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Introduction

The growth of large structures from smaller units is a very common phenomenon
in many different areas of science and technology. It has been recognized only rela-
tively recently that many of the large scale structural properties do only depend on
the general features of the growth process [1]. This is much like the properties of
phase transformations that are determined by very general considerations such as
dimension and symmetries. The formation of aggregates is important in many areas
of science and has important applications in areas such as air pollution, water pol-
lution and purification, and in many branches of condensed matter, that is polymer
physics, percolation theory, coating systems and nanostructure fabrication.

Colloids and polymers [2, 3] (see figure 1) are interesting models for aggregation
phenomena. Such systems cover a broad range of particle sizes and interactions.
Forces with different length scales (electrostatic, van der Waals, adhesion forces)
become relevant for the behavior of individual particles and their collective behavior
depending on particle size and on their local environment (particle concentration,
confining geometry, properties of the continuous matrix). The time scales on which
single particles, groups of particles or the entire sample react to a new situation
cover several orders of magnitude.

Colloidal aggregation and the kinetics of colloidal aggregation has been studied
for many years. However, emphasis has been focused more on the inter-particle
interactions and the kinetics of aggregation processes than on the structure of the
aggregates. One of the reasons for the neglect of aggregate structure was the diffi-

culty of characterizing their complex disorderly structures in quantitative terms.
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Figure 1: Left: The image shows a colloidal monolayer of 180 nm polystyrene par-
ticles on top of a monolayer of 1100 nm colloidal particles. Right: Atomic force
microscopy image of Af fibrils. Af is a 39- to 43-residue peptide that is formed
by proteolytic processing of a 770-residue trans-membrane protein and deposited as
amyloid fibrils in Alzheimer’s disease.

Interest in fractal structures formed by aggregation processes grew rapidly fol-
lowing the fractal analysis of iron particle aggregates by Forrest and Witten [4],
the introduction of the DLA (diffusion limited particle-cluster aggregation, figure
2 shows DLA structures found in nature) model by Witten and Sander[5] and the
realization that the structures generated by other simple aggregation models and ag-
gregation processes could be described quite well in terms of the concepts of fractal
geometry [6].

These advances took place at a time when the basic concepts of fractal geometry
had recently become widely disseminated. The intense interest in fractal geometry,
at that time, stimulated research on a wide variety of growth and aggregation models,
which continues to this day. Interest in this area has been sustained by a strong
synergy between computer modeling and experimental work [7].

The most important features of simple aggregation models, in which clusters or
aggregates are assembled from a large number of single particles, are the volume
distribution of the aggregating clusters, the nature of the relative trajectories of
the aggregating clusters, the dimensionality of the space in which the aggregation

process takes place and the concentration of particles (the fraction of the space
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occupied by particles). In most simple models, the particles are represented by
spheres (or hyperspheres) in a continuous space or by filled sites on a lattice. In

either case, the distribution of particle sizes is usually neglected.

Figure 2: Left: the image represents a DLA cluster grown from a copper sulfate
solution in an electrodeposition cell. Right: bacterial colonies grown on a plate.

Aggregation phenomena play an important role in Biology. Bacteria colonies
display DLA-like patterns (right panel of figure 2) as those observed in many systems
such as electrodeposition (left panel of figure 2), mineral deposits, and dielectric
breakdown. The cluster structure observed falls into a universality class according
to the growth mechanisms, with its characteristic properties. Just as is known from
the field of critical phenomena, the scaling features of these models are universal,
i.e. they do not depend on microscopic details. As a consequence, physical concepts
developed in Statistical Mechanics clarify the dynamics of biological processes.

This work is focused on clusters of cancer cell that form in vitro and motivated
by the results obtained in the comprehension of aggregation phenomena. Recent
papers have elucidated processes that happen in biological cell systems. Stochastic
models of cell division and differentiation have been successful in the comprehension
of the maintenance of adult murine tail skin [8, 9].

One of the main goals in Biomedicine is to understand the evolution process of
tumors. Since few decades ago, the prevailing theory, pioneered by Robert Weinberg,
suggested that all tumor cells are indistinguishable and tumorigenic, that is, all the

cells are responsible of tumor growth [10].



Introduction 9

In this context, great interest deserved a paper published by John Dick in 1997, in
which it was shown that leukemic cells have a hierarchic structure and are originated
from a primitive hematopoietic cell [11]. This paper opened the way for many later
studies, which suggested that a similar structure existed for solid tumor [12].

Subsequent researches showed the existence of a set of cells, later called cancer
stem cells (CSCs), located at the top of the hierarchic pyramid and endowed with the
same features of stem cells [13]. Indeed, like normal stem cells, they can self-renew
to produce more stem cells and are able to divide (through mitosis) and differentiate
into diverse specialized cell types. The ability to self-renew assure the survival of
the stem population (that is why they are said to be immortal). Moreover, they
can differentiate into diverse progeny with limited proliferative potential or form
non-tumorigenic cancer cells that compose the bulk of cells in a tumor.

Figure 3 shows the difference between a non-hierarchic traditional theory and
a hierarchic CSC model. This figure shows possible cell division processes. In
a hierarchic view a top-level progenitor is able to divide in individuals belonging
to different kind of populations whereas the subordinate families do not generate
individuals of the top-level population. For example, individuals of a noble family
can generate noble and non-noble offspring, while non-nobles can have only non-
noble offspring. Instead in a non-hierarchic process the progenitor can generate
offspring belonging only to its own family.

Thus, at the basis of the CSC theory is the existence of a minor subpopulation
of cells that possesses the peculiar features of stem cells, whereas the remaining
majority of the cells are more ”differentiated” and do not have these properties.

In this landscape the CSCs are responsible for the growth of the tumor and thus
to treat the disease should be sufficient to target this subpopulation. Indeed, this
theory opened the doors to a new strategy of cancer treatment. In fact the main
weakness of traditional chemiotherapy is that it is not target specific, i.e. kills all the
cells that divide rapidly. This results in a lot of side effects like myelosuppression,

the decreased production of blood cells, and alopecia, that is hair loss. Whereas,
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Figure 3: Difference between a non-hierarchic (left) and a hierarchic (right) model.
Left: one progenitor divides generating two cell that can proliferate, die or be qui-
escent. Right: the individuals belong to different populations defined by different
features, A can undergo symmetric (1) or asymmetric (2) division, B can undergo
symmetric division (3) or generate a member of the C population (4) that is not
able to divide.

according to this theory, the key consideration when devising therapeutic treatments
should be the tumorigenic potential of the cells, so the driving trend in drug design
should pose its strategy in targeting those cells only. In addition, cancer chemio-
therapy efficiency is frequently impaired by tumor resistance, that is the reduction
in effectiveness of a drug in curing a disease. This is strongly dependent on the ex-
position to the treatment and closely linked with the specificity of the drug, that is,
the lower the specificity the greater the duration of exposure and hence the greater
the risk of the development of resistance. A schematic depiction of the difference
between traditional and CSC approach in cancer treatment is shown in figure 4.
The CSC theory was proved to be true in different kind of tumors: brain [14],
breast [15], colon [16], ovary [17], pancreas [18], prostate [19] and melanoma [20].
The evidence of the existence of CSCs in human tumors is based on the creation
of mice that are sufficiently immunodeficient to tolerate tumor growth of human
tumor cells into them [21]. So one key objection to this model is the lack of an
appropriate microenviroment because of the difference between mice and humans

and of the lack of an intact immune system when evaluating the tumor-initiating
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Figure 4: Difference between CSC specific and conventional cancer therapies
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capacity of these human cancer cells. Thus, it is possible that the subpopulation of
cells that appeared non-tumorigenic might actually be tumorigenic in the presence
of the appropriate microenviroment. However, recent studies validated the existence
of CSCs with different biological techniques [12].

A number of studies have investigated the possibility of distinguishing CSCs from
the bulk of the tumor [21, 22]. This usually deals with the definition of the so-called
biomarkers, that are indicators of a biological state which allows for the detection
and isolation of a particular cell type. A constant problem in Biology is to find the
best marker or the best combination of markers necessary to identify the subset of
cells endowed with a specific quality.

In the last twenty years, physical and mathematical models played a crucial
role in the comprehension of biological mechanisms [23]. Indeed, in the context
of cell division and proliferation the theory of branching processes has been able
to describe a wide range of phenomena. In fact this theory describes situations in
which an entity exists for a time and then may be replaced by one, two, or more
entities of a similar or different type.

The theory of branching processes is a well-developed and active area of research

with theoretical interests and practical applications. It has made important con-



Introduction 12

tributions to biology and medicine since Francis Galton considered the extinction
of names among the British peerage in the nineteenth century [24]. More recently,
branching processes have been successfully used to illuminate problems in the areas
of molecular biology, cell biology, developmental biology, immunology, evolution,
ecology, medicine, and others [23]. For the experimentalist and clinician, branch-
ing processes have helped in the understanding of observations that seem coun-
terintuitive, to develop new experiments and clinical protocols, and have provided
predictions which have been tested in real life situations. For the physicist, the
challenge of understanding new biological and clinical observations has motivated
the development of new theories in the field of branching processes.

The main goal of this thesis is to determine the kinetics of tumor growth. Starting
from experiments in vitro, I will discuss a technique to analyze the data and study the
behavior of observables in order to determine the evolution of clusters of melanoma
cells. Six papers came out in the last two years showing the evidence of a CSC
subpopulation in melanoma [25, 26, 27, 28, 29, 30, 20|, and the research group with
which T am working determined biomarkers to distinguish the CSCs from the bulk
[31, 32]. The aim of this work is to determine the right evolution dynamics of
the tumor within the context of Statistical Mechanics and the theory of branching
processes, that is, to determine a model that fits the experimental data.

In chapter 1, I firstly discuss the nature of cell clusters and the format of the
experimental data. Then I will develop a feasible way to compute the observables
using imaging technique. I will show how everyday biological measurement can be
performed in a systematic way with the use of percolation and clustering methods.
A conversion factor between pixels and cells is computed in order to compare the
results with biological observations and models based on Branching Process Theory.

Chapter 2 will be devoted to a test of the methods used. I will verify that clusters
are randomly sparse and are not mutually interacting, showing that the distributions
of distances between centers of mass of the clusters follow a random-like behavior.

I will test the imaging technique used checking that measures of number of clusters
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fall in the expected ranges. Further, I will show that measurements are not affected
by the experimental setup, that is, a measurement of the volumes of clusters do not
depends on the number of clusters, allowing to discard any possible interaction of
clusters with the environment in which they are constrained.

Chapter 3 concerns a method to determine the isotropy of the clusters. I will
address the question if the clusters follow a random-like growth. The inertia tensor
represents a measure of the shape of a cluster: its eigenvalues define the elongation
of the cluster along the diagonalization axes, while its maximum eigenvector defines
its orientation. With the use of such tensor, I will compare the experimental results
with the Eden model whose dynamics give rise to random-like clusters, showing that
for the cell type used the growth is isotropic.

Having determined that clusters are mutually independent, I will perform a dy-
namical analysis of the cluster growth in the context of Branching Process Theory
where independence between clusters is a basic feature. Therefore in Chapter 4 I will
introduce the basic concepts of this theory, emphasizing the possible implementa-
tions of models that can be designed according to biological observations. Therefore,
I will discuss a model that fits the Traditional Cancer Theory and a model based
on the CSC hypothesis that keeps in account recent results in Biomedicine.

The last chapter deals with the comparison of experimental data with BP models.
I will discuss the case of models inspired to the Traditional Cancer Theory and to
the CSC Theory. The main goal is that experimental data can be understood only
if we suppose the existence of two populations in Melanoma cells, in contrast with
the hypothesis of TC Theory. This result open the way for new researches in the
context of CSC Theory.



Chapter 1

A computational approach to data

analysis

When modeling a biological system, it is of primary interest to understand the basic
mechanism that drives the dynamics. Starting from experimental data in wvitro, it
is indeed possible to calculate different observables using imaging techniques and
algorithms.

In the subsequent sections, I discuss data capture and analysis. The first sec-
tion concerns the format of the data set, while in the following I design a suitable
algorithm in order to access the observables of interest. The striking feature of the
method implemented here is that it is general and can thus be used to study the

behavior of different kinds of cells that form two-dimensional clusters.

1.1 Data sets

In this section the crystal violet technique to prepare the data sets in vitro is ex-
plained and the nature of the cells anlyzed is discussed.

Samples of Melanoma cells, originating from patients and frozen, are put for a
number of days in culture, that is immersed in growth medium that facilitate the

growth of the cells. Afterwards, the cells are disposed in different wells and solutions

14
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containing crystal violet and formalin are used to simultaneously fix and stain cells
grown in cell culture to preserve them and make them easily visible, since most cells
are colorless.

The samples consist in sets of six wells, each one covered by violet spots repre-
senting cluster of cells and all prepared in the same condition. Figure 1.1 represents
one of the samples. The main reason why it is necessary to prepare six wells is not
only statistical but also experimental: it could happen that the cells are sometimes
not fixed and the mixture of crystal violet and formalin spread on the well making

difficult to distinguish the clusters.

Figure 1.1: Here is shown an example of the data: each one of the six wells contains
cells of Melanoma (line 39) in the wild type condition after 8 days growth.

In oncology it is possible to distinguish between different kinds of Melanoma cells.
In order to understand these differences, it is essential to introduce the concepts of
metastasis and biological marker.

Metastasis is the spread of a disease from one organ or part to another non-
adjacent organ or part. This happens when the cancer cells, that form the primary
tumor, acquire the ability to penetrate and infiltrate surrounding normal tissues in
the local area, forming a new tumor. The newly formed ”daughter” tumor in the
adjacent site within the tissue is called a local metastasis.

Some cancer cells acquire the ability to penetrate the walls of lymphatic and/or

blood vessels, after which they are able to circulate through the bloodstream (cir-
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culating tumor cells) to other sites and tissues in the body. This process is known
(respectively) as lymphatic or hematogeneous spread. After the tumor cells come
to rest at another site, they re-penetrate through the vessel or walls, continue to
multiply, and eventually another clinically detectable tumor is formed. This new
tumor is known as a metastatic (or secondary) tumor. Metastasis is one of three
hallmarks of malignancy (in contrast to benign tumors).

When tumor cells metastasize, the new tumor is called a secondary or metastatic
tumor, and its cells are like those in the original tumor. This means, for example,
that, if breast cancer metastasizes to the lungs, the secondary tumor is made up of
abnormal breast cells, not of abnormal lung cells. The tumor in the lung is then
called metastatic breast cancer, not lung cancer.

In genetics, cancers are distinguished by the so called line, that specifies the
cell type. Melanoma cells belonging to the line 39 are obtained from a patient in a
metastatic phase, while those belonging to the line 37 are obtained from the primary
tumor. In the subsequent chapters the behavior of line 39 cells will be studied.

Another distinction between cancer cells is based on the biological markers. As
said in the introduction, these markers are used to detect a biological state and
thus to isolate a particular cell type. In Biology, it is said that a particular kind of
cells (for example the Melanoma cells) express a certain marker, meaning that it is
possible to detect this particular kind of cells. In this way it is possible to detect
different populations among all the Melanoma cells.

The Cancer Stem Cell hypothesis opened the way for a lot of studies each sug-
gesting a marker or a set of markers to detect the CSC population. Thus it is
common use to distinguish Melanoma cells that express a certain marker, in facts

a large number of markers has been proposed as good markers for Melanoma CSCs

21].
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1.2 Data analysis

An efficient technique to analyze the data sets shown in figure 1.1 has not been
designed yet. In this section, a suitable method to get informations on the clusters
(for example on the shape and on the size) is discussed. This method is based on

imaging techniques and on a percolation algorithm.

1.2.1 Data conversion

With a common scanner it is possible to obtain an image with very good resolution
of the clusters (in the data analysis, it has been used a scanning resolution of 600 x
2400 dpi). Selecting circular section, an image for each of the six wells is obtained.
In this operation, we should be careful in cutting out the shaded and the reflective
areas.

We saved the image in ppm format. The ppm file is an ASCII file and allows for
a simple manipulation of the information contained in a pixel. The ppm file can be

opened with a simple text editor and contains:
e two lines that represent the file format and the filter used to produce the image

e a line containing two numbers that respectively define the number of columns

and lines of the pixel lattice

e a line containing a number that represents the maximum color-component

value that in the standard RGB scale is set to 255

e three ASCII decimal values for each pixel between 0 and the specified maxi-
mum value, starting at the top-left corner of the pixmap, proceeding in normal
English reading order. The three values for each pixel represent red, green,
and blue, respectively; a value of 0 means that color is off, and the maximum
value means that color is maxed out (for example (0,0, 0) corresponds to black

while (255,255, 255) corresponds to white).
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1.2.2 Image conversion

The first goal to achieve is to convert the image obtained, that is a matrix of colors, in
a boolean matrix where 1 corresponds to an element of a cluster, while 0 correspond
to an empty pixel.

This is a very complicated task because gray and violet, that are the two colors
that should be distinguished, are very "close” in the pixmap. In principle this is
not a problem because it should be possible to distinguish a first set of colors to be
treated like an element of a cluster and a second set of colors that correspond to
empty pixels. But random noise and shadows must be taken into account, indeed if
these two sets are disjointed in a region of the plate, they could overlap in another
region. So a distinction between clusters and the background should not be based
on the identification of these two sets of colors.

We executed this operation using a combination of imaging techniques. The basic
feature is the edge detect ” Difference of Gaussian” algorithm. It works by performing
two different Gaussian blurs (a Gaussian blur acts on each pixel of the active layer
or selection, setting its value to the average of all pixel values present in a radius
defined) on the image, with a different blurring radius for each, and subtracting
them to yield the result. This algorithm is very widely used in artificial vision and
is pretty fast because there are very efficient methods for doing Gaussian blurs.
The most important parameters are the blurring radii for the two Gaussian blurs.
Increasing the smaller radius tends to give thicker-appearing edges, and decreasing
the larger radius tends to increase the threshold for recognizing something as an
edge. The details of this method are reported in Appendix 1 and the efficiency of
this method can be appreciated in figure 1.2.

In this way, black clusters over a white background are obtained. Here should
be noted that some clusters can be connected to the edges of the selected area. This
means that these clusters are cut and can affect the measurement of observables,

like for example centers of mass or volumes of the clusters. This is avoided simply
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erasing these clusters.
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Figure 1.2: The images show the original section of the well (left) and its black and
white conversion (right).

1.2.3 Cluster labeling

The pixmap obtained in this way contains black (0,0,0) and white (255,255, 255)
elements and can be simply converted in a boolean matrix B where 1 correspond to

an occupied black site and 0 to an empty white site, thus

B = [Ui,j] where 04,5 < {O, 1} (11)

The interesting quantity that can be calculated at this point is the area covered by
the clusters with a simple count of 1 and 0 in the boolean matrix, but for example
the number of clusters and thier volumes cannot be calculated.

In order to distinguish between clusters it is necessary to assign labels. What
we would like to have is an algorithm which gives all sites within the same cluster
the same label and gives different labels to sites belonging to different clusters. The
Hoshen Kopelman algorithm [33], widely used in percolation theory, allows a fast
labeling of the clusters. The time complexity of this algorithm is linear and requires
small computer memory size. In fact with this algorithm, it is possible to simply

handle the corresponding matrices 1300 x 1300 of the wells.
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The general idea of the Hoshen Kopelman algorithm is that we scan through
the grid, from left to right and from top to bottom, looking for occupied sites and
to the left and the top neighbors. To each occupied site we wish to assign a label
corresponding to the cluster to which the site belongs. If the site has zero occupied
neighbors, then we assign to it a cluster label we have not yet used (it is a new cluster,
1.3 top-left). If the site has one occupied neighbor, then we assign to the current
site the same label as the occupied neighbor (they are part of the same cluster, 1.3
top-right and bottom-left). If the site has more than one occupied neighboring site,
then we choose the lowest-numbered cluster label of the occupied neighbors to use

as the label for the current site (1.3 bottom-right).
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Figure 1.3: 1) A graphical sketch of the possible situation during cluster labeling.
Considering the underlined numbers: Top-left: definition of a new cluster labeled
with 2, top-right: the site belongs to the cluster already labeled with 1, bottom-
left: the site belongs to the cluster already labeled with 3, bottom-right: the two
neigbours are labeled with different numbers, thus the minor number (4) is assigned
to the site. After this first step, N(M) = M for M # 5 and N(5) = 4. 2) This
second step represents the relabeling of the clusters using the information contained
in N.

Furthermore, if these neighboring sites have differing labels, we must make a
note that these different labels correspond to the same cluster. Thus we introduce
an additional array, the labels of labels, and denote it as N. A good label for a site
0, say M, is characterized by N(M) = M whereas a bad label has N (M) = M,
with M’ the label to which that bad label turned out to be connected. Scanning the
grid for the first time, all the connections are stored in the array N, that is when

neighboring sites have different labels M., and M,,;, then N(Mnaz) = Mpin and
N(Mpin) = Myin. Once finished, the good label for each cluster is found by the
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following classification: given M the label of that site, then if N(M) = M the label
is good and we go to the next site, otherwise N (M) = M’ and we must check if M’
is a good label, if not N(M’) = M" and we proceed until we find that N(M*) = M*
thus we set N(M) = M*.

In this way, scanning the lattice once, an equivalence relation between two labels

M and M is defined by

and we can define as well the equivalence class of M,

[M] = {M; € N'|M; ~ M} (1.3)

given A’ = {M;} the set of labels M;. Therefore going through the lattice for a
second time all the bad labels for the sites o0; ; are replaced by the good ones using
the array . In this step the labels in A’, that do not follow a numerical order, are
reordered, i.e. for an occupied site with original label M the good label at the root
of the label tree is searched then replaced by an integer n for the n-th cluster found

in the lattice (in english reading order) and stored in an array of new labels A,

A={nne{1,2,..,n.}|N,(0;;) =n} (1.4)

where n, is the total number of clusters and N, is the cluster respective label for
the site. In this way the boolean matrix B that represents a well is converted in the
cluster label matrix L where each occupied site is replaced by a number that labels

the equivalence class to which it belongs, thus

B = [Ui,j} where Ui,j & {0, ].} % L= {Li,j] =
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In this way, the number of clusters is immediately obtained and the labels as-
signed to the sites allows a simple calculation for example of the volumes of the
clusters based on the count of matrix elements equal to the representative number
of its equivalence class. The right panel of figure 1.4 shows the colored version of

the well, obtained assigning a random color to each label of the clusters.

Figure 1.4: Here is shown the black and white image (left) and its coloured version
(right). The colour of the clusters is determined choosing three random number be-
tween 0 and 255 and assigning them to the representative number of the equivalence
class of a cluster, then printed on a file in ppm format.

1.2.4 Defining clusters of cells

With the Hoshen Kopelman algorithm, clusters can be separated labeling them with
different numbers. However we have to underline that in this landscape we are using
the definition of a cluster as a region of connected occupied sites (or black pixels),
that is two occupied sites are said to be connected if there exists a path of occupied
sites that connect them. The question that we address in this section is if a cluster
of cells can be identified with the H-K definition of the cluster.

Consider the experimental protocol of preparing the sample: a certain number
of cells is put and randomly scattered in the well and left in a growth medium for

8/10 days, then fixed with the crystal violet technique. In this way, a cluster is the
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product of a series of divisions generated by one cell. Sometimes it happens that,
after fixing, some cells are slightly separated from the cluster of which they are
part of and the H-K algorithm counts them as different. Thus the H-K algorithm
needs improvements in order to justify the identification of a biological cluster as a
computed cluster.

What we need to do is to define a new equivalence relation between clusters that
says that a "little cluster quite close to a big cluster” represents the same cluster.

Following this line, we designed an algorithm able to perform this task. The
basic idea is that there exists a set I' of big clusters surely generated by one cell and
a set v of smaller clusters that could be generated by one cell but also be part of
an existing cluster. Thus at this point a first parameter must be defined, that is the

threshold size S* that determine the set to which the cluster belongs. Thus, given

Crk = {Lij|Lij = k} (1.6)

the set of sites of the k-th cluster,

Cy € y if |Ok| < S (18)

Then scanning the lattice we look for a cluster in the neighbor of a certain radius
r, that is identified as a coherence length, of the sites belonging to the v clusters

and we put them in the same equivalence class, i.e.

Co~Cp ifdaecC,beC, | d(ad)<r (1.9)

where almost one between C, and C}, belongs to the set «v. This clearly avoids the
presence of an equivalence relation between two clusters in I" that are biologically
generated by two distinct initial cells. The method used to label the clusters is

completely analogous to the one described in the preceding section. This algorithm
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Figure 1.5: The figures show blowups of the colored images obtained with the Hoshen
Kopelman algorithm (left) and the respective result of the second algorithm (right).

has been tested using different parameters and has brought good results for S* =
100 px and r = 8 px. Figure 1.5 shows the effect of the algorithm on a well using

these parameters.

1.3 Pixel conversion

In the preceding section I conducted the analysis using the pixel as unit of measure-
ment. However in this case the natural unit of measurement is the cell, in order
to reproduce the real composition of the clusters and to compare the experimental
data with a growth model inspired to the theory of branching processes.

Thus it is necessary to determine a conversion factor between cells and pixels,
that is defined by the ratio p of cells and pixels that constitute the clusters. We
calculated the number of pixels counting the occupied sites of the lattice while
we counted the corresponding number of cells using a microscope endowed with
the resolution of a pum. Figure 1.6 shows a microscope image of a cluster and
its respective counterpart in pixels. The computation is achieved using four small
clusters from which we calculated the average of p, whereas large clusters contain

a huge number of cells that is not easy to determine to the naked eye using the
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microscope. The conversion factor is

p = 0.137 + 0.046 cells/px

or equivalently a cell corresponds to 7/8 px.

Figure 1.6: The left figure represents a photo of a cluster, the scale reported has a
resolution of a um. The right figure is the same image obtained with the scanner in
pixel units.

Here it should be noted that the cluster label matrix L;; contains spatial in-
formations on the clusters, that get lost when converting observables in cell units.
In fact, when dealing with geometrical properties of clusters, calculations will be
carried out starting from L, ;. Meanwhile when targeting dynamical properties in
branching process context and in Biology field the cell represents the natural choice

for the measurement unit.



Chapter 2

Calibration

In the preceding chapter we discussed a systematic way to convert the image of
the wells and label clusters. Here the algorithm is implemented to discuss data
on melanoma cells obtained from tumor in a non-methastatic stage (line 39). The
interest of the subsequent discussion is not only biological, in facts this represents
a way to test the algorithm. The emphasis is put here on the behavior of some
observables that are useful to check the validity of the method implemented and are
of ordinary interest in biological researches.

There are mainly two parameters that can be changed in this kind of experiments:
time and density. In Biology the time scales of cell division dynamics are of the order
of days. In fact the mean time in which a cell divide is usually between one and
two days, but clearly depends on which kind of cell you are dealing with. The
range in which time ¢ can be varied for Melanoma cells is very narrow, because
of a combination of experimental reasons. In facts according to the experimental
protocol of crystal violet technique, 8 days must be waited to see enough big clusters,
while 12 days are too much because clusters become so big that merge and clusters

generated by different cells cannot be distinguished. Thus,

t € [8 days, 10 days].

26
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The second parameter is density p*, that is the initial condition on the number
of cells in a well. Also in this case there is a fundamental constraint, in fact a certain
number of cells must not be exceeded in order to avoid a merging of the clusters
after few days. There is clearly an inverse relation between time and the constraint
on density, that is more is the time less must be the threshold number of initial cells.

In our particular case the threshold value of initial concentration p}, . can be set to

i} 250 cells/well  if t = 8 days
pmax<t) = : (21)
150 cells/well  if ¢ = 10 days
This can be easily seen looking at the figure 2.1, where the wells in the two border

situation mentioned above are shown. The problem of merging will be discussed

further in the third section.

*
- ;,’
K4 o‘,m i’ t. 3% . " .'*
° 1:‘ * 43 . Y )
- 4
. L] M # - '?' L4 .t » ‘ ' . ‘
) * 2 - » ‘l: ‘t . ') ,
2 » n& ‘ £ ‘ & *
' S ey o - 2 * * ’ * -
- “ i 3y Ll .d » .~ . .‘. .
- . T .
s #4 o ‘05?.*-" v - . ]
Te grle "3 ee oo @ .‘
. _,. hg * &y
- ‘.: '." ‘ l,.‘ -:(.¢ " e 9 ' . "’. *
et Live . ¢
~ - R . '\ s
*

Figure 2.1: The left figure represents a sample of cells 39 wild type at 8 days with
a density p* = 250 cells/well and the right figure is a sample of the same kind of
cells at 10 days with p* = 150 cells/well. In these two wells situations of merging of
clusters are seen.

Before going on discussing the results, some points that concern the experimental
conditions and the “quality” of the data sets must be still considered. In facts when

preparing the wells, a solution with cells is spread on the plate using a pipette and
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in this process there are many errors that cannot be kept into account. Errors
happen when preparing the exact concentration of cells in the solution and when
dosing the right number of cells with the pipette. In the first step the number of
cells thus statistical errors cannot be measured, while in the second step errors can
be in principle estimated with a statistical approach (that we will adopt). However
this procedure is strictly dependent on the precision of the operator that should be
sure to exert an appropriate pressure on the stuff of the pipette when preparing
each well. This problem is not trivial at all, because the operation is affected by the

effort of the experimentalist and can give rise to a systematic error.

2.1 Sparseness of clusters

According to the experimental protocol, cells are supposed to be spread randomly
on the well using the pipette. But nothing prevent the cluster to interact, in fact an
attractive or repulsive force between them can exists and can affect the geometrical
and dynamical aspects of the growth. This must be clearly verified and we are able
to do this using the algorithm described in the preceding chapter.

The basic idea is that the average position of the initial cell that give rise to a
cluster is located at the center of the cluster. Their center is defined as the center of
mass of the cluster using the classical definition, that is, given (j,7) the coordinates
of the occupied site in the cluster label matrix L, ; that is part of the k-th cluster,

and C}, the set of sites of the k-th cluster, the coordinates of the center of mass are

1 , 1 .
Tk,oM = m Z Jy Ykom = m Z ¢ (2.2)
k L¢7j€C}€ k Li,jeck
where |Cy| is the number of sites that compose the k-th cluster. Note that the
centers of mass of the clusters can be computed using experimental data because
the algorithm allows a labeling of different clusters.

We computed in this way the average positions of the cells in the initial condi-
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tion. In order to determine the presence of a possible interaction between clusters,
the experimental data on the position of the initial cells must be compared with
a random situation. This is achieved comparing the respective distribution of (eu-
clidean) distances between the centers of mass of the clusters with the distribution
pr(x) = pr(z;; = x) of (euclidean) distances z; ; = ||x; —x;|| between random points

in a circle of radius r. The calculation of p,(z) is carried out in appendix B and

gives
2x 2 x €T I’Q
pr(l’) = 7 (; arccos (5) — E 1— @> . (23)
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Figure 2.2: Here is shown the comparison between the experimental distribution
(in red), the simulated one (in blue) and the analytical curve (in black) p,(x) for a
sample of non-metastatic (line 39) ABCG2-negative cells.

We thus verified the sparseness of the clusters studying a sample for each kind
of cell. Figure 2.2 shows the experimental distribution of p,.(z) and the simulated

distribution compared with the analytical expression of equation 2.3 for a sample



Calibration 30

of non-metastatic ABCG2-negative cells. The simulated distribution is obtained
trowing random points in a circular well, that is trowing two random numbers
between 0 and the maximum number of rows R or columns C' of the matrix that
represents the pixel lattice (the matrix is squared, thus R = ('), and accepting them
when they fall in the circular well, that is when (x — %)2 + (y — %)2 < RTQ given
(x,y) the coordinate of the random point in the grid in a reference frame where the
origin is the bottom-left pixel. The good agreement of the data with the simulated

and the analytical curves shows that the clusters are randomly distributed in the

well.

2.2 Testing the code

In the preceding section we tested the sparseness of the cells in the initial condition
showing that the distribution of distances between the centers of mass of the cluster
pr(z) follows the behavior of random points in a circular section. Thus any corre-
lation in the initial conditions and any effect due to a possible interaction between
different clusters must be discarded.

We test now the validity of the algorithms used to label clusters, thus mea-
surements of observables of the well will be now discussed. The image conversion
technique is not at issue because the steps described in appendix A are kept un-
der control using a graphical interface, thus if any error occur this can be detected
and solved, or if background noise is too strong that cannot be removed the well is
discarded.

A direct and efficient test of the method is based on the measurement of the
number of clusters n. in the wells that is determined by the largest number that
labels the clusters. In facts, as said at the beginning of the chapter, between the
two parameters that can be set it is density p*, that is the starting number of cells
displaced in a well (it is a pure number and has not the dimension of a physical

density, it is a numerical density in a well not in a volume). Therefore a confirm of
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the method used consists in checking the agreement between the number of clusters
and the density. If n are the numbers that label the sites and defines the cluster to

which they belong, the number of clusters is calculated as

N = maxn (2.4)
neA

Note that this is possible because in the algorithms the labels of the clusters are in
a numerical order. If cells do not die, we should expect that n. = p*, however some
cells could die thus we expect that n. < p* (The reason of the relation between n,
and p is that it is experimentally observed that few cells, not the majority, die).
Here should be noted that the density p* that measures the number of cells in a
well must be rescaled in order to obtain the number of cells in the circular section
that will be denoted as p. The scaling factor is determined as the ratio of the
selected area and the area of the well. Areas has been selected with fixed radius

r = 650 px while wells have a radius R = 800 px, thus the conversion factor is

mr? 6502 __
mR2 T 8002

a = 0.66. Therefore the density defined in the experiments must be
rescaled in our analysis, i.e. p = ap*.

There are two sources of errors in this method when defining p. The first one
deals with the experimental protocol, in facts, as explained at the beginning of this
chapter, there is an error when determining the density p*. The second one appears
when cutting the section of the well, i.e. when defining p, because it is possible that
in some cases the fraction of initial cells and thus clusters that fall inside the circular
section is not exactly a. This combination of effects is kept in account averaging
over six wells (when possible, in facts it happens that some wells cannot be analyzed
because of background noise) like those shown in figure 1.1. However in this way
the errors are underestimated because of “systematic” errors on the initial density
that are not measurable.

The fraction of area covered by clusters A, can be used as an indicator of exper-

imental errors. This does not depend on the algorithms used to label the clusters
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Figure 2.3: The graph shows the comparison between experimental data of n.(p)
for the 39 wild type at 8 and 10 days, the 39 ABCG2 - positive and the 39 ABCG2
- negative with their theoretical upper bound n. = p (black curve).

because is determined just by counting the occupied sites in the pixel lattice. There-
fore the functions n.(p) should somewhat reflects the behavior of A.(p).

Figure 2.3 shows the experimental data of n.(p) for four different data sets with
the curve n. = p that represents their upper bound and figure 2.4 shows the com-
pounding experimental results for A.(p). The cells analyzed all belong to the 39 line
(non-metastatic) but differ in kind and time. “Wild type” are commonly defined
as those cells that have not been treated and do not express a particular marker,
they are the cells of the tumor obtained from the patient. “ABCG2 - positive” or
“ABCG2 - negative” denote those populations of cells that respectively result posi-
tive or negative to the marker ABCG2, that is supposed to be a marker for the CSC
subpopulation [31]. We analyzed these three kind of cells after a growth process of
8 days, while for the wild type we varied also the time studying the situation at 10
days.
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Figure 2.4: Here are shown the experimental data of A.(p) for the 39 wild type at
8 and 10 days, the 39 ABCG2 - positive and the 39 ABCG2 - negative.

The graph of A.(p) is helpful in understanding the existence of a systematic
error, in facts it clarifies that the bump of the blue points in figure 2.3 is due to an
experimental error, not to an error of the algorithms. Similar arguments are valid
for the last violet and green point.

To summarize with the Hoshen-Kopelman algorithm the connected black areas
as defined in the first chapter are labeled, but counting the clusters in this way
would result in an overstimation of the number of clusters. This is evident looking
at the wells, because separated connected regions are in some cases part of the
same cluster. This has been solved introducing a clustering algorithm based on a
“coherence length” that decreases the count on the number of clusters previously
obtained, thus resulting in the constraint n. < p experimentally observed in figure
2.3. Figure 2.5 shows the graph of n.(p) for all the analyzed cases considering the
measurements of n, with and without the clustering algorithm in comparison with

the expected theoretical upper bound. The difference is evident for the case of the 39
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Figure 2.5: The graph represents the comparison between the efficiency of the H-K
algorithm alone (blue points) and the one improved with the clustering technique
(red points). The black curve represents the theoretical expected upper bound.

wild type at 8 days where the cells tend not to stay one close to each other as seen in
the left panel of figure 2.1. In this case the clustering algorithm represents a better
improvement of H-K, while for the other cases the difference is not well-marked, but
the clustering algorithm will be crucial when calculating the cluster volumes of the

clusters in the next section.

2.3 Independence of the growth on density

We excluded a possible interaction between clusters and tested the code. Next we
will show that any dependence on the density can be discarded when calculating

the volumes of clusters. Thus a possibility that the clusters are somewhat affected
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during the growth by the constraint of being in a well will be discarded as well.
The volume V,, of the n-th cluster is calculated as the number of the elements of
the cluster matrix L, ; labeled with a definite number n, i.e. given C,, = {L; ;|L; ; =

n} the set of sites of the n-th cluster then V}, is the cardinality of C,,,

A distribution for each well is then obtained for different values of the density p
and for the different kinds of cells. We used here for the distributions a logarithmic
binning, against the common linear binning. This is useful when dealing with few
datas and when small occurrences are extremely common whereas large instances
are extremely rare, in fact this binning method is widely used when dealing with
noisy tails (for example power-law and exponentials) as is the case here. The number
of data for a well is few, indeed it is given by the number of clusters n. and is not
large enough because the density p* must follow the constraint p* < p .. expressed
by equation 2.1, and thus n. < p = ap* < ap},... In a linear binning landscape, few
data points and a corresponding theoretical probability law with rare large instances
would result in a noisy tail making harder any interpretation of experimental data.

By definition logarithmic binning in a given base § means that the bin has a
constant logarithmic (in the base () width, thus the logarithm of the upper edge
of a bin b;; is equal to the logarithm of the lower edge of that bin b; plus the bin
width 0b. That is,

log(bis1) = logg(bi) + 6b <= bip1 = b;3”.
The center of the bin is then plotted on the z-axis, thus
1

The number of observation in a bin y; is normalized by the with of the bin Ab;, =
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bi+1—0b; they fall in when dealing with observables that assumes real values, resulting
in

COAD
Instead, when dealing with integer observables, the number of observation y; is
normalized by the number of integers Ab; = |b;| that fall in the interval Ab; when

dealing with integers, resulting in

CAD,

This distinction is crucial when evaluating short intervals Ab;.
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Figure 2.6: The graphs show the normalized distributions P(V') of the volumes of
the clusters at different densities for the four sets analyzed in log-log scale. The
parameters used are § = 1.3, 0b = 1, by = 1. Here is evident that the distributions
show a good matching.
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The distributions obtained are renormalized in order to compare between the
results obtained for different densities. Figure 2.6 shows the distribution for the four
different kinds of cell studied at different densities. There is here a clear evidence
of matching between the distributions at different densities, that prove the absence
of any possible dependence on density, thus confirming that the cells do not feel the
constraint of being in a well.

This also confirms that merging does not affect measurements. In facts, exper-
iments at low densities p are not affected by merging and match with high density
well, where merging can happen and corrupt the results.

Furthermore the data for a given cell type on volumes of clusters can be summed
to get smoother curves, indeed here should be remarked that the amount of data
for a well is less than p7 .. A distribution is obtained for each cell type considering
the data on all the volumes at different densities (see figures 2.7). From the plots,
it is trivial that clusters at 10 days are bigger than at 8 days for the 39 wild type
cells, meanwhile ABCG2-negative and -positive data overlap showing that sorting

with this marker does not result in a difference in cell volumes at short times.
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Figure 2.7: The graphs show the normalized distributions P(V') of the volumes of
the clusters obtained from all the data at different densities. In the left figure are
compared the wild type distributions at different time steps, while in the right figure
are compared the ABCG2-sorted data.



Chapter 3

Targeting the geometry

We widely discussed in the preceding chapter the independence of clusters, showing
that clusters are randomly distributed in a well and that the distributions of volume
of clusters are not affected by density, thus excluding any possible interaction with
the environment. Now that a cluster do not affect its neighbors, we should ask if
clusters grow randomly thus isotropically, or there exists a preferential direction of

growth thus an anisotropy.

3.1 Paramet