optimisation

is connected with statistical mechanics in a natural way: if we identify the

instances of the optimisation problem with the configurations of the model of

statistical mechanics and the cost function with the energy, finding a solution

to a problem of minimisation corresponds to finding the ground state of the

thermodynamic system in the limit of zero temperature.

This analogy allows us to adapt the ideas and tools of statistical mechan-

ics, such as the universality of the critical exponents or the techniques of the

Renormalisation Group, to discuss optimisation problems and develop new

algorithms. Conversely, it is possible to study optimisation problem as test-

ing ground to devise and experiment techniques useful in the study of complex

physical models, such as disordered systems (spin glasses or polymer networks,

for instance, but also, in different areas, collective social behaviour or financial

markets).

In this thesis, we will consider a problem known as the “Grid-Poisson Mar-

riage”. This is defined as the optimal matching between N lattice points and

M random points in the continuum, taken with Poisson distribution. As we

will see, it is a typical assignment problem, where the weight function is given

by the sum of the Euclidean distances between the couples of points. In this

case, the problem is trivial at very high or very low densities ρ = M/N , while

the system becomes critical near ρ = 1, where there is the symmetry in the

exchange of N with M . Owing also to the underlying geometrical structure,

this is a critical phenomenon in all respects, as at ρ = 1, the searching pro-

cess of an “ideal partner” extends to all length scales and the energy density

diverges.

The importance of this model lies in its showing a non-trivial critical beha-

viour, and still being simpler to study than analogous problems. Indeed, in

this case we can make use of a very powerful weapon, the Hungarian algorithm,
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2 INTRODUCTION

which provides us with a solution for the assignment problem in polynomial

time (O(N3)), so allowing us to perform numerical simulations at appreciable

sizes in relatively short times.

As a final remark, we want to observe that the system is not invariant under

translation, and in this sense the GPM can be used as a simple model in the

study of physical disordered systems, which are in general very difficult to deal

with.

This problem, and related models such as the Poisson-Poisson matching,

have been studied in the past and there are already some important results

(see, for instance, [20], [19], or [21]). In particular, Elia Zarinelli has discussed

this subject in his Master’s thesis [1], and the present work can be considered

as a development of his own.

Structure of the thesis

In this thesis, we study some properties of the GPM from a theoretical point of

view, and we compare them with data from numerical simulations on lattices

of different sizes and with different densities of Poisson points.

Chapter 1

We recall some basic concepts of statistical mechanics and combinatorial op-

timisation and formalise the link between these two areas of study.

Chapter 2

We give some definitions and properties of random processes, which will be

useful in the following, and we define the model under investigation.

Chapter 3

We use the properties of stochastic processes, in particular Wiener processes

and Brownian bridges, to find the exact solution for the correlation function

in one dimension at density ρ = 1.

We show that, if we consider as a weight function to minimise the sum of the

squares of the distances, the analytic solution found is in very good agreement

with the results from numerical simulations.

We also show the numerical curves at ρ 6= 1 and give a brief qualitative

description of them.
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Chapter 4

We state the fundamental ideas of Finite-Size Scaling of thermodynamic sys-

tems, and apply this technique to the 2-dimensonal GPM. In particular, by

means of simulations at the critical point ρ = 1, we give a numerical estimate

of the scaling of the wall-to-wall correlation function.

We show numerically the shape of the correlation function near the critical

point, give two possible definitions of correlation length and examine their

behaviour.

Chapter 5

We study the probability distribution of the edge lengths from simulations at

different sizes and densities.

In addition, we examine the mean of these lengths as a function of the size

and we verify the results presented in literature on the subject.
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1
Statistical mechanics and
combinatorial optimisation

1.1 Statistical mechanics and critical phenom-

ena

In this section, we will introduce some basic concepts of statistical mechanics

and give a brief account of the phenomenon of phase transitions, with partic-

ular stress on the subjects of universality classes and critical exponents.

1.1.1 Classical equilibrium statistical mechanics

The main aim of statistical mechanics is to predict the relations between the

observable macroscopic properties of a mechanical system, given only a know-

ledge of the microscopic forces between the large number of particles composing

it (as an example, the molecules of a gas or the spins of a magnet).

The normal approach of Hamiltonian mechanics in this context is unreason-

able, due to the large number of degrees of freedom, and it becomes necessary

to make use of the tools of probability theory.

Let us denote by C a generic state of the system (for example, in a ferro-

magnetic substance, a state is specified once the orientation of each magnetic

dipole is known). Assume that the total number N of the spins is sufficiently

large and that the system is at thermal equilibrium. Within these assump-

tions, the probability that a given configuration C of the system is realised, is

5



6 CHAPTER 1. STATISTICAL MECHANICS AND. . .

given by the Boltzmann law

P [C] =
e−βE(C)

Z
, (1.1)

where E(C) is the energy of the configuration C, and β = 1/kBT (T being the

absolute temperature).

The expectation value of any physical observable O is then expressed by the

statistical average on all configurations, with weights given by the Boltzmann

law

〈O〉 =

∑
C O(C)e−βE(C)

Z
, (1.2)

where the quantity Z in the denominator is a normalisation factor defined by

Z(N, β) =
∑
C

e−βE(C). (1.3)

Z is called the partition function of the system, while the factor e−βE(C) that

gives the weight of each configuration is the Gibbs factor.

The thermodynamic quantities typical of the system at equilibrium can then

be written in terms of Z. For example, for the free energy F and the internal

energy U we have

F = − 1

β
logZ (1.4)

U = −T 2 ∂

∂T

F

T
(1.5)

1.1.2 Phase transitions

When we consider systems with a macroscopic number of degrees of freedom

(N →∞), a phenomenon can occur which has no counterpart in both classical

and quantum mechanics of finite degrees of freedom: systems ruled by the same

Hamiltonian, can coexist in different phases, or undergo sudden transitions

between phases as the temperature changes. This phenomenon is known as

phase transition.

Two typical examples are the transition water-vapour at 100� and the mag-

netisation of a metallic (for instance iron) bar in the presence of an external

magnetic field ~B. If we examine the latter, we see that the magnetisation is
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discontinuous at zero external field, as we are in the presence of a residual

finite magnetisation M0, and it is possible to have at the same time different

regions of the sample in different magnetisation states. Moreover, if we study

the trend of the magnetisation along this discontinuity as a function of the

temperature, we see that it decreases as the temperature increases, until it

reaches the so called critical temperature Tc of the material.

Both the non-analyticity of the thermodynamic quantities and the coexist-

ence of different phases are particularly surprising. They can be understood

if we suppose the system has more than one possible local equilibrium state

(minimum of the free energy) and can go from a minimum to another only

by sudden global changes. The points in the space of parameters where the

transition occur are called critical points and it is customary to use, instead

of the parameter T (which for historical reasons is treated as a temperature,

but can be any parameter of the system), the adimensional parameter called

reduced temperature

t =
T − Tc
Tc

. (1.6)

Very often, the discontinuities of the physical observables near the critical

point show a power law in their dominant part, with possibly non-integer

exponent. These exponents are called critical exponents and have an important

role in the classification of the different systems that show phase transitions.

For example, the anomalous behaviour of the magnetisation is parametrised

by the critical exponent β:

M(B = 0, t) ∼ (−t)β if t→ 0−.

One of the main peculiarities of the systems that show phase transitions

is that local fluctuations present a radius of influence on the system which

diverges in the proximity of the critical point. This radius is called correlation

length and is a a typical size of the system which is a measure of how far

the cooperative effects of the interaction go. Once chosen an order parameter

σ that represents the quantity we are interested in (for example, the spin in

the magnetic sample), it is possible to define a function that estimates these

cooperative effects between the variables of the system. This function is known

as the (connected) correlation function:

G(x, x′) = 〈σxσx′〉 − 〈σx〉〈σx′〉. (1.7)
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Its behaviour at long distances can be written as

G(|x− x′| = r) ∼


e−

r
ξ , T 6= Tc

1
rd−2+η , T = Tc

(1.8)

or, in one expression,

G(r) ∼ 1

rd−2+η
f

(
r

ξ

)
(1.9)

where ξ is the correlation length, d is the dimensionality of the system, and

η is a critical exponent known as the anomalous dimension of the order para-

meter. This formula involves the scaling function f(x) that depends only on

the dimensionless ratio x = r/ξ. For large x, this function has the asymptotic

behaviour f(x) ∼ e−x, while its value at x = 0 simply fixes the normalisation

of this quantity, which can always be chosen as f(0) = 1. It is worth stressing

that the temperature enters the correlation functions only through the correl-

ation length ξ(T ). The critical exponent associated with ξ is usually denoted

by ν:

ξ(T ) ∼


ξ+t
−ν , T > Tc

ξ−(−t)−ν , T < Tc

(1.10)

The list of critical exponents is summarised in Table 1.1.

The exponents α, β, δ, γ, η and ν defined above, are not all independent. It

has been observed that they satisfy the algebraic conditions

α + 2β + γ = 2

α + βδ + β = 2

ν(2− η) = γ

α + νd = 2,

so that it is sufficient to determine only two critical exponents in order to fix

all the others. Moreover, the existence of these algebraic equations suggests

a scaling hypothesis, namely that the thermodynamic quantities of the system

are functions of B and T in which these variables enter only in homogeneous

combinations (in other words, they satisfy scaling laws).
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Exponent Definition Condition

α C ∼ |T − Tc|−α B = 0

β M ∼ (T − Tc)−β t < Tc, B = 0

γ χ ∼ |T − Tc|−γ B = 0

δ B ∼ |M |δ T = Tc

ν ξ ∼ |T − Tc|−ν B = 0

η G ∼ r−(d−2+η) T = Tc

Table 1.1: Definition of the critical exponents. C is the specific heat of the
system and χ its magnetic susceptibility.

Another important idea in the study of critical phenomena is the universality

hypothesis. This can be put as an hypothesis on physical grounds, which

nowadays takes a stronger justification within the context of Renormalisation

Group. The hypothesis states that the kind of singularity at the critical points

is determined only by general properties of the configuration space and of

the Hamiltonian (dimensionality of the underlying space, range of interaction,

symmetry properties of the variables involved, and so on) and do not depend

on the details of the interaction.

This hypothesis justifies an abstract mathematical approach to critical phe-

nomena: the study of idealised models reveals the critical properties also of

the potentially complicated concrete physical systems which share the same

universality characteristics of the model, that is, which belong to the same

universality class.

1.2 Combinatorial optimisation

Combinatorial optimisation problems are very commonly encountered in every-

day life and have been studied for centuries. Think about perhaps the most

famous one, the Travelling Salesman Problem (TSP): given a certain set of

cities and the distances between them, a travelling salesman must find a tour,

as short as possible, in which he visits all the cities and goes back to his start-

ing point. What we would like to find is an algorithm which is able to find
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the shortest tour for any instance of the problem in a reasonable amount of

(computer) time.

By considering this example, we can define the basic ingredients of a com-

binatorial optimisation problem:

(1) The domain of the problem, which is the family of possible instances (e.g.

for the TSP, any ensemble of points and matrix of distances between them).

(2) The rules which define a configuration (for the TSP, a configuration is a

tour).

(3) A cost function which allows to compute the cost of any configuration (for

the TSP, the length of the tour).

An algorithm is a sequence of elementary instructions understandable by an

appropriate automated machine, such that, given some input data, in a finite

number of steps it generates some output. An algorithm solves the combin-

atorial problem if it is able to find the configuration of lowest cost for any

instance.

It is clear that any problem can be solved. It would be sufficient to näıvely list

all configurations and choose the best one. However, suppose this procedure

takes one second on a given machine to solve a problem with N ! possible

configurations when N = 20. Then to solve a problem with N = 40 it will

need 40!/20! = 3.35 · 1029 seconds ≈ 1022 years! Obviously, this is not what we

would mean by “solvable” and such an algorithm would be useless.

For this reason, a natural classification among the algorithms is according

to the time they take, and the variation of this time with the size of the in-

stance one is solving. A very coarse-grained distinction is between polynomial

algorithms and exponential ones, depending on whether the computer time

grows as a power of the size or exponentially.

1.2.1 Classification of optimisation problems

The classification of optimisation problems is as follows: first there are the

“simple” ones which are solved by a polynomial algorithm. They form the

class “P” of polynomial problems. A much wider class is the “NP” class of non-

deterministic polynomial problems, which can be solved in a polynomial time

by a non deterministic algorithm. A non deterministic-algorithm is, roughly

speaking, an algorithm that can run in parallel on an arbitrarily large number
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of processors. We say that a problem is in NP class if, given a feasible solution,

the check that it is a solution can be done in polynomial time. Obviously

NP⊇P, but the question whether NP⊃P or NP=P is still open.

Among the NP problems one can introduce an order relation. One says that

problem P1 is at least as hard as P2 when the following statement is true: “If

P1 can be solved in a polynomial time, so can P2”. NP complete problems

are NP problems which are at least as hard as any other NP problem. It has

been shown that there exist such problems. To prove that a new problem is

NP complete, it is then enough to show that it is at least as hard as one of

the already known NP complete problems. Finally there are problems, even

harder than NP, which are called, accordingly, NP-hard.

Practically, NP complete problems require a prohibitive computer time, grow-

ing exponentially with the size of the problem. Therefore one must settle for

second best and look for algorithms (named heuristics) which provide an ap-

proximate solution of the problem: they find configurations which have a cost

nearly equal to the optimal one. In many applications this can be enough.

1.2.2 Some examples of classical problems

Some of the most famous optimisation problems can be described in in math-

ematical terms with the use of graph theory1. Here we give a list of optim-

isation problems defined on a connected graph G of vertices V and weighted

edges E.

The following are problems for which an algorithm has been found.

� Minimum Cut Problem: we want to find the cut of minimum cost for the

graph G.

� Minimum Spanning Tree Problem: we want to find the minimum cost

spanning tree subset of G.

� Chinese Postman Problem: we want to find the tour (closed path) of

minimum length that passes through every edge at least once.

� Eulerian Circuit: this problem consists, given a graph, in finding if there

is a circuit that visits all the edges exactly once and returns to the starting

point. Such a circuit is called “Eulerian” because the problem was first

discussed by Euler in 1736, while solving the famous Seven Bridges of

Königsberg problem. Euler proved that in a connected graph there exists

an Eulerian circuit if and only if every vertex has even degree.

1For some basic notions on graph theory see Appendix B.
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� The assignment problem, which will be treated in the following 1.2.3.

On the contrary, the TSP is an example of a problem which cannot (yet) be

solved in polynomial time. Other problems in this category are, for instance:

� Maximum Cut Problem: we want to find the cut with maximal cost for

the graph G.

� Hamiltonian Cycle: given a graph, it consists in finding if there exists an

Hamiltonian cycle (a tour that visits every edge exactly once).

� K-Satifiability Problem: given a set of N boolean variables and M

clauses, each of them involving exactly K literals, the problem consists in

finding a configuration of the variables such that every clause is satisfied.

Equally important is to determine whether no such assignments exist.

1.2.3 The assignment problem

The assignment problem is a special case of the transportation problem, which

was first formalised by the French mathematician Gaspard Monge in 1781 [5],

while dealing with minimising the cost of refilling n places with surplus brash

from m other places. Transportation theory deals with the study of optimal

transportation and allocation of resources.

There are many ways to describe the assignment problem. A common one is

to consider the problem of assigning N jobs to N workers, one each, given a

set of costs {εik} for the kth worker to perform the ith job, where the goal is

to minimise the sum of all the N costs.

So, a valid assignment consists in a one-to-one mapping of jobs onto workers,

that is, a permutation π of the indices k, and the cost of π is thus encoded in

the cost function

Hε(π) =
∑
i

εi,π(i) (1.11)

One can give a representation of this problem in terms of graphs. Given KN,N ,

the complete bipartite graph of order N , one can identify the two sets of N

vertices, Vj and Vw, as the “jobs” and the “workers”, and naturally assign

weights {εik} to the edges (ik) with i ∈ Vj and k ∈ Vw . Then, a valid

assignment consists of a matching M on the graph, i.e. a subset of the edge set

E = Vj×Vw such that each vertex has degree one. The weight of the matching

is the sum of the weights on the occupied edges.
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The Hungarian algorithm

A classical algorithm for the assignment problem which finds an optimal match-

ing in worst-case polynomial time (O(N3)) is due to Harold Kuhn [6], who

called it Hungarian algorithm as a tribute to the mathematicians, Kőnig and

Egerváry, authors of previous results on which it is based.

We prefer not to go into detail about this procedure, which is a subject

amply covered in literature (starting with Kuhn’s original article [6]). In the

following, we will use it as a black box that, for any given instance of Poisson

points, will provide us with the optimal matching with the grid points (see

2.3).

1.2.4 Combinatorial optimisation and statistical mech-
anics at zero T

We have already explained the parallel between combinatorial optimisation

and statistical physics. Here, following [7], we only want to expressly give the

correspondence between the two terminologies.

Firstly, with the language of statistical mechanics we can write the partition

function of the combinatorial problem at the “temperature” T = 1/β as

Z =
∑

configurations

e−β·cost(configuration) (1.12)

Then can schematise the other relevant concepts in the following table:

OPTIMISATION STATISTICAL MECHANICS

instance sample

cost function energy

optimal configuration ground state

minimal cost ground state energy

and analogously for the thermodynamic quantities such as the internal energy

U , which can be seen as the averaged cost of the configurations weighted with

their Boltzmann Gibbs probabilities, or the entropy, which corresponds to the

logarithm of the number of configurations which contribute at a fixed energy.
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2
The Grid-Poisson Marriage

2.1 Marriage problems

Suppose there are, for simplicity, N bachelors and N girls of “marriageable

age”, and we want to find the best solution in order to secure N successful

marriages.

Each boy will have his own ordered list of preferences, and the same applies

to the girls. If we want the marriages to last, it is necessary that, in the end,

there does not exist a boy and a girl who prefer each other to their respective

partners, otherwise two divorces and a new marriage are in view.

This is a representation of the so-called stable marriage problem, which was

first introduced by Gale and Shapley in 1962 [2], and has been amply studied

in literature (see, for instance, [4]). The algorithm that solves this problem is

simple, and can be easily extended to similar problems, like college admissions

(the difference being that colleges can accept more than a single student).

The stable marriage solution involves the presence of very “happy” people

and people that, on the contrary, had to make do with a partner they may not

like at all. The “global happiness” of the marriages is not necessarily the best

possible, in such a way as to benefit the group on the whole.

Alternatively, suppose we have a measure of how unhappy every possible

marriage would be, how can we choose the N couples, in such a way that the

sum of these values is minimum? Now, that is a typical assignment problem

that can be expressed in terms of weights (or costs) to minimise. As we will

see, we will deal with the particular case of “marrying” points on a grid with

random points in the continuum, with costs given by their Euclidean distances.

15
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However, before we can proceed on this line, we have to give some basic

concepts about random processes that will be necessary to define rigorously

and study our model. For a complete coverage, we refer, for example, to [8] or

[10].

2.2 Stochastic processes

The theory of stochastic processes is concerned with the study of experiments

whose outcomes are random; that is, they cannot be predicted with certainty.

Not only is it important to analyse a wide range of physical phenomena, but it

has become essential also in many models of economics, engineering, biology

and social sciences.

Examples of stochastic processes are

� The number of nuclear decays in a radioactive sample, as registered by

a Geiger–Muller counter during a period of time.

� The size of an animal or human population at a certain time t, ran-

domly fluctuating due to environmental stochasticity in birth, death, or

migration.

� The number of customers who arrive during a certain time ∆t at a service

counter, or the number of those who are served during that period.

2.2.1 Random variables

Consider a random experiment. The collection Ω of all possible outcomes is

called a sample space. An element ω of Ω is called an elementary event, or a

sample point.

A random variable (r.v.) X = X(ω) is a single-valued real function that

assigns a real number called the value of X(ω) to each sample point ω of Ω.

The terminology used here is traditional. Note that a random variable is not

a variable in the usual sense, and it is a function. It also customary to shorten

the notation {ω : X(ω) = x}, say, by {X = x}.

A mapping ~X : Ω → R
d, ~X = (X1, X2, . . . , Xd), is called random vector if

for every k, 1 ≤ k ≤ d, Xk is a random variable.
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Let X be a random variable with cdf1 FX(x). If FX(x) changes values only

in jumps (at most a countable number of them) and is constant between jumps

(that is, FX(x) is a staircase function), then X is called a discrete random vari-

able. Alternatively, X is a discrete random variable only if its range contains

a finite or countably infinite number of points.

Suppose the jumps in FX(x) occur at the points x1, x2, . . . and we assume

xi < xj if i < j. Then

FX(xi)− FX(xj) = P (X ≤ xi)− P (X ≤ xj) = P (X = xi). (2.1)

Let X be a random variable with cdf FX(x). If FX(x) is continuous and also

has a derivative dFX(x)/dx which exists everywhere except at possibly a finite

number of points and is piecewise continuous, then X is called a continuous

random variable. Alternatively, X is a continuous random variable only if its

range contains an interval (either finite or infinite) of real numbers. Thus, if

X is a continuous random variable, then

P (X = x) = 0. (2.2)

Note that this does not mean X = x is the impossible event ∅.

2.2.2 Random processes

A random process, or stochastic process, is a family of random variables {X(t),

t ∈ T} indexed by the parameter t, where t varies over an index set T .

As a random variable is a function defined on the sample space Ω , a random

process is really a function of two arguments, {X(t, ω), t ∈ T, ω ∈ Ω}. For

a fixed t = tk, X(tk, ω) = Xk(ω) is a random variable denoted by X(tk), as ω

varies over the sample space Ω. On the other hand, for a fixed sample point

ωi ∈ Ω, X(tk, ω) = Xi(t) is a single function of t, called a sample function or

a realisation of the process. The totality of all sample functions is called an

ensemble.

In a random process {X(t), t ∈ T}, the index set is called parameter set of

the random process. The values assumed by X(t) are called states, and the

set of all possible values forms the state space E of the random process. If

the index set T of a random process is discrete, then the process is called a

discrete-parameter (or discrete-time) process. A discrete-parameter process is

1For the definitions of distribution functions and their basic properties, see Appendix C.
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also called a random sequence and is denoted by {Xn, n = 1, 2, . . .}. If T is

continuous, then we have a continuous-parameter (or continuous-time) process.

If the state space E of a random process is discrete, then the process is called

a discrete-state process, often referred to as a chain. In this case, the state

space E is often assumed to be {0, 1, 2, . . .}. If the state space E is continuous,

then we have a continuous-state process.

Classification of random processes

� A random process {X(t), t ∈ T} is said to be stationary or strict-sense

stationary if, for all n and for every set of time instants {ti ∈ T, i =

1, 2, ..., n},

FX(x1, . . . , xn; t1, . . . , tn) = FX(x1, . . . , xn; t1 + τ, . . . , tn + τ) (2.3)

for any τ . Hence, the distribution of a stationary process will be unaf-

fected by a shift in the time origin, and X(t) and X(t+ τ) will have the

same distributions for any τ . Thus,

FX(x; t) = FX(x; t+ τ) = FX(x)

fX(x; t) = fX(x)

µX(t) = E[X(t)] = constant

var[X(t)] = constant

And similarly,

FX(x1, x2, ; t1, t2) = FX(x1, x2; t2 − t1)

fX(x1, x2, ; t1, t2) = fX(x1, x2; t2 − t1)

� If condition (2.3) only holds for n ≤ k, then X(t) is stationary to order k.

If k = 2, then X(t) is said to be wide-sense stationary or weak stationary,

and we have E[X(t)] = constant.

� In a random process X(t), if X(ti) for i = 1, . . . , n are independent r.v.’s,

so that for n = 2, 3, . . .,

FX(x1, . . . , xn; t1, . . . , tn) =
n∏
i=1

FX(xi; ti) (2.4)

then we call X(t) an independent random process.
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� A random process {X(t), t ≥ 0} is said to have independent increments

if whenever 0 < t1 < t2 < . . . < tn, X(0), X(t1)−X(0), X(t2)−X(t1),

. . . , X(tn)−X(tn−1) are independent.

� If {X(t), t ≥ 0} has independent increments and X(t) − X(s) has the

same distribution as X(t + h) −X(s + h) for all s, t, h ≥ 0, s < t, then

the process X(t) is said to have stationary independent increments.

Let {X(t), t ≥ 0} be a random process with stationary independent

increments and assume that X(0) = 0. Then

E[X(t)] = E[X(1)] t

var[X(t)] = var[X(1)] t

� A random process {X(t), t ∈ T} is called a normal or Gaussian process

if for any integer n > 1 and any finite sequence t1 < t2 < . . . tn from T

the r.v.’s X(t1), . . . , X(tn) are jointly normally distributed.

Equivalently, a stochastic process {X(t), t ∈ T} is called a Gaussian

process if every finite linear combination of the r.v.’s X(t), t ∈ T , is

normally distributed.

� A random process {X(t), t ≥ 0} is said to be a Markov process if the con-

ditional probability distribution of future states of the process depends

only upon the present state, not on the past history. That is, whenever

t1 < t2 < . . . < tn < tn+1,

P{X(tn+1) ≤ xn+1|X(t1) = x1, X(t2) = x2, . . . , X(tn) = xn}

= P{X(tn+1) ≤ xn+1|X(tn) = xn} (2.5)

A discrete-state Markov process is called a Markov chain. For a discrete-

parameter Markov chain {Xn, n ≥ 0}, we have for every n

P (Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn = i) = P (Xn+1 = j|Xn = i) (2.6)

Equation (2.5) or Eq. (2.6) is referred to as the Markov property (which

is also known as the memoryless property).

It is possible to show (see e.g. [8]) that every stochastic process X(t),

t ≥ 0, with independent increments has the Markov property.
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Random walks

An important example of Markov chain is is the random walk.

Let {Jn, n ≥ 1} be a sequence of independent identically distributed (i.i.d.)

r.v.’s taking values in the d-dimensional Euclidean space Rd, and X0 a fixed

vector in Rd. The stochastic process X = {Xn, n ≥ 0} defined by

Xn = X0 + J1 + · · ·+ Jn, n ≥ 1, (2.7)

is called a d-dimensional random walk. If the vector X0 and the r.v.’s Jn take

values in Zd, then {Xn} is called a d-dimensional lattice random walk. In

the lattice walk case, if we allow only the jumps Jn from ~x = (x1, . . . , xd) to

~y = (x1 + ε1, . . . , xd + εd) where x ∈ Zd and ek = -1 or 1, 1 ≤ k ≤ d, then the

corresponding walk is called a simple random walk. If each of the 2d moves

at any given jump in a simple random walk occurs with equal probability

p = (1/2d), then X is called a symmetric random walk. In all these cases, if

the jumps Jn are only independent but not necessarily identically distributed,

then X is called a nonhomogeneous random walk.

A picturesque way of thinking of a 2-dimensional random walk is by ima-

gining a drunkard walking randomly in an idealised infinite city. The city is

arranged in a square grid, and at every step, the drunkard chooses one of the

four possible directions with equal probability.

The scaling limit of a random walk in dimension 1 is a Wiener process. This

means that a random walk with a large number of very small steps is an

approximation to a Wiener process. Wiener processes will be important in the

next chapter (Chap. 3) and will be further discussed there.

Poisson processes

Let t represent a time variable. Suppose an experiment begins at t = 0. Events

of a particular kind occur randomly, the first at T1, the second at T2, and so

on. The r.v. Ti denotes the time at which the ith event occurs, and the values

ti of Ti(i = 1, 2, . . .) are called points of occurrence.

Let

Zn = Tn − Tn−1 (2.8)

and T0 = 0. Then Zn denotes the time between the (n − 1)st and the nth

events. The sequence of ordered r.v.’s {ZN , n ≥ 0} is sometimes called an
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Figure 2.1: An example of a simple random walk of 200 steps in dimension 1.

interarrival process. If all r.v.’s Zn are independent and identically distributed,

then {ZN , n ≥ 0} is called a renewal process or a recurrent process. From

Eq. (2.8), we see that

Tn = Z1 + Z2 + · · ·+ Zn (2.9)

where Tn denotes the time from the beginning until the occurrence of the nth

event. Thus, {Tn, n ≥ 0} is sometimes called an arrival process.

A continuous-time stochastic process X(t), t ≥ 0 with values in the state

space Ω = (0, 1, 2, . . . ) is called a counting process if X(t), for any t, represents

the total number of “events” that have occurred during the time period [0, t].

A counting process {X(t), t ≥ 0} is said to be a Poisson process with rate

λ > 0 if:

1. X(0) = 0

2. X(t) is a process with independent increments

3. the number of events in any interval of length t is Poisson distributed

with rate λt, that is, for all s, t ≥ 0,

P{X(t+ s)−X(s) = x} = e−λt
(λt)x

x!
, x = 0, 1, 2, . . . (2.10)

Equivalently2, a counting process {X(t), t ≥ 0} is said to be a Poisson process

with rate λ > 0 if:

2For a proof, see e.g. [8]
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1. X(0) = 0

2. X(t) is a process with independent and stationary increments

3. the following relations hold:

P{X(t+ h)−X(t) = 1} = Xh+ o(h) (2.11)

P{X(t+ h)−X(t) ≥ 2} = o(h), (2.12)

(where a function f(x) is said to be of order o(h) if limh→0 f(h)/h = 0.)

It is possible to show that if {X(t), t ≥ 0} is a Poisson process with rate

λ, the corresponding sequence of successive interarrival times {tn, n ≥ 1} are

independent identically distributed r.v.’s obeying an exponential density with

mean λ−1. The proof is given, e.g., in [8], but it is straightforward to see that

the probability law for first interarrival time is

P{t1 > τ} = P{X(τ) = 0} = e−λ (2.13)

as the event {t1 > τ} occurs if and only if no Poisson event has occurred in

the interval [0, t].

2.2.3 Point processes

The definition of our model relies on the concept of point process on a compact

subset of Rn.

Let E be a subset of Rn. We assume3 that {Xn, n ≥ 0} are random elements

of E, which represent points in the state space E. Next, we define an indicator

random variable 1Xn by

1Xn(A) =


1, if Xn ∈ A

0, if Xn /∈ A
(2.14)

Note, therefore, that 1Xn is a function whose domain is the subsets of E, and

whose range is {0, 1}, and that it takes the value one whenever Xn is in the

subset of interest. Other common notations for an indicator random variable

are I and χ.

3Here, we are following [12]
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Next, we note that by taking the sum over n, we find the total number of

the points {Xn} contained in the set A. Therefore, we define the counting

measure N by

N :=
∑
n

1Xn (2.15)

so that for A ⊂ E,

N(A) :=
∑
n

1Xn(A) (2.16)

gives the total number of points in A ⊂ E.

The function N is called a point process, and {Xn} are called the points. If

the Xn’s are almost surely distinct, then the point process is known as simple.

We note that as N depends explicitly on the values of the points, Xn, it is

natural to call such an object a random measure.

We will make the running assumption that bounded regions of A must always

contain a finite number of points with a probability of one. That is, for any

bounded set A, P{N(A) <∞} = 1.

The simplest example of a point process (and the one that will be used in

our work) is the Poisson point process, which is a spatial generalisation of the

Poisson process described above. Namely, we say that a point process N is a

(homogeneous) Poisson point process or a Poisson random measure if the joint

distributions of the counts N(Ai) on bounded disjoint sets Ai satisfy

P [N(Ai) = ki, i = 1, . . . n] =
∏
i

e−λµ(Ai)
(λµ(Ai))

ki

ki!
. (2.17)

where k1, . . . , kn are non-negative integers and µ denotes the Lebesgue meas-

ure. The constant λ is called the intensity or rate of the Poisson point process.

An inhomogeneous Poisson point process is defined as above but by replacing

λµ(Ai) with
∫
Ai
λ(x)dx where λ is a non-negative function on Rd.

2.3 The model

Consider the hypercube4 [0, L]d ⊂ R
d, with L ∈ Z+, with the Euclidean

distance dist(a, b) = [(xb1 − xa1)2 + (xb2 − xa2)2 + . . .+ (xbd − xad)2]1/2.

4Note that, in this work, d will either be 1 or 2, therefore we will consider only intervals
in R or squares on the plane.
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We will call grid points the discrete subset of points of the hypercube, defined

by

G = {(i1−0.5, i2−0.5, . . . , id−0.5) ∈ [0, L]d,with ik = 1, 2, . . . , L} (2.18)

The number of grid points is N = |G| = Ld.

Let P be a simple point process of finite intensity ρ in [0, L]d. The support

of P is the discrete random set

P := {~x ∈ Rd : P({~x}) = 1}. (2.19)

We define P as an instance of Poisson points. The coordinates of the Pois-

son points are independent and identically distributed random variables with

uniform distribution in [0, L].

We define M as the number of Poisson points, M = |P|.

Figure 2.2: Left: grid points on the square [0, L]× [0, L], with L = 12. Right:
an example of an instance of 144 Poisson points on the same square.

Given an instance of Poisson points, we define a marriage between grid and

Poisson points as a function π : G ′ ⊂ G −→ P , with |G ′| = min(N,M), that

matches a grid point to a Poisson point, in such a way that every Poisson

point is “married” to no more than one grid point. In the terminology of

graph theory, a marriage is a maximum bipartite matching between G and P
(i.e. a maximum matching of G ∪ P where all the edges are from G to P).
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We define a weight function on the edges of the matching as the length of

the edge. The energy associated with a marriage π is then defined as the sum

of the distances between matched pairs:

HP(π) :=
N∑
i=1

dist(i, π(i)) (2.20)

We will call πopt the marriage with minimum energy and we define the energy

(or cost) of an instance of Poisson points as the energy of πopt

H(P) := HP(πopt) = min
π
HP(π) (2.21)

If the instance has a single marriage π with minimum energy, we say that it

is non-degenerate, otherwise it is degenerate.

Again, if we consider the complete bipartite, this time weighed, graph KN,M ,

with V (KN,M) = G ∪P and weight function w(i, j) = dist(i, j), what we want

to find is the optimal maximum matching of KN,M .

Figure 2.3: The optimal marriage for the points in Fig. 2.2.

On the other hand, in the lexicon of combinatorial optimisation, the GPM is

a particular case of assignment problem. The space of possible configurations
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is the set of all possible marriages (if |G| = |P| = N , the number of possible

marriages is N !), and the cost function to minimise is the energy HP(π).

However, in this case, the costs εij are not independent from each other, as

they were in the problem job-workers, and they cannot, for example, be chosen

randomly, but are subject to geometrical constraints. It is clear that, if A, B

an C are three points on the plane, then dist(A,B) cannot be independent

from dist(A,C) and dist(C,B). These constraints make it difficult to perform

statistical averages and prevent us from using powerful tools like mean field

theory or the cavity method. And not only does this make the analysis more

difficult, but also changes the characteristics of the problem. In the random

assignment problem, it has been shown [7] that as N →∞ the energy becomes

a constant, while, as we will see in Chap. 5, in the GPM (like in the Poisson-

Poisson marriage) the energy grows faster than the number of couples.



3
The marriage problem in one
dimension

3.1 Exact solution for the correlation function

at density one

We want to describe the characteristics of the optimal marriage on a linear

lattice at density ρ = 1.

In our numerical simulations, we can only have a discrete system with a

finite number of points. However, for simplicity of calculation, we deal with

the problem in the continuum limit, that is we imagine to take the lattice

spacing to zero while holding the density fixed. The real system will hopefully

tend to this model as the number of points increases.

With this premise in mind, we start by introducing some mathematical tools

we will need in our analysis.

3.1.1 Definitions

Wiener process

A standard one-dimensional Wiener process (also called Brownian motion pro-

cess, as it was first introduced to describe the natural phenomenon of the same

name) is a stochastic process W (t): t ∈ R, t ≥ 0, with the following properties:

(1) W (0) = 0

27
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(2) The function t→ W (t) is almost surely continuous

(3) The process W (t) has stationary, independent increments

(4) The increment W (t) −W (s) is normally distributed with expected value

0 and variance t− s

Basic properties of the Wiener process

� W (t) is a Gaussian process, that is for all n and times t1, . . . , tn, the

linear combination of W (t1), . . . ,W (tn) is normally distributed

� The unconditional probability density function at a fixed time t is given

by

pW (t)(x) =
1√
2πt

e−
x2

2t (3.1)

� ∀t, the expectation is zero:

E[W (t)] = 0 (3.2)

� The variance:

var[W (t)] = E[W 2(t)]− E2[W (t)] = E[W 2(t)] = t (3.3)

� The covariance1:

cov[W (s),W (t)] = min(s, t) (3.4)

The area of a Wiener process, defined by

W (−1)(t) :=

∫ t

0

dsW (s), (3.5)

1To see this, let us suppose s ≤ t. Then

cov[W (s),W (t)] = E[(W (s)− E[(W (s)]) · (W (t)− E[(W (t)])]

= E[W (s) ·W (t)] = E[W (s) · ((W (t)−W (s)) +W (s))]

= E[W (s) · (W (t)−W (s))] + E[W 2(s)] = s
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is itself a Wiener process (as a linear combination of Wiener processes) char-

acterised by its expected value and variance:

E[W (−1)(t)] =

∫ t

0

dsE[W (s)] = 0 (3.6)

var[W (−1)(t)] = E

[∫ t

0

ds

∫ t

0

ds′W (s)W (s′)

]
=

∫ t

0

ds

∫ t

0

ds′ cov(Ws,W
′
s)

=

∫ t

0

ds

(∫ s

0

ds′ min(s, s′) +

∫ t

s

ds′ min(s, s′)

)
=
t3

3
.

(3.7)

Brownian bridge

A standard Brownian bridge B(t) over the interval [0, 1] is a standard Wiener

process conditioned to have B(1) = B(0) = 0.

Now, if we have a Wiener process W (t), the linear combination

B(t) := W (t)− tW (1) (3.8)

is a Brownian bridge with expectation, variance and covariance:

E[B(t)] = 0 (3.9)

var[B(t)] = E[(W (t)− tW (1))2]

= E[W 2(t)]− 2tE[W (1) ·W (t)] + t2E[W 2(1)]

= t(1− t) (3.10)

cov[B(t), B(s)] = E[(W (t)− tW (1)) · (W (s)− sW (1))]

= min(t, s)− ts (3.11)

The area of a Brownian bridge, defined by

B(−1)(t) :=

∫ t

0

dsB(s), (3.12)

is, again, a Gaussian variable (as a linear combination of Wiener processes)

characterised by its expected value and variance:

E[B(−1)(t)] =

∫ t

0

dsE[B(s)] = 0 (3.13)
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var[B(−1)(t)] =

∫ t

0

ds

∫ t

0

ds′ cov[B(s), B(s′)]

=

∫ t

0

ds

∫ t

0

ds′ (min(s, s′)− ss′)

=
t3

3
− t4

4
. (3.14)

In particular, if t = 1,

var[B(−1)(1)] =
1

12
(3.15)

and the covariance between B(−1)(1) and B(t) is

cov[B(−1)(1), B(t)] =

∫ 1

0

ds cov[B(s), B(t)] =

∫ 1

0

ds (min(s, t)− st)

=
1

2
t(1− t). (3.16)

Let us consider two Brownian bridges, B(s) and B(t), and let us assume that

s ≤ t. The covariance matrix is then

C =

 s(1− s) s(1− t)

s(1− t) t(1− t)

 . (3.17)

The distribution is Gaussian, which means the density function is given by

pA(x1, x2) =
√

detA
e−

1
2

∑2
i=1 xiAijxj

2π
, (3.18)

with (see, for example, [9])

A = C−1 =

 t
s(t−s) − 1

t−s

− 1
t−s

1−s
(1−t)(t−s)

 . (3.19)

3.1.2 Open boundary conditions

In our problem, we consider a linear lattice of size L and parameter 1, or,

equivalently, a linear lattice of size 1 and parameter 1/L, and we generate L

random points uniformly distributed on the interval [0, L] (equivalently, [0, 1]).
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In dimension one, for open boundary conditions, the optimal marriage is

a forced choice, as the first point of the grid must clearly be matched with

the first random point, the second with the second and so on. That is to

say, for all n, the nth point of the grid will be matched with the nth random

point and, as the random points are uniformly distributed, the (1-dimensional)

vector connecting the couple will be a random variable with zero mean and

variance = n.

In the limit L → ∞, this situation can be represented by a Wiener process

W (t). More precisely, as there are no points for t > 1, we can describe it as a

Brownian bridge B(t) over the interval [0, 1].

Figure 3.1: An example of Brownian bridge B(t) over the interval [0, 1] with
intermediate times s and t

Now, let us consider two intermediate times, s and t, with 0 < s < t < 1.

The probability that the process started at the origin arrives at x after a time
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s is Gaussian with zero mean and variance = s:

pW (s)(x) =
1√
2πs

e−
x2

2s . (3.20)

Similarly, to move from x to y in the interval (t− s):

pW (t−s)(y − x) =
1√

2π(t− s)
e−

(y−x)2
2(t−s) (3.21)

and, finally, to move from y to 0 in the interval (1− t):

pW (1−t)(y) =
1√

2π(1− t)
e−

y2

2(1−t) . (3.22)

By a change of parameters, if we consider the three segments of length

a = s
b = t− s
c = 1− t,

(3.23)

the matrix A in (3.19) becomes

A =

 1
a

+ 1
b
−1
b

−1
b

1
c

+ 1
b

 . (3.24)

In general, since the distribution is Gaussian, we know from (3.18) that

√
detA

2π

∫ ∫
dx dy e−

x2

2a
− (x−y)2

2b
− y

2

2c = 1, (3.25)

with

detA =
a+ b+ c

abc
. (3.26)

The joint probability distribution for the random variables x and y is then

pa,b,c(x, y) =
√

2π
√
a+ b+ c

e−
x2

2a
− (x−y)2

2b
− y

2

2c

√
2πa
√

2πb
√

2πc
. (3.27)
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Correlation function

Given an instance of Poisson points and found the optimal marriage as seen,

we can define the quantity ϕ(t) as the distance between the grid point in t and

the Poisson point associated to it by the marriage. If we define a correlation

function between two point s and t as

G1(s, t) =
ϕ(s) · ϕ(t)

|ϕ(s)| · |ϕ(t)|
, (3.28)

its value is obviously

G1(s, t) = sgn(ϕ(s)) · sgn(ϕ(t)) = sgn(ϕ(s) · ϕ(t)). (3.29)

Therefore, the quantity we want to calculate is the expected value of the sign

function under the measure (3.27). That is, with the substitution (3.23),

G2(a, b, c) =

∫ ∫
dx dy pa,b,c(x, y) sgn(x · y)

=

∫ ∫
dx dy

√
2π
√
a+ b+ c

e−
x2

2a
− (x−y)2

2b
− y

2

2c

√
2πa
√

2πb
√

2πc
sgn(x · y)

(3.30)

If we define

α(a, b, c) :=

∫
x≥0

∫
y≥0

dx dy pa,b,c(x, y) (3.31)

and

β(a, b, c) :=

∫
x≥0

∫
y≤0

dx dy pa,b,c(x, y), (3.32)

then

G2(a, b, c) = 2α(a, b, c)− 2β(a, b, c). (3.33)

In addition, since pa,b,c(x, y) is Gaussian, we know that

2α(a, b, c) + 2β(a, b, c) = 1, (3.34)

then

G2(a, b, c) = 4α(a, b, c)− 1. (3.35)
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By performing the integral (3.31), we find

α(a, b, c) =
1

4
+

1

2π
arctan

√
ac

b(a+ b+ c)
, (3.36)

and then

G2(a, b, c) =
2

π
arctan

√
ac

b(a+ b+ c)
, (3.37)

with, in this case,

a, b, c ≥ 0

a+ b+ c = 1.

(3.38)

If we keep the distance b between the two points constant, and we calculate

the mean over the interval [0, 1], we finally obtain

Gobc(b) =
2

π

1

1− b

∫ 1−b

0

da arctan

√
a(1− a− b)

b
=

1−
√
b

1 +
√
b
. (3.39)

Figure 3.2: The theoretical correlation function in one dimension for open
boundary conditions.
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3.1.3 Periodic boundary conditions

In the periodic problem, we can still represent our process with a Brownian

bridge, but this time we do not know to which random point the first grid

point is matched. However, we do know that once the first couple is formed,

all others follow necessarily in the same way as the previous case.

This corresponds to a situation where the first point is not mapped to zero,

but to some constant k. That is to say, a Brownian bridge with initial and

final value k: B(0) = B(1) = k.

We choose to parametrise the family of the possible processes of this kind by

the area under their path. We therefore take as our new variable:

B(−1)(1)−B(t). (3.40)

This is, again, a Gaussian random variable with zero expected value. Its

covariance can be easily calculated as follows:

cov[B(−1)(1)−B(s), B(−1)(1)−B(t)] =
1

12
−1

2
t(1−t)−1

2
s(1−s)+min(s, t)−st.

(3.41)

If we assume s ≤ t, this expression becomes

cov[B(−1)(1)−B(s), B(−1)(1)−B(t)] =
1

12
− 1

2
(t− s)(1− (t− s)), (3.42)

which, as we could expect, is no longer a function of s and t separately, but

rather of their difference, and depends symmetrically on t− s and 1− (t− s).

If we define

τ = t− s (3.43)

and

λ = τ(1− τ) = (t− s)(1− (t− s)), (3.44)

the covariance matrix can be written as

Cpbc =

 1
12

1
12
− 1

2
λ

1
12
− 1

2
λ 1

12

 (3.45)
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and therefore

Apbc = C−1
pbc =

1

λ(1− 3λ)

 1 −1 + 6λ

−1 + 6λ 1

 . (3.46)

By comparing (3.19) with (3.46), we find

b = λ(1−3λ)
1−6λ

a = c = 1−3λ
6
.

(3.47)

The important difference with respect to the non-periodic case is that

a+ b+ c =
(1− 3λ)2

3(1− 6λ)
, (3.48)

which is in general 6= 1. Moreover, b and a + b + c can now have a negative

sign:

b < 0
a+ b+ c < 0

if λ >
1

6
. (3.49)

If λ < 1
6
, the result in (3.36) is still valid, while if λ > 1

6
, we obtain2

α(a, b, c) =
1

2π
arctan

√
b(a+ b+ c)

ac
=

1

2π

[
arctan

(
−
√

ac

b(a+ b+ c)

)
+
π

2

]
,

(3.50)

which leads to

G3(λ) =


2
π

arctan

(
|1−6λ|√

12λ(1−3λ)

)
if λ < 1

6

2
π

arctan

(
− |1−6λ|√

12λ(1−3λ)

)
if λ > 1

6

=
2

π
arctan

(
1− 6λ√

12λ(1− 3λ)

)
. (3.51)

Or, as a function of τ ,

Gpbc(τ) =
2

π
arctan

(
1− 6τ(1− τ)√

12τ(1− τ)(1− 3τ(1− τ))

)
. (3.52)

2Here we have used the trigonometric identities: arctanx + arctan( 1
x ) = π

2 and
arctan(−x) = − arctanx.
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Figure 3.3: The theoretical correlation function in one dimension for periodic
boundary conditions.

3.2 Numerical simulations

3.2.1 Choice of the weight function

As we explained in Sect. 2.3, in two dimensions the optimal marriage we

have considered is the one which minimises the sum of the distances between

matched pairs.

However, in one dimension it was necessary to make a different choice and

minimise the sum of the squares of those distances. We had two reasons for

doing so.

The first is non-uniqueness in the definition of the optimal matching itself.

In one dimension, by using the distances as weights, it is far from exceptional

to meet with situations in which two or more matchings have the same energy,

that is, to have degenerate instances. To clarify this concept we have shown a

couple of examples in Figures 3.4 and 3.5.

Although this ambiguity itself does not affect the quantitative results for the

correlation function, it does affect other properties of the problem (such as the

distribution of the edge lengths, see Chap. 5).

The second and more important reason for minimising the sum of the squares

arises in the case of periodic boundary conditions and lies in the assumptions

we have made.
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Figure 3.4: The two equivalent matchings for a particular size-2 instance in
one dimension.

Figure 3.5: Two possible matchings of the same energy for a sample instance
at size 10 (only for clarity, we have drawn the Poisson points on a different
line).

If Xγ = |ϕ(x)|γ, γ > 0, is our weight function, in order to determine the

optimal matching we have to minimise
∑

all pairsX
γ, which means to find a

stationary point:∑
all pairs

Xγ−1 = 0. (3.53)

In Section 3.1.3, we chose to parametrise our family of processes by the area

under their path (3.40), which became our new Gaussian variable.

This assumption corresponds to the case γ = 2:∑
Xγ−1 =

∑
X = 0 (3.54)

For any γ 6= 2 the result of the derivative is not a linear function of the

Brownian motion and in this case we do not know the exact solution to the

problem, even though we do not expect it to differ to a great extent.
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3.2.2 Numerical results at the critical point

We show the results of our simulations for open (Fig. 3.6) and periodic (Fig. 3.7)

boundary conditions. The curves in colour represent the experimental data for

the correlation function, while the black ones are the plot of the theoretical

functions for different values of the system size.

We found that the experimental curves, both for open and periodic boundary

conditions, are in good agreement with the theoretical predictions, even at sizes

as small as L = 100.

Comparison for different weight functions

In Figure 3.8 we show the difference between the correlation function for the

optimal marriages obtained by minimising
∑
Xγ, with γ = 1, 2, 3, 4. We see

that the theoretical solution found is in agreement with experimental data for

γ = 2.

3.2.3 Near the critical point

We could not find an exact solution for the correlation function at ρ 6= 1 and

we do not have an ansatz on how it may be like. However, in Fig. 3.9 and

Fig. 3.10 we wish to show the qualitative behaviour of the curve as derived

from our simulations.

We see that both in the case of open and periodic boundary conditions, the

curves move up as the density increases, reach a peak at ρ = 1 and then move

down again.

Moreover, the shape and position of the curves are similar for the same value

of |t| = |ρ− 1|, regardless of the sign of t.

Finally, we observe that this function presents two ranges of behaviour. If

|t| < t̄, with t̄ ≈ 0.01, the function is strictly decreasing with x, and has

a minimum at x = L, for open boundary conditions, or x = L
2

fo periodic

bundary conditions. On the other hand, if |t| > t̄, the shape is different. It

reaches a minimum at an intermediate value x′, then goes up again approaching

zero as x→  L, or x→ L
2

(depending on the boundary conditions).

If we define x̄ as the point where the curve has a zero, we find that x̄(ρ) has

a maximum at density ρ = 1 (see Fig. 3.11).
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Figure 3.6: The mean of the experimental correlation function over 104 in-
stances of the optimal marriage in dimension one with open boundary con-
ditions. Top: increasing sizes are represented from red (L = 100) to blue
(L = 6500); Bottom: the same experimental curves, rescaled to show the
agreement with the theoretical function, regardless of the size.

The value of x̄L/L at (t = 0) is known for all L, as in this case we have an
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Figure 3.7: The mean of the experimental correlation function over 104 in-
stances of the optimal marriage in dimension one with periodic boundary con-
ditions. Top: increasing sizes are represented from red (L = 100) to blue
(L = 6500); Bottom: the same experimental curves, rescaled to show the
agreement with the theoretical function, regardless of the size.

exact solution.
x̄L(t = 0)

L
= 0.211325. (3.55)
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Figure 3.8: Comparison of the correlation function at ρ = 1 for the optimal
marriages obtained by minimising

∑
Xγ, with different values of γ (L = 5000).

From red to purple, γ = 1, 2, 3, 4 (green is γ = 2). Each curve is the mean
over 103 instances of optimal marriage. The black thinner curve is the plot of
the theoretical function.
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Figure 3.9: The correlation function near the critical point at size 6000 with
open boundary conditions.
Top: from red to cyan, ρ = 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98,
0.99, 0.991, 0.992, 0.993, 0.994, 0.995, 0.996, 0.997, 0.998, 0.999, 1.
Bottom: from cyan to purple, ρ =1, 1.001, 1.002, 1.003, 1.004, 1.005, 1.006,
1.007, 1.008, 1.009, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1. Each
curve is the mean over 103 instances of optimal marriage.
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Figure 3.10: The correlation function near the critical point at size 6000 with
periodic boundary conditions.
Top: from red to cyan, ρ = 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98,
0.99, 0.991, 0.992, 0.993, 0.994, 0.995, 0.996, 0.997, 0.998, 0.999, 1.
Bottom: from cyan to purple, ρ =1, 1.001, 1.002, 1.003, 1.004, 1.005, 1.006,
1.007, 1.008, 1.009, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1. Each
curve is the mean over 103 instances of optimal marriage.
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Figure 3.11: The experimental rescaled intersection with the x-axis
(x̄L/L) as a function of the density (ρ). From orange to blue, L =
500, 1000, 2000, 3000, 4000, 6000. For all L, x̄L(t = 0)/L ≈ 0.211325.
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4
Finite-Size Scaling in two
dimensions

Over the last decades, the widening availability of more and more powerful

computers and specially-designed processors has led to an ever-increasing role

of numerical simulations in studies of equilibrium and non-equilibrium prob-

lems of statistical mechanics.

In addition, it has become clear that for complex models such as those of

critical phenomena, analytic determinations are particularly difficult to achieve

and numerical results can bring about a great amount of useful qualitative and

quantitative information.

However, no matter how powerful the technology gets, computers will always

be able to deal only with a finite number of elements. Consequently, it is

possible to work only on lattices of finite sizes, while we know from statistical

mechanics that a phase transition can only occur in the thermodynamic limit,

that is, for systems where the number of particles tends to infinity.

Here comes into play the theory of finite-size scaling (FSS), which provides

a powerful technique to extrapolate to the thermodynamic limit from finite-

size results, which can be obtained from computer simulations. In this way

the behaviour of large systems can be inferred from the known behaviour of

relatively small systems.

The ideas of FSS were first introduced by Fisher [17], and Fisher and Barber

(see [14]), in the early seventies, and thoroughly studied in ensuing papers.

In the next section, we will give a brief introduction to the theory of FSS,

partly following [16]. Our description will be limited to the concepts necessary

to our purposes, while for a complete coverage and theoretical justification, we

refer to [13] and [14].

47
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4.1 Theory of finite-size scaling

We shall consider the framework of second-order phase transitions, and a sys-

tem controlled by a single scalar parameter T (which is usually assimilated to

a temperature, while in our problem will correspond to a density).

4.1.1 Thermodynamic limit

We shall assume it is possible to give a thermodynamic description of our model

on a discrete lattice in a finite box Λ. That is to say, given any observable O,

we can calculate its value on the thermodynamic state determined by T and

Λ as

OΛ(T ) := 〈O〉Λ(T )

where 〈·〉Λ(T ) is the appropriate averaging. In addition, we shall assume the

existence of a thermodynamic limit. Usually, a model is taken to the ther-

modynamic limit by increasing the volume together with the particle number

while keeping the particle number density constant. A common way of doing

so is to consider an increasing sequence of boxes, {Λn}n. The value of the

observable in the infinite-volume is then given by

O∞ = lim
n→∞

OΛn(T )

This limit exists in a wide range of cases and usually does not depend on the

shape of the boxes. Only in the thermodynamic limit can the singularities

in the thermodynamic functions associated with a critical point occur. In

this case, in systems characterized by short-range interactions, if we define a

(connected) correlation function of the order parameter φ(x) as

Gφ,∞(x) := 〈φ(x);φ(0)〉∞ = 〈φ(0)φ(x)〉∞ − 〈φ(0)〉∞〈φ(x)〉∞,

we expect Gφ,∞(x) to show an exponential decay at long distances

Gφ,∞(x) ∼
x→∞

e−
|x|
ξ∞

As we saw in Chap. 1, the length scale governing this exponential decay is

the correlation length ξ∞:

ξ∞ := − lim
|x|→∞

|x|
log |Gφ,∞(x)|
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In principle, the correlation length may depend on the direction along wich

this limit is taken. However, for simplicity, in the following we shall only take

into consideration systems in which ξ does not depend on this direction and

are thus said to undergo an isotropic phase transition. In this case, we shall

consider boxes of size L in all directions. We shall also only consider the case

of zero external ordering field: H = 0.

4.1.2 Scaling hypothesis

In the proximity of the critical point at t = 0, where we have defined the

reduced temperature

t :=
T − Tc
Tc

(4.1)

(Tc being the critical temperature, at which the second-order phase transition

occurs), several thermodynamic quantities diverge. Their bulk (L = ∞) crit-

ical behaviour is given by

O∞(t) ∼ |t|−xO for t→ 0, (4.2)

where ∼ means that limt→0O∞(t)/|t|−xO is finite, and xO is the critical expo-

nent of O. As seen, the critical exponent of the correlation length is tradition-

ally denoted by ν:

ξ∞ ∼ |t|−ν for t→ 0, (4.3)

As we have already pointed out, a phase transition is only possible in the

thermodynamic limit, that is, for infinite volumes. This means that

lim
t→0

lim
L→∞

OL(t)/|t|−xO 6= lim
L→∞

lim
t→0
OL(t)/|t|−xO = 0, (4.4)

if, for example, xO > 0.

The finite-size scaling theory predicts the behaviour of the function OL(t)

near Tc and for L large enough compared to the lattice spacing. In this region,

called the critical region, it is possible to write OL(t) as a function of ξ∞ and

L:

OL(t) ≈ fO(ξ∞(t), L),

where ≈ means that we are omitting lower-order terms as L→∞.
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As ξ∞(t) and L are the only dimensionful quantities, the function fO(x, y)

must be a homogeneous function of its arguments, then

OL(t) ≈ fO(ξ∞(t), L) = ξ∞(t)yOF
(1)
O

(
ξ∞(t)

L

)
(4.5)

or, equivalently,

OL(t) ≈ LyOF
(2)
O

(
ξ∞(t)

L

)
(4.6)

The exponent yO, that is the degree of the homogeneous function, can be

determined as xO/ν, since1

O∞(t) = lim
L→∞

OL(t) = ξ∞(t)yOF
(1)
O (0) ∼ |t|−νyO

In this way, for a good definition of the finite-size correlation length, we must

have

ξL(t) ≈ L · g
(
ξ∞(t)

L

)
, (4.7)

since, in this case, xξ = ν.

4.1.3 Asymptotic form of FSS

At this point, we can replace the unknown quantity ξ∞ with known parameters

wich can be tuned in experiments: t and L.

OL(t) ≈ LxO/νF
(2)
O

(
ξ∞(t)

L

)
≈ LxO/νF

(2)
O

(
t−ν

L

)
= LxO/νGO

(
tL1/ν

)
(4.8)

The function GO(z) is finite and non-vanishing in zero, and should satisfy

GO(z) ∼ |z|−xO for z →∞. (4.9)

This simple form of the FSS hypothesis heavily relies on the assumption that

the bulk critical temperature is known or can be evaluated. In addition, the

unknown critical exponent of ξ∞ is still present.

1We wish to point out that the existence of a finite limit for F
(1)
O (z) for z → 0 is based

on the hypotheses of the existence of a thermodynamic limit for OL and the possibility to
interchange this limit with the FSS limit. We will assume these are verified. For a deeper
analysis on this subject, we refer to [16].
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An important consequence of (4.8) is that, once we get to know Tc, it tells

us that there is a well defined functional dependence between OL(t)/LxO/ν

and tL1/ν over the critical region. This suggests the possibility of estimating

xO and ν by carrying out experiments at different sizes and temperatures and

plotting the results with different values of the exponents until the set of points

collapse into a single curve.

4.1.4 Extrapolating to infinite volume

As explained in [15], there is another strategy to take advantage of FSS re-

lations in such a way as to obtain a relation which can be profitably used in

numerical experiments.

In the critical region, for any fixed t, (4.7) can be written as

ξL
L
≈ g

(
ξ∞
L

)
or, by inverting the functional relation,

ξ∞
L
≈ h

(
ξL
L

)
. (4.10)

This means that

OL(t) ≈ LxO/νF
(3)
O

(
ξL(t)

L

)
(4.11)

and therefore, if we take the ratio of OL(t) at two different sizes L and αL, we

have

OαL(t)

OL(t)
≈ FO

(
ξL(t)

L

)
, (4.12)

where the critical exponents disappear and only measurable quantities of the

finite system are present.

In particular, this relation is valid for the correlation length. At fixed t

ξαL(t)

ξL(t)
≈ Fξ

(
ξL(t)

L

)
, (4.13)

As a result, we find that in a regime where FSS is proved to hold, there must be

a universal function which, if we are able to estimate it, allows us to extrapolate
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values of ξαnL and OαnL for arbitrary n, until we get to the limiting values ξ∞
and O∞ (save, of course, for systematic and statistical errors).

The idea is that we make numerical experiments at finite L and we want to

extrapolate to L→∞. However, we do not want to do so in some näıve way

(that is, simply extrapolating from a series of points), but we want to avail

ourselves of this structure. By doing so, we are really capable of extrapolating

to much larger values of L than we can simulate, and we are using a finer

approach.

Clearly, these expressions are not exact. The corrections can be evaluated

by means of the techniques of the Renormalization Group, but this is beyond

the scope of this work.

4.2 Numerical simulations

In the following, we will apply the FSS theory to the marriage problem in two

dimensions and verify whether the scaling relations (especially (4.8)) hold in

this context.

Firstly, we need to define the order parameter and the corresponding correl-

ation function we want to analyse.

4.2.1 Definitions

Let us consider the GPM problem on a square lattice of side L. Given an

instance of Poisson points and found the optimal marriage as seen (see 2.3),

we can define a map ~ϕ that relates each matched grid point of coordinates ~x

to a vector ~ϕ(~x) with the tail in ~x and the head in the matched Poisson point.

We then define a finite-size correlation function between two grid points ~x

and ~x′ as2

Gpp(~x, ~x
′) =

~ϕ(~x) · ~ϕ(~x′)

|~ϕ(~x)| ·
∣∣∣~ϕ(~x′)

∣∣∣ = cos θ(~ϕ(~x), ~ϕ(~x′)), (4.14)

2In the following, we will imply that we are taking the average over the probability
distribution of the Poisson points 〈·〉P . In concrete terms, we will be averaging over from
103 to 5 · 104 instances of Poisson points.
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(where θ
(
~ϕ, ~ϕ′

)
is the angle between the two vectors), and a finite-size cor-

relation function at distance ~r:

G(~r) =

〈
~ϕ(~x) · ~ϕ(~x+ ~r)

|~ϕ(~x)| · |~ϕ(~x+ ~r)|

〉
~x

, (4.15)

where 〈·〉~x means we are taking the average over the coordinates ~x of all

matched grid points.

The wall-to-wall correlation function

In this work, we have focused our attention on the wall-to-wall correlation func-

tion, which describes the correlation of all points that belong to the columns

(rows) at a fixed horizontal (vertical) distance z (z ∈ [0, L− 1], z ∈ N).

More precisely, we define the horizontal wall-to-wall correlation function as

Gh
L(x, z) =

〈
~ϕ(x, y) · ~ϕ(x+ z, y′)

|~ϕ(x, y)| · |~ϕ(x+ z, y′)|

〉
yy′
, (4.16)

where ~x = (x, y), and 〈·〉yy′ means we are taking the average over the vertical

coordinates y and y′ of the matched pairs in the columns.

In a more operative form

Gh
L(x, z) =

1

n

L∑
y,y′=1

y,y′ of matched pairs

~ϕ(x, y) · ~ϕ(x+ z, y′)

|~ϕ(x, y)| · |~ϕ(x+ z, y′)|
, (4.17)

where n = L2 if all grid points in the columns are matched.

The vertical wall-to-wall correlation function Gv
L(y, z) is defined equivalently.

The quantity we studied was the symmetrisation at distance z of the average

of the horizontal and vertical wall-to-wall function over all coordinates x and

y:

G(z, L) =
1

2

(
〈Gh

L(x, z)〉x + 〈Gv
L(y, z)〉y

)
(4.18)

The reason why we chose to study this function, instead of (4.15) is that it

is easier to handle, as it is a function of only one integer variable.

In addition, we have decided to focus only on the case of periodic boundary

conditions (that is to say, on a torus), in order to avoid border effects.
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Our function will then depend on two parameters, the side of lattice L and

the reduced temperature t = ρ−ρc
ρc

= ρ− 1, and one variable x.

Moreover, by construction, it will be symmetric in the exchange of x with

L− x:

G(x, L, t) = G(L− x, L, t) (4.19)

and consequently, only values of x in [0, L
2
] will be considered.

4.2.2 Qualitative behaviour of the correlation function

In Fig. 4.1, we show the behaviour of the curves for a sample side L = 60 at

different values of the parameter t.

Similarly to what we found in one dimension, we can see that there are

essentially two ranges of behaviour:

· if |t| < t̄, with t̄ ≈ 0.01, the function is strictly decreasing with x, and

has a minimum at x = L
2
.

· if |t| > t̄, on the other hand, the shape is different. It reaches a minimum

at an intermediate value x′ (0 < x′ < L
2
), then goes up again and presents

a maximum at x = L
2
.

We are interested in the critical behaviour, that is, near t = 0. Therefore in

the following we will only consider the smallest values of |t|, where the curves

are of the first type.

Moreover, we see that the experimental value of G as we have defined it

is to some extent altered at x = 0 by the presence in the sum of the terms

of self-correlation, Gpp(~x, ~x) = 1, which raise abnormally the figure. For this

reason, in our following analyses, we will not consider this point.

By looking at the curves in Fig. 4.1 and Fig. 4.2, we also observe that, on

first approximation, the shape of the curve depends on the absolute value of

t, but is very similar for positive and negative signs.

As a last preliminary note, we see that the point of intersection of the curves

and the x-axis increases with t for t < 0, has a maximum at t = 0 and then

decreases with t for t > 0.
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Figure 4.1: The wall-to-wall correlation function at side L = 60 for different
values of the density.
Top: from red to cyan, ρ = 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98,
0.986, 0.99, 0.991, 0.992, 0.993, 0.994, 0.996, 0.997, 0.998, 0.999, 1.
Bottom: from cyan to purple, ρ = 1, 1.001, 1.002, 1.003, 1.004, 1.006, 1.007,
1.008, 1.009, 1.01, 1.015, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1.

4.2.3 Curve-fitting ansatz

We want to make an educated guess about what mathematical function can

describe the behaviour we expect from the system and be best in accordance
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Figure 4.2: Comparison of the wall-to-wall correlation function at t =
±0.001,±0.003,±0.006,±0.008 and t = ±0.01 (L = 60).

with the experimental data. In particular, we are looking for a function which

shows an exponential decay with the distance, x, but is symmetric in the

exchange x↔ L− x.

Our first choice is then the hyperbolic cosine:

G(x, L, t) = a · cosh

[
c ·
(
x− L

2

)]
+ b, (4.20)

where a = a(L, t), b = b(L, t) and c = c(L, t) are the fitting parameters we

would like to estimate.

For small values of |t|, t 6= 0, the experimental points are fitted well by this

function, as we show in Fig. 4.3.

On the contrary, at precisely t = 0 it has been impossible to find a clear fit

with the function (4.20), as the parameter c tends to vanish.

Since for small values of its argument, the hyperbolic cosine can be approx-

imated by a parabola, on the critical point we chose to fit our data to the

function:

G(x, L, t = 0) = a ·
(
x− L

2

)2

+ b, (4.21)

with a = a(L, t) and b = b(L, t) (see Fig. 4.4).
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Figure 4.3: The experimental points for the correlation function for L = 60
near t = 0 shown together with their respective fitted curves (hyperbolic co-
sines).

Figure 4.4: The experimental points for the correlation function at t = 0
shown together with the respective fitted curves (parabolas). From red to
purple, L = 12, 16, 20, . . . , 96, 100.



58 CHAPTER 4. FINITE-SIZE SCALING IN TWO DIMENSIONS

We would like to observe that, similarly to what happened with the function

we found as an exact solution in one dimension with periodic boundary condi-

tions (see Sect. 3.1.3), in this context the dependence on the rescaled distance
x
L

is through an expression which depends symmetrically on x
L

and (1− x
L

), as

it is easily seen:(
L

2
− x
)2

= L2

(
1

4
− x

L

(
1− x

L

))
, (4.22)

4.2.4 Scaling ansatz at the critical point

If t is small enough, theory tells us there must be scaling. This means that

G(x, L, t) must be a homogeneous function, for instance3:

G(x, L, t) ≈ LαF
(x
L
, tL1/ν

)
(4.23)

where, in the notation of the previous sections, α = xG/ν (cf (4.8)).

We are interested in knowing what the function F is like and the values of

the parameters α and ν. However, in this form, G can be difficult to study,

as it depends on two arguments. For this reason, in the first place, we have

studied the behaviour of this function at t = 0, as we do not meet with any

difficulties in performing simulations exactly on the critical point.

It is clear that, on first approximation, if t = 0,

G(x, L, t = 0) ≈ Lαf
(x
L

)
. (4.24)

where f(z) is a universal function.

4.2.5 Determination of the parameter α

We see that in (4.24) the exponent ν is no longer present. We can then focus

on finding an estimate for α.

3In general, F depends on x/Lβ , but we will see in the following that our simplified
assumption in this case holds.
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First estimate of α

A very simple way of determining the parameter α is the following. Let us

consider a certain fixed value of x such that G(x, L, t = 0) is not too close to

zero (any value, except x = 0 for the reason stated above). For instance, let

us take the point x = L
2
. We can therefore write

G(x =
L

2
, L, t = 0) ≈ Lαf

(
1

2

)
. (4.25)

valid for all even L. Then

log

[
−G

(
L

2
, L, 0

)]
≈ log

[
Lα
(
−f
(

1

2

))]

≈ α logL+ log

[
−f
(

1

2

)]
(4.26)

In this way, if we plot log
[
−G

(
L
2
, L, 0

)]
against logL and calculate the

parameter of the linear fit (Fig. 4.5), this gives us a first rough estimate for α

as

α ≈ −0.176. (4.27)

In order to have an idea of the range of sides L in which this result is (ap-

proximately) correct, we plot G
(
L
2
, L, 0

)
/Lα against L (see Fig. 4.6).

There are some fluctuations in these values, but for the time being we do not

see any well-defined systematic trends.

A preliminary test of our ansatz comes from the simple procedure of plotting

G (x, L, 0) /Lα as a function of x
L

(see Fig. 4.7). As we hoped, all points collapse

into a single curve, regardless of the value of L. This curve is, as already seen

(Sect. 4.2.3), a parabola.

G(x, L, 0) = a(L) ·
(
x− L

2

)2

+ b(L) ≈ Lαf
(x
L

)
, (4.28)

which means that

f
(x
L

)
≈ A

(
x

L
− 1

2

)2

+B, (4.29)
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Figure 4.5: Plot of log
[
−G

(
L
2
, L, 0

)]
as a function of logL together with the

fitted line.

Figure 4.6: Plot of G
(
L
2
, L, 0

)
/Lα as a function of L.

with a(L) = ALα−2 and b(L) = BLα.

There is a gap for small x and small L, which was expected and suggests it

can be appropriate to add some corrections to the (4.24).

It is important to observe that any estimate of α is affected by errors of two

different natures: statistical and systematic. The first component comes from
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Figure 4.7: Plot of G (x, L, 0) /Lα as a function of x/L. In black, the plot of

f(x) = a ·
(
x− 1

2

)2
+ b, with a = −0.06997 and b = 0.8452.

the statistical fluctuations that our points exhibit and it can be reduced by

making a larger number of simulations. The second component, on the other

hand, is due to the ansatz we are making about the formula. By using different

curves, we can try to better fit our data, and for this reason in the following

we will make some assumptions about the shape of f
(
x
L

)
.

Ansatz on the corrections

The hypothesis we make on the form of the correction is the following:

G(x, L, 0) ≈ Lαf
(x
L

)
+ Lα−2h

(x
L

)
, (4.30)

First of all, we make a test at the point x = L/2.

G(L/2, L, 0) ≈ Lαf

(
1

2

)
+ Lα−2h

(
1

2

)
= Lα(B +QL−2), (4.31)

We found α = −0.1766, B = −0.07011 andQ = 0.01494. If we plotG(L/2, L, 0)

as a function of L with the fitted curve, we can verify whether our assumption

was correct (Fig. 4.8).
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Figure 4.8: Plot of G
(
L
2
, L, 0

)
against L for all L, together with the graph of

the fitted curve y(L) = Lα(B +QL−2), with α = −0.1766, B = −0.07011 and
Q = 0.01494.

Investigation on the shape of the corrections

We want to make a basic estimate of the shape of h
(
x
L

)
. In order to do so,

we fix the parameter α at the approximate value we have found in (4.27) and

consider G(x, L, 0) at different values of x = mL, m ∈
(
0, 1

2

]
. For each m, we

take G(mL,L, 0) at different L (those L such that mL is integer) and make a

fit

G(mL,L, 0) = aLα + bLα−2 (4.32)

where the fit parameters we are computing are the values of f and h at the

point m.

Finally, we plot the results so obtained as m changes and examine the graphs

(Fig. 4.9 and Fig. 4.10).

For f(m), we find again the parabola we expected (Fig. 4.9), while the graph

obtained for h(m) is as shown in Fig. 4.10. We see that these points also lie

approximately on a curve of the shape of a parabola having vertex at m = 1
2
.

We then write

f
(x
L

)
= A

(
x

L
− 1

2

)2

+B (4.33)
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Figure 4.9: Plot of the fit parameter a in (4.32) at different values of m. The

equation of the fitted curve shown is y = −0.06987 + 0.8391
(
x− 1

2

)2
.

Figure 4.10: Plot of the fit parameter b in (4.32) at different values of m. The

equation of the fitted curve shown is y = −0.06010 + 9.114
(
x− 1

2

)2
.

and

h
(x
L

)
= C

(
x

L
− 1

2

)2

+D (4.34)
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Final ansatz on the form of the correlation function and calculation
of the fit parameters

At this stage, we can write a second ansatz that takes into account the previous

correction.

G(x, L, 0) ≈ Lαf
(x
L

)
+ Lα−2h

(x
L

)
≈ Lα

[
A

(
x

L
− 1

2

)2

+B + L−2

(
C

(
x

L
− 1

2

)2

+D

)]
.

(4.35)

In order to get the best estimate for all parameters at play in (4.35), the

last step is to put together all the information gathered so far and make a

non-linear fit for our correlation function with all available data, that is for all

x and L.

In Tab. 4.1, we present the values obtained from the fit with the two func-

tions:

f1

(x
L

)
= Lα

[
A

(
x

L
− 1

2

)2

+B

]
(4.36)

f2

(x
L

)
= Lα

[
A

(
x

L
− 1

2

)2

+B + L−2

(
C

(
x

L
− 1

2

)2

+D

)]
(4.37)

with their respective χ̃2 tests.

The data we have analysed come from simulations on 5 · 104 instances of

optimal marriage for all L, 10 ≤ L ≤ 80, and 2 · 104 instances for all L,

81 ≤ L ≤ 102.

Our final estimate of the parameter α is then

α = −0.1752± 0.0003. (4.38)

In Fig. 4.11 we show the three-dimensional plot of the points at all x and

L (blue), together with the graph of the fitted curves for the two functions

considered (red).



4.2. NUMERICAL SIMULATIONS 65

f1 f2

α −0.1862± 0.00016 −0.1752± 0.0003

A 0.8805± 0.0006 0.837± 0.001

B −0.07294± 0.00005 −0.0697± 0.0001

C – 10.2± 0.1

D – −0.12± 0.01

χ̃2 18.73 2.63

Table 4.1: Table of the fit parameters for the functions in (4.36) and (4.37).

4.2.6 Behaviour near the critical point: definition and
study of the correlation length

We want to give a good definition of the correlation length ξL at finite size

L and analyse its behaviour in the proximity of the critical point in order to

verify whether the FSS relations hold.

The first candidate of a correlation length we have examined is the inverse of

the fit parameter c in the equation of the correlation function as a hyperbolic

cosine:

G(x, L, t) = a · cosh

[
c ·
(
x− L

2

)]
+ b (4.39)

where a = a(L, t), b = b(L, t) and c = c(L, t).

ξ1(L, t) = (c(L, t))−1 (4.40)

As we observed, this definition is not applicable at t = 0 since the parameter

c tend to vanish as the curve becomes a parabola, and then a different approach

becomes necessary.

No matter what definition we choose, the bulk correlation length must be

such as to diverge for t → ∞. Moreover, as explained in Sect. 4.1.4, we

can replace the dependence of a generic observable OL(t) on ξ∞(t) with the
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Figure 4.11: 3-D plot of the points at all x and L (blue), together with the
graph of the fitted curves (red) for f1

(
x
L

)
(top) and f2

(
x
L

)
(bottom).
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dependence on ξL(t), where ξL(t) is any appropriate correlation length at finite

size L.

We then observe that in all the experimental curves, there is one (and only

one) point x̄ such that

G(x̄, L, t) = 0 (4.41)

If the scaling ansatz holds, (4.41) is equivalent to

F
(
x̄

L
,
ξ∞
L

)
= 0 (4.42)

or

F̃
(
x̄

L
,
ξL
L

)
= 0 (4.43)

That is, x̄
L

is a function of ξ∞
L

or ξL
L

x̄

L
= H

(
ξ∞
L

)
= K

(
ξL
L

)
(4.44)

and therefore we can take x̄ as a definition of correlation length at finite size.

The value of x̄ is determined in the following way. We select the experimental

point nearest to zero, one point to its immediate left and one point to its

immediate right. We then make a fit of these three points with a polynomial

of degree two and take the intersection of the resulting curve with the x-axis.

By making use of the value of x̄ and some properties of the curves, we can

give another estimate of the correlation length 4.40, independent from the

fitted curve. We proceed as follows. We consider a slightly, but equivalent,

parametrisation of the function 4.39, that is:

G(x, L, t) = a

{
cosh

[
1

ξ

(
x− L

2

)]
− b
}
. (4.45)

We then observe that the curves have zero integral (we see this by analysing

the experimental data), then:∫ L

0

G(x, L, t) = a

[
2

(
sinh

L

2ξ

)
ξ − bL

]
= 0 (4.46)

and use this property to write

b =
2ξ

L
sinh

L

2ξ
. (4.47)
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Moreover, we have defined x̄ as the point where G(x̄, L, t) = 0, then

cosh

(
x̄

ξ
− L

2ξ

)
= b, (4.48)

which leads to the new definition of correlation length ξ2:

ξ2(L, t) =

{
ξ | L

2
− ξ arccosh

[
2ξ

L
sinh

(
L

2ξ

)]
= x̄

}
(4.49)

In Fig. 4.12 we show the ratio between the two definitions of correlation

length. We see that they are approximately equivalent.

Figure 4.12: The ratio between ξ2 and ξ1 as a function of t. From red to purple,
L = 20, 22, 24, 26, 28, 30, 32, 36, 40, 44, 48, 52, 56, 60, 64.

In Fig. 4.13 and Fig. 4.14 we show the dependence of x̄/L and L/ξ2 on t,

while in Fig. 4.15 we show the ratio between x̄(L, t) and ξ2(L, t).

At the critical point t = 0

In Fig. 4.16 we show x̄(t = 0)/L as a function of L. The correlation length is

a typical size of the problem and at t = 0 must diverge for L→∞. We found

that

x̄ ∼ L for L→∞ (4.50)
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Figure 4.13: x̄(L, t)/L as a function of t. From red to purple, L = 20, 22, 24,
26, 28, 30, 32, 36, 40, 44, 48, 52, 56, 60, 64.

Moreover, we observe that as L tends to∞, the ratio x̄/L tends to a quantity

very close to the value of the intersection with the x-axis of the exact solution

at t = 0 in one dimension, as calculated in 3.1.3 (cf (3.55)).

x̄

L
→ k =

x̄dim1

L
= 0.211325 for L→∞ (4.51)

Near the critical point, t ∼ 0, t 6= 0

Firstly, we use the (4.10) to replace ξ∞/L with x̄/L in (4.6) and write

G(x, L, t) = LαFG

(
x

L
,
x̄(L, t)

L

)
. (4.52)

Now we can look at what happens at x = L/2 by plotting G(L/2, L, t)/Lα

against x̄(L, t)/L, with α as calculated in Sect. 4.2.5. In Fig. 4.17 we see that

the points fall approximately on the same curve, regardless of L. There are

some fluctuations within the data for the same L at different t.

Next, following Eq. (4.8), we plot G(L/2, L, t)/Lα against tL1/ν for different

values of ν. When all points collapse into a single curve regardless of L, we
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Figure 4.14: L/ξ2(L, t) as a function of t. From red to purple, L = 20, 22, 24,
26, 28, 30, 32, 36, 40, 44, 48, 52, 56, 60, 64.

Figure 4.15: x̄(L, t)/ξ2(L, t) as a function of t. From red to blue, L = 20, 22,
24, 26, 28, 30, 32, 36, 40, 44, 48, 52, 56, 60, 64.

have found the correct value of ν. The results are shown in Fig. 4.18 and seem
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Figure 4.16: x̄(t = 0)/L as a function of L. The line shown is at k = 0.211325
and represents the value of the intersection with the x-axis of the theoretical
curve at t = 0 in one dimension.

Figure 4.17: G(L/2, L, t)/Lα as a function of x̄(L, t)/L. From red to blue, L =
20, 22, 24, 26, 28, 30, 32, 36, 40, 44, 48, 52, 56, 60, 64.

to suggest a value of the critical exponent ν of

ν ≈ 1. (4.53)



72 CHAPTER 4. FINITE-SIZE SCALING IN TWO DIMENSIONS

Figure 4.18: G(L/2, L, t)/Lα as a function of tL1/ν , for different values of ν.
From red to purple, L = 20, 22, 24, 26, 28, 30, 32, 36, 40, 44, 48, 52, 56, 60,
64.

Another test to find ν is by plotting x̄/L as a function of tL1/ν , as (4.42) is

equivalent to

F
( x̄
L
, tL1/ν

)
= 0. (4.54)
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We show the results in Fig. 4.19.

Figure 4.19: x̄/L as a function of tL1/ν , for different values of ν. From red to
blue, L = 20, 22, 24, 26, 28, 30, 32, 36, 40, 44, 48, 52, 56, 60, 64.

Similarly, in Fig. 4.20, we show the plots of L/ξ2 = L/ξ2(L, t) as a function

of tL1/ν .
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Figure 4.20: L/ξ2 as a function of tL1/ν , for different values of ν. From red to
blue, L = 20, 22, 24, 26, 28, 30, 32, 36, 40, 44, 48, 52, 56, 60, 64.

We see that the data for x̄ and ξ2 are still very noisy and this does not allow

us to extract from them useful information on the correlation length. Further

investigation is necessary in this area.



5
Probability density of the
distance between matched pairs

In this chapter we shall give an overall phenomenological description of the

behaviour of the length of the vectors that link each grid point to its respective

matched Poisson point. That is to say, the quantity that in the previous

chapters was referred to as |~ϕ(~x)|. For simplicity, in the following we will

merely call it “X”:

X = |~ϕ(~x)| .

This problem has already been addressed theoretically (for example, by Hol-

royd et al. [19]) for a generic perfect matching (bipartite or not), and also for

the stable marriage and other matching schemes, while many papers have been

written on the mean distance between matched pairs (see below, Sect. 5.1.1).

Here, we will focus on a numerical analysis in the specific case of the optimal

marriage as described in Chap. 2.

All data presented come from samples of 103 instances of optimal marriage,

and, as a consequence of the large amount of information produced in our nu-

merical experiments, it would be difficult (and not very significant) to consider

every single value of the quantity X. For this reason we decided, instead, to

focus on the probability density function, and to do so by making a histogram

of our data.

In the following graphics, the point at x = X represents the number of

vectors whose module falls between X and X + ∆, where ∆ is the width of

the bins. In two dimensions, the width we considered was a hundredth of the

75
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lattice constant: ∆2 = 1/100, while in one dimension, where, as we shall see,

the edge lengths tend to fall in a wider interval, we had to take a bin width of

one tenth of the lattice constant: ∆1 = 1/10.

We also want to point out that, as already explained in Chap. 3, the optimal

marriage considered in one dimension is the one which minimises the sum of

the squares of the edge lengths, instead of the usual edge lengths.

5.1 Numerical results in two dimensions

5.1.1 At the critical point

In Fig. 5.1 we show the histogram of our measurements at density ρ = 1 for

different sizes L of the system with a bin width of ∆2 = 1/100. We also show

the cumulative distribution function, that is p(X > r) (Fig. 5.2).

Figure 5.1: Normalised histogram of the edge length at density ρ = 1. From
red to purple, all L between 10 and 102.

We see that the distribution has a well-defined peak that typically falls

between 0.4 and 0.5 and does not seem to depend on the value of L (Fig. 5.3).
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Figure 5.2: Cumulative distribution function. From red to purple, all L
between 10 and 102.

Figure 5.3: Position of the peak of the previous curves as a function of the size
of the system L.

The distribution tends to widen as L increases, as can be estimated by the

growth of the mean value of X and the variance1 σ2 = 〈X2〉−〈X〉2. (Fig. 5.4).

Finally, we observe the presence of small bends in the curves at precise points.

1In order to get a more precise number, the mean values of X and X2 were calculated
as the average over every single measure of X, rather than from the histogram.



78 CHAPTER 5. PROBABILITY DENSITY OF THE DISTANCE...

Figure 5.4: Mean value of X, 〈X〉, and variance σ2 = 〈X2〉−〈X〉2 as a function
of the size of the system L.

They can be explained by the characteristics of the grid: the distance X =
√
i,

i ∈ Z+, corresponds to the position of another grid point, which is a strong

“attractor” for Poisson points in the immediate neighbourhood.

Mean edge length

Studying the mean edge length is clearly the same as studying the energy or,

in other words, the transportation cost of the matching, defined as

TN =
i=N∑
i=1

Xi, (5.1)

where N = L2, is the number of pairs, Xi is the edge length of the ith matched

pair, and, obviously, 〈X〉 = TN/N .

This problem has been profusely treated in the past (see, for example, [21],

[22], [23], [24], and, for the related problem of the minimax matching length,

[25]) and it has been proved ([21]) that, for N couples in the unit square, there

exist two constant c, C such that2,

c(N logN)1/2 < TN < C(N logN)1/2 (5.2)

or, equivalently,

〈X〉 = O(
√

logN/N). (5.3)

2The proof is given for two collections of random points, instead of a set of random points
and a set of grid points, but this changes only constant multiplicative factors, as shown in
[22].
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The above result is related to a 1 × 1 square. By rescaling to L × L, we can

finally write:

〈X〉 = O(
√

logL2) (5.4)

In order to verify this assumptions, we made a fit of our experimental data

with f(L) = a
√

logL2 + b. The result is

〈X〉 = 0.202
√

logL2 + 0.216, (5.5)

and the fitted curve is shown in Fig. 5.5.

Figure 5.5: Mean value of X, 〈X〉, as a function of the size of the system
L, together with the fitted curve f(L) = a

√
logL2 + b, with a = 0.202 and

b = 0.216.

Tail behaviour

We want to analyse how the probability density function p(X) decreases as X

increases. In order to do so, we take the logarithm of p(X) and examine the

resulting curves.

We see that, at some distance from the peak, the logarithm of the curve

becomes, on first approximation, a linear function of X:

log(pL(X)) = AL +BLX (5.6)
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Figure 5.6: Logarithm of the probability density, shown with the fitted lines.
From red to purple, all L between 10 and 102.

In Fig. 5.6 we show the points together with the fitted lines.

At different sizes L, the slope of the line changes, and this can be quantit-

atively evaluated by considering the value of the parameter BL of the fitting

function y = AL + BLx, with y = log(pL(X)), x = X, and AL = A(L, ρ = 1),

BL = B(L, ρ = 1).

We found that, on first approximation, the behaviour of BL as a function of

L can be described by (see Fig. 5.7)

B(L, ρ = 1) = −C −D logL

L
. (5.7)

with C = 1.290 and D = 6.58.

Similarly, for AL (see Fig. 5.8):

A(L, ρ = 1) = F +G
logL

L
. (5.8)

with F = 0.388 and G = 7.83.

By taking into account both results, we found that, if X is far enough from

the position of the peak (X & 1.5), the probability density function behaves

approximately as

p(X,L, ρ = 1) = F ′L
1
L

(G−DX)e−CX . (5.9)



5.1. NUMERICAL RESULTS IN TWO DIMENSIONS 81

Figure 5.7: The fit parameter BL as a function of L with the fitted curve
C +D log(L)/L, with C = 1.290 and D = 6.58.

Figure 5.8: The fit parameter AL as a function of L with the fitted curve
F +G log(L)/L, with F = 0.388 and G = 7.83.

A fit of all available data with the function in (5.9) gives the following results
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for the fit parameters:

F ′ = 1.467± 0.003

C = 1.287± 0.001

D = 6.84± 0.02

G = 8.27± 0.04

χ̃2 = 3.43

A 3-D plot of the data and the fitted curve is shown in Fig. 5.9.

Figure 5.9: Experimental data for p(X,L, ρ = 1), X > 1.5 (blue), shown
together with the fitted curve (5.9) (red).

We also tried to perform a more precise fit, by considering the logarithm of

the cumulative density function and a different fitting function:

log p(r > X,L, ρ = 1) = AL −
√
A2
L + (BLx)1.5. (5.10)

In Fig. 5.10 we show the experimental data with the new fitted curves, while

Fig. 5.10 shows a plot of AL and BL as a function of L.
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Figure 5.10: Experimental data for log p(r > X,L, ρ = 1) (in colour), together
with the fitted curves (5.10) (black).

By plotting 1/AL and 1/BL as a function of logL (Fig. 5.10), we have estim-

ated:

1

AL
= α0 + α1 logL (5.11)

1

BL

= β0 + β1 logL (5.12)

with α0 = −0.3233, α1 = 0.1537, β0 = −0.1247 and β1 = 0.0808 (Figures 5.11,

5.12 and 5.13).

Shape for small X

We want to have a closer look at the first points of the histogram, and try to

give a first estimate of the shape of the curves.

If we consider small distances from a certain grid point, we expect that,

if there is a Poisson point, probably it will be matched to the grid point

considered. As random points are distributed according to a Poisson point

process, if we consider the radial distribution we have

d p(rmin = r) = d r 2π r e−π r
2

(5.13)
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Figure 5.11: 1/AL as a function of logL, with the fitted curve (5.11).

Figure 5.12: 1/BL as a function of logL, with the fitted curve (5.12).

and then we expect the cdf to be, on first approximation:

p(rmin > r) =

∫ ∞
r

d r′ 2π r′ e−π r
′2

= e−π r
2

(5.14)

However, the situation described does not happen in all cases. If there are

many long edges, and one of them passes near the potential couple, it may be

energetically favourable to have two medium-length edges than a very small

and a very long one. If we look at Fig. 5.14, we see that the dashed-line

matching becomes preferable over the solid-line one when A+B+2ε > C+D,



5.1. NUMERICAL RESULTS IN TWO DIMENSIONS 85

Figure 5.13: B as a function of A.

Figure 5.14: The dashed-line matching is preferable over the solid-line one
when A+B + 2ε > C +D

that is, when3 s .
√
ε.

These considerations lead to a correction term of order
√
r:

d p(rmin = r) = d r 2π r e−πr
2

(1− α
√
r) (5.15)

and then

p(rmin > r) =

∫ ∞
r

d r′ 2π r′ e−πr
′2

(1− α
√
r) ∼ e−πr

2+ax5/2 (5.16)

or, equivalently,

log p(rmin > r) = −πr2 + ax5/2 (5.17)

By plotting log p(X > r) together with the fitted curves obtained from (5.17)

at small X (X < 0.3), we can have an estimate of the goodness of our assump-

tions (Fig. 5.15).

32ε > C +D −A−B =
√
s2 +A2 +

√
s2 +B2 −A−B ≈ 1

2s
2
(
1
A + 1

B

)
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In Fig. 5.16 we show a plot of the parameter a as a function of L. The fitted

curve shown is a(L) = b− c
√

logL
L

, with b = 2.872 and c = 3.045.

Figure 5.15: log p(X > r) with the fitted curves (5.17). In black, the plot of
y = −πr2.

Figure 5.16: The parameter a in (5.17) as a function of L with the fitted curve

a(L) = 2.872− 3.045
√

logL
L

.
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5.1.2 Near the critical point

As the density ρ grows away from ρ = 1, we expect the distance between

matched points, on average, to decrease. For ρ � 1, every grid point will

simply tend to be matched to the closest Poisson point, and the other way

round for ρ� 1.

In Fig. 5.17 we show the probability density for the sample case L = 60 at

different values of the density ρ . We see that, as expected, the curves are more

Figure 5.17: pL=60,ρ(X), for different values of ρ. Top: from red to green, ρ =
0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.986, 0.99, 0.991, 0.992, 0.993,
0.994, 0.996, 0.997, 0.998, 0.999, 1.
Bottom: from green to purple, ρ = 1, 1.001, 1.002, 1.003, 1.004, 1.006, 1.007,
1.008, 1.009, 1.01, 1.016, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1.
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and more peaked as ρ grows away from 1. Moreover, if ρ > 1, the position of

the peak tends to get closer to zero as ρ increases (Fig. 5.18).

Figure 5.18: Position of the peak as a function of ρ (L=60).

Fig. 5.19 shows the mean and variance for X at different values of ρ, for

L = 60 fixed.

Figure 5.19: 〈X〉 (left) and σ2 = 〈X2〉−〈X〉2 (right) as a function of ρ (L=60).

The limit values we expect for 〈X〉 are4:

〈X〉 → 0 as ρ→∞

〈X〉 → 0.3825 as ρ→ 0.

To test this property we computed the mean value of X at L = 10, for different

densities from ρ = 0.01 to ρ = 110. The results are shown in Fig. 5.20.

4In the limit of one Poisson point in the lattice, the nearest grid point will be, on average,

at distance
∫ 1/2

−1/2
∫ 1/2

−1/2 dx dy
√
x2 + y2 = 0.3825.



5.1. NUMERICAL RESULTS IN TWO DIMENSIONS 89

Figure 5.20: 〈X〉 as a function of ρ. Left: ρ from 0.01 to 2. Right: ρ from 1
to 110.

Tail behaviour

Also in this case, we examine the logarithm of the curves for X & 1.5 and we

make a fit with a line y = Aρ + Bρx, with y = log(pρ(X)), x = X. This time

L = L̄ is fixed and Aρ = A(L̄, ρ), Bρ = B(L̄, ρ).

If we plot the values of the fit parameters as a function of ρ, we see that, on

first approximation, both AL=L̄(ρ) and BL=L̄(ρ) can be fitted by a polynomial

of degree 2 in the module of the reduced temperature |t| = |ρ−1|. In Fig. 5.22

we show the fitted curves for, as an example, L = 60.
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Figure 5.21: The logarithm of the histograms in Fig. 5.17, shown together with
the fitted lines.

Figure 5.22: A(L = 60, ρ) and B(L = 60, ρ) as a function of ρ with the fitted
curves (polynomial of degree 2 in |ρ − 1|). The fitted curves are: A(L =
60, ρ) = (0.989115 + 15.1458|ρ− 1| − 43.2854|ρ− 1|2) and B(L = 60, ρ) =
(−1.78577− 17.5973|ρ− 1|+ 49.3519|ρ− 1|2).
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5.2 Numerical results in one dimension

As previously mentioned, we found that in one dimension the distribution of

the lengths between matched points is considerably larger than in two dimen-

sions. For this reason, in this case we shall consider a broader histogram bin,

specifically, one tenth of the lattice parameter: ∆1 = 1/10. In addition, we

observe that these results have been obtained by minimising the sum of the

squares of the distance between matched pairs.

5.2.1 At the critical point

In Figures 5.23 and 5.24 we show the experimental curves at density ρ = 1 for

different sizes of the system. Again, the distribution tends to widen as the

Figure 5.23: Normalised histograms of the edge length at density ρ = 1. From
red to purple, L =100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000,
2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500.

size, L, increases (in Fig. 5.25, 〈X〉 and σ2), while we cannot determine with

precision the position of the peak, as it appears to fall in the first bin of the

histogram. It may be possible to establish its value by considering narrower

bins.
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Figure 5.24: Cumulative distribution function. From red to purple, L between
100 and 6500.

Figure 5.25: Mean value of X and variance σ2 = 〈X2〉 − 〈X〉2 as a function of
the size of the system L.

Tail behaviour

Similarly to what we did in 2 dimensions, we take the logarithm of the prob-

ability density, but this time we find a different behaviour (Fig. 5.26).

Therefore, we try taking the squares of the abscissas, and in this way the

resulting curves become linear functions of X2 (Fig. 5.27):

log(pL(X)) = AL +BLX
2 (5.18)

In Fig. 5.28. we show a plot of A(L) and B(L) as a function of L. This time

we could not find a suitable function to fit these points.
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Figure 5.26: Logarithm of the probability distribution. From red to purple,
L =100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000,
3500, 4000, 4500, 5000, 5500, 6000, 6500.

Figure 5.27: Logarithm of the probability distribution as a function of X2.
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Figure 5.28: The fit parameters AL and BL in log pL(X) = AL + BLX
2 as a

function of L.

5.2.2 Near the critical point

The comments we made for two dimensions hold also in one, and we expect the

mean edge length to decrease and the curves to narrow as the density grows

farther from ρ = 1 (see Fig. 5.29). In this case, the limit values we expect for

Figure 5.29: 〈X〉 (left) and σ2 = 〈X2〉 − 〈X〉2 (right) as a function of ρ
(L=4000).

the mean edge length are:

〈X〉 → 0 as ρ→∞

〈X〉 → 0.25 as ρ→ 0,

as we have verified in Fig. 5.30.

In Fig. 5.31 we show the probability density for the sample case L = 4000

at different values of the density ρ, with 0.8 < ρ < 1.2. We then focus only

on the values closest to the critical point: 0.99 < ρ < 1.01 (Fig. 5.32). We

see that, as expected, the curves are more and more peaked as ρ grows away

from 1.
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Figure 5.30: 〈X〉 as a function of ρ for L = 100. Left: ρ from 0.01 to 2. Right:
ρ from 1 to 92.5.

Fig. 5.33 shows the logarithm of the previous curves and, similarly to what

already done at ρ = 1, by taking the squares of the abscissas, the resulting

curves become linear functions of X2 (Fig. 5.34):

Finally, in Fig. 5.35 we plot the values of the fit parameters and we find that,

again, they seem to be approximately a function of |t| = |ρ− 1|, even though

the dependence is significantly less precise than in the previous case.
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Figure 5.31: pL=4000,ρ(X), at different values of ρ. Top: from red to green,
ρ = 0.8, 0.85, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 0.991,
0.992, 0.993, 0.994, 0.995, 0.996, 0.997, 0.998, 0.999, 1. Bottom: from green to
purple, ρ = 1.001, 1.002, 1.003, 1.004, 1.005, 1.006, 1.007, 1.008, 1.009, 1.01,
1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1, 1.15, 1.2.
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Figure 5.32: pL=4000,ρ(X), at different values of ρ. From red to green, ρ = 0.99,
0.991, 0.992, 0.993, 0.994, 0.995, 0.996, 0.997, 0.998, 0.999, 1. From green to
purple, ρ = 1, 1.001, 1.002, 1.003, 1.004, 1.005, 1.006, 1.007, 1.008, 1.009, 1.01.

Figure 5.33: Logarithm of the curves above.
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Figure 5.34: Logarithm of the probability distribution as a function of X2,
together with the fitted lines.

Figure 5.35: The fit parameters A = A(L, ρ) andB = B(L, ρ) for log(pL(X)) =
A+BX2 as a function of ρ (L = 4000 fixed).



Conclusions and future
developments

In this thesis, we have focused in particular on the behaviour of the Grid-

Poisson Marriage on the critical point, that is at ρ = 1.

Regarding the study of the correlation function, we have arrived at the exact

solution in one dimension at ρ = 1, and, by means of the theory of Finite-

Size Scaling, we have given an estimate of how this function scales in two

dimensions.

The results at ρ 6= 1, are less definite, particularly in one dimension, where

we do not have an ansatz for the form of the correlation function.

In two dimensions, despite having such an ansatz, the numerical simulations

have not enabled us to have precise numeric details on the correlation length,

which would have allowed us to use more sophisticated techniques for the

determination of the critical exponents.

In this sense, the question of a definition of correlation function convenient

from the point of view of a numerical determination, is still open to new ideas

and research.

Concerning the study of the length of the edges of the optimal matching, the

theoretical predictions about the mean value have been confirmed numerically,

to the best of our knowledge, for the first time, and we have come to an estimate

of the scaling of the energy with the number of couples for the two-dimensional

GPM on the critical point.

We have also given a preliminary description of the density distribution,

whose characteristics still need to be further investigated.

In conclusion, in this work the tools of statistical mechanics, and in particular

the techniques of the Finite-Size Scaling, have been profitably put into use in

the study of a problem of combinatorial optimisation, so confirming the strong

link between these two areas of study.
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A
Technical tools

As the backbone of our work was the computer simulations we devised to

examine the statistical properties of our model, in this appendix we wish to

give a brief description of the main technical tools we have used.

We also want to point out that all the simulations performed for this thesis,

including the necessary tests and inevitable dead ends, add up to 233800 hours

of CPU process time.

A.1 Hardware

We were only able to carry out this large number of complex simulations thanks

to the facilities of the Laboratorio di Calcolo e Multimedia, that is to say, the

computer laboratory of the Physics Department of the University of Milan.

We could make use of a cluster of 13 client machines and a main server,

which performs two kinds of services: networking and computing1.

Networking services

� NFS/Cluster diskless-root – The operating system is not present on the

client nodes. Instead, it is mounted remotely through the Network File

System protocol.

1The following information has been kindly provided by S. Mandelli, staff member of the
laboratory.

101



102 APPENDIX A. TECHNICAL TOOLS

� DHCP – The Dynamic Host Configuration Protocol is used to assign an

IP address to any client that makes a request.

� PXE – The Preboot eXecution Environment enables the server to re-

motely provide the clients with the kernel they need in order to boot.

� BIND – The DNS server is needed to resolve the names of the nodes into

their IP addresses.

Computing services

� PBS – The Portable Batch System is a service that performs job schedul-

ing. This task is accomplished by means of two programs:

· Torque 3.0.4, a distributed resource manager providing control over

batch jobs and distributed nodes.

· Maui 3.3, a cluster job scheduler.

� Recently, five nodes have been added to an InfiniBand (very high speed)

subnetwork in order to enhance the simulations with MPI/OpenMPI

(Message Passing Interface), which require the utilization of several nodes

in parallel.

General notes on the cluster

� The operating system on both the server and the nodes is Debian Linux

Stable (Squeeze 6.0).

� All nodes are Dell PowerEdge.

� All processors are Intel Xeon. In particular, there are four X5650, while

the least powerful are some X5450.

� On the whole, by summing up the resources of all nodes, we get

· number of CPUs: 208

· total memory (RAM): 293 GB
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A.2 Software

The programs we run were written in the C programming language. As a

starting-point, we took the source files by Elia Zarinelli, whose work of thesis [1]

was the basis for our own, modifying them as it was necessary for our purposes.

This code makes use in its core function of the implementation in C written

by Donald E. Knuth [3] of the Hungarian algorithm.

All data analyses and calculations have been performed by means of the

mathematical software program Wolfram Mathematica v. 8.0.

Finally, this thesis has been written using the LATEX 2ε typesetting system

and all original images have been created or modified either by the above-

mentioned Mathematica program or with the GIMP graphics editor.
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B
Basic concepts of graph theory

B.1 Graphs and subgraphs

Let V be a finite set, and refer to the subsets of two (not necessarily distinct)

elements of V as

E(V ) = {{u, v}|u, v ∈ V }.

A pair G = (V,E) with E ⊆ E(V ) is called a graph (on V).

The elements of V are called the vertices (or nodes, or points) of G, and those

of E the edges (or lines, or arcs) of G.

We denote by V (G) the vertex set of G, and by E(G) the edge set. Their

cardinalities |V (G)| and |E(G)| are called, respectively, the order and the size

of the graph.

An edge with endvertices u and v is denoted by uv. The edge uv is said to

be incident to its ends u and v. Vertices u and v are adjacent or neighbours, if

uv ∈ G. If the endpoints are distinct, the edge is called a link, otherwise, it is

called a loop.

If the graph G contains loops vv and parallel (or multiple) edges between

vertices, it is called a multigraph, otherwise it is a simple graph.

In graphical representations, a vertex is usually drawn as a node or a dot,

while an edge is drawn as a line connecting two vertices.

If the pairs {u, v} are ordered (that is, E ⊆ V × V ), G(V,E) is called a

directed graph, or digraph. In this case, uv 6= vu. The directed edge is drawn
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as an arrow between the endpoints, and for this reason they are called the

tail and head of the edge. A digraph can contain edges uv and vu of opposite

directions.

Let v ∈ G be a vertex of a graph G. The neighbourhood of v is the set

NG(v) = {u ∈ G|vu ∈ G}.

The degree (or valency) of v is the number of its neighbours:

dG(v) = |NG(v)|.

If dG(v) = 0, then v is said to be isolated in G, and if dG(v) = 1, then v is a

leaf of the graph.

It is also possible to consider graphs with infinitely many vertices or edges

or both. In this case the graph is said to be infinite. An infinite graph where

every vertex has finite degree is called locally finite.

The graph G = KV is the complete graph on V, if every two vertices are

adjacent. All complete graphs of order n are isomorphic with each other, and

they are denoted by Kn.

A graph G is said to be regular, if every vertex of G has the same degree. If

this degree is equal to r, then G is r-regular or regular of degree r. A complete

graph Kn is (n− 1)-regular.

We can also we define a weight function w : E(G) → R, which assign a

“weight” ∈ R to each edge of the graph. In this case, we say that the graph is

(edge-)weighted.

A graph G is called bipartite, if VG has a partition to two subsets X and Y

such that each edge uv ∈ G connects a vertex of X and a vertex of Y . In this

case, G is said to be (X, Y )-bipartite.

A bipartite graph G is complete (m, k)-bipartite, if |X| = m, |Y | = k, and

uv ∈ G for all u ∈ X and v ∈ Y . All complete (m, k)-bipartite graphs are

isomorphic and denoted as Km,k.

A graph H is a subgraph of a graph G, denoted by H ⊆ G, if VH ⊆ VG and

EH ⊆ EG. A subgraph H ⊆ G spans G (and H is a spanning subgraph of G),

if every vertex of G is in H, that is, VH = VG.

For a graph G, a subset M ⊆ EG is a matching of G, if M contains no

adjacent edges. The two ends of an edge e ∈ M are matched under M . A

matching M is a maximum matching, if for no matching M ′, |M | < |M ′|.
A matching M saturates v ∈ G, if v is an end of an edge in M . Also, M

saturates A ⊆ VG , if it saturates every v ∈ A. If M saturates VG , then M is

a perfect matching.
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B.2 Paths and cycles

Let ei = uiui+1 ∈ G be (adjacent) edges of G for i ∈ [1, k]. The sequence

W = {e1, e2, . . . ek} is a walk of length k from u1 to uk+1.

W is said to be

· closed (or a loop), if u1 = uk+1

· a path, if ui 6= uj for all i 6= j

· a cycle, if it is closed, k ≥ 2, and ui 6= uj for i 6= j except that u1 = uk+1

A graph G is said to be connected, if for all u, v ∈ V (G), u and v can be

connected by a walk; otherwise, it is disconnected. The maximal connected

subgraphs of G are its connected components.

If we denote with c(G) the number of connected components of G, and with

L(G) the number of independent loops, then

|V (G)| − |E(G)|+ L(G) = c(G),

which is known as Euler’s formula.

A vertex v ∈ G is a cut vertex, if c(G−v) > c(G), that is, when it is removed

from G the graph becomes disconnected. Analogously, a cut edge or bridge is

an edge whose removal disconnects a graph.

A subset of arcs is called a cut if it is such that when these arcs are removed

from G, the graph becomes disconnected.

If a graph contains no cycles, it is said to be acyclic, or a forest. A connected

acyclic graph is a tree.
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C
Distribution functions of
random variables

C.1 Distribution functions

Let X be a random variable.

The cumulative distribution function (cdf) of X is the function defined by

FX(x) = P (X ≤ x) −∞ < x <∞. (C.1)

We have

� 0 ≤ FX(x) ≤ 1

� FX(x1) ≤ FX(x2) if x1 < x2

� lim
x→∞

FX(x) = 1

� lim
x→−∞

FX(x) = 0

� lim
x→a+

FX(x) = FX(a)

� P (a < X ≤ b) = FX(b)− FX(a)

� P (X > a) = 1− FX(a)

� P (X < b) = FX(b−) b− = lim
0<ε→0

b− ε

Let X be a discrete random variable. If we define

pX(x) = P (X = x), (C.2)

pX(x) is called the probability mass function (pmf) of the discrete random

variable X, and
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� 0 ≤ pX(xk) ≤ 1 k = 1, 2, . . .

� pX(x) = 0 if x 6= xk(k = 1, 2, . . .)

�
∑
k

pX(xk) = 1

� FX(x) = P (X ≤ x) =
∑
xk≤x

pX(xk)

Let X be a continuous r.v. and fX(x) =
dFX(x)

dx
. The function fX(x) is

called the probability density function (pdf) of X, and it has the following

properties

� fX(x) ≥ 0

�

∞∫
−∞

fX(x)dx = 1

� fX(x) is piecewise continuous

� FX(x) = P (X ≤ x) =
x∫
−∞

fX(x′)dx′

� P (a < X ≤ b) =
b∫
a

fX(x)dx = FX(b)− FX(a)

Let ~X : Ω → R
d, ~X = (X1, X2, . . . , Xd). The (d-variate) distribution func-

tion of ~X or the joint distribution function of X1, X2, . . . , Xd is defined by

F (x1, . . . , xd) = P{X1 ≤ x1, . . . , Xd ≤ xd} (C.3)

for d ≥ 1, xk ∈ R, 1 ≤ k ≤ d.

If f(x1, . . . , xd) = ∂dF/(∂x1 . . . ∂xd) exists for all (x1, . . . , xd) ∈ Rd, then the

function f(x1, . . . , xd) is called the joint density function of F (x1, . . . , xd) or

(X1, X2, . . . , Xd), and

F (x1, . . . , xd) =

∫ x1

−∞
. . .

∫ xd

−∞
f(x′1, . . . , x

′
d) dx

′
d . . . dx

′
1 (C.4)

C.2 Mean, variance and covariance

� The mean (or expected value) of a r.v. X, denoted by µX or E[X], is

defined by

µX = E[X] =


∑

k xkpk(xk) X : discrete∫∞
−∞ xfX(x)dx X : continuous

(C.5)
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� The variance, denote by σ2
X or var[X], is defined by

σ2
X = var[X] = E[(X − E[X])2] (C.6)

and therefore

σ2
X =


∑

k(xk − µk)2pk(xk) X : discrete∫∞
−∞(x− µX)2fX(x)dx X : continuous

(C.7)

� For any two random variables X and Y with finite variances σ2
X and

σ2
Y , the correlation of X and Y is defined by E[XY ], and the covariance

cov(X, Y ) is defined by

cov(X, Y ) = E[(X − µX)(Y − µY )] (C.8)

C.3 Some special distributions

Uniform distribution A r.v. X is called a uniform r.v. over the interval

(a, b) if its pdf is given by

fX(x) =


1
b−a a < x < b

0 otherwise

(C.9)

Normal (or Gaussian) distribution A r.v. X is called a normal or Gaus-

sian r.v. if its pdf is given by

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (C.10)

The mean and variance are

µX = E[X] = µ

σ2
X = var[X] = σ2

It is customary to write N(µ;σ2) to denote a r.v. which is normal with

mean µ and variance σ2.
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Poisson distribution A discrete r.v. X is called a Poisson r.v. with para-

meter λ if its pmf is given by

pX(k) = P (X = k) = e−λ
λk

k!
k = 0, 1, . . . . (C.11)

The mean and variance are

µX = E[X] = λ

σ2
X = var[X] = λ.

Exponential distribution A r.v. is called an exponential r.v. with para-

meter λ(> 0) if its pdf is given by

fX(x) =


λe−λx, x > o

0, x < 0

(C.12)

The mean and variance are

µX = E[X] =
1

λ

σ2
X = var[X] =

1

λ2



Riassunto in italiano

Il lavoro svolto in questa tesi concerne le proprietà statistiche di un proble-

ma di ottimizzazione combinatoria conosciuto come “Grid-Poisson Marriage”

(GPM), ovvero il matching ottimale fra N punti di un reticolo e M punti scelti

a caso nel continuo con distribuzione Poissoniana.

Negli ultimi decenni si è compreso come i problemi di ottimizzazione sia-

no connessi a quelli di meccanica statistica in modo naturale: identificando

la funzione costo con l’energia, si tratta di trovare lo stato fondamentale a

temperatura nulla di un sistema a molti gradi di libertà. Questa analogia ci

permette di adattare le idee e gli strumenti della meccanica statistica, andando

nel limite di temperatura zero, al fine di affrontare problemi di ottimizzazione.

Il modello da noi considerato è un tipico problema di assegnazione in cui la

funzione peso è data dalla somma delle distanze euclidee fra le coppie di punti.

In questo caso, il problema è banale per densità ρ = M/N molto grandi o

molto piccole, mentre il sistema diventa critico intorno a ρ = 1, dove abbiamo

la simmetria nello scambio di N con M . Questo è un fenomeno critico a tutti

gli effetti, in quanto a ρ = 1 il processo di “ricerca del partner ideale” propaga

a tutte le scale di lunghezza e la densità di energia diverge.

In questa tesi abbiamo studiato alcune caratteristiche del GPM dal punto

di vista teorico e le abbiamo confrontate con i dati ottenuti da simulazioni

numeriche su reticoli di diverse taglie e con diverse densità di punti casuali.

Schema della tesi

Capitolo 1

Richiamiamo i concetti fondamentali di meccanica statistica e di ottimizzazione

combinatoria e spieghiamo il legame fra questi due ambiti di studio.
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Capitolo 2

Diamo le definizioni essenziali sui processi stocastici che ci serviranno nel

seguito e definiamo il modello oggetto di studio di questa tesi.

Capitolo 3

L’osservabile su cui ci concentriamo inizialmente è il versore che unisce i punti

accoppiati, mentre la funzione di correlazione che prendiamo in considerazione

è il loro prodotto scalare.

Per prima cosa, arriviamo alla soluzione esatta a densità ρ = 1 per la fun-

zione di correlazione in dimensione 1, che in questo caso si riduce al prodotto

dei segni. Modellizzando il comportamento del parametro d’ordine come un

ponte Browniano e mediando opportunamente sulla distribuzione di probabi-

lità cos̀ı ricavata, otteniamo per la la funzione di correlazione G(x), nel caso

di condizioni al contorno aperte, l’espressione:

Gcca(x) =
1−
√
x

1 +
√
x

mentre nel caso di condizioni al contorno periodiche:

Gccp(x) =
2

π
arctan

(
1− 6x(1− x)√

12x(1− x)(1− 3x(1− x))

)
.

Consideriamo alcune variazioni della funzione peso e mostriamo come la so-

luzione analitica proposta sia in ottimo accordo con i risultati ottenuti dal-

le simulazioni numeriche, a patto di scegliere come funzione peso da mini-

mizzare la somma dei quadrati delle distanze fra i punti. Descriviamo poi

qualitativamente le curve numeriche nel caso ρ 6= 1.

Capitolo 4

Nel caso del GPM bidimensionale, applichiamo le idee fondamentali della teoria

del Finite-Size Scaling dei sistemi termodinamici allo studio della funzione di

correlazione wall-to-wall per scriverla come

G(x, L, t) ≈ LαF
(x
L
, tL1/ν

)
,

dove L è la taglia del sistema e t = ρ− 1.
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Attraverso simulazioni sul punto critico t = 0, diamo una stima numerica del

valore di α.

Fuori dal punto critico, mostriamo numericamente l’andamento della funzio-

ne di correlazione. Diamo due possibili definizioni di lunghezza di correlazione

e ne esaminiamo il comportamento.

Capitolo 5

Infine, prendiamo in considerazione il modulo del vettore che unisce le coppie

e ne studiamo la distribuzione di probabilità ottenuta dalle simulazioni, per

diverse taglie del sistema e a diverse densità. Inoltre, esaminando la media 〈X〉
di queste lunghezze in funzione della taglia del sistema, verifichiamo i risultati

presenti in letteratura: 〈X〉 = O(
√

logN/N), che corrisponde a un andamento

dell’energia come: E = O(
√
N logN).
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ciò che mi ha insegnato e su cui mi ha spinto a riflettere, ma anche per la sua

infinita gentilezza e pazienza, e per le molte parole di incoraggiamento che mi

ha rivolto nel corso di questi mesi.

Un ringraziamento particolare devo anche al Dottor Sportiello, per la sua
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