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Introduction

The growth of large structures from smaller units is a very common phenomenon

in many di↵erent areas of science and technology. It has been recognized only rela-

tively recently that many of the large scale structural properties do only depend on

the general features of the growth process [1]. This is much like the properties of

phase transformations that are determined by very general considerations such as

dimension and symmetries. The formation of aggregates is important in many areas

of science and has important applications in areas such as air pollution, water pol-

lution and purification, and in many branches of condensed matter, that is polymer

physics, percolation theory, coating systems and nanostructure fabrication.

Colloids and polymers [2, 3] (see figure 1) are interesting models for aggregation

phenomena. Such systems cover a broad range of particle sizes and interactions.

Forces with di↵erent length scales (electrostatic, van der Waals, adhesion forces)

become relevant for the behavior of individual particles and their collective behavior

depending on particle size and on their local environment (particle concentration,

confining geometry, properties of the continuous matrix). The time scales on which

single particles, groups of particles or the entire sample react to a new situation

cover several orders of magnitude.

Colloidal aggregation and the kinetics of colloidal aggregation has been studied

for many years. However, emphasis has been focused more on the inter-particle

interactions and the kinetics of aggregation processes than on the structure of the

aggregates. One of the reasons for the neglect of aggregate structure was the di�-

culty of characterizing their complex disorderly structures in quantitative terms.
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Introduction 7

Figure 1: Left: The image shows a colloidal monolayer of 180 nm polystyrene par-
ticles on top of a monolayer of 1100 nm colloidal particles. Right: Atomic force
microscopy image of A� fibrils. A� is a 39- to 43-residue peptide that is formed
by proteolytic processing of a 770-residue trans-membrane protein and deposited as
amyloid fibrils in Alzheimer’s disease.

Interest in fractal structures formed by aggregation processes grew rapidly fol-

lowing the fractal analysis of iron particle aggregates by Forrest and Witten [4],

the introduction of the DLA (di↵usion limited particle-cluster aggregation, figure

2 shows DLA structures found in nature) model by Witten and Sander[5] and the

realization that the structures generated by other simple aggregation models and ag-

gregation processes could be described quite well in terms of the concepts of fractal

geometry [6].

These advances took place at a time when the basic concepts of fractal geometry

had recently become widely disseminated. The intense interest in fractal geometry,

at that time, stimulated research on a wide variety of growth and aggregation models,

which continues to this day. Interest in this area has been sustained by a strong

synergy between computer modeling and experimental work [7].

The most important features of simple aggregation models, in which clusters or

aggregates are assembled from a large number of single particles, are the volume

distribution of the aggregating clusters, the nature of the relative trajectories of

the aggregating clusters, the dimensionality of the space in which the aggregation

process takes place and the concentration of particles (the fraction of the space



Introduction 8

occupied by particles). In most simple models, the particles are represented by

spheres (or hyperspheres) in a continuous space or by filled sites on a lattice. In

either case, the distribution of particle sizes is usually neglected.

Figure 2: Left: the image represents a DLA cluster grown from a copper sulfate
solution in an electrodeposition cell. Right: bacterial colonies grown on a plate.

Aggregation phenomena play an important role in Biology. Bacteria colonies

display DLA-like patterns (right panel of figure 2) as those observed in many systems

such as electrodeposition (left panel of figure 2), mineral deposits, and dielectric

breakdown. The cluster structure observed falls into a universality class according

to the growth mechanisms, with its characteristic properties. Just as is known from

the field of critical phenomena, the scaling features of these models are universal,

i.e. they do not depend on microscopic details. As a consequence, physical concepts

developed in Statistical Mechanics clarify the dynamics of biological processes.

This work is focused on clusters of cancer cell that form in vitro and motivated

by the results obtained in the comprehension of aggregation phenomena. Recent

papers have elucidated processes that happen in biological cell systems. Stochastic

models of cell division and di↵erentiation have been successful in the comprehension

of the maintenance of adult murine tail skin [8, 9].

One of the main goals in Biomedicine is to understand the evolution process of

tumors. Since few decades ago, the prevailing theory, pioneered by Robert Weinberg,

suggested that all tumor cells are indistinguishable and tumorigenic, that is, all the

cells are responsible of tumor growth [10].
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In this context, great interest deserved a paper published by John Dick in 1997, in

which it was shown that leukemic cells have a hierarchic structure and are originated

from a primitive hematopoietic cell [11]. This paper opened the way for many later

studies, which suggested that a similar structure existed for solid tumor [12].

Subsequent researches showed the existence of a set of cells, later called cancer

stem cells (CSCs), located at the top of the hierarchic pyramid and endowed with the

same features of stem cells [13]. Indeed, like normal stem cells, they can self-renew

to produce more stem cells and are able to divide (through mitosis) and di↵erentiate

into diverse specialized cell types. The ability to self-renew assure the survival of

the stem population (that is why they are said to be immortal). Moreover, they

can di↵erentiate into diverse progeny with limited proliferative potential or form

non-tumorigenic cancer cells that compose the bulk of cells in a tumor.

Figure 3 shows the di↵erence between a non-hierarchic traditional theory and

a hierarchic CSC model. This figure shows possible cell division processes. In

a hierarchic view a top-level progenitor is able to divide in individuals belonging

to di↵erent kind of populations whereas the subordinate families do not generate

individuals of the top-level population. For example, individuals of a noble family

can generate noble and non-noble o↵spring, while non-nobles can have only non-

noble o↵spring. Instead in a non-hierarchic process the progenitor can generate

o↵spring belonging only to its own family.

Thus, at the basis of the CSC theory is the existence of a minor subpopulation

of cells that possesses the peculiar features of stem cells, whereas the remaining

majority of the cells are more ”di↵erentiated” and do not have these properties.

In this landscape the CSCs are responsible for the growth of the tumor and thus

to treat the disease should be su�cient to target this subpopulation. Indeed, this

theory opened the doors to a new strategy of cancer treatment. In fact the main

weakness of traditional chemiotherapy is that it is not target specific, i.e. kills all the

cells that divide rapidly. This results in a lot of side e↵ects like myelosuppression,

the decreased production of blood cells, and alopecia, that is hair loss. Whereas,
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Figure 3: Di↵erence between a non-hierarchic (left) and a hierarchic (right) model.
Left: one progenitor divides generating two cell that can proliferate, die or be qui-
escent. Right: the individuals belong to di↵erent populations defined by di↵erent
features, A can undergo symmetric (1) or asymmetric (2) division, B can undergo
symmetric division (3) or generate a member of the C population (4) that is not
able to divide.

according to this theory, the key consideration when devising therapeutic treatments

should be the tumorigenic potential of the cells, so the driving trend in drug design

should pose its strategy in targeting those cells only. In addition, cancer chemio-

therapy e�ciency is frequently impaired by tumor resistance, that is the reduction

in e↵ectiveness of a drug in curing a disease. This is strongly dependent on the ex-

position to the treatment and closely linked with the specificity of the drug, that is,

the lower the specificity the greater the duration of exposure and hence the greater

the risk of the development of resistance. A schematic depiction of the di↵erence

between traditional and CSC approach in cancer treatment is shown in figure 4.

The CSC theory was proved to be true in di↵erent kind of tumors: brain [14],

breast [15], colon [16], ovary [17], pancreas [18], prostate [19] and melanoma [20].

The evidence of the existence of CSCs in human tumors is based on the creation

of mice that are su�ciently immunodeficient to tolerate tumor growth of human

tumor cells into them [21]. So one key objection to this model is the lack of an

appropriate microenviroment because of the di↵erence between mice and humans

and of the lack of an intact immune system when evaluating the tumor-initiating
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Figure 4: Di↵erence between CSC specific and conventional cancer therapies

capacity of these human cancer cells. Thus, it is possible that the subpopulation of

cells that appeared non-tumorigenic might actually be tumorigenic in the presence

of the appropriate microenviroment. However, recent studies validated the existence

of CSCs with di↵erent biological techniques [12].

A number of studies have investigated the possibility of distinguishing CSCs from

the bulk of the tumor [21, 22]. This usually deals with the definition of the so-called

biomarkers, that are indicators of a biological state which allows for the detection

and isolation of a particular cell type. A constant problem in Biology is to find the

best marker or the best combination of markers necessary to identify the subset of

cells endowed with a specific quality.

In the last twenty years, physical and mathematical models played a crucial

role in the comprehension of biological mechanisms [23]. Indeed, in the context

of cell division and proliferation the theory of branching processes has been able

to describe a wide range of phenomena. In fact this theory describes situations in

which an entity exists for a time and then may be replaced by one, two, or more

entities of a similar or di↵erent type.

The theory of branching processes is a well-developed and active area of research

with theoretical interests and practical applications. It has made important con-
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tributions to biology and medicine since Francis Galton considered the extinction

of names among the British peerage in the nineteenth century [24]. More recently,

branching processes have been successfully used to illuminate problems in the areas

of molecular biology, cell biology, developmental biology, immunology, evolution,

ecology, medicine, and others [23]. For the experimentalist and clinician, branch-

ing processes have helped in the understanding of observations that seem coun-

terintuitive, to develop new experiments and clinical protocols, and have provided

predictions which have been tested in real life situations. For the physicist, the

challenge of understanding new biological and clinical observations has motivated

the development of new theories in the field of branching processes.

The main goal of this thesis is to determine the kinetics of tumor growth. Starting

from experiments in vitro, I will discuss a technique to analyze the data and study the

behavior of observables in order to determine the evolution of clusters of melanoma

cells. Six papers came out in the last two years showing the evidence of a CSC

subpopulation in melanoma [25, 26, 27, 28, 29, 30, 20], and the research group with

which I am working determined biomarkers to distinguish the CSCs from the bulk

[31, 32]. The aim of this work is to determine the right evolution dynamics of

the tumor within the context of Statistical Mechanics and the theory of branching

processes, that is, to determine a model that fits the experimental data.

In chapter 1, I firstly discuss the nature of cell clusters and the format of the

experimental data. Then I will develop a feasible way to compute the observables

using imaging technique. I will show how everyday biological measurement can be

performed in a systematic way with the use of percolation and clustering methods.

A conversion factor between pixels and cells is computed in order to compare the

results with biological observations and models based on Branching Process Theory.

Chapter 2 will be devoted to a test of the methods used. I will verify that clusters

are randomly sparse and are not mutually interacting, showing that the distributions

of distances between centers of mass of the clusters follow a random-like behavior.

I will test the imaging technique used checking that measures of number of clusters
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fall in the expected ranges. Further, I will show that measurements are not a↵ected

by the experimental setup, that is, a measurement of the volumes of clusters do not

depends on the number of clusters, allowing to discard any possible interaction of

clusters with the environment in which they are constrained.

Chapter 3 concerns a method to determine the isotropy of the clusters. I will

address the question if the clusters follow a random-like growth. The inertia tensor

represents a measure of the shape of a cluster: its eigenvalues define the elongation

of the cluster along the diagonalization axes, while its maximum eigenvector defines

its orientation. With the use of such tensor, I will compare the experimental results

with the Eden model whose dynamics give rise to random-like clusters, showing that

for the cell type used the growth is isotropic.

Having determined that clusters are mutually independent, I will perform a dy-

namical analysis of the cluster growth in the context of Branching Process Theory

where independence between clusters is a basic feature. Therefore in Chapter 4 I will

introduce the basic concepts of this theory, emphasizing the possible implementa-

tions of models that can be designed according to biological observations. Therefore,

I will discuss a model that fits the Traditional Cancer Theory and a model based

on the CSC hypothesis that keeps in account recent results in Biomedicine.

The last chapter deals with the comparison of experimental data with BP models.

I will discuss the case of models inspired to the Traditional Cancer Theory and to

the CSC Theory. The main goal is that experimental data can be understood only

if we suppose the existence of two populations in Melanoma cells, in contrast with

the hypothesis of TC Theory. This result open the way for new researches in the

context of CSC Theory.



Chapter 1

A computational approach to data

analysis

When modeling a biological system, it is of primary interest to understand the basic

mechanism that drives the dynamics. Starting from experimental data in vitro, it

is indeed possible to calculate di↵erent observables using imaging techniques and

algorithms.

In the subsequent sections, I discuss data capture and analysis. The first sec-

tion concerns the format of the data set, while in the following I design a suitable

algorithm in order to access the observables of interest. The striking feature of the

method implemented here is that it is general and can thus be used to study the

behavior of di↵erent kinds of cells that form two-dimensional clusters.

1.1 Data sets

In this section the crystal violet technique to prepare the data sets in vitro is ex-

plained and the nature of the cells anlyzed is discussed.

Samples of Melanoma cells, originating from patients and frozen, are put for a

number of days in culture, that is immersed in growth medium that facilitate the

growth of the cells. Afterwards, the cells are disposed in di↵erent wells and solutions

14
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containing crystal violet and formalin are used to simultaneously fix and stain cells

grown in cell culture to preserve them and make them easily visible, since most cells

are colorless.

The samples consist in sets of six wells, each one covered by violet spots repre-

senting cluster of cells and all prepared in the same condition. Figure 1.1 represents

one of the samples. The main reason why it is necessary to prepare six wells is not

only statistical but also experimental: it could happen that the cells are sometimes

not fixed and the mixture of crystal violet and formalin spread on the well making

di�cult to distinguish the clusters.

Figure 1.1: Here is shown an example of the data: each one of the six wells contains
cells of Melanoma (line 39) in the wild type condition after 8 days growth.

In oncology it is possible to distinguish between di↵erent kinds of Melanoma cells.

In order to understand these di↵erences, it is essential to introduce the concepts of

metastasis and biological marker.

Metastasis is the spread of a disease from one organ or part to another non-

adjacent organ or part. This happens when the cancer cells, that form the primary

tumor, acquire the ability to penetrate and infiltrate surrounding normal tissues in

the local area, forming a new tumor. The newly formed ”daughter” tumor in the

adjacent site within the tissue is called a local metastasis.

Some cancer cells acquire the ability to penetrate the walls of lymphatic and/or

blood vessels, after which they are able to circulate through the bloodstream (cir-
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culating tumor cells) to other sites and tissues in the body. This process is known

(respectively) as lymphatic or hematogeneous spread. After the tumor cells come

to rest at another site, they re-penetrate through the vessel or walls, continue to

multiply, and eventually another clinically detectable tumor is formed. This new

tumor is known as a metastatic (or secondary) tumor. Metastasis is one of three

hallmarks of malignancy (in contrast to benign tumors).

When tumor cells metastasize, the new tumor is called a secondary or metastatic

tumor, and its cells are like those in the original tumor. This means, for example,

that, if breast cancer metastasizes to the lungs, the secondary tumor is made up of

abnormal breast cells, not of abnormal lung cells. The tumor in the lung is then

called metastatic breast cancer, not lung cancer.

In genetics, cancers are distinguished by the so called line, that specifies the

cell type. Melanoma cells belonging to the line 39 are obtained from a patient in a

metastatic phase, while those belonging to the line 37 are obtained from the primary

tumor. In the subsequent chapters the behavior of line 39 cells will be studied.

Another distinction between cancer cells is based on the biological markers. As

said in the introduction, these markers are used to detect a biological state and

thus to isolate a particular cell type. In Biology, it is said that a particular kind of

cells (for example the Melanoma cells) express a certain marker, meaning that it is

possible to detect this particular kind of cells. In this way it is possible to detect

di↵erent populations among all the Melanoma cells.

The Cancer Stem Cell hypothesis opened the way for a lot of studies each sug-

gesting a marker or a set of markers to detect the CSC population. Thus it is

common use to distinguish Melanoma cells that express a certain marker, in facts

a large number of markers has been proposed as good markers for Melanoma CSCs

[21].
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1.2 Data analysis

An e�cient technique to analyze the data sets shown in figure 1.1 has not been

designed yet. In this section, a suitable method to get informations on the clusters

(for example on the shape and on the size) is discussed. This method is based on

imaging techniques and on a percolation algorithm.

1.2.1 Data conversion

With a common scanner it is possible to obtain an image with very good resolution

of the clusters (in the data analysis, it has been used a scanning resolution of 600 x

2400 dpi). Selecting circular section, an image for each of the six wells is obtained.

In this operation, we should be careful in cutting out the shaded and the reflective

areas.

We saved the image in ppm format. The ppm file is an ASCII file and allows for

a simple manipulation of the information contained in a pixel. The ppm file can be

opened with a simple text editor and contains:

• two lines that represent the file format and the filter used to produce the image

• a line containing two numbers that respectively define the number of columns

and lines of the pixel lattice

• a line containing a number that represents the maximum color-component

value that in the standard RGB scale is set to 255

• three ASCII decimal values for each pixel between 0 and the specified maxi-

mum value, starting at the top-left corner of the pixmap, proceeding in normal

English reading order. The three values for each pixel represent red, green,

and blue, respectively; a value of 0 means that color is o↵, and the maximum

value means that color is maxed out (for example (0, 0, 0) corresponds to black

while (255, 255, 255) corresponds to white).
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1.2.2 Image conversion

The first goal to achieve is to convert the image obtained, that is a matrix of colors, in

a boolean matrix where 1 corresponds to an element of a cluster, while 0 correspond

to an empty pixel.

This is a very complicated task because gray and violet, that are the two colors

that should be distinguished, are very ”close” in the pixmap. In principle this is

not a problem because it should be possible to distinguish a first set of colors to be

treated like an element of a cluster and a second set of colors that correspond to

empty pixels. But random noise and shadows must be taken into account, indeed if

these two sets are disjointed in a region of the plate, they could overlap in another

region. So a distinction between clusters and the background should not be based

on the identification of these two sets of colors.

We executed this operation using a combination of imaging techniques. The basic

feature is the edge detect ”Di↵erence of Gaussian” algorithm. It works by performing

two di↵erent Gaussian blurs (a Gaussian blur acts on each pixel of the active layer

or selection, setting its value to the average of all pixel values present in a radius

defined) on the image, with a di↵erent blurring radius for each, and subtracting

them to yield the result. This algorithm is very widely used in artificial vision and

is pretty fast because there are very e�cient methods for doing Gaussian blurs.

The most important parameters are the blurring radii for the two Gaussian blurs.

Increasing the smaller radius tends to give thicker-appearing edges, and decreasing

the larger radius tends to increase the threshold for recognizing something as an

edge. The details of this method are reported in Appendix 1 and the e�ciency of

this method can be appreciated in figure 1.2.

In this way, black clusters over a white background are obtained. Here should

be noted that some clusters can be connected to the edges of the selected area. This

means that these clusters are cut and can a↵ect the measurement of observables,

like for example centers of mass or volumes of the clusters. This is avoided simply
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erasing these clusters.

Figure 1.2: The images show the original section of the well (left) and its black and
white conversion (right).

1.2.3 Cluster labeling

The pixmap obtained in this way contains black (0, 0, 0) and white (255, 255, 255)

elements and can be simply converted in a boolean matrix B where 1 correspond to

an occupied black site and 0 to an empty white site, thus

B = [�
i,j

] where �
i,j

2 {0, 1}. (1.1)

The interesting quantity that can be calculated at this point is the area covered by

the clusters with a simple count of 1 and 0 in the boolean matrix, but for example

the number of clusters and thier volumes cannot be calculated.

In order to distinguish between clusters it is necessary to assign labels. What

we would like to have is an algorithm which gives all sites within the same cluster

the same label and gives di↵erent labels to sites belonging to di↵erent clusters. The

Hoshen Kopelman algorithm [33], widely used in percolation theory, allows a fast

labeling of the clusters. The time complexity of this algorithm is linear and requires

small computer memory size. In fact with this algorithm, it is possible to simply

handle the corresponding matrices 1300⇥ 1300 of the wells.
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The general idea of the Hoshen Kopelman algorithm is that we scan through

the grid, from left to right and from top to bottom, looking for occupied sites and

to the left and the top neighbors. To each occupied site we wish to assign a label

corresponding to the cluster to which the site belongs. If the site has zero occupied

neighbors, then we assign to it a cluster label we have not yet used (it is a new cluster,

1.3 top-left). If the site has one occupied neighbor, then we assign to the current

site the same label as the occupied neighbor (they are part of the same cluster, 1.3

top-right and bottom-left). If the site has more than one occupied neighboring site,

then we choose the lowest-numbered cluster label of the occupied neighbors to use

as the label for the current site (1.3 bottom-right).

0 0 1 1
0 1 0 0

1 0 0 1
1 0 1 1

1)
�!

0 0 1 1
0 2 0 0

3 0 0 4
3 0 5 4

2)
�!

0 0 1 1
0 2 0 0

3 0 0 4
3 0 4 4

Figure 1.3: 1) A graphical sketch of the possible situation during cluster labeling.
Considering the underlined numbers: Top-left: definition of a new cluster labeled
with 2, top-right: the site belongs to the cluster already labeled with 1, bottom-
left: the site belongs to the cluster already labeled with 3, bottom-right: the two
neigbours are labeled with di↵erent numbers, thus the minor number (4) is assigned
to the site. After this first step, N(M) = M for M 6= 5 and N(5) = 4. 2) This
second step represents the relabeling of the clusters using the information contained
in N .

Furthermore, if these neighboring sites have di↵ering labels, we must make a

note that these di↵erent labels correspond to the same cluster. Thus we introduce

an additional array, the labels of labels, and denote it as N . A good label for a site

�
i,j

, say M , is characterized by N(M) = M whereas a bad label has N(M) = M 0,

with M 0 the label to which that bad label turned out to be connected. Scanning the

grid for the first time, all the connections are stored in the array N , that is when

neighboring sites have di↵erent labels M
max

and M
min

then N(M
max

) = M
min

and

N(M
min

) = M
min

. Once finished, the good label for each cluster is found by the
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following classification: given M the label of that site, then if N(M) = M the label

is good and we go to the next site, otherwise N(M) = M 0 and we must check if M 0

is a good label, if not N(M 0) = M 00 and we proceed until we find that N(M⇤) = M⇤

thus we set N(M) = M⇤.

In this way, scanning the lattice once, an equivalence relation between two labels

M1 and M2 is defined by

M1 ⇠ M2 if N(M1) = M2 (1.2)

and we can define as well the equivalence class of M ,

[M ] = {M
i

2 ⇤0|M
i

⇠ M} (1.3)

given ⇤0 = {M
i

} the set of labels M
i

. Therefore going through the lattice for a

second time all the bad labels for the sites �
i,j

are replaced by the good ones using

the array N . In this step the labels in ⇤0, that do not follow a numerical order, are

reordered, i.e. for an occupied site with original label M the good label at the root

of the label tree is searched then replaced by an integer n for the n-th cluster found

in the lattice (in english reading order) and stored in an array of new labels ⇤,

⇤ = {n, n 2 {1, 2, ..., n
c

}|N
�

(�
i,j

) = n} (1.4)

where n
c

is the total number of clusters and N
�

is the cluster respective label for

the site. In this way the boolean matrix B that represents a well is converted in the

cluster label matrix L where each occupied site is replaced by a number that labels

the equivalence class to which it belongs, thus

B = [�
i,j

] where �
i,j

2 {0, 1} H-K�! L = [L
i,j

] =

8
<

:
0 if �

i,j

= 0

N
�

(�
i,j

) if �
i,j

= 1
. (1.5)
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In this way, the number of clusters is immediately obtained and the labels as-

signed to the sites allows a simple calculation for example of the volumes of the

clusters based on the count of matrix elements equal to the representative number

of its equivalence class. The right panel of figure 1.4 shows the colored version of

the well, obtained assigning a random color to each label of the clusters.

Figure 1.4: Here is shown the black and white image (left) and its coloured version
(right). The colour of the clusters is determined choosing three random number be-
tween 0 and 255 and assigning them to the representative number of the equivalence
class of a cluster, then printed on a file in ppm format.

1.2.4 Defining clusters of cells

With the Hoshen Kopelman algorithm, clusters can be separated labeling them with

di↵erent numbers. However we have to underline that in this landscape we are using

the definition of a cluster as a region of connected occupied sites (or black pixels),

that is two occupied sites are said to be connected if there exists a path of occupied

sites that connect them. The question that we address in this section is if a cluster

of cells can be identified with the H-K definition of the cluster.

Consider the experimental protocol of preparing the sample: a certain number

of cells is put and randomly scattered in the well and left in a growth medium for

8/10 days, then fixed with the crystal violet technique. In this way, a cluster is the
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product of a series of divisions generated by one cell. Sometimes it happens that,

after fixing, some cells are slightly separated from the cluster of which they are

part of and the H-K algorithm counts them as di↵erent. Thus the H-K algorithm

needs improvements in order to justify the identification of a biological cluster as a

computed cluster.

What we need to do is to define a new equivalence relation between clusters that

says that a ”little cluster quite close to a big cluster” represents the same cluster.

Following this line, we designed an algorithm able to perform this task. The

basic idea is that there exists a set � of big clusters surely generated by one cell and

a set � of smaller clusters that could be generated by one cell but also be part of

an existing cluster. Thus at this point a first parameter must be defined, that is the

threshold size S⇤ that determine the set to which the cluster belongs. Thus, given

C
k

= {L
i,j

|L
i,j

= k} (1.6)

the set of sites of the k-th cluster,

C
k

2 � if |C
k

| � S⇤ (1.7)

C
k

2 � if |C
k

| < S⇤ (1.8)

Then scanning the lattice we look for a cluster in the neighbor of a certain radius

r, that is identified as a coherence length, of the sites belonging to the � clusters

and we put them in the same equivalence class, i.e.

C
a

⇠ C
b

if 9a 2 C
a

, b 2 C
b

| d(a, b) < r (1.9)

where almost one between C
a

and C
b

belongs to the set �. This clearly avoids the

presence of an equivalence relation between two clusters in � that are biologically

generated by two distinct initial cells. The method used to label the clusters is

completely analogous to the one described in the preceding section. This algorithm
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Figure 1.5: The figures show blowups of the colored images obtained with the Hoshen
Kopelman algorithm (left) and the respective result of the second algorithm (right).

has been tested using di↵erent parameters and has brought good results for S⇤ =

100 px and r = 8 px. Figure 1.5 shows the e↵ect of the algorithm on a well using

these parameters.

1.3 Pixel conversion

In the preceding section I conducted the analysis using the pixel as unit of measure-

ment. However in this case the natural unit of measurement is the cell, in order

to reproduce the real composition of the clusters and to compare the experimental

data with a growth model inspired to the theory of branching processes.

Thus it is necessary to determine a conversion factor between cells and pixels,

that is defined by the ratio p of cells and pixels that constitute the clusters. We

calculated the number of pixels counting the occupied sites of the lattice while

we counted the corresponding number of cells using a microscope endowed with

the resolution of a µm. Figure 1.6 shows a microscope image of a cluster and

its respective counterpart in pixels. The computation is achieved using four small

clusters from which we calculated the average of p, whereas large clusters contain

a huge number of cells that is not easy to determine to the naked eye using the
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microscope. The conversion factor is

p = 0.137± 0.046 cells/px

or equivalently a cell corresponds to 7/8 px.

Figure 1.6: The left figure represents a photo of a cluster, the scale reported has a
resolution of a µm. The right figure is the same image obtained with the scanner in
pixel units.

Here it should be noted that the cluster label matrix L
i,j

contains spatial in-

formations on the clusters, that get lost when converting observables in cell units.

In fact, when dealing with geometrical properties of clusters, calculations will be

carried out starting from L
i,j

. Meanwhile when targeting dynamical properties in

branching process context and in Biology field the cell represents the natural choice

for the measurement unit.



Chapter 2

Calibration

In the preceding chapter we discussed a systematic way to convert the image of

the wells and label clusters. Here the algorithm is implemented to discuss data

on melanoma cells obtained from tumor in a non-methastatic stage (line 39). The

interest of the subsequent discussion is not only biological, in facts this represents

a way to test the algorithm. The emphasis is put here on the behavior of some

observables that are useful to check the validity of the method implemented and are

of ordinary interest in biological researches.

There are mainly two parameters that can be changed in this kind of experiments:

time and density. In Biology the time scales of cell division dynamics are of the order

of days. In fact the mean time in which a cell divide is usually between one and

two days, but clearly depends on which kind of cell you are dealing with. The

range in which time t can be varied for Melanoma cells is very narrow, because

of a combination of experimental reasons. In facts according to the experimental

protocol of crystal violet technique, 8 days must be waited to see enough big clusters,

while 12 days are too much because clusters become so big that merge and clusters

generated by di↵erent cells cannot be distinguished. Thus,

t 2 [8 days, 10 days].

26
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The second parameter is density ⇢⇤, that is the initial condition on the number

of cells in a well. Also in this case there is a fundamental constraint, in fact a certain

number of cells must not be exceeded in order to avoid a merging of the clusters

after few days. There is clearly an inverse relation between time and the constraint

on density, that is more is the time less must be the threshold number of initial cells.

In our particular case the threshold value of initial concentration ⇢⇤
max

can be set to

⇢⇤
max

(t) =

8
<

:
250 cells/well if t = 8 days

150 cells/well if t = 10 days
. (2.1)

This can be easily seen looking at the figure 2.1, where the wells in the two border

situation mentioned above are shown. The problem of merging will be discussed

further in the third section.

Figure 2.1: The left figure represents a sample of cells 39 wild type at 8 days with
a density ⇢⇤ = 250 cells/well and the right figure is a sample of the same kind of
cells at 10 days with ⇢⇤ = 150 cells/well. In these two wells situations of merging of
clusters are seen.

Before going on discussing the results, some points that concern the experimental

conditions and the “quality” of the data sets must be still considered. In facts when

preparing the wells, a solution with cells is spread on the plate using a pipette and
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in this process there are many errors that cannot be kept into account. Errors

happen when preparing the exact concentration of cells in the solution and when

dosing the right number of cells with the pipette. In the first step the number of

cells thus statistical errors cannot be measured, while in the second step errors can

be in principle estimated with a statistical approach (that we will adopt). However

this procedure is strictly dependent on the precision of the operator that should be

sure to exert an appropriate pressure on the stu↵ of the pipette when preparing

each well. This problem is not trivial at all, because the operation is a↵ected by the

e↵ort of the experimentalist and can give rise to a systematic error.

2.1 Sparseness of clusters

According to the experimental protocol, cells are supposed to be spread randomly

on the well using the pipette. But nothing prevent the cluster to interact, in fact an

attractive or repulsive force between them can exists and can a↵ect the geometrical

and dynamical aspects of the growth. This must be clearly verified and we are able

to do this using the algorithm described in the preceding chapter.

The basic idea is that the average position of the initial cell that give rise to a

cluster is located at the center of the cluster. Their center is defined as the center of

mass of the cluster using the classical definition, that is, given (j, i) the coordinates

of the occupied site in the cluster label matrix L
i,j

that is part of the k-th cluster,

and C
k

the set of sites of the k-th cluster, the coordinates of the center of mass are

x
k,CM

=
1

|C
k

|
X

Li,j2Ck

j, y
k,CM

=
1

|C
k

|
X

Li,j2Ck

i (2.2)

where |C
k

| is the number of sites that compose the k-th cluster. Note that the

centers of mass of the clusters can be computed using experimental data because

the algorithm allows a labeling of di↵erent clusters.

We computed in this way the average positions of the cells in the initial condi-
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tion. In order to determine the presence of a possible interaction between clusters,

the experimental data on the position of the initial cells must be compared with

a random situation. This is achieved comparing the respective distribution of (eu-

clidean) distances between the centers of mass of the clusters with the distribution

p
r

(x) = p
r

(x
i,j

= x) of (euclidean) distances x
i,j

= ||xi�xj|| between random points

in a circle of radius r. The calculation of p
r

(x) is carried out in appendix B and

gives

p
r

(x) =
2x

r

 
2

⇡
arccos

⇣ x

2r

⌘
� x

⇡r

r
1� x2

4r2

!
. (2.3)
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Figure 2.2: Here is shown the comparison between the experimental distribution
(in red), the simulated one (in blue) and the analytical curve (in black) p

r

(x) for a
sample of non-metastatic (line 39) ABCG2-negative cells.

We thus verified the sparseness of the clusters studying a sample for each kind

of cell. Figure 2.2 shows the experimental distribution of p
r

(x) and the simulated

distribution compared with the analytical expression of equation 2.3 for a sample
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of non-metastatic ABCG2-negative cells. The simulated distribution is obtained

trowing random points in a circular well, that is trowing two random numbers

between 0 and the maximum number of rows R or columns C of the matrix that

represents the pixel lattice (the matrix is squared, thus R = C), and accepting them

when they fall in the circular well, that is when
�
x� R

2

�2
+
�
y � R

2

�2
< R

2

4
given

(x, y) the coordinate of the random point in the grid in a reference frame where the

origin is the bottom-left pixel. The good agreement of the data with the simulated

and the analytical curves shows that the clusters are randomly distributed in the

well.

2.2 Testing the code

In the preceding section we tested the sparseness of the cells in the initial condition

showing that the distribution of distances between the centers of mass of the cluster

p
r

(x) follows the behavior of random points in a circular section. Thus any corre-

lation in the initial conditions and any e↵ect due to a possible interaction between

di↵erent clusters must be discarded.

We test now the validity of the algorithms used to label clusters, thus mea-

surements of observables of the well will be now discussed. The image conversion

technique is not at issue because the steps described in appendix A are kept un-

der control using a graphical interface, thus if any error occur this can be detected

and solved, or if background noise is too strong that cannot be removed the well is

discarded.

A direct and e�cient test of the method is based on the measurement of the

number of clusters n
c

in the wells that is determined by the largest number that

labels the clusters. In facts, as said at the beginning of the chapter, between the

two parameters that can be set it is density ⇢⇤, that is the starting number of cells

displaced in a well (it is a pure number and has not the dimension of a physical

density, it is a numerical density in a well not in a volume). Therefore a confirm of
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the method used consists in checking the agreement between the number of clusters

and the density. If n are the numbers that label the sites and defines the cluster to

which they belong, the number of clusters is calculated as

n
c

= max
n2⇤

n (2.4)

Note that this is possible because in the algorithms the labels of the clusters are in

a numerical order. If cells do not die, we should expect that n
c

= ⇢⇤, however some

cells could die thus we expect that n
c

. ⇢⇤ (The reason of the relation between n
c

and ⇢ is that it is experimentally observed that few cells, not the majority, die).

Here should be noted that the density ⇢⇤ that measures the number of cells in a

well must be rescaled in order to obtain the number of cells in the circular section

that will be denoted as ⇢. The scaling factor is determined as the ratio of the

selected area and the area of the well. Areas has been selected with fixed radius

r = 650 px while wells have a radius R = 800 px, thus the conversion factor is

↵ = ⇡r

2

⇡R

2 = 6502

8002
= 0.66. Therefore the density defined in the experiments must be

rescaled in our analysis, i.e. ⇢ = ↵⇢⇤.

There are two sources of errors in this method when defining ⇢. The first one

deals with the experimental protocol, in facts, as explained at the beginning of this

chapter, there is an error when determining the density ⇢⇤. The second one appears

when cutting the section of the well, i.e. when defining ⇢, because it is possible that

in some cases the fraction of initial cells and thus clusters that fall inside the circular

section is not exactly ↵. This combination of e↵ects is kept in account averaging

over six wells (when possible, in facts it happens that some wells cannot be analyzed

because of background noise) like those shown in figure 1.1. However in this way

the errors are underestimated because of “systematic” errors on the initial density

that are not measurable.

The fraction of area covered by clusters A
c

can be used as an indicator of exper-

imental errors. This does not depend on the algorithms used to label the clusters
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Figure 2.3: The graph shows the comparison between experimental data of n
c

(⇢)
for the 39 wild type at 8 and 10 days, the 39 ABCG2 - positive and the 39 ABCG2
- negative with their theoretical upper bound n

c

= ⇢ (black curve).

because is determined just by counting the occupied sites in the pixel lattice. There-

fore the functions n
c

(⇢) should somewhat reflects the behavior of A
c

(⇢).

Figure 2.3 shows the experimental data of n
c

(⇢) for four di↵erent data sets with

the curve n
c

= ⇢ that represents their upper bound and figure 2.4 shows the com-

pounding experimental results for A
c

(⇢). The cells analyzed all belong to the 39 line

(non-metastatic) but di↵er in kind and time. “Wild type” are commonly defined

as those cells that have not been treated and do not express a particular marker,

they are the cells of the tumor obtained from the patient. “ABCG2 - positive” or

“ABCG2 - negative” denote those populations of cells that respectively result posi-

tive or negative to the marker ABCG2, that is supposed to be a marker for the CSC

subpopulation [31]. We analyzed these three kind of cells after a growth process of

8 days, while for the wild type we varied also the time studying the situation at 10

days.
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Figure 2.4: Here are shown the experimental data of A
c

(⇢) for the 39 wild type at
8 and 10 days, the 39 ABCG2 - positive and the 39 ABCG2 - negative.

The graph of A
c

(⇢) is helpful in understanding the existence of a systematic

error, in facts it clarifies that the bump of the blue points in figure 2.3 is due to an

experimental error, not to an error of the algorithms. Similar arguments are valid

for the last violet and green point.

To summarize with the Hoshen-Kopelman algorithm the connected black areas

as defined in the first chapter are labeled, but counting the clusters in this way

would result in an overstimation of the number of clusters. This is evident looking

at the wells, because separated connected regions are in some cases part of the

same cluster. This has been solved introducing a clustering algorithm based on a

“coherence length” that decreases the count on the number of clusters previously

obtained, thus resulting in the constraint n
c

. ⇢ experimentally observed in figure

2.3. Figure 2.5 shows the graph of n
c

(⇢) for all the analyzed cases considering the

measurements of n
c

with and without the clustering algorithm in comparison with

the expected theoretical upper bound. The di↵erence is evident for the case of the 39
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Figure 2.5: The graph represents the comparison between the e�ciency of the H-K
algorithm alone (blue points) and the one improved with the clustering technique
(red points). The black curve represents the theoretical expected upper bound.

wild type at 8 days where the cells tend not to stay one close to each other as seen in

the left panel of figure 2.1. In this case the clustering algorithm represents a better

improvement of H-K, while for the other cases the di↵erence is not well-marked, but

the clustering algorithm will be crucial when calculating the cluster volumes of the

clusters in the next section.

2.3 Independence of the growth on density

We excluded a possible interaction between clusters and tested the code. Next we

will show that any dependence on the density can be discarded when calculating

the volumes of clusters. Thus a possibility that the clusters are somewhat a↵ected
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during the growth by the constraint of being in a well will be discarded as well.

The volume V
n

of the n-th cluster is calculated as the number of the elements of

the cluster matrix L
i,j

labeled with a definite number n, i.e. given C
n

= {L
i,j

|L
i,j

=

n} the set of sites of the n-th cluster then V
n

is the cardinality of C
n

,

V
n

= |C
n

|. (2.5)

A distribution for each well is then obtained for di↵erent values of the density ⇢

and for the di↵erent kinds of cells. We used here for the distributions a logarithmic

binning, against the common linear binning. This is useful when dealing with few

datas and when small occurrences are extremely common whereas large instances

are extremely rare, in fact this binning method is widely used when dealing with

noisy tails (for example power-law and exponentials) as is the case here. The number

of data for a well is few, indeed it is given by the number of clusters n
c

and is not

large enough because the density ⇢⇤ must follow the constraint ⇢⇤ < ⇢⇤
max

expressed

by equation 2.1, and thus n
c

. ⇢ = ↵⇢⇤ < ↵⇢⇤
max

. In a linear binning landscape, few

data points and a corresponding theoretical probability law with rare large instances

would result in a noisy tail making harder any interpretation of experimental data.

By definition logarithmic binning in a given base � means that the bin has a

constant logarithmic (in the base �) width, thus the logarithm of the upper edge

of a bin b
i+1 is equal to the logarithm of the lower edge of that bin b

i

plus the bin

width �b. That is,

log
�

(b
i+1) = log

�

(b
i

) + �b () b
i+1 = b

i

��b.

The center of the bin is then plotted on the x-axis, thus

x
i

=
1

2
(b

i

+ b
i+1) (2.6)

The number of observation in a bin y
i

is normalized by the with of the bin �b
i

=
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b
i+1�b

i

they fall in when dealing with observables that assumes real values, resulting

in

y0
i

=
y
i

�b
i

.

Instead, when dealing with integer observables, the number of observation y
i

is

normalized by the number of integers �b̂
i

= bb
i

c that fall in the interval �b
i

when

dealing with integers, resulting in

y0
i

=
y
i

�b̂
i

.

This distinction is crucial when evaluating short intervals �b
i

.
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Figure 2.6: The graphs show the normalized distributions P (V ) of the volumes of
the clusters at di↵erent densities for the four sets analyzed in log-log scale. The
parameters used are � = 1.3, �b = 1, b0 = 1. Here is evident that the distributions
show a good matching.
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The distributions obtained are renormalized in order to compare between the

results obtained for di↵erent densities. Figure 2.6 shows the distribution for the four

di↵erent kinds of cell studied at di↵erent densities. There is here a clear evidence

of matching between the distributions at di↵erent densities, that prove the absence

of any possible dependence on density, thus confirming that the cells do not feel the

constraint of being in a well.

This also confirms that merging does not a↵ect measurements. In facts, exper-

iments at low densities ⇢ are not a↵ected by merging and match with high density

well, where merging can happen and corrupt the results.

Furthermore the data for a given cell type on volumes of clusters can be summed

to get smoother curves, indeed here should be remarked that the amount of data

for a well is less than ⇢⇤
max

. A distribution is obtained for each cell type considering

the data on all the volumes at di↵erent densities (see figures 2.7). From the plots,

it is trivial that clusters at 10 days are bigger than at 8 days for the 39 wild type

cells, meanwhile ABCG2-negative and -positive data overlap showing that sorting

with this marker does not result in a di↵erence in cell volumes at short times.
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Figure 2.7: The graphs show the normalized distributions P (V ) of the volumes of
the clusters obtained from all the data at di↵erent densities. In the left figure are
compared the wild type distributions at di↵erent time steps, while in the right figure
are compared the ABCG2-sorted data.



Chapter 3

Targeting the geometry

We widely discussed in the preceding chapter the independence of clusters, showing

that clusters are randomly distributed in a well and that the distributions of volume

of clusters are not a↵ected by density, thus excluding any possible interaction with

the environment. Now that a cluster do not a↵ect its neighbors, we should ask if

clusters grow randomly thus isotropically, or there exists a preferential direction of

growth thus an anisotropy.

3.1 Parametrizing the anisotropy

An observable able to parametrize the degree of anisotropy is here discussed. A

natural measure of the geometry of a cluster is described by the inertia tensor Iµ,⌫

and for a system of particles with masses m
i

and positions r
i

is defined by

Iµ,⌫ =
X

m
i

(|r
i

|2�µ,⌫ � rµ
i

r⌫
i

) (3.1)

where i labels the particle and µ, ⌫ are the coordinate indexes. Here should be noted

that Iµ,⌫ depends on the location of the origin of the axes set and on the orientation

of the axes with respect to the system of particles considered.

The natural moment of inertia of a system is about the axes passing through the

38
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centre of mass r
CM

because they minimize the moment of inertia with respect to

the position of the axes,

@

@x�

Iµ,⌫ =
@

@x�

X
m

i

(|r
i

� r
CM

|2�µ,⌫ � (rµ
i

� rµ
CM

)(r⌫
i

� r⌫
CM

)) = 0. (3.2)

This match with the well-known Huygens-Steiner theorem that states that

Iµ,⌫ = Iµ,⌫
CM

+
X

m
i

(|r0
i

|2�µ,⌫ � r0µ
i

r0⌫
i

) (3.3)

where r0
i

= r
i

� r
CM

represent the positions with respect to centers of mass, thus

implying that

Iµ,⌫ � Iµ,⌫
CM

(3.4)

Therefore when all principal moments of inertia are distinct, the principal axes

through center of mass are uniquely specified. If all the principal moments are the

same, the system is spherically symmetric and any axis can be considered a principal

axis, meaning that the moment of inertia is the same about any axis.

By the spectral theorem, since the moment of inertia tensor is real and symmet-

ric, there exists a Cartesian coordinate system in which it is diagonal, having the

form

Iµ,⌫ = �µ�µ,⌫ (3.5)

where the coordinate axes are called the principal axes and the constants �µ are

called the principal moments of inertia. The principal axis with the highest moment

of inertia �
max

= max
µ

�µ is sometimes called the figure axis.

The cluster is a 2-dimensional object and the inertia tensor for the k-th cluster

I
k

is calculated starting from the coordinates (j, i) of the cluster label matrix L
i,j

as

I
k

=

2

6664

X

Li,j=k

(j � x
k,CM

)2 �
X

Li,j=k

(j � x
k,CM

)(i� y
k,CM

)

�
X

Li,j=k

(j � x
k,CM

)(i� y
k,CM

)
X

Li,j=k

(i� y
k,CM

)2

3

7775
(3.6)
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where (x
k,CM

; y
k,CM

) are the coordinate of the center of mass of the k-th cluster

defined in equation 2.2. The principal moments of inertia �
k,M

and �
k,m

(where M

denote the maximum and m denote the minimum) and the corresponding principal

axes for the k-th cluster v
k,M

and v
k,m

are found by diagonalizing the moment of

inertia I
k

.

For a symmetric matrix of the form

I =

2

4
a b

b c

3

5 , (3.7)

the eigenvalues are given by

�
M,m

=
1

2

⇣
a+ c±

p
(a� c)2 + 4b2

⌘
(3.8)

and are associated with the eigenvectors

v
M,m

=

0

@ 1
�M,m�a

b

1

A . (3.9)

The anisotropy of the clusters is then parametrized by the ratio of the maximum

and the minimum eigenvalue

E
k

=
�
k,M

�
k,m

, (3.10)

that is the “eccentricity” of the cluster, thus E
k

� 1 and E
k

= 1 when the cluster is

spherically symmetric.

The anisotropy is not only defined by E
k

because this parameter does not keep

into account the orientation of the clusters with respect to the well. This is in

fact determined by the eigenvectors v
k,M

that define the orientation of the figure

axis with respect to a fixed reference frame. A second parameter is then given by

the angle ✓ that v
M

form with the reference frame, as shown in figure 3.1. From

the non-normalized expression of the eigenvectors 3.9, v
M,y

immediately gives tan ✓
k
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Figure 3.1: Here is a schematic depiction of v
M

and ✓ for a given cluster with
respect to a fixed reference frame. The position of the center of mass of the cluster
is r

CM

= (x
CM

, y
CM

).

thus implying that

✓
k

= arctan

✓
�
k,M

� a

b

◆
(3.11)

3.2 Random clusters

In the preceding section we identified two parameter (E and ✓) in order to define

the geometry of a cluster. The main goal is now to detect if the dynamic follows a

random behavior or if there exists a preferential direction of growth.

At this point, a definition of random cluster growth is needed. Most of the

progress that has been made in the study of aggregation phenomena in the last

few years has derived from numerical simulations carried out on models of growth

mechanisms. Dynamical features enter here due to the irreversible nature of these

systems; time has a direction. A simple model of cellular growth was proposed along

these lines by Eden in 1961 to account for the tumor proliferation [34, 35].

The process begins with a nucleation site on a square lattice, then one of the

empty sites next to the aggregate, that is defined by the perimeter sites, is chosen
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randomly and added to the cluster. In this landscape, one of the sites next to

the aggregate is occupied by a particle with probability p
L

= L�1 where L is the

perimeter of the cluster. In this way a perimeter site connected to the cluster through

more than a occupied nearest neighbor has more chance to be occupied. A large

cluster is obtained after having repeated this procedure many times.

Figure 3.2: The image represents a cluster obtained with the eden model after 4000
time steps.

The Eden model has a random spherical symmetric dynamics, since there are no

constraints on the direction of duplication of a site (that represents a cell). When

a Eden cluster is examined (see Figure 3.2), it is found to be compact except for a

few holes close to the surface, but its surface is found to be rather tortuous. Indeed,

this model has been widely investigated in the fractal geometry field, in order to

determine the behavior of his fractal surface.

The Eden model is here considered to mimic the geometry of random clusters.

However a parameter must be set, the volume of the cluster V . Here should be

remarked that in this model the anisotropy E is now a function of the volume, i.e.

E = E(V ). Indeed as the volume of the cluster increase, the surface of the cluster

get smoother and the volume get more isotropic.

A further observation concerns the orientation angle ✓ for random clusters ob-

tained with this model. In facts simulated clusters do not have a precise orientation

one respect to each other or with respect to a fixed reference frame because they
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are completely independent. If no interaction between clusters is set, no orienta-

tion is predicted. There is no reason to expect something di↵erent from a uniform

distribution.

3.3 Results

We gave a definition of random cluster according to the Eden model. The goal is

now to compare experimental results with the ones obtained from random clusters.

As said in the first section of this chapter, given a cluster on a square lattice the

inertia tensor I
k

is calculated for each cluster (labeled by k) as defined by equation

3.6 and values of eccentricity E
k

and the orientation angle ✓
k

are calculated as well

(Equations 3.10 and 3.11). Thus the distribution P (E) for the eccentricity E and

P (✓) for the orientation angle ✓ is obtained from experimental data.

The analysis in this chapter is restricted to the 39 wild type data that represent

the main target of all this work. In fact we are interested in understanding the main

feature of the tumors as found in nature, not treated with any marker. We analyzed

data concerning the ABCG2-negative or -positive cells in the preceding chapters in

order to test the confidence of the algorithm, in facts the morphology of these cells

is di↵erent from the wild type ones.

Here a method to determine the distribution P (E) for the simulated clusters

is discussed. In fact it is not possible to obtain a form for this distribution only

from the simulation because of the dependence of the eccentricities on the volumes,

i.e. E = E(V ). At this point, we can have information only on the conditional

probability P (E|V ) of the eccentricity E given the volume V . Therefore the basic

idea is to calculate P (E) using the law of total probability,

P (E) =
X

V

P (E|V )P (V ). (3.12)

Note that the volumes V assume integer values, because they are measured in cell
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units, thus we have a sum not an integral.

To perform exactly this calculation it is necessary to have an analytical form of

P (E|V ) and P (V ), because the sum runs over all the volumes V . Obtaining a sim-

ulated distribution P (E|V ) for each volume V is not possible. However calculating

it till a maximum value for the volume V
max

in this case makes sense because both

P (E|V ) and P (V ) vanish for high value of V (see figures 3.3 and 3.5). In this way

a precision is set. A rude estimate of the level of precision is given by the fitted

distribution given by equations 3.17 and 3.19, that will be discussed further in the

subsequent analysis. In facts, the ratio

k
E,V

=
P (E = 1|V )

P (E = 1|V = 1)
= V �e��(V ��1) (3.13)

that is a measurement of precision for P (E|V ) is less than 10�3 if V & 1.5 · 104 cells

and the ratio

k
V

=
P (V )

P (V = 1)
= e�

V �1
V ⇤ (3.14)

that measures the precision for P (V ) is less than 10�3 if V & 750 cells for 10 days

data. Thus we should be able to simulate Eden dynamics till a volume V
max

=

1.5 · 104 to obtain a correct shape for the distribution P (E). This takes very long

times, therefore a combined fit is achieved for P (E|V ).

A similar statement concern the distribution of volumes, in facts in order to have

a value of P (V ) for each volume V we should have a huge amount of data on volumes

of clusters, that would imply the analysis of hundreds of 6-well sets. Therefore also

for P (V ) a fit is achieved.

From the simulation, the number of occurrences N(E|V ) is obtained then renor-

malized according to

P (E|V ) =
N(E|V )X

E

N(E|V )
(3.15)

in order to obtain the distributions P (E|V ) at fixed values of V shown in figure 3.3.
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The error bars are determined running di↵erent simulations, thus calculating the

errors as a standard deviation for each measurement of P (E|V ) at a given value of

E (and for a fixed volume V ).

An analytical formula for P (E|V ) is obtained using a combined fit. This is

achieved using pyFitting (available on the site https://github.com/gdurin/pyFitting),

a python-based program that perform data fitting using non-linear square minimiza-

tion, that is minimizing the cost function

H({⇡
i

}) =
X

i

 
ytheory
i

� ydata
i

({⇡
i

})
�
i

!2

(3.16)

where {⇡
i

} are the parameters, y
i

the function value, and �
i

the error on the data

points. The reason of this choice is that it fits a number of curves simultaneously

with parametric functions, thus we can fit with this program P (E|V ) using di↵erent

values for V .

The curves obtained are fitted with the law

P (E|V ) = ↵V �e��EV

�
(3.17)

where the parameters are determined with the fit,

↵ = 0.0251± 4 · 10�4

� = 1.351± 4 · 10�3

� = 0.1390± 8 · 10�4

� = 0.517± 1 · 10�3

Figure 3.3 shows the plots of the conditional probability P (E|V ) as a function of

E for di↵erent values of V with their relative fit. Figure 3.4 shows that all the data
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for di↵erent V collapse on a single master curve if we make a change of variables

8
<

:
y = P (E|V )

V

�

x = E · V �

(3.18)
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S = 120 cells
S = 200 cells

Figure 3.3: The plot shows the curves P (E|V ) (labeled by symbols) and the respec-
tive fit obtained with pyFitting (denoted with straight lines). Log-linear scale is set
to emphasize the inverse exponential behavior of the curves.

Given the conditional probability P (E|V ), further discussions are needed for the

distributions of cluster volumes P (V ). In the preceding chapter, the calculation of

P (V ) has been achieved for di↵erent values of the density ⇢ showing that all the data

collapse on a single curve and that there is no dependence on the density. Because of

the low number of data, a smoother curve for P (V ) shown in figure 3.5 is obtained

considering the data on all the volumes from the di↵erent wells.
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Figure 3.4: The graph represents the master curve (in log-lin scale) to which the
data collapse. Symbols represent the simulated data while the straight line is the
fitting curve obtained with pyFitting.
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Figure 3.5: These plots represent the distributions of volumes of clusters for the
wild type cells at 8 days (left figure) and at 10 days (right figure). Exponential fits
are obtained for both curves.

The 8 days data set shows an exponential-like behavior, i.e

P (V ) ⇠ e�
V
V ⇤ (3.19)
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This is supposed to be true also for 10 day. Thus using pyFitting the data has been

fitted with equation 3.19, giving

V ⇤
8 = 96± 2 cells (3.20)

V ⇤
10 = 250± 6 cells. (3.21)

In figure 3.5 experimental data are compared with the exponential fitted curves.

As shown, the matching is strikingly good at 8 days, while the distribution P (V )

at 10 days displays a bump for low value of V that is not precisely reproduced by

the fit. This will be further discussed in the next chapters, however here should

be remarked that we are not trying at this point to explain why we should see a

particular behavior for P (V ), because the goal is now to detect an approximation

of the experimental curves.

At last the distribution P (E) is determined numerically according to equation

3.12 using equation 3.17 for P (E|V ) and equation 3.19 for P (V ). Figures 3.6 show

the results obtained for the normalized distributions P (E) that satisfy
X

E

P (E) = 1.

These figures show that experimental data display a good matching with random

Eden cluster predictions.

Here should be remarked that error bars for experimental distributions cannot

be determined because of the small number of experimental data. In principle they

can be determined considering di↵erent sets of wells and calculating the standard

deviation on the di↵erent sets of P (E) for a given value of E. Instead if evaluating

error bars for the random cluster distributions using error propagation, huge error

bars are obtained because they keep in account of the errors in the fit of P (E|V )

and P (V ).

Figure 3.7 shows the experimental plots for the cumulative distribution P
c

(✓) of

the orientation angles ✓. The graphs reflect a uniform distribution for ✓, resulting

in a random behavior for cluster orientations with respect to the well.
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Figure 3.6: Here are shown the distributions P (E) of the cluster anisotropy param-
eter E for the wild type cells at 8 days (left figure) and at 10 days (right figure).
Black curves represent the distribution P (E) for random Eden clusters having a
volume distribution P (V ) (shown in figure 3.5). P (E) is then obtained according
to equation 3.12. The value for P (E) are obtained using the logarithmic binning
method (for decimal values) because of noisy tails due to the limited number of
data.
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Figure 3.7: The graphs represent the cumulative distributions P
c

(✓) of the ori-
entation angles for the 39 wild type samples at 8 and 10 days. The linear fit-
ting (blue lines) shows that experimental values are uniformly distributed (�2

8,rel =
0.0016,�2

10,rel = 0.0095).



Chapter 4

Branching process theory and

models

The methods explained in the preceding chapters have been designed to understand

the phenomenology of cell cluster growth. The main goals achieved for the cell

type used are that cell clusters are completely independent and show random-like

geometries. Here is addressed the question of how it is possible to determine a model

to explain the dynamic of cluster growth.

I adopted an approach based on Branching Process Theory [39]. This theory

describes processes of systems of particles (individuals, cells, molecules, etc.) which

live for a random time and, at some point during lifetime or at the moment of

death, produce a random number of progeny. Processes that assume the production

of progeny at the terminal point of the parent entity’s life-time are called the clas-

sical processes. They are usually su�cient for modeling populations of biological

cells, genes, or biomolecules. Indeed branching processes are used to model repro-

duction, therefore this theory represents a natural choice for researches in modeling

cell population dynamics.

One of the oldest branching processes ever considered was the process in which

particles were male individuals bearing noble English family names. An ancestor in

50
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such a process initiated a pedigree which might inevitably become extinct if all of

the male descendants died without heirs. Is the extinction of a noble family name

inevitable in the long run? How many generations will elapse before extinction

occurs? These are typical questions asked about a process in which the number of

progeny of an individual may be equal to zero.

A di↵erent type of question may be posed for processes in which the growth is

assured by a su�ciently high proliferation rate. Then, the interesting parameter

is the long-term growth rate and the size and composition of the population at a

given time. This is typical of laboratory populations of biological cells, cultured with

abundant nutrients and su�cient space. This is our case since cancer cell clusters

grow indefinitely in the wells considered.

This theory, that has been firstly introduced in probability theory, has brought

striking results in Molecular and Cell Biology [23], Evolution Theories and Medicine.

In this chapter, the mathematical formulation of the Branching Processes Theory

will be reviewed, emphasizing how this theory can be applied to cell cluster analysis.

4.1 Analytical formulation of Branching Process

Theory

In order to give a mathematical definition of a branching process, some basic defi-

nitions of probability theory must be pointed out.

A stochastic process with state space S is a collection of random variables {Z
t

, t 2

T} defined on the same probability space (⌦, F, P ). The set T is called its parameter

set. If T = N = {0, 1, 2, ...}, the process is said to be a discrete parameter process.

If T is not countable, the process is said to have a continuous parameter. The index

t represents time, and then one thinks of Z
t

as the “state” or the “position” of the

process at time t.

A Branching Process is a stochastic process in which each particle in the process



Branching process theory and models 52

behaves identically as all other particles and independently of all other particles.

This feature is usually called branching property. It implies that a process can be

decomposed into subprocesses, which are identical with each other and with the

entire process. This in probability theory results in the statement that subprocesses

are independent and identically distributed “variables”.

The classical approach starts from considering a branching process in which

progeny are born at the moment of parent’s death. This is more intuitive when

developing the mathematical formulation, but it is not exactly our case, because

cells do not die producing a random number of progeny, cells divide through mitosis,

die or become quiescent, i.e. they continue to exist without proliferating or dying.

However the situation is equivalent because a death individual that produce two

o↵springs is not distinguishable from a mitosis process.

A branching process is parametrized by a family of non-negative random vari-

ables {Z
t

(!), t � 0} defined on a common probability space ⌦ with elements !,

where Z
t

(!) is the number of particles in the process at time t and ! index the

particular realizations of the process (here we use the notation Z instead of X

for the random variables following the standard notation found in BP literature

[23, 39, 40, 41] ). When counting the cells in a cluster, we are measuring Z
t

(!), in

facts following the classical approach the individuals existing at preceding times die

leaving place to new o↵springs, while in real situations cells existing at preceding

times divides producing new cells.

The branching process is initiated at time t = 0 by a single ancestor particle,

that in cell cluster analysis corresponds to one of the cell displaced on the well in the

initial condition. Suppose that the life length of the ancestor is a random variable

⌧(!) and that the number of its progeny (produced at its death) is equal to X(!).

Each of the progeny can be treated as the ancestor of its own process, which is a

component of our branching process. Then, the number of individuals present in

the process at time t is equal to the sum of the numbers of the individuals present

in all these subprocesses. This bookkeeping is correct for t � ⌧(!), i.e. after the



Branching process theory and models 53

1.4 Probability Generating Functions and Analytical Methods 11

FIGURE 1.5. Decomposition of the branching process into subprocesses generated by the
first-generation progeny of the ancestor; see Eq. (1.1). In the case depicted, the number
of the first-generation progeny is equal to X(ω) ! 5. At time t > τ (ω), the number of
particles in the subprocesses generated by progeny 1, 2, 3, 4, and 5 is equal, respectively, to
Z(1)(t, τ (ω), ω) ! 0, Z(2)(t, τ (ω),ω) ! 1, Z(3)(t, τ (ω), ω) ! 0, Z(4)(t, τ (ω), ω) ! 3,
and Z(5)(t, τ (ω), ω) ! 3. The total number of particles in the process at time t is seven.

into a union of subprocesses initiated by the direct descendents of the ancestor. It
can be called the “backward” approach, in an analogy to the backward Chapman–
Kolmogorov equations of Markov processes. A dual “forward” approach consists
of freezing the process at time t , recording the states of all individuals at that time,
and predicting their future paths (e.g., at t +1 or at t + δt). The backward–forward
duality will be useful in some our considerations.

Branching processes have been widely used to describe growth and decay of
biological populations. Their use has always overlapped with that of deterministic
mathematical tools, like ordinary and partial differential equations. The doubtless
applicability of branching processes is in studying small populations in which
random fluctuations play a major role. However, some results concerning large
populations are also easier to deduce using branching processes (see, e.g., Arino
and Kimmel, 1993).

1.4 Probability Generating Functions and Analytical
Methods

Consider a branching process composed of particles of one type. The number of
particles at time t is denoted Z(t). An ancestor is born at t ! 0, and at random

Figure 4.1: Decomposition of the branching process into subprocesses generated by
the first-generation progeny of the ancestor. In the case depicted, the number of the
first-generation progeny is equal to X(!) = 5. At time t > ⌧(!), the number of par-
ticles in the subprocesses generated by progeny 1, 2, 3, 4, and 5 is equal, respectively,
to Z(1)

t

(⌧(!),!) = 0, Z(2)
t

(⌧(!),!) = 1, Z(3)
t

(⌧(!),!) = 0, Z(4)
t

(⌧(!),!) = 3 and

Z(5)
t

(⌧(!),!) = 3. The total number of particles in the process at time t is seven.

ancestor has died. Before the ancestors death, the number of particles is equal to 1.

Summarizing,

Z
t

(!) =

8
>>><

>>>:

X(!)X

i=1

Z(i)
t

(⌧(!),!) t � ⌧(!)

1 t < ⌧(!)

(4.1)

where Z
t

(⌧(!),!) denotes the number of individuals at time t in the process started

by a single ancestor born at time ⌧(!), and the additional superscript (i) denotes

the ith independent identically distributed (iid) copy. A schematic depiction of an

example of branching tree is shown in figure 4.1.

The branching property that states that subprocesses are identical to the whole
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process is expressed by

Z
t

(⌧(!),!) = Z
t�⌧(!)(!) (4.2)

that is the processes initiated by the progeny of the ancestor are independent and

identically distributed as the ancestor.

Here we handle distributions of random variables (Z) using the probability gen-

erating function (pgf) of the distribution. It is the basic analytic tool employed to

deal with non-negative random variables. In the subsequent, the argument ! will

be dropped from the notation, although implicitly it is always existing.

Let Z be a non-negative random variable, such that P (Z = i) = p
i

. We write

Z ⇠ {p
i

}
i�0 and say that p

i

is the distribution of Z.

Definition (Probability generating function) The pgf f
Z

of a non-negative random

variable Z is a function f
Z

(s) = hsZi =
1X

i=0

p
i

si of a symbolic argument s 2 U = [0, 1]

and we write Z ⇠ f
Z

(s).

We restrict ourselves to normalized non-negative probabilities, that is
1X

i

p
i

= 1

with p
i

� 0, thus implying that f
Z

(1) = 1. Most of the results that will be shown

later rely on this arguments that are summarized by the pgf theorem [42].

Theorem 4.1.1. (The pgf theorem) Let Z be a non-negative random variable with

pgf f
Z

(s), then

• f
Z

is non-negative and continuous with all derivatives on [0, 1) and it is in-

creasing and convex.

• p
k

= 1
k!
f (k)
Z

(0) = 1
k!

d

k
fZ(s)
ds

k |
s=0

• the k-th factorial moment of Z, µ
k

= hZ(Z � 1)...(Z � k+ 1)i, is finite if and

only if f (k)(1�) = lim
s!1� f (k)

Z

(s) is finite. In such case, µ
k

= f (k)(1�).

• if Z1 and Z2 are two independent non-negative random variables, f
Z1+Z2(s) =

f
Z1(s)fZ2(s).
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• if Z =
YX

i=1

X(i) where Y is a non-negative random variable and {X(i), i � 1}

is a sequence of iid non-negative random variables independent of Y , then Z

has the pgf f
Z

(s) = f
Y

(f
X

(1)(s))

4.2 Classifications of branching processes

In the preceding section, a mathematical formulation of branching process theory

has been given. Here we discuss the parameters that define a given BP, enumerating

all the di↵erent possibilities.

One of the important notions in the theory of branching processes is that of the

type space. The type space S is the set, which can be finite, denumerable, or a

continuum, of all possible varieties of particles included in the process, that is

S =

8
>>>>>>><

>>>>>>>:

{1} single type

{1, 2, ..., N} multi type

{1, 2, ...} denumerable type

R,R+, [0, 1] continuous type

Particles of a given type may produce particles of di↵erent types. Restrictions on

type transitions, as well as on the type space, lead to di↵ering properties of resulting

processes.

The second parameter to be set is lifetime ⌧ . It can assume a fixed value or can

be a random variable. The simplest case is the so called Galton-Watson process in

which lifetime is conventionally fixed to 1, that means that subprocesses are equally

spaced in time. This will be discussed later in more details. A toy model to develop

more complicated processes involve exponential lifetime distributions. This law for

lifetime distributions is not well motivated by any biological assumption, however

it leads to computable expressions. The Bellmann-Harris process is instead a more

general model in which ⌧ is a non-negative random variable and bring to an “age
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dependent” dynamic (Ref. [23], page 65).

A branching process is also classified according to its degree of criticality, that

is the asymptotic behavior of a process. In a BP a fundamental role is played

by the “order parameter” m = hXi that represents the main progeny count of an

individual. This concept is simply understood in the Galton-Watson process that

will be discussed in this chapter, in which a relation between the mean number of

particles hZ
t

i at time t and m holds such that (it will be shown later in the case of

the Galton-Watson process)

hZ
t

i ⌘ m
t

⇠ mt. (4.3)

A rigorous approach can be found in Harris’ “The Theory of Branching Processes”

[40]. Therefore the criticality is defined by the value of m in a given process, in facts

hZ
t

i ! 1 if m > 1 (supercritical case)

hZ
t

i = 1 if m = 1 (critical case)

hZ
t

i = 0 if m < 1 (subcritical case)

The parameter m is also connected to the probability of eventual extinction

q = q
t!1 < 1, given q

t

= P (Z
t

= 0|Z0 = 1) = f
t

(0) the extinction probability of a

process at the time t (the notation f
t

(0) stands for f
Zt(0) having dropped Z because

it is redundant). In facts it can be shown (Ref. [41], page 4) that q is the unique

root in [0, 1) of the fixed point equation q = f(q) and

q < 1 if m > 1 (supercritical case)

q = 1 if m = 1 (critical case)

q = 1 if m < 1 (subcritical case)

Further, P (Z
t

! 1 as t ! 1|Z0 = 1) = 1 � q. Therefore a subcritical or critical

process becomes surely extinct, while the extinction of a supercritical process is

defined by q.
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Here should be addressed some questions about the system we are interested

in. A cell cluster is the product of a series of divisions that have been started by a

single ancestor cell. What can we say about the type space, the lifetimes and the

criticality? Some biological observations justify some choices, however assumptions

are needed also in relation to the cell type and to the environment. For example a

skin cell cluster can grow and then stop while a cancer cell cluster grow indefinitely,

the growth can be favored if immersed in a nutrient solution or inhibited if immersed

in other substances.

A distribution for the lifetimes ⌧ cannot be determined a priori. However, ac-

cording to biological studies, cells have an average duplication rate that measures

the number of duplication in a day. Following this line, we will set a conventional

fixed value for the lifetime ⌧ = 1, thus considering Galton-Watson processes. Ob-

serve here that a conversion factor between a unitary time step and the real time is

not determined.

Here we will consider 39 wild type Melanoma cells immersed in nutrient solution.

They display a high duplication rate and do not stop duplicating. This is a strong

information about criticality because we see that hZ
t

i is an increasing function of

time t, thus implying that we are in the supercritical case. We should thus find that

hZ
t

i ⇠ mt with m > 1.

The most interesting parameter in our particular case is the type space. In

facts the distinction between the Traditional Cancer (TC) Theory and the Cancer

Stem Cell (CSC) Theory relies on the number of particle considered. The first one

involve a single population of cells, while the second one propose the existence of a

subpopulation of cells that sustain one or more populations of cells.

Summarizing, we will study the growth of cancer cell clusters as Galton-Watson

(⌧ = 1) branching processes in the supercritical regime (m > 1, q < 1), varying the

type space and the sets of probabilities {p↵
i

}
↵2S,i�0.



Branching process theory and models 58

4.3 Single type process: the TC Theory

Traditional cancer theory states that all cancer cells are similar and can therefore

be modeled by a single particle type. Therefore here is discussed the simple case

of a single type population with ⌧ = 1 in the supercritical case. This shows how

the mathematical approach defined in the first section of this chapter is applied

to a specific situation. Furthermore, properties of this process provide intuitions

about more complicated branching processes. We will see that even in this simple

case we can obtain analytical results only in calculating the asymptotic behaviors,

therefore simulations are inevitably needed. We first review the general approach,

due to Galton and Watson, then we focus our attention on a specific model based

on simple biological observation.

In considering ⌧ = 1, the continuous time index of Z
t

can be replaced by a

discrete index n that labels the number of generation. Therefore Z
n

where n =

0, 1, 2, ... are the particle counts in the n-th generation. Let {X
n,k

}
n�0,k�1 be an

array of nonnegative integer valued random variables that are i.i.d. (independent and

identically distributed) with a probability distribution {p
i

}
i�0, whereXn,k

represents

the number of progeny of the k-th particle existing in generation n. Let Z0 = 1 be

the starting number of progeny, therefore

Z
n+1 =

8
>>><

>>>:

ZnX

k=1

X
n,k

if Z
n

> 0

0 if Z
n

= 0

(4.4)

According to the fifth point of theorem 4.1.1, the probability generating function

f
n+1 of Z

n+1 is given by

f
n+1(s) = f

n

(f1(s)) = f
n

(f(s)) = f(f(...f| {z }
n times

(s))) (4.5)

having used the fact that f0(s) = s because Z0 = 1. Note here that for an arbitrary
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Z0 we have that f0(s) = sZ0 , however we are modeling cell clusters formed by a

single ancestor cell, i.e. Z0 = 1. Thus we have that

hZ1i = f 0(1�) =
1X

j=0

jp
j

⌘ m (4.6)

and

hZ
n

i = f 0
n

(1�) = [f
n�1(f1(s))]

0|
s=1� = f 0

n�1(1
�)f 0(1�) = ... = mn (4.7)

according to equation 4.3.

Here we considered average quantities, however interesting results concern the

behavior of the random variables themselves. Recall that if S
n

= X1+X2+...+X
n

is

the sum of i.i.d, random variables then the Law of Large Numbers states that S
n

/n

converges to a constant, namely hX1i [42]. A similar limiting theorem for branching

processes exists. If Z
n

represents the number of o↵spring after n generations, we

have seen that the expected value of Z
n

is mn. Thus we can scale the random

variable Z
n

to have expected value 1 by considering the random variable

W
n

=
Z

n

mn

. (4.8)

The analogous Law of Large Numbers for branching processes is formulated as fol-

lows (Ref. [23], page 45).

Theorem 4.3.1. If 0 < m < 1 then there exists a random variable W such that

lim
n!1 W

n

= W with probability 1.

However, unlike the case of the Law of Large Numbers where this limit is a

constant, for a branching process the limiting value of the random variables W
n

is

itself a random variable. Other interesting results concern the supercritical case that

corresponds to our situation [43].

Theorem 4.3.2. (supercritical case) If m > 1, �2 = h(Z1 �m)2i < 1 and Z0 = 1

then
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• lim
n!1h(W

n

�W )2i = 0

• hW i = 1, �2
W

= h(W � hW i)2i = �2/(m2 �m)

• P (W = 0) = q = P (Z
n

= 0 for some n)

The second condition is very important and states that in the supercritical case

if fluctuations are finite, hZ
n

i ⇠ mn and �2
Zn

= h(Z
n

� hZ
n

i)2i ⇠ �

2

(m2�m)
mn asymp-

totically (n ! 1).

Observe that here we considered the simplest class of problems in the context of

Branching Process Theory, however also in these cases only asymptotic behavior can

be calculated for average quantities. This will be discussed further in the subsequent

section.

4.3.1 A model for TC Theory

The basic feature of TC Theory is the existence of a unique population of cells,

however we must define a specific process between the Galton-Watson-like processes

able to fits our particular situation. Therefore some restriction will be considered

according to biological observations. Indeed cells can divide through mitosis or die,

but cannot produce two or more o↵springs. Our process is thus defined by the set of

probability {p
i

}
i=0,1,2 (such that

P
i

p
i

= 1) where p0 corresponds to the probability

of a cell death, p1 is the probability of being quiescent (not dividing) and p2 is

the probability of a cell mitosis (see figure 4.2). The quiescence keeps track of two

e↵ects: the real quiescence of a cell, i.e. a cell do not divide in a time step, and a

second one that deal with time fluctuations, that is varying p1 we set the speed of

the branching process.

The probability generating function is thus given by (cfr. equation 4.1)

f(s) = p0 + p1s+ p2s
2 (4.9)
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p p
1 2

martedì 27 dicembre 11

Figure 4.2: Here is a schematic depiction of the model based on the TC Theory:
p0 denotes the probability of cell death, p1 is the probability of quiescence and p2
represents the duplication probability.

and according to theorem 4.1.1

m = f 0(1�) = p1 + 2p2 = 1� p0 + p2 (4.10)

having used the fact that
P

i

p
i

= 1. In the supercritical case (m > 1) we find that

p0

p2
< 1. This is obvious because, in a process of growth, duplication must be more

likely than death.

Further the fixed point equation for the probability of eventual extinction q 2

[0, 1) is

q = p0 + p1q + p2q
2 (4.11)

that as solution q = p0

p2
in the permitted range of q if p0

p2
< 1. Note here that a

supercritical process implies that the fraction of clusters that stop growing in the

asymptotic limit in the wells considered is less than one, i.e. q < 1.

Recall that we are interested in a set of branching processes, each one started

from a single cell, that give rise to clusters. With the method implemented in the

first chapter the number of cells in a well or in a given cluster can be calculated.

According to the BP Theory, the average number of progeny of a single ancestor is

hZ
n

i = mn (4.12)
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for su�ciently large n and corresponds to the volume of the cluster, i.e. hV i = hZ
n

i.

Further if we consider the entire well with a given rescaled density ⇢ (as defined in

the preceding chapters) we should measure a number of cells in a well equal to

hZ⇤
n

(⇢)i = mn⇢. (4.13)

The expected error when measuring these quantities is however huge as follow from

theorem 4.3.2. In facts

�2
n

= hZ2
n

i � hZ
n

i2 = �2

m2 �m
mn =

�2

m2 �m
hZ

n

i. (4.14)

where �2 = hZ2
1i � hZ1i2 is calculated using theorem 4.1.1, i.e.

�2 = f (2)(1�) + hZ1i � hZ1i2 = 2p2 +m�m2 (4.15)

Therefore combining 4.15 and 4.14 we find that

�2
n

=

✓
2p2

m2 �m
� 1

◆
hZ

n

i (4.16)

A straightforward calculation shows that �2
n

= 0 only in the trivial deterministic

case defined by p1 = 1 and p0 = p2 = 0.

Note here that the behavior of Z
n

is correct in the asymptotic limit, however

the number of division n is limited by experimental reasons, in facts we saw that

considering times greater than 10 days results in prohibitively large clusters.

Note also that here we have more information in experimental data, in facts we

can compute also a distribution P (Z
n

= V ) for the volumes of clusters as discussed

in the preceding chapters. However this does not have any analytical counterpart,

therefore simulations are needed to calculate the distribution.
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4.4 Multi-type process: the CSC theory

The basic feature of the CSC theory is the existence of a subpopulation of cells able

to sustain the growth of the tumor. We address here the question if a model in the

context of multi-type branching processes is possible. First the basic concepts of

multi-type branching processes will be reviewed, the behavior of which is a direct

extension of the single-type case, then some biological and mathematical results will

be discussed in order to develop a model.

The main goal here is to define the behavior of a population of individuals of k

types. Despite the case of a single-type BP in which the first nucleation site is a cell

of the single type considered, here an initial condition must be defined, because cells

of di↵erent types give rise to di↵erent processes. Consider an ancestor particle of

type i that after one time step die producing a random number of progeny particles

of k types as our initial condition. Thus in the second generation we have k di↵erent

subprocesses with k di↵erent dynamics and distribution of this subprocess depends

only on the type of the ancestral particle.

Here should be emphasized that multi-type BP theory that will be exposed in

this section is developed assuming that the type of the first nucleation site is known.

This will be kept in account supposing that the initial condition is not random.

However such assumption is not obvious in real situation. In facts when cells are

displaced in a well, it is not trivial to know the type of a given cell.

The total number of particles at time n in the process started by an ancestor of

a fixed type constitute a random vector Z
n

= (Z1
n

, ..., Zk

n

), where the components

{Z(i)
n

}1ik

denote the number of particles of type i in the n-th generation and whose

distribution depends on the type of the ancestral particle of the process.

Denote with T the set of all k-dimensional vectors whose components are non-

negative integers. Let {e
i

}1ik

, denote the vector whose i-th component is 1 and

whose other components are 0. The multitype (or vector) Galton-Watson process is

a temporally homogeneous vector-valued Markov process Z0,Z1,Z2, ... whose states
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are vectors in T .

If Z0 = e
i

, then Z1 will have the generating function

f i

1(s1, ..., sk) =
1X

r1,...,rk

p
i

(r1, ..., rk)s
r1
1 · · · srk

k

|s1|, ..., |sk|  1 (4.17)

where p
i

(r1, ..., rk) is the probability that an object of type i has r1 children of type

1, ..., r
k

of type k. In general, if Z
n

= (r1, ..., rk) 2 T , then Z
n+1 is the sum of

r1+ ...+ r
k

independent random vectors, r1 having the generating function f (1), ...,

r
k

having the generating function f (k). If Z
n

= 0, then Z
n+1 = 0.

The generating function of Z
n

, when Z0 = e
i

, will be denoted by f i

n

(s1, ..., sk) =

f i

n

(s) where 1  i  k and n = 0, 1, .... The vector (f 1
n

(s), ..., fk

n

(s)) will be frequently

denoted by f
n

(s). Here the multi-type counterpart of equation 4.5 is expressed by

the subsequent theorem [23].

Theorem 4.4.1. The generating functions f i

n

are functional iterates, defined by the

relations

f i+1
n

(s) = f i(f 1
n

(s), ..., fk

n

(s)) n = 0, 1, 2, ...

f 0
n

(s) = s
i

i = 1, 2, ..., k.
(4.18)

In vector form

f
n+N

(s) = f
n

(f
N

(s)) n,N = 0, 1, 2, .... (4.19)

The main progeny count m of the single type BP is replaced by the matrix

M = [m
i,j

] whose components are the expected number of progeny of type j of a

particle of type i, i.e.

m
i,j

= hZj

i

iZ0=ei =
@f i

1

@s
j

(1, ..., 1) i, j = 1, ..., k. (4.20)

Using the chain rule in 4.18 we obtain hZ
n+1i = Z

n

M and iterating we get the
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analogous of equation 4.7 for the multi-type case, i.e.

hZ
n+N

i = Z
N

Mn (4.21)

The Frobenius-Perron theorem [23] is the most useful tool when dealing with

powers of non negative and irreducibles matrixes (i.e. such that MN is positive for

some positive integer N). In facts it demonstrate that M has a unique positive

eigenvalue ⇢ that is greater in absolute value than any other eigenvalue. Further, ⇢

corresponds to positive right and left eigenvectors µ = (µ
i

) and ⌫ = (⌫
i

), respectively,

which are the only non-negative eigenvectors and Mn can be rewritten as

Mn = ⇢nM1 +Mn

2 n 2 N (4.22)

where M1 = (µ
i

⌫
j

) with normalization
P

i

µ
i

⌫
i

= 1, M2 is such that M2M1 =

M1M2 = 0 and Mn

2 = O(↵n) for some ↵ 2 (0, ⇢). Therefore Mn can be approx-

imated by the n-th power of the maximum eigenvalue for enough large n, thus

implying that

hZ
n

i ⇠ ⇢nZ0M1. (4.23)

Here ⇢ plays the role of the “order parameter” played by m for the single-type BP.

The supercritical case is indeed defined by ⇢ > 1.

Further the theorem 4.3.2 defined for the single type supercritical case has a

multi type generalization [23].

Theorem 4.4.2. Suppose that the process is positively regular with ⇢ > 1 and that all

the second moments of progeny distributions are finite. Then, the random vectors

Z
n

/⇢n converge with probability 1 to a random vector W. Vector W is nonzero

except for trivial cases of all covariance matrices V
i

= Cov(Z1|Z0 = e
i

) being zero

or Z0 = 0. If W is nonzero, then with probability 1 its direction coincides with that

of ⌫, the left eigenvector of M.

The probability of extinction has a multi-type generalization too, but in this case
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it depends on the type of the ancestral particle. Therefore there is an extinction

probability q
i

for each process in which the nucleation site is a particle of type i, i.e.

q
i

= P (Z
n

= 0 for some n |Z0 = e
i

) where 1  i  k. Denoting q = (q1, ..., qn) and

using the rule that for example q � 0 means that q
i

� 0 8i, a theorem is enunciated

as follow [23].

Theorem 4.4.3. Suppose that the process is positively regular (that is M is ir-

reducible) and not singular (which would mean that each object has exactly one

progeny). If ⇢  1, then q = 1. If ⇢ > 1, then q 2 [0, 1) and q satisfies the equation

q = f(q).

4.4.1 A two population model

Here a two type branching process is considered. The goal is to show the asymptotic

behavior of such a model. This case gives an insight into features of a two population

dynamics in order to design a possible model able to describe the CSC theory.

The basic feature of a CSC model is the existence of a subpopulation of cells

responsible of the growth of the tumor, that means that some cells sustain their

own cell-type population and are able to give rise to cells belonging to a di↵erent

population. Such a population will be denoted with S because of their stem-like

features, while the second population of “common” cancer cells will be denoted

with C.

As said in the preceding sections, the cell can duplicate, die or be quiescent.

However if the existence of such a population is postulated, their cells cannot die

otherwise the tumor will stop growing definitely. Meanwhile the second population

could die. Therefore we consider a first population of cells S that has probability

p0 of being quiescent, p1 of dividing in one C-cell and one S-cell and probability p2

of dividing in two S cells. Instead the C-cells can die, be quiescent or duplicate in

two C-cells. A scheme of this process is shown in figure 4.3.
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Figure 4.3: Here is a schematic depiction of the two-type toy-model for the CSC
Theory.

The generating functions are given by (see equation 4.17)

fS

1 (xS

, x
C

) = p0xS

+ p1xS

x
C

+ p2x
2
S

(4.24)

fC

1 (xS

, x
C

) = q1xC

+ q2x
2
C

(4.25)

The behavior of this model is determined by the matrix M defined in equation

4.20, that is

M =

2

4p0 + p1 + 2p2 p1

0 q1 + 2q2

3

5 =

2

41 + p2 p1

0 1 + �

3

5 (4.26)

having denoted � = (q2� q0) and having used the normalization constraints
P

i

p
i

=
P

i

q
i

= 1. Note here that the case in which C-cells do not die is achieved simply

setting � = q2 (q0 = 0).

In this case the matrix is not irreducible, thus neither the Frobenius-Perron

theorem either theorem 4.4.2 apply. Therefore the number of cells must be computed

by iteration using

hZ
n

i = Z0M
n (4.27)
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We immediately find that

Mn =

2

4(1 + p2)n B
n

0 (1 + �)n

3

5 (4.28)

where B
n

is computed observing that

Mn =

2

4(1 + p2)n B
n

0 (1 + �)n

3

5 =

=

2

4(1 + p2)n�1 B
n�1

0 (1 + �)n�1

3

5

2

4(1 + p2) p1

0 (1 + �)

3

5 = Mn�1M (4.29)

that define the recursion relation B
n

= p1(1 + p2)n�1 + (1 + �)B
n�1 with B1 = p1.

This is solved analytically and in the case p2 6= � we obtain

Mn =

2

4(1 + p2)n
p1

p2��

[(1 + p2)n � (1 + �)n]

0 (1 + �)n

3

5 (4.30)

For p2 = �, we find that B
n

= p1n(n�1)
2(1+�)

(1 + �)n.

If we consider the case of a C nucleation cell, i.e. ZC

0 = (0, 1), we find the trivial

case of a single branching process with main progeny count m = (1 + �), as we

should expect. A non trivial dynamics is found when the ancestor is an S-cell, i.e.

ZS

0 = (1, 0). In this case we find that

hZ
n

i =
✓
(1 + p2)

n,
p1

p2 � �
[(1 + p2)

n � (1 + �)n]

◆
(4.31)

and denoting F S and FC respectively the asymptotic fraction of S-cells and C-cells

at a given time n we find that

F S = lim
n!1

hZS

n

i
hZS

n

i+ hZC

n

i =

8
><

>:

p2 � �

p2 + p1 � �
if p2 > �

0 if p2  �

(4.32)
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FC = lim
n!1

hZC

n

i
hZS

n

i+ hZC

n

i =

8
><

>:

p1
p2 + p1 � �

if p2 > �

1 if p2  �

(4.33)

This result shows that the there is a relation between the probabilities of the two

processes or between the main progeny count of the two population. In facts if

p2  �, the C population is overwhelming and the e↵ects of the S population cannot

be seen if we look at a given sample where cell populations are indistinguishable.

The existence of two population is detectable only if p2 > � that corresponds to the

situation in which the cells of the S population duplicate more than the cells of the

C population.

Note here that the procedure achieved in this section is completely general and

can be applied to every two population hierarchic branching processes, i.e. where a

C-cell do not duplicate in one or more S-cells, or analogously whenever dealing with

upper triangular matrixes. In facts we see that the case in which a C-cell do not die

is obtained setting q0 = 0 and thus � = q2. Further if we consider the possibility that

an S-cell divide in two C-cells with probability p3, the dynamic is simply solved with

the substitution p1 7! p1 + 2p3 in the preceding equations. Otherwise Frobenius-

Perron theorem and theorem 4.4.2 provide a simple recipe to solve the dynamic of

non-hierarchic two-type BP.

4.4.2 A CSC model

A growing number of papers appears on Biological reviews in the last years showing

the evidences of a subpopulation of senescent cell in tumors [45, 46, 47, 48]. Cellular

senescence is the phenomenon by which normal cells stop proliferating, usually after

about 50 cell divisions in vitro, however they remain metabolically active. This last

feature is the one that specify a di↵erence from a dead cell. Such a process is called

Hayflick phenomenon and the Hayflick limit is the number of times a normal cell

population will divide before it stops [26].

Senescence can be kept into account introducing a time index for cells. When
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cells are too old, that is the time index counts a certain number of divisions, then

they stop dividing.

Therefore I consider a “three”-type model. The S-cells belong to the immortal

CSC population, thus we suppose that they divide in two C-cells with probability

(wp) p0, one S-cell and one C-cell wp p1, two S-cells wp p2 and remain quiescent

wp p3. The C-cells that are o↵springs of an S-cell has a lifetime k = 1, meaning

that they are just born. The C population is constituted by “common” cancer cells

that remain quiescent wp q1 or divide wp q2 and labeled with a time index k that

keep track of the number of divisions of the cell, thus a k divisions old cell when

duplicate give rise to two “older” cells with a time index equal to k + 1. Instead if

the C-cell do not divide, the time index remains constant. When a C cell gets too

old, that is his division time k reach a certain value M , when divides his o↵spring

is constituted by two senescent D-cell that will not divide anymore.

Figure 4.4: Here is a schematic depiction of the the CSC model implemented.

This is not exactly a three-type model, as said before, in facts there is the S and

the D population and M di↵erent kind of C cells. This is therefore an (M +2)-type

model. The generating functions are computed using equation 4.17 and the matrix

M follows from equation 4.20. Therefore we get the upper triangular block diagonal



Branching process theory and models 71

matrix (on the left of the matrix the respective cell types of the row considered are

listed, having denoted {C(k)}1kM

the C population with division time k)

M =

2

6666666666664

(p1 + 2p2 + p3) 2p0 + p1 0 ...

0 q0 2q1 0 ....

0 0 q0 2q1 0 ...

... ...

.... q0 2q1

0 .... 0 1

3

7777777777775

S

C(1)

...

...

C(M)

D

(4.34)

The Frobenius-Perron theorem and theorem 4.4.2 do not apply in this case too,

therefore we have to compute the number of cells by iteration. Denote 1 + ✏ =

p1 + 2p2 + p3 = 1 + (p2 � p0), that corresponds to the main progeny count for the

S population (i.e. m
S

= 1 + ✏) and thus 2p0 + p1 = 1 � ✏ � p3. In this way the

parameter ✏ define the capability of the S population of sustaining the proliferation,

that is for ✏ > 0 all the cells do not stop proliferating, otherwise the BP will surely

end. In our case the process do not end, therefore ✏ > 0 will be assumed.

The n-th power of M can be computed as in the case of the two-type pro-

cess considered in the preceding subsection imposing a condition analogous to 4.29.

Denoting {B(n)
i,j

}
n2N,2i,jM+2 the entries i, j of the upper triangular matrix Mn

diagonal excluded, we get

B(n)
i,j

=

8
>>>>>>><

>>>>>>>:

(1� ✏� p3)(1 + ✏)n�1 + q0B
(n�1)
12 if i = 1, j = 2

2q1B
(n�1)
1,j�1 + q0B

(n�1)
1,j if i = 1, j � 3

qn�1
0 2q1 + q0B

(n�1)
i,j

if i � 2, j = i+ 1

2q1B
(n�1)
i,j�1 + q0B

(n�1)
1,j if i � 2, j > i+ 1

(4.35)
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with the boundary conditions

B(1)
i,j

=

8
>>>>>>><

>>>>>>>:

(1� ✏� p3) if i = 1, j = 2

0 if i = 1, j � 3

0 if i � 2, j = i+ 1

2q1 if i � 2, j > i+ 1

(4.36)

The most interesting case is the one in which the nucleation site is an S cell,

the other cases being processes that will inevitably end. In facts in the CSC theory

the S cells are the responsibles of the growth of the tumor. We are thus interested

in hZ
n

i = ZS

0M
n = (1, 0, ..., 0)Mn, that corresponds to the first row of Mn, when

✏ > 0. Observe that we should require that 1� ✏� p3 = 2p0 + p1 > 0 and this is not

achieved only in the trivial case p0 = p1 = 0, that is an S cell do not divide in a C

cell. In this case the solution is given by

hZS

n

i =(1 + ✏)n

hZC

(k)

n

i =1� ✏� p3
1 + ✏� q0

✓
2q1

1 + ✏� q0

◆
k�1

[(1 + ✏)n � qn0 ]

� 1� ✏� p3
1 + ✏� q0

✓
2q1
q0

◆
k�1

qn0 (1� �1k)
k�2X

j=0

0

@ n

k � 1� j

1

A
✓

q0
1 + ✏� q0

◆
j

hZD

n

i =1� ✏� p3
1 + ✏� q0

2q1

✓
2q1

1 + ✏� q0

◆
M�1 (1 + ✏)n � 1

✏
� 1� qn0

1� q0

�

� 1� ✏� p3
1 + ✏� q0

2q1

✓
2q1
q0

◆
M�1 M�2X

j=0

0

@ n

M � j

1

A
✓

q0
1 + ✏� q0

◆
j

(4.37)
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that reduce in the asymptotic limit (n ! 1, ✏ > 0, q0 < 1) to

hZS

n

i = (1 + ✏)n

hZC

(k)

n

i ' 1� ✏� p3
1 + ✏� q0

✓
2q1

1 + ✏� q0

◆
k�1

(1 + ✏)n

hZD

n

i ' 1� ✏� p3
✏

✓
2q1

1 + ✏� q0

◆
M

(1 + ✏)n

(4.38)

having used the fact that for n ! 1

1

(1 + ✏)n

k�2X

j=0

0

@ n

k � 1� j

1

A
✓

q0
1 + ✏� q0

◆
j

⇠ 1

(k � 1)�(k � 1)

nk�1

(1 + ✏)n
! 0 (4.39)

The total number of C cells is computed as hZC

n

i =
MX

k=1

hZC

(k)

n

i and in the asymp-

totic limit we obtain

hZC

n

i ' (1� ✏� p3)


1�

⇣
2q1

1+✏�q0

⌘
M�1

�

(1 + ✏)� (2q1 + q0)
(1 + ✏)n (4.40)

The number of cells grow exponentially with n for all cell type, because ✏ > 0,

thus the fraction of cells for a given cell type remains constant during the time. The

asymptotic fraction of cells F T of cell type T 2 {S,C,D} give informations on the

composition of a given sample of cells and is computed as

F T = lim
n!1

hZT

n

iP
i

hZi

n

i . (4.41)

Further constraints must be set to match with experimental biological results.

In fact, in general cases the number of divisions after which a cell become senescent

is about 50. Thus M is supposed to be enough large that we can consider M ! 1.

Therefore two cases must be distinguished: the first one in which the S cells are

more likely to duplicate than the C cells that corresponds to the condition 2q1 <
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1+✏�q0, the second one is the opposite situation and corresponds to 2q1 > 1+✏�q0.

Summarizing we find that for n ! 1, and after M ! 1 under the conditions of

non trivial dynamic ✏ > 0, 1� ✏� p3 > 0

F S '

8
><

>:

✏� q1
(2� p3)� (1 + q1)

if 2q1 < 1 + ✏� q0

0 if 2q1 > 1 + ✏� q0

FC '

8
>><

>>:

(1� ✏� p3)

(2� p3)� (1 + q1)
if 2q1 < 1 + ✏� q0

✏(1 + ✏� q0)

2q1[(2q1 + q0)� (1 + ✏)] + ✏(1 + ✏� q0)
if 2q1 > 1 + ✏� q0

(4.42)

FD '

8
><

>:

0 if 2q1 < 1 + ✏� q0

2q1[(2� p3)� (1 + q1)]

2q1[(2q1 + q0)� (1 + ✏)] + ✏(1 + ✏� q0)
if 2q1 > 1 + ✏� q0

In the case of high proliferation rate of S cells (2q1 < 1+ ✏� q0) according to the

two population model of the preceding subsection, the existence of D cells cannot

be seen while the fractions of S and C cells are defined by ✏, p3 and q1. Instead if

the C cells have an higher proliferation rate than S cells, we are not able to see S

cells, leaving place to a population of high fraction of C and D cells, defined by ✏, p3

and q1 . However this is true if the sample is “small”, in facts the limit M ! 1 is

not completely exact. We should say that in the first case it is not likely to see D

cells and in the second case it is not likely to see S cells.



Chapter 5

Numerical simulations and results

In the preceding chapter, we designed models in the context of BP theory according

to experimental results in Biology. We address here the question if these models

reproduce the results obtained using the methods developed in the first chapters.

We will consider the case of Melanoma 39 wild type samples in order to avoid any

possible e↵ect of the marker. However, even if we deal with a particular kind of

cell, this method is completely general and could be extended to other di↵erent cell

types.

Here we should emphasize that in our experimental data observables are com-

puted in cells unit, thus the results can be directly compared with BP models.

However BP analytical results can be achieved only in the asymptotic limit, there-

fore simulations are inevitably needed. In facts with our experimental setup we are

able to determine a shape for the distribution of cluster volumes. This is a strong

instrument because it gives information on all the volume composition of a given

sample.

We will first consider the case of a single-type BP, that corresponds to the TC

theory, then we will discuss the case of a CSC model.
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5.1 TC model

Here we will consider the single-type TC model described in the preceding chapter

in comparison with the experimental data. Here we address the question if a TC

model is able to fits experimental measurements. We will find that such a model is

not suitable, however it represents an interesting starting point to understand the

dynamics and a powerful instrument to verify the existence of two population.

What we can e↵ectively compute analytically is the scaling behavior of the av-

erage cluster size, defined by equation 4.12, i.e.

hZ
n

i ⇠ mn (5.1)

and the number of cells in a well defined by equation 4.13, i.e.

hZ⇤
n

(⇢)i ⇠ mn⇢. (5.2)

However the process cannot be univocally fixed because both the average number

of divisions n and the main progeny count m are not known in these equations.

Thus we should look at the distribution of cluster volumes discussed in the last

section of the third chapter to plug this gap. Following this line hZwell

n

(⇢)i counts

the number of cells in a well but does not keep track of the e↵ective volumes reached

by the clusters. Therefore a sample constituted by many separate cells or a sample

of few big clusters cannot be distinguished by such a measure.

Further the expressions of equation 5.1 and 5.2 are almost useless for our pur-

poses. In facts they keep track of the fact that some cells or clusters could disappear

because of cell death during all the branching process. This is because of the depen-

dence of m on p0, i.e. m = 1+(p2�p0). The average expressed by such equations is

computed on all the cluster sizes and clusters that disappear because of cell death

count as a cluster composed by 0 cells. Instead when measuring cluster volumes

or the total number of cells in a well only averages on all the existing clusters can
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be computed. Therefore the measurable quantity is the average cluster volume in a

sample

hZ
n

i
well

=
ncX

i=1

Zi

n

, (5.3)

where n denote the number of divisions and n
c

the number of clusters, and the

average number of cells in a well

hZ⇤
n

(⇢)i
well

= hZ
n

i⇢. (5.4)

These value cannot be predicted with analytical calculation but only computed with

simulations.

The goal is thus to find the model that fits the distributions of cluster volumes at

8 and 10 day and that match with the predictions of equation 5.2. The parameters

that must be varied are the probabilities {p
i

}
i=0,1,2 that define the mean progeny

count, i.e. in this process m = 1 + (p2 � p0), and the average numbers of divisions

n, that is a function of time (n = n(t)). Thus time enters in equation 5.2 and define

the distribution of cluster volumes.

The theoretical distribution P (V ) of cluster volumes V is determined with a

simulation of the process. The process is simulated on a sample of 106 cells, then

the distribution is computed using the logarithmic binning method (even if here it

is not necessary, but the comparison of the results will get across). The distribution

will be peaked on higher values of V as p2 approach to 1, that is m ! 2, and will

be a � function peaked on 2n when p2 = 1, that is the limiting deterministic case.

Meanwhile when m ! 1+, P (V ) will be peaked on low values of V .

In right figure 5.1 we show di↵erent curves obtained varying the set of proba-

bilities {p
i

}
i=0,1,2 with fixed n. In none of these cases the experimental bump in

P (V ) for low values of V after 10 days shown in the left figure 5.1 can be detected.

However this represents a track of the existence of two populations, the majority of

which duplicate faster than a second little population that give rise to small volume
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Figure 5.1: Left: the experimental curves for normalized probabilities P (V ) at 8
and 10 days obtained from the sample of Melanoma 39 wild type cells. Right: the
curves represent the normalized distribution P (V ) of cluster volumes for di↵erent
set of parameters {p

i

}
i=0,1,2 fixing the number of divisions n = 20.

clusters.

Therefore we consider two population, that will be conventionally denoted as S

and C, that divide with two di↵erent sets of probabilities pS,C = {pS,C
i

}
i=0,1,2 as

those defined for the TC single-type process (cfr. figure 4.2) and exist in the sample

with two di↵erent concentration ↵
S,C

, such that ↵
S

= 1 � ↵
C

. This system can be

defined as a two-type BP where the vector Z0, that define the initial condition, is a

random variable and his distribution is defined by a binomial distribution, that is it

is an S cell with probability ↵
S

otherwise it is a C cell. In this case the matrix M

is diagonal and is obtained by equation 4.26 setting p1 = 0.

The curves have been fitted simulating the dynamic, that is varying ↵
S

, pS,C0 , pS,C1

and the average number of divisions n while the constraints ↵
C

= 1 � ↵
S

and
P

i

pS,C
i

= 1 fix the other parameters. Figure 5.2 shows that a process with param-

eters pS = (0, 0.93, 0.07), pC = (0.2, 0.4, 0.4) and ↵
S

= 0.05, ↵
C

= 0.95 fits the

experimental curves for the cluster volume distribution. After 8 days the average

number of time steps is n8 = 21 while after 10 days we have that n10 = 27. Here

should be emphasized that n does not correspond to the average number of divisions

of the cells.
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Figure 5.2: Here are shown the experimental distributions of volumes at 8 (left) and
at 10 (right) days compared with the simulated curves. Both curves are obtained
with the same sets of parameters pS = (0, 0.93, 0.07), pC = (0.2, 0.4, 0.4) and ↵

S

=
0.05, ↵

C

= 0.95. The only parameter from which they di↵er is the number of
divisions n.

Further, these parameters should fit the data for the average cluster volume in

a sample hZ
n

i
well

and the average number of cells in a well hZ⇤
n

(⇢)i
well

obtained in

the experiments. The predicted values for hZ
n

i
well

and hZ⇤
n

(⇢)i
well

are computed

running simulations on a sample of 106 cells, whose 5% evolves according to pS and

95% evolves according to pC and using equations 5.3 and 5.4.

Here we note that the average volumes hZ
n

i
well

and the distribution of volumes

P (hZ
n

i = V ) are the most powerful instruments in cluster analysis, because they

are not a↵ected by experimental errors on density, whereas the number of cells in

the well hZ⇤
n

(⇢)i
well

depends by definition on the initial density ⇢.

The results are shown in figures 5.3. The discrepancies for the 10-day data are

due to the narrow range that can span the time t, in facts at high densities the

clusters are so big that overlap while at low densities the samples count few data.

Moreover clusters are enough big that are likely to be cut when selecting the circular

area and erasing the black regions connected to the boundaries. This explain also

why 10-day data underestimate the theoretical predictions for hZ⇤
n

(⇢)i
well

.

Summarizing we showed that the cell samples considered show two population

dynamic features, whereas a TC theory alone do not explain the experimental re-
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Figure 5.3: These two graphs represents respectively the average volume of clusters
hZ

n

i (left) and the average number of cells in a well hZ⇤
n

(⇢)i (right) as a function
of density ⇢. Symbols correspond to experimental measures, whereas straight lines
represent theoretical results for the set of parameters that fits the distribution of
volumes P (hZ

n

i = V ) shown in figure 5.2.

sults. Further the set of probabilities determined would be in agreement with the

CSC hypothesis, that there exists a little subpopulation of cells endowed with the

feature of being immortal (pS1 = 0).

5.2 Towards a CSC theory

The experimental data show the existence of two independent populations in Melanoma

cell samples. Hence, if the CSC hypothesis is considered, we should ask if a two pop-

ulation hierarchic model is able to fit these data. However when considering more

than a single population we must deal with the problem of defining a starting con-

dition, because multi-type BP are strongly dependent on. Furthermore a BP theory

with random nucleation cell type has not been designed yet. Therefore assumptions

are inevitably needed.

A reasonable approach consists in considering the case of a stationary starting

condition, supposing that the cells of the patient have reached a steady state. What-

ever this is not obvious, not least because the cells of the patient interact with the

environment from which they are removed. If we consider such initial condition, the
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type of the cells displaced in the wells must be determined according to the station-

ary cell fractions and the set of probabilities specific of a given cell type define the

cluster growth process thus determining the cluster volume distributions.

Furthermore in the context of a multi-type BP the number of parameters is

large. In the case of a CSC model, we have 5 free parameters, whereas the others

are determined by the normalization conditions. This case is completely di↵erent

from the two population non-hierarchic model discussed in the preceding section,

indeed in this case the fit of the double exponential decay observed in the cluster

volume distribution is achieved fitting separately the two independent BP.

Hypothesis on the initial conditions define strong constraints in the parameter

space. Consider the case of a stationary initial condition in the context of the CSC

model. Restrictions must be imposed if the existence of two population is tracked

in the experiments. First of all, if we suppose that the fraction of D cells is not

null, we should see many single cells in the well resulting in a high peak centered

in V = 1 in the cluster volume distributions. This is not what we see, therefore we

must consider the case of an high proliferation rate of the S cells (2q1 < 1+ ✏� q0).



Conclusion and outlook

In this thesis we studied Melanoma cell clusters in petri dishes with a Statistical

Mechanics approach. The concepts developed represent a collection of methods to

approach cell cluster analysis. This research is motivated by an increasing interest

in the study of aggregation phenomena. Aggregates are the results of complex

dynamics of a number of individuals. In the DLA model the patterns observed are

the results of a di↵usive system, whereas cell clusters forms as a consequence of cell

division processes.

This topic deserves great attention in Biology, indeed a great challenge for scien-

tists is the comprehension of tumor proliferation dynamics. The recent CSC theory,

that support the existence of a minor subpopulation of cells endowed with stem-like

features responsible of the proliferation of the tumor, suggested new therapies in

cancer treatments and raised a great debate in this context. Conversely the tra-

ditional theory is based on a single population hypothesis. Understanding which

are the real dynamics of tumor growth would be a striking discovery and a positive

boost for improved cancer therapies.

To this purpose, we studied sets of cell colonies in petri dishes at di↵erent growth

stages. We designed a systematic approach to the calculation of experimental ob-

servables developing an imaging technique. Experimental observations performed in

Biology are improved with a computational method that allows exact measurements.

We developed methods to investigate static properties of clusters in order to test

the confidence of the experimental setup and to verify the independence of cluster

growth processes. We found that Melanoma cells form sparse independent clusters
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and that the proliferation do not depends on the concentration of cells in the region

in which they are confined. We studied the cluster geometries in order to discuss

if the proliferation follows an isotropic trend. The experimental data are compared

with random like clusters simulated with the Eden model, showing that the growth

process is isotropic for Melanoma cells.

The randomness of the proliferation is the basic hypothesis in Branching Process

Theory, where individuals behaves identically as all other individuals and indepen-

dently of all other individuals. We reviewed the basic concepts of this theory and

developed models to interpret experimental measurements. We enlighten double

population dynamics in cell cluster growth and we detected one type of cells that

constitutes the minority of all the cells for colonies of Melanoma cells. Both these

results give credit to the CSC theory.

Summarizing in this project we discussed a possible method to approach cell

cluster analysis. We studied geometrical aspects of cell clusters involving concepts of

Classical and Statistical Mechanics, as well as Complex Systems models. Afterwards

we studied the dynamics of cell proliferation in the context of Branching Process

Theory.

This thesis represents a modest contribution towards the comprehension of the

proliferation of cancer cells. It would be interesting to prove the existence of a

hierarchic structure in cancer cell populations. This would indeed represents an

additional striking confirmation of the CSC theory.

An interesting and natural expansion of this work would be the development

of a graphical user interface to simply handle images of 2D compact clusters. The

methods discussed in this thesis are based on physical concepts and would be very

useful for non-physicists that would be able to extract useful informations for ex-

ample from cell aggregates. Indeed we developed a systematic framework to assess

properties of compact clusters, such as mutual independence and randomness in spa-

tial growth, and to perform measurements, such as number of clusters and cluster

volumes, useful to understand the dynamical behavior of these systems.





Appendix A

Technical details of the image

conversion method

The image conversion method consists in a series of steps that are achieved in

our research with the GNU image manipulating program GIMP. It is possible to

implement most of them in a code but we preferred to keep them under control with

a graphical interface.

• It happens that the well is not “clean” because of dust that settle and then

fix with the solution of crystal violet and formalin or because of spots formed

by evaporated water. This is solved blurring the impurities in the image.

• Thus a first edge detect is achieved with the DoG (di↵erence of Gaussian)

technique setting r1 >> r2 and r2 = 1 px with the Invert option in order

to obtain light violet spots on a grey-white background. At this point it

is not possible to simply convert the violet spots in black spots using the

threshold because of grey shades on the background, thus better improvement

are needed.

• The contrast is increased using the Colorize option, where we fixed Hue = 240

and Saturation = 100.
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• A second edge detect is then run without Invert, obtaining bright yellow spots

on a black background that can be now removed selecting the black (there are

no shades at this point) and filling the same area with white color. Now all

the yellow spots are converted in black ones using the threshold option setting

a threshold value of 0.

• At last all the cluster connected to the contour of the selection are cancelled.

This is achieved to avoid any error when counting for example the volumes of

the clusters or observables that involve the geometry that are clearly a↵ected

by cuts due to the selection considered.



Appendix B

Distribution of distances between

random points

Consider now a circle A of radius r. Assume that two points are randomly thrown in

A and we are interested in probability distribution function of the Euclidian distance

x between them P
r

(x). To solve this problem we use Crofton fixed points theorem

[17], that shows a way how to evaluate definite integrals without performing direct

integration.

Theorem B.0.1. (Crofton fixed points theorem, 1885) Let n points ⇠
i

, i = 1, 2, ..., n,

be randomly distributed on a domain S and let H be some event (property) that

depends on the positions of these points. Let S 0 ⇢ S such that �S is a part of S not

in S 0. Then the following relation can be used to find the probability of certain point

arrangements

dP (H) = n(P (H|⇠1 2 �S)� P (H))S�1dS. (B.1)

Let P denote the probability that two points are separated by a distance between

x and x +�x (see Figure B.1). P1 denotes the same probability given that one of

the points is on the circumference of the circle. Thus, in our case B.1 simplifies to

dP = 2(P1 � P )
dA

A
, (B.2)

87



Distribution of distances between random points 88

where A is the area of the circle, i.e. A = ⇡r2 and dA = 2⇡rdr. Observe Figure

B.1, where illustration of the problem is presented. When one point is on the

circumference dA, for two points to be separated by x another point must be exactly

x distance away. This implies it should reside on a section of an annulus. When dx

is infinitesimally small the area of the annulus is 2�xdx, where � is readily found to

be arccos (x/2r). Thus, P1 can be found as

P1 =
2xdx arccos (x/2r)

⇡r2
. (B.3)

Figure B.1: Here is a schematic depiction of the circular section with radius r. The
angle � = arccos(x/2r) is shown and ⇠1 denotes one point on the circumference used
in calculating P1.

Substituting B.3 in B.2 we get

dP =

✓
2xdx arccos(x/2r)

⇡r2
� P

◆
4dr

r
. (B.4)
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Rearranging terms and integrating both sides we have

Pr4 =
4x2dx

⇡

Z
2r

x
arccos

⇣ x

2r

⌘
dr (B.5)

=
4x2dx

⇡

 
2r2 arccos

⇣ x

2r

⌘
� xr

r
1� x2

4r2

!
+ C (B.6)

where C is the integration constant. For r = l

2
two points have to fall on the

circumference diametrically across and this event has probability 0. Therefore, for

r = l

2
we shouldd have P = 0. Substituting this into B.6, we get C = 0, thus the

probability distribution function of the distances x between random points is given

by [18]
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Mean and variance are computed using the probability distribution function

p
r

(x) resulting in
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STATISTICAL METHODS IN CELL

CLUSTER ANALYSIS

La formazione di aggregati in natura è il risultato della dinamica comples-

sa di una molteplicità di particelle. Tali fenomeni sono di ordinario interesse

nello studio dei Sistemi Complessi e in Biofisica e la loro comprensione ha

portato ad importanti sviluppi nella fisica dello Stato Solido [1].

L’oggetto d’indagine di questa tesi consiste in cluster di cellule tumo-

rali a diversi stadi di crescita. Nella prima parte della tesi si propone un

metodo sistematico per l’analisi e la caratterizzazione di cluster bidimensio-

nali compatti, mentre nella seconda parte si adotta la teoria dei “Branching

Processes” (BP) [2] per interpretare la dinamica di crescita degli aggregati

cellulari.

Questa ricerca è motivata dal recente sviluppo di una teoria interpreta-

tiva per la crescita tumorale, nota come Cancer Stem Cell (CSC) Theory

[3, 4]: secondo questa la massa tumorale è composta da un ristretta popo-

lazione di cellule, dette cellule staminali tumorali, in grado di proliferare a

lungo e quindi responsabili dello sviluppo del tumore, mentre la maggioranza

delle cellule tumorali sono dotate di un limitato potenziale di proliferazione.

Questa teoria sta riscuotendo crescente successo all’interno della comunità

scientifica in contrapposizione alla teoria tradizionale che prevede l’esistenza

di una singola popolazione cellulare nei tumori [5].

In questo lavoro di tesi, discutiamo dei metodi di analisi per la crescita

di cluster di cellule tumorali. La tecnica adottata coinvolge concetti di Mec-

canica Statistica e Sistemi Complessi con particolare attenzione alla teoria

BP.

1



Nel Capitolo 1, presentiamo la tipologia di dati che si intende analizzare e

discutiamo un metodo sistematico per il calcolo delle osservabili sperimentali.

La tecnica che abbiamo sviluppato per lo studio di cluster cellulari è del tutto

generale e può essere adattata a diverse tipologie di cluster bidimensionali.

I dati sperimentali dei quali disponiamo consistono in cluster di cellule

tumorali su capsule di Petri circolari. Per ottenere questi dati, sono state

disposte delle cellule sopra le capsule e ognuna di esse ha dato origine ad un

processo evolutivo in grado di formare cluster. Quindi un’istantanea dello

stadio evolutivo degli aggregati cellulari è stata ottenuta mediante la tecnica

biologica del cristal-violetto in grado di fissare e colorare le cellule.

Abbiamo ottenuto un’immagine digitale della capsula con un semplice

scanner, che poi abbiamo modificato in modo tale da ottenere cluster neri su

sfondo bianco, eliminando il rumore di fondo con una tecnica di edge-detect.

L’immagine ottenuta è convertita in una matrice booleana dove 1 corrisponde

ad un sito occupato da un cluster e 0 ad un sito vuoto. Dopodiché abbiamo

introdotto un algoritmo [6] in grado di etichettare ogni sito occupato con un

numero rappresentativo del cluster di appartenenza, ottenendo una matrice

dove 0 definisce un sito vuoto, mentre gli altri interi etichettano i cluster. In

questo modo le osservabili possono essere facilmente calcolate a partire da

tale “matrice di etichette”.

Nel Capitolo 2 si discutono le problematiche relative al setup sperimen-

tale e al metodo di calcolo descritto nel capitolo precedente. Lo scopo di

questa parte del lavoro consiste nel verificare che i cluster non interagiscono

tra loro e possono essere trattati come entità indipendenti. A tal fine è ne-

cessario e↵ettuare delle misure che tengano conto dell’insieme delle particelle

all’interno delle capsule.

Abbiamo verificato che non sono presenti interazioni fra i diversi aggregati

cellulari, studiando la distribuzione delle distanze tra i baricentri dei cluster e

confrontando il risultato con un sistema di particelle distribuite casualmente

in una regione circolare delle stesse dimensioni di quella considerata.

La tecnica adottata per il calcolo delle osservabili è stata discussa e↵et-

tuando delle misure sul numero di cluster e mettendole in relazione con il

numero di cellule originariamente presenti. Come ci si aspetta biologicamen-

te il numero di cluster risulta mediamente inferiore al numero di cellule di
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nucleazione.

Ci siamo infine chiesti se fosse presente una possibile interazione delle

cellule, e preciò dei cluster, con le pareti delle capsule di Petri nelle quali

sono vincolate. Per rispondere a questo quesito sono state messe a confronto

le distribuzioni rinormalizzate dei volumi dei cluster, ottenute per diversi

valori del numero di cellule iniziali e si osservato che tutte danno origine allo

stesso tipo di distribuzione.

Si è quindi appurato che i cluster sono indipendenti tra di loro. Il Ca-

pitolo 3 riguarda invece l’evoluzione geometrica dei vari aggregati, al fine di

stabilire se il processo è isotropo oppure è possibile identificare una direzione

preferenziale di crescita. Abbiamo definito, a partire dal calcolo del tensore

di inerzia, delle misure che descrivono l’eccentricità e l’orientazione di oggetti

bidimensionali. Si è verificato che i cluster seguono una crescita casuale in

accordo con le previsioni del modello di Eden [7] e che la distribuzione degli

angoli di orientazione è uniforme.

I risultati ottenuti suggeriscono che le cellule sono entità indipendenti tra

loro. Questa è un’ipotesi fondamentale se intendiamo studiare la dinamica

evolutiva dei cluster utilizzando modelli ispirati alla teoria BP. Questa teoria

descrive infatti la dinamica stocastica di una popolazione di individui che

seguono le stesse regole evolutive ma che si comportano indipendentemente

tra loro.

Nel Capitolo 4 si introducono i concetti fondamentali della teoria. Si ap-

profondisce in modo particolare il caso di processi a tempo discreto (processi

di Galton-Watson) e si espongono i principali risultati che possono essere

ottenuti nel regime asintotico. Questa limitazione introduce inevitabilmente

la necessità di simulazioni che verranno sviluppate per comparare i modelli

con i dati sperimentali. Si discute quindi un modello a singola popolazione

coerente con la teoria tradizionale per la crescita tumorale e un modello a

più popolazioni basato sui recenti sviluppi della teoria CSC [8].

Il Capitolo 5 riguarda il confronto dei suddetti modelli con le misure e↵et-

tuate a partire dai cluster di cellule tumorali, utilizzando il metodo descritto

nel primo capitolo. Analogamente alla teoria della percolazione, abbiamo

analizzato le distribuzioni dei volumi dei cluster, poiché tengono in conside-

razione della composizione globale dei campioni analizzati. Secondo l’analisi
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condotta, il modello “tradizionale” risulta inadatto a riprodurre i risultati

sperimentali e si presenta la necessità di supporre l’esistenza di due popola-

zioni. Infatti tale ipotesi è in accordo con le misure ottenute ed è coerente

con una teoria CSC nella quale esiste una ristretta sottopopolazione di cel-

lule con probabilità di morte nulla. Infine discutiamo le problematiche che

si presentano nel supporre l’esistenza di una gerarchia tra le due popolazioni

cellulari. Se fosse possibile infatti verificare in un futuro la correttezza di

quest’ipotesi, si otterrebbe un ulteriore conferma della teoria CSC.
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