Drell-Yan processes at the LHC

Alessandro Vicini University of Milano, INFN Milano

München, February 27th 2008

with: C. M. Carloni Calame, G. Montagna, O. Nicrosini, G. Balossini, F. Piccinini, M. Moretti, M. Treccani

```
papers:
CMCC, GM, ON,AV: JHEP 0612:016 (2006), JHEP 0710:109 (2007)
```

workshop proceedings: hep-ph/0604I 20 (Les Houches, Physics at TeV colliders 2005)
arXiv:0705.325I (TeV4LHC: top and EW working group)
ongoing workshop : Les Houches, Physics at TeV colliders 2007

Outline

- relevance of Drell-Yan processes and motivation for precision studies precision EW physics
pdf constraining
background to new physics searches
- Charged Current and Neutral Current processes
- EW O(α) corrections matched with higher order QED corrections
- photon induced processes
- impact of the EW corrections on several observables
- combining QCD and EW radiative corrections
- uncertainties due to the $p d f s$
controlling the predictions at the few per cent level is not a trivial task

The Drell-Yan processes

- easy detection
high pt lepton pair or high pt lepton + missing pt typical cuts at the LHC (central detector region) $p_{\perp, l}$ and $p_{\perp, \nu}>25 \mathrm{GeV},\left|\eta_{l}\right|<2.5$

- large cross section

at LHC $\sigma(W)=30 \mathrm{nb}$ i.e. $310^{\wedge} 8$ events with $L=10 \mathrm{fb} \wedge-1$ at $\mathrm{LHC} \sigma(Z)=3.5 \mathrm{nb}$ i.e. $3.5 \mathrm{I} 0^{\wedge} 7$ events with $L=10 \mathrm{fb} \wedge-1$
no statistical limitation to perform high precision EW measurements

- W mass and width

$\xrightarrow{3}$

- pdf validation collider luminosity
lepton distributions
W transverse mass ratios W/Z distributions
total cross section
W, Z rapidity
lepton pseudo-rapidity acceptances
- detector calibration

W, Z mass distributions

Relevance of a precise W mass measurement

Sensitivity to the precise value of the Higgs boson mass or e.g. to SUSY particles

Awramik, Czakon, Freitas, Weiglein
Degrassi, Gambino, Passera, Sirlin

New world average:

$$
m_{W}=m_{W}\left(\Delta r^{S M, M S S M}\right)
$$

$$
\Delta r^{S M, M S S M}=\Delta r^{S M, M S S M}\left(m_{t}, m_{H}, m^{S U S Y}, \ldots\right)
$$

Relevance of a precise W mass measurement

To ensure that top and W mass measurements have the same weight in the SM EW fit, the experimental errors should be related as (cfr. CERN-2000-04) :

$$
\Delta m_{W} \sim 0.7 \times 10^{-2} \Delta m_{t}
$$

Precision measurement of EW observables

target at LHC :
 $\Delta m_{W}=15 \mathrm{MeV}$

New projection with $1.5 \mathrm{fb}^{-1}$ of data:
$\delta m_{w}<25 \mathrm{MeV}$ with CDF
C. Hays, University of Oxford

- $\sin ^{2} \theta_{\text {eff }}^{l e p}$ measurement

Constraining the $p d f s$

The gauge bosons rapidity distributions are sensitive to the partonic content of the proton
The W charge asymmetry is, in first approximation, directly related to the ratio $\mathrm{d}(\mathrm{x}) / \mathrm{u}(\mathrm{x})$

$$
A_{W}(y)=\frac{d \sigma\left(W^{+}\right) / d y-d \sigma\left(W^{-}\right) / d y}{d \sigma\left(W^{+}\right) / d y+d \sigma\left(W^{-}\right) / d y} \approx \frac{u\left(x_{1}\right) d\left(x_{2}\right)-d\left(x_{1}\right) u\left(x_{2}\right)}{u\left(x_{1}\right) d\left(x_{2}\right)+d\left(x_{1}\right) u\left(x_{2}\right)}
$$

In the experiment we observe leptons, whose distributions are less directly related to the pdfs

$$
A\left(y_{l}\right)=\frac{\sigma\left(l^{+}\right)-\sigma\left(l^{-}\right)}{\sigma\left(l^{+}\right)+\sigma\left(l^{-}\right)} \quad \cos ^{2} \theta^{*}=1-4 E_{T}^{2} / M_{W}^{2}
$$

$$
\sigma\left(l^{+}\right)-\sigma\left(l^{-}\right) \propto u\left(x_{1}\right) d\left(x_{2}\right)\left(1-\cos \theta^{*}\right)^{2}+\bar{d}\left(x_{1}\right) \bar{u}\left(x_{2}\right)\left(1+\cos \theta^{*}\right)^{2}-u\left(x_{2}\right) d\left(x_{1}\right)\left(1+\cos \theta^{*}\right)^{2}
$$

The Drell-Yan cross-section receives a large contribution also from charm and strange in the initial state

Still, the lepton pseudorapidity distribution in inclusive DY, or the jet pseudorapidity distribution in the $\mathrm{W}+$ jet final state, are important in constraining the $p d f s$ in the global fit of the data

Luminosity monitoring (?)

DY as reference process to monitor the luminosity (like Bhabha at LEP)

$$
\begin{aligned}
\int \mathcal{L} d t & =\frac{1}{\sigma_{t h}^{\text {tot }}(p p \rightarrow l \nu)} \frac{N^{\text {obs }}}{A_{W}} \\
A_{W}\left(\eta_{l}^{\max }\right) & =\frac{1}{\sigma_{t h}^{\text {tot }}(p p \rightarrow l \nu)} \int_{-\eta_{l}^{\text {max }}}^{\eta_{l}^{\max }} d \eta_{l} \frac{d \sigma}{d \eta_{l}}(\text { cuts })
\end{aligned}
$$

need to precisely evaluate the detector acceptance
This approach is promising, only if we have a good control on the pdf uncertainties
all the present $p d f$ sets describe well the Drell-Yan data at the Tevatron

the extrapolation at the LHC is more delicate (new ranges in x and $\mathrm{Q}^{\wedge} 2$)
$\sigma \pm \delta \sigma_{\text {PDF }}$ in units of $\sigma($ CTEQ65M)
LHC, NLO, PRELIMINARY

DY as background to the searches of new heavy gauge bosons

from Menici's talk at IFAE 2006

- new heavy gauge bosons decay into lepton pairs
- if existing \rightarrow clear signal even at low luminosity
- if not detected, SM-DY represents the main background whose precise estimate allows to put the correct lower bounds \rightarrow need to control the background at per cent level

Is the SM prediction at large invariant masses under control ?

NC DY as calibration tool at the Z resonance
 to extract correctly the Z mass value from the resonance

$$
\Delta M_{Z}^{\mathcal{O}(\alpha)} \sim 400 \mathrm{MeV} \quad \Delta M_{Z}^{\text {h.o. }} \sim 40 \mathrm{MeV}
$$

The error in the calibration is a systematics in the W mass measurement

The quest for precision (I) i.e. "how do we measure MW"?
transverse mass

$$
M_{\perp}^{W}=\sqrt{2 p_{\perp}^{l} p_{\perp}^{\nu}\left(1-\cos \phi_{l \nu}\right)}
$$

- reconstructed in the transverse plane
- jacobian peak at the W mass
- rather insensitive to QCD initial state radiation (e.g. ptw modeling)

- Detector response effects strongly affect the distributions
- QED Final state radiation distorts the lepton p_{\perp} and transverse mass distributions affects the determination of $\quad M_{W}$

$$
\begin{array}{lll}
\mathcal{O}(\alpha) \text { corrections: } & \begin{array}{l}
\text { muons } \\
\text { electrons }
\end{array} & \Delta M_{W}=168 \pm 20 \mathrm{MeV} \\
\Delta M_{W}=65 \pm 20 \mathrm{MeV}
\end{array}
$$

The quest for precision (II)

What is the effect of QED higher orders on the MW extraction?

Shift induced in the extraction of MW from higher order QED effects (very simplified detector for muons and electrons)

$$
\Delta M_{W}^{\alpha}=110 \mathrm{MeV}
$$

$$
\Delta M_{W}^{e x p}=-10 \mathrm{MeV}
$$

$$
\mathrm{M}_{\mathrm{w}} \text { systematics }
$$

In agreement with CDF estimates S. Malik@DIS2007

QCD approximations and tools

- NLO/NNLO corrections to W/Z total production rate
G. Altarelli, R.K.Ellis, G. Martinelli, Nucl.Phys.. B157 (1979) 461
G. Altarelli, R.K.Ellis, M. Greco, G. Martinelli, Nucl.Phys.. B246 (1984) 12
R. Hamberg, W. L. van Neerven, T. Matsuura, Nucl.Phys. B359 (1991) 343
W. L. van Neerven and E.B. Zijstra, Nucl.Phys. B382 (1992) 11
- Fully differential NLO corrections to $l \bar{l}^{\prime}$ (MCFM)
J. M. Campbell and R.K. Ellis, Phys.Rev.D65:113007
- Fully differential NNLO corrections to $l \bar{l}^{\prime}$ (FEWZ)
C. Anastasiou et al., Phys.Rev. D69 (2004) 094008
K. Melnikov and F. Petriello, hep-ph/0603182
- resummation of LL/NLL $p_{\perp}^{W} / M_{W} \operatorname{logs}($ RESBOS $)$
C.Balazs and C.P. Yuan, Phys.Rev. D56 (1997) 5558
- NLO ME merged with HERWIG PS (MC@NLO)
S. Frixione and B.R.Webber., JHEP 0206, 029 (2002)
- LO Matrix Elements Monte Carlos (ALPGEN, SHERPA,...) matched with PS

EW results and tools

$\mathcal{O}\left(\alpha_{S}^{2}\right) \approx \mathcal{O}\left(\alpha_{\mathrm{em}}\right) \backsim$ Need to worry about EW corrections

W production

Pole approximation

Exact O(alpha)

Photon-induced processes

Multiple-photon radiation

Z production

only QED
Exact O(alpha)

Multiple-photon radiation
D.Wackeroth and W. Hollik, PRD 55 (1997) 6788
U.Baur et al., PRD 59 (1999) 013002
V.A. Zykunov et al., EPJC 3 (200I) 9
S. Dittmaier and M. Krämer, PRD 65 (2002) 073007 DK
U. Baur and D.Wackeroth, PRD 70 (2004) 073015 WGRAD2
A.Arbuzov et al., EPJC 46 (2006) 407 SANC
C.M.Carloni Calame et al., JHEP 06I2:016 (2006) HORACE
S. Dittmaier and M. Krämer, Physics at TeV colliders 2005
A. B.Arbuzov and R.R.Sadykov, arXiv:0707.0423
C.M.Carloni Calame et al.,PRD 69 (2004) 03730I, JHEP 06I2:016 (2006) HORACE S.Jadach and W.Placzek, EPJC 29 (2003) 325
S.Brensing, S.Dittmaier, M. Krämer and M.M.Weber, arXiv:0708.4I23

WINHAC DK
U.Baur et al., PRD 57 (1998) 199
U.Baur et al., PRD 65 (2002) 033007
V.A. Zykunov et al., PRD75 (2007) 073019
C.M.Carloni Calame et al., JHEP 07I0:I09 (2007) HORACE
C.M.Carloni Calame et al., JHEP 0505:019 (2005) HORACE JHEP 07I0:I09 (2007)

Tuned comparisons of O (alpha) calculations

Les Houches workshop "Physics at TeV colliders" (May 2005)

Fig. 1: Relative corrections δ as a function of the transverse-momentum $p_{\mathrm{T}, l}$ and the transverse mass $M_{\mathrm{T}, \nu_{l} l}$, as obtained from the Dk, Horace and Sanc calculations. The contributions from the photon-induced processes have not been included in this comparison.

- Technical comparison: same setup (input parameters, pdfs, cuts, perturbative order) \Rightarrow one expects to find the same results
- Similar comparisons during the TeV4LHC workshop

The HORACE event generator

- http://www.pv.infn.it/hepcomplex/horace.html
- developed by: C.M.Carloni Calame, G.Montagna, O.Nicrosini, A.Vicini
- exact $O(\alpha)$ radiative corrections matched with multiple photon radiation via QED Parton Shower photon induced processes
- true, fully exclusive event generator events saved in a Les Houches compliant form interfaced to LHAPDF package easy to interface to QCD showering programs like HERWIG or PYTHIA

Basics of the HORACE code (both CC and NC channels)

- LO calculation + QED LL corrections to all orders via Parton-Shower
- exact $O(\alpha)$ EW radiative corrections
- matching of Parton-Shower and exact results (no double countings)
- use MRST2004QED: consistent description of initial state QED radiation photon density in the proton \rightarrow photon induced processes
- subtraction procedure of IS collinear divergences to all orders
- The input parameters scheme, i.e. renormalization, $\left(\alpha, m_{W}, m_{Z}\right)$ \rightarrow gauge boson masses as input parameters which can be fitted from the data
- numerical evaluation in the G_{μ} scheme (CC) or $\left(G_{\mu}+\alpha\left(q^{2}\right)\right)$ scheme (NC)

The partonic process $u \bar{d} \rightarrow l^{+} \nu_{l}(1 \gamma)$ at $\mathcal{O}(\alpha)$

- virtual corrections

T6 P1 N31
T6 P2 N32
T6 P3 N33
T6 P4 N34
T6 P1 N35
T6 P2 N36
T6 P1 N37
T6 P2 N38
T6 P3 N39 T7 P1 N40

The partonic process $u \bar{d} \rightarrow l^{+} \nu_{l}(1 \gamma)$ at $\mathcal{O}(\alpha)$

- virtual corrections
checks: - UV finiteness
- IR finiteness (when combined with soft photon emission)
- use of two different gauges (Feynman and background)
- fixed W decay width necessary to describe the resonance region included in all tree-level propagators and at I-loop in all the resonant logs: $\quad \log \left(s-m_{W}^{2}\right) \rightarrow \quad \log \left(s-m_{W}^{2}+i \Gamma_{W} m_{W}\right)$
- on-shell renormalization scheme
- large negative EW Sudakov logs
- real bremsstrahlung corrections

The partonic process $u \bar{d} \rightarrow l^{+} \nu_{l}(1 \gamma)$ at $\mathcal{O}(\alpha)$

- virtual corrections
checks: - UV finiteness
- IR finiteness (when combined with soft photon emission)
- use of two different gauges (Feynman and background)
- fixed W decay width necessary to describe the resonance region included in all tree-level propagators and at I-loop in all the resonant logs: $\quad \log \left(s-m_{W}^{2}\right) \rightarrow \quad \log \left(s-m_{W}^{2}+i \Gamma_{W} m_{W}\right)$
- on-shell renormalization scheme
- large negative EW Sudakov logs
- real bremsstrahlung corrections
checks: - independence of total cross section of soft/hard separator
- e.m. gauge invariance
- initial state collinear logs regulated by quark masses
- large ISR corrections: radiative return to the W resonance
- photon induced processes
- $\gamma u \rightarrow d \mu^{+} \nu_{\mu}$

The partonic process $q \bar{q} \rightarrow l^{+} l^{-}(1 \gamma)$ at $\mathcal{O}(\alpha)$

Born

(a)

$O(\alpha)$ virtual

(a)
$O(\alpha)$ real bremsstrahlung

(a)

(c)

(d)
$O(\alpha)$ photon induced

Matching exact $\mathcal{O}(\alpha)$ and parton-shower results

- exact $\mathcal{O}(\alpha)$ partonic cross-section

$$
d \sigma^{\alpha, e x} \equiv d \sigma_{S V}^{\alpha, e x}+d \sigma_{H}^{\alpha, e x}
$$

- parton-shower (PS) $\mathcal{O}(\alpha)$

$$
d \sigma^{\alpha, P S}=\left[\Pi_{S}\left(Q^{2}\right)\right]_{\mathcal{O}(\alpha)} d \sigma_{0}+\frac{\alpha}{2 \pi} P(x) I(x) d x d c d \sigma_{0} \equiv d \sigma_{S V}^{\alpha, P S}+d \sigma_{H}^{\alpha, P S}
$$

- resummed PS

$$
\begin{gathered}
d \sigma_{P S}^{\infty}= \\
\Pi_{S}\left(Q^{2}\right) \quad \sum_{n=0}^{\infty} d \hat{\sigma}_{0} \frac{1}{n!} \prod_{i=0}^{n}\left(\frac{\alpha}{2 \pi} P\left(x_{i}\right) I\left(k_{i}\right) d x_{i} d \cos \theta_{i} \quad\right)
\end{gathered}
$$

$\Pi_{S}\left(Q^{2}\right) \equiv \exp \left(-\frac{\alpha}{2 \pi} \log \left(\frac{Q^{2}}{m^{2}}\right) \int_{0}^{1-\varepsilon} d x P(x)\right) \quad$ Sudakov form factor

$$
I\left(k_{i}\right)=\left(k_{i}^{0}\right)^{2} \sum_{j, l=1}^{N} \eta_{j} \eta_{l} \frac{p_{j} p_{l}}{\left(p_{j} k_{i}\right)\left(p_{l} k_{i}\right)}
$$

Matching exact $\mathcal{O}(\alpha)$ and parton-shower results

- exact $\mathcal{O}(\alpha)$ partonic cross-section

$$
d \sigma^{\alpha, e x} \equiv d \sigma_{S V}^{\alpha, e x}+d \sigma_{H}^{\alpha, e x}
$$

- parton-shower (PS) $\mathcal{O}(\alpha)$

$$
d \sigma^{\alpha, P S}=\left[\Pi_{S}\left(Q^{2}\right)\right]_{\mathcal{O}(\alpha)} d \sigma_{0}+\frac{\alpha}{2 \pi} P(x) I(x) d x d c d \sigma_{0} \equiv d \sigma_{S V}^{\alpha, P S}+d \sigma_{H}^{\alpha, P S}
$$

- resummed PS + exact

$$
\begin{gathered}
d \sigma_{\text {matched }}^{\infty}= \\
\Pi_{S}\left(Q^{2}\right) F_{S V} \sum_{n=0}^{\infty} d \hat{\sigma}_{0} \frac{1}{n!} \prod_{i=0}^{n}\left(\frac{\alpha}{2 \pi} P\left(x_{i}\right) I\left(k_{i}\right) d x_{i} d \cos \theta_{i} F_{H, i}\right) \\
F_{S V}=1+\frac{d \sigma_{S V}^{\alpha, e x}-d \sigma_{S V}^{\alpha, P S}}{d \sigma_{0}} \quad F_{H, i}=1+\frac{d \sigma_{H, i}^{\alpha, e x}-d \sigma_{H, i}^{\alpha, P S}}{d \sigma_{H, i}^{\alpha, P S}}
\end{gathered}
$$

- at $\mathcal{O}(\alpha)$ it coincides with the exact calculation
- QED higher orders coincide with pure PS

The hadronic process $\quad p p(p \bar{p}) \rightarrow l \bar{l} X \quad$ at $\quad \mathcal{O}(\alpha)$

$$
\begin{gather*}
\sigma(p p \rightarrow l \bar{l} X)=\sum_{a, b} \int_{0}^{1} d x_{1} d x_{2} q_{a}\left(x_{1}\right) q_{b}\left(x_{2}\right) \hat{\sigma}(a b \rightarrow l \bar{l}(1 \gamma)) \\
q_{a}(x) \rightarrow q_{a}\left(x, M^{2}\right)-\Delta q_{a}\left(x, M^{2}\right) \\
\begin{aligned}
\Delta q_{i}\left(x, M^{2}\right)= & \int_{x}^{1} d z q_{i}\left(\frac{x}{z}, M^{2}\right) \frac{\alpha}{2 \pi} Q_{i}^{2}\left[P_{q \rightarrow q \gamma}(z)\left(\log \left(\frac{M^{2}}{m_{i}^{2}}\right)-2 \log (1-z)-1\right)\right]_{+}+f_{q}(z) \\
& +q_{\gamma}\left(\frac{x}{z}, M^{2}\right) \frac{\alpha}{2 \pi} Q_{i}^{2}\left[P_{\gamma \rightarrow q \bar{q}}(z)\left(\log \left(\frac{M^{2}}{m_{q}^{2}}\right)\right)\right]+f_{\gamma}(z)
\end{aligned} \\
\Delta q_{\gamma}\left(x, M^{2}\right)= \tag{3.3}
\end{gather*}
$$

() generalization to the multiple emission case: in each emission the leading singularity is removed the integrated cross-section is independent of the initial state quark masses

Check:Total cross-section for different values of the initial state quark masses (CC channel)

Including exact $\mathcal{O}(\alpha)$ corrections

M_up	$2053.07 \pm 0.22(\mathrm{pb})$
M_up / 50	$2053.09 \pm 0.23(\mathrm{pb})$
M_up / I00	$2052.98 \pm 0.24(\mathrm{pb})$

Best we can: $\mathcal{O}(\alpha)$ matched with parton-shower

M_up	$2053.48 \pm 0.28(\mathrm{pb})$
M_up / 50	$2053.73 \pm 0.32(\mathrm{pb})$
M_up / 100	$2053.38 \pm 0.35(\mathrm{pb})$

MRST 2004 QED and photon induced processes

- QED evolution \Rightarrow photon density in the proton \Rightarrow photon induced processes
- $\gamma u \rightarrow d \mu^{+} \nu_{\mu}$

Charged Current channel

- same perturbative order as the $O(\alpha)$ corrections
- they contribute to the inclusive DY cross section
- depending on the cut on the final state jet, important effect on the lepton transverse momentum distribution

Neutral Current channel

- also new lowest order partonic subprocess

W transverse mass distribution (peak region)

$$
M_{T}^{W}=\sqrt{2 p_{\perp}^{l} p_{\perp}^{\nu}\left(1-\cos \phi_{l \nu}\right)}
$$

- reconstructed in the transverse plane
- jacobian peak at the W mass
- rather insensitive to QCD initial state radiation (e.g. ptw modeling)

- recombined electrons show partial KLN cancelation
- bare (i.e. perfectly isolated) muons receive large final state corrections
- insensitive to photon induced processes

relevant for the extraction of MW and of Gamma
 \qquad

W-rapidity and lepton pseudo-rapidity distributions

- relevant for acceptances, luminosity monitoring, pdfs constraining
- (flat) correction factor ranges from -2\% (W) to -4\% (lepton)
- of the same order of present NNLO-QCD uncertainty

Z observables: invariant mass distribution

- huge radiative corrections below the Z peak (final state radiation)
- in the large mass tail, large negative corrections (EW Sudakov logs) not negligible effect of (tree-level) photon-induced subprocess

Z observables: forward-backward asymmetry and $\sin ^{2} \theta_{\text {eff }}^{l e p}$

$$
A_{F B}\left(M_{l^{+} l^{-}}\right)=\frac{F\left(M_{l^{+} l^{-}}\right)-B\left(M_{l^{+} l^{-}}\right)}{F\left(M_{l^{+} l^{-}}\right)+B\left(M_{l^{+} l^{-}}\right)} \quad F\left(M_{l^{+} l^{-}}\right)=\int_{0}^{1} d \cos \theta^{*} \frac{d \sigma}{d \cos \theta^{*}}, \quad B\left(M_{l^{+} l^{-}}\right)=\int_{-1}^{0} d \cos \theta^{*} \frac{d \sigma}{d \cos \theta^{*}}
$$

- detailed study of O (alpha) EW corrections and of the backgrounds in Baur et al., Phys.Rev.D57 (1998)I99
- multiple-photon effects and photon-induced processes do not contribute significantly to this observable
Z observables: transverse mass and Z rapidity distributions

- above the Z peak, not negligible effect of the photon-induced processes
- Z rapidity: QED h.o. and photon-induced contribute at the per mille level

W/Z transverse mass ratio (preliminary)

- the pQCD radiative corrections partially cancel in the ratio (Giele, Keller, Phys.Rev.D57:4433 (1998))
- the systematics due to the pdfs partially cancel in the ratio
- delicate discussion about the systematics on the acceptances
- the EW radiative corrections do not cancel in the ratio
- the ratio is very sensitive to the precise value of $\quad M_{W}$

The Drell-Yan processes and QCD dynamics

- at the LHC the lepton pair is (very often) accompanied by additional jets

	$\mathrm{N}=0$	$\mathrm{~N}=\mathrm{I}$	$\mathrm{N}=2$	$\mathrm{~N}=3$
Tevatron, no cuts	92.1%	7.6%	0.3%	
LHC, no cuts	79%	15%	5%	0.1%
LHC, MT $>1 \mathrm{TeV}$	30%	38%	21%	8%

- at LHC the cross section with $\mathrm{N}=\mathrm{I}$ enhanced by the subprocess with a gluon in the initial state (gluon density larger than at the Tevatron)
- the large MT cut forces the showering process (\rightarrow enhances $N=1,2,3$)

Combining QCD and EW corrections

- First attempt: combination of soft-gluon resummation with final state QED corrections Q.-H. Cao and C.-P. Yuan, Phys. Rev. Lett. 93 (2004) 042001 ResBos-A
- Additive combination of QCD and EW corrections:

$$
\left[\frac{d \sigma}{d \mathcal{O}}\right]_{Q C D \oplus E W}=\left\{\frac{d \sigma}{d \mathcal{O}}\right\}_{Q C D}+\left\{\left[\frac{d \sigma}{d \mathcal{O}}\right]_{E W}-\left[\frac{d \sigma}{d \mathcal{O}}\right]_{B o r n}\right\}_{H E R W I G P S}
$$

- $Q C D=$ ALPGEN (with CKKM-MLM Parton Shower matching), ResBos-CSS, MC@NLO, FEWZ, MCFM
- $E W=$ HORACE interfaced with HERWIG QCD Parton Shower

NLO-EW corrections convoluted with QCD PS \Rightarrow inclusion of $\mathcal{O}\left(\alpha \alpha_{s}\right)$ terms not reliable when hard non collinear radiation is important

- Beyond the additive approximation, a full 2-loop $\mathcal{O}\left(\alpha \alpha_{s}\right)$ calculation is needed

[^0]
Monte Carlo tuning: Tevatron and LHC

Monte Carlo	ALPGEN	FEWZ	HORACE	ResBos-A
$\sigma_{\text {LO }}(\mathrm{pb})$	$906.3(3)$	$906.20(16)$	$905.64(4)$	$905.26(24)$

Table: MC tuning at the Tevatron for the LO cross section of the process $p \bar{p} \rightarrow W^{ \pm} \rightarrow \mu^{ \pm} \nu_{\mu}$, using CTEQ6M with $\mu_{R}=\mu_{F}=\sqrt{x_{1} x_{2} s}$

Monte Carlo	ALPGEN	FEWZ	HORACE
$\sigma_{\text {LO }}(\mathrm{pb})$	$8310(2)$	$8304(2)$	$8307.9(2)$

Table: MC tuning at the LHC for the LO cross section of the process $p p \rightarrow W^{ \pm} \rightarrow \mu^{ \pm} \nu_{\mu}$, using MRST2004QED with $\mu_{R}=\mu_{F}=\sqrt{p_{\perp, W}^{2}+M_{W}^{2}}$

Monte Carlo	$\sigma_{\mathrm{NLO}}^{\text {Tevatron }}(\mathrm{pb})$	$\sigma_{\mathrm{NLO}}^{\mathrm{LHC}}(\mathrm{pb})$
MC@NLO	$2638.8(4)$	$20939(19)$
FEWZ	$2643.0(8)$	$21001(14)$

Table: MC tuning for MC@NLO and FEWZ NLO inclusive cross sections of the process $p(-) \rightarrow W^{ \pm} \rightarrow \mu^{ \pm} \nu_{\mu}$, with CTEQ6M (Tevatron) and MRST2004QED (LHC)

* After appropriate "tuning", and with same input parameters and cuts, Monte Carlos agree at $\sim 0.1 \%$ level (or better)

precision physics: EW + QCD @ the Tevatron

Absolute comparison: ResBos(CSS)-A vs MC@NLO + HORACE

- Different normalization of the distributions
- Around the jacobian peak, agreement at a few \% level
- in the soft M_{\perp}^{W} tail and in the hard p_{\perp}^{μ} tail, differences can reach the 15% level
- Around the jacobian peak, bulk of the EW effects by QED final state radiation
precision physics: QCD @ the LHC : p_{\perp}^{μ}
and p_{\perp}^{W} distributions

$$
\begin{aligned}
& p \bar{p} \rightarrow \mu^{ \pm} \nu_{\mu} \quad \sqrt{S}=14 \mathrm{TeV} \quad\left(G_{\mu}, M_{W}, M_{z}\right)+\alpha(0) \text { for real photons } \\
& p_{\perp, l} \text { and } p_{\perp, \nu}>25 \mathrm{GeV},\left|\eta_{l}\right|<2.5 \oplus(\text { possibly }) M_{\perp}^{W}>1 \mathrm{TeV} \\
& \text { NLO MRST2004QED with } \mu_{R}=\mu_{F}=\sqrt{p_{\perp, W}^{2}+M_{W}^{2}}
\end{aligned}
$$

- generators normalized to their cross section \Rightarrow shape differences
- exact NLO with Parton Shower important in the high tails of p_{\perp}^{l} and p_{\perp}^{W}
- agreement in the shapes predicted by MC@NLO and ALPGEN $0+1 j+2 j$
precision physics: QCD+EW @ the LHC: M_{\perp}^{W} and p_{\perp}^{μ} distributions

- the relative effect expressed in units Born+PS
- positive QCD corrections compensate negative EW corrections
- around the jacobian peak EW corrections mandatory to extract M_{W} only QCD-Parton Shower or only MC@NLO is not sufficient
- the convolution with QCD Parton Shower modifies the relative effect and shape of the EW corrections

precision physics: QCD+EW, parton shower effects

- the convolution with QCD Parton Shower modifies the relative effect and shape of the EW corrections
- the effect of the photon induced process disappear after the convolution with the Parton Shower

pdf constraining: W rapidity and lepton pseudo-rapidity distribution

Both QCD and EW corrections are quite flat partial cancellation +I5 -3 \%

The deltas are defined in unit (Born+PS)

pdf constraining: Charge asymmetry

$$
A\left(\eta_{\mu}\right)=\frac{d \sigma^{+} / d \eta_{\mu}-d \sigma^{-} / d \eta_{\mu}}{d \sigma^{+} / d \eta_{\mu}+d \sigma^{-} / d \eta_{\mu}}
$$

Stability of the prediction w.r.t. different generators

The asymmetry is large and changes sign

pdf constraining: Charge asymmetry

$$
A\left(\eta_{\mu}\right)=\frac{d \sigma^{+} / d \eta_{\mu}-d \sigma^{-} / d \eta_{\mu}}{d \sigma^{+} / d \eta_{\mu}+d \sigma^{-} / d \eta_{\mu}}
$$

good agreement of MC@NLO and ALPGEN

pdf constraining: Charge asymmetry

(TEV4LHC workshop)

O(α) EW effects are moderate in size and well under control.
Multiple photon emission is negligible

W: uncertainties due to the $p d f s$

LHC, CTEQ6.I

W: uncertainties due to the pdfs

The spread is about 2 times smaller w.r.t. CTEQ because of the different values of the tolerance parameter

MRST2001

MRST2001

W: uncertainties due to the pdfs LHC

W: uncertainties due to the $p d f s$

Large tail of the transverse mass distribution

Sensitive to the large-x part of the pdf

QCD+EW @ the LHC: $M_{i n v}^{e^{+} e^{-}}$and p_{\perp}^{e} distributions Les Houches 2007

$$
M_{i n v}^{l^{+} l^{-}}>200 \mathrm{GeV}
$$

NLO M ${ }_{\text {II }}$ Corrections

NLO $p_{\text {T,Lepton }}$ Corrections

Conclusions

- the event generator HORACE provides a detailed description of the EW corrections to CC and NC Drell-Yan processes
- a detailed phenomenological analysis demonstrates the impact of the EW corrections on several distributions and, in turn, on the measurement of several observables
- acceptances : pdfs, luminosity
- transverse mass: measurement of M_{W} (limits on Higgs, MSSM)
- a realistic description of the Drell-Yan processes requires the combination of QCD and EW corrections (possibly in a unified generator)
- the interplay of the two sets of corrections is not trivial
- the QCD-Parton Shower provides the correct lowest order approximation of the kinematics of these processes and modifies the impact of the EW corrections
- in the long term: unify ALPGEN and HORACE in a single generator

Back-up slides

Electroweak results with HORACE

LHC energy: $\sqrt{ } \mathrm{S}=14 \mathrm{TeV}$
pdf: MRST2004QED
process: $\quad p p \longrightarrow \mu^{ \pm} \nu+X$
input scheme: $\quad \alpha(0), M_{W}, M_{Z}$
selection cuts: $\quad p_{\perp, l}$ and $p_{\perp, \nu}>25 \mathrm{GeV},\left|\eta_{l}\right|<2.5$
extra cuts in photon-induced processes:

$$
p_{\perp, j e t}<30 \mathrm{GeV},\left|\eta_{j e t}\right|>2.5
$$

$$
\begin{aligned}
\cos \theta^{*} & =f \frac{2}{M\left(l^{+} l^{-}\right) \sqrt{M^{2}\left(l^{+} l^{-}\right)+p_{\perp}^{2}\left(l^{+} l^{-}\right)}}\left[p^{+}\left(l^{-}\right) p^{-}\left(l^{+}\right)-p^{+}\left(l^{+}\right) p^{-}\left(l^{-}\right)\right] \\
p^{ \pm} & =\frac{1}{\sqrt{2}}\left(E \pm p_{z}\right), \quad f=1 \text { (Tevatron) }, \quad f=\frac{\left|p_{z}\left(l^{+} l^{-}\right)\right|}{p_{z}\left(l^{+} l^{-}\right)}(\text {LHC })
\end{aligned}
$$

[^0]: see: J.H. Kühn, A.Kulesza, S.Pozzorini, M.Schulze, hep-ph/0703283
 W. Hollik, T.Kasprzik, B.A. Kniehl, arXiv:0707.2553

