

A global SMEFT analysis of the top quark sector at NLO

Juan Rojo

VU Amsterdam & Theory group, Nikhef

Based on work in progress with: Nathan P. Hartland, Fabio Maltoni, Emanuele R. Nocera, Emma Slade, Eleni Vryodinou, Cen Zhang

Top LHC Working Group meeting, CERN, 20/11/2018

Juan Rojo

Motivation

The Standard Model EFT

Heavy bSM physics beyond the direct reach of the LHC can be parametrised in a model-independent in terms of complete basis of higher-dimensional operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots ,$$

Some operators induce **growth with the partonic centre-of-mass energy**: increased sensitivity in LHC cross-sections in the TeV region

$$\sigma(E) = \sigma_{\rm SM}(E) \left(1 + \sum_{i}^{N_{d6}} \omega_i \frac{c_i v^2}{\Lambda^2} + \sum_{i}^{N_{d6}} \widetilde{\omega}_i \frac{c_i E^2}{\Lambda^2} + \mathcal{O}\left(\Lambda^{-4}\right) \right)$$

The number of SMEFT operators is large: 59 non-redundant operators at dimension 6 with Minimal Flavour Violation, > 2000 operators without any flavour assumption

A global SMEFT analysis needs to explore a huge complicated parameter space

3

Notation		S	ensitiv	ity at ($\mathcal{O}(\Lambda^{-2})$	$(\mathcal{O}(\Lambda^{-}$	$^{-4}))$		
	$t\bar{t}$	single-top	tW	tZ	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	$t\bar{t}t\bar{t}$	$t\bar{t}b\bar{b}$
OQQ1								 ✓ 	✓
0QQ8								\checkmark	\checkmark
OQt1								~	\checkmark
OQt8								\checkmark	\checkmark
0Qb1								(√)	\checkmark
ОQЪ8								(√)	\checkmark
Ott1								~	\checkmark
Otb1								(√)	\checkmark
Otb8								\checkmark	\checkmark
OQtQb1									
OQtQb8									
081qq	\checkmark				\checkmark	~	~	\checkmark	\checkmark
011qq	\checkmark				(√)	(√)	(√)	\checkmark	~
083qq	\checkmark	\checkmark		(√)	~	1	1	~	\checkmark
013qq	\checkmark	\checkmark		\checkmark	(√)	(√)	(√)	~	\checkmark
08qt	\checkmark				\checkmark	~	~	\checkmark	\checkmark
01qt	\checkmark				(√)	(√)	(√)	\checkmark	\checkmark
08ut	\checkmark					~	~	\checkmark	\checkmark
Olut	\checkmark					(√)	(√)	✓	\checkmark
08qu	\checkmark					✓	✓	✓	\checkmark
01qu	\checkmark					(√)	(√)	\checkmark	✓
08dt	\checkmark					~	✓	\checkmark	\checkmark
Oldt	\checkmark					(√)	(√)	\checkmark	\checkmark
08qd	\checkmark					✓	✓	\checkmark	\checkmark
01qd	✓					(√)	(√)	\checkmark	\checkmark
OtG	√				 ✓ 	 ✓ 	√ √	 ✓ 	✓
OtW		\checkmark	~	\checkmark					
ОъМ		(√)	(√)						
OtZ				\checkmark		\checkmark			
Off		(√)	(√)	(√)					
Ofq3		\checkmark	\checkmark	\checkmark		\checkmark			
OpQM				\checkmark		\checkmark			
Opt				\checkmark		\checkmark	\checkmark		
Otp							✓		

A large number of different dimension-6 SMEFT operators modify **top production at LHC**

Juan Rojo

Notation		S	ensitiv	ity at ($\mathcal{O}(\Lambda^{-2})$	$(\mathcal{O}(\Lambda^{-}$	$^{-4}))$		
	$t\bar{t}$	single-top	tW	tZ	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	$t\bar{t}t\bar{t}$	$t\bar{t}b\bar{b}$
OQQ1								✓	\checkmark
0QQ8								\checkmark	\checkmark
OQt1								\checkmark	\checkmark
0Qt8								~	\checkmark
ОQЪ1								(√)	\checkmark
ОQЪ8								(√)	\checkmark
Ott1								\checkmark	\checkmark
Otb1								(√)	\checkmark
Otb8								\checkmark	\checkmark
OQtQb1									
OQtQb8									
081qq	\checkmark				\checkmark	✓	✓	✓	\checkmark
011qq	\checkmark				(√)	(√)	(√)	\checkmark	\checkmark
083qq	\checkmark	\checkmark		(√)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
013qq	\checkmark	\checkmark		\checkmark	(√)	(√)	(√)	\checkmark	\checkmark
08qt	\checkmark				\checkmark	~	~	\checkmark	\checkmark
01qt	\checkmark				(√)	(√)	(√)	~	\checkmark
08ut	\checkmark					✓	✓	✓	\checkmark
01ut	\checkmark					(√)	(√)	~	\checkmark
08qu	\checkmark					✓	\checkmark	\checkmark	\checkmark
01qu	\checkmark					(√)	(√)	\checkmark	\checkmark
08dt	\checkmark					✓	\checkmark	\checkmark	\checkmark
Oldt	\checkmark					(√)	(√)	✓	\checkmark
08qd	\checkmark					✓	✓	✓	\checkmark
01qd	\checkmark					(√)	(√)	 ✓ 	 ✓
OtG	\checkmark				\checkmark	✓	✓	✓	\checkmark
OtW		\checkmark	\checkmark	\checkmark					
ОъМ		(√)	(√)						
OtZ				\checkmark		\checkmark			
Off		(√)	(√)	(√)					
Ofq3		\checkmark	\checkmark	\checkmark		\checkmark			
OpQM				\checkmark		\checkmark			
Opt				\checkmark		\checkmark	\checkmark		
Otp							✓		

A large number of different dimension-6 SMEFT operators modify **top production at LHC**

Juan Rojo

Notation		S	ensitiv	ity at ($\mathcal{O}(\Lambda^{-2})$	$(\mathcal{O}(\Lambda^{-}$	$^{-4}))$		
	$t\bar{t}$	single-top	tW	tZ	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	$t\bar{t}t\bar{t}$	$t\bar{t}b\bar{b}$
OQQ1								√	\checkmark
0QQ8								~	\checkmark
OQt1								~	\checkmark
OQt8								\checkmark	\checkmark
ОQЪ1								(√)	\checkmark
0Qъ8								(√)	\checkmark
Ott1								~	\checkmark
Otb1								(√)	~
Otb8								\checkmark	✓
OQtQb1									
OQtQb8									
081qq	\checkmark				\checkmark	\checkmark	~	\checkmark	\checkmark
011qq	\checkmark				(√)	(√)	(√)	~	\checkmark
083qq	\checkmark	\checkmark		(√)	\checkmark	\checkmark	~	~	\checkmark
013qq	\checkmark	\checkmark		\checkmark	(√)	(√)	(√)	~	\checkmark
08qt	\checkmark				\checkmark	\checkmark	~	~	\checkmark
01qt	\checkmark				(√)	(√)	(√)	\checkmark	\checkmark
08ut	\checkmark					\checkmark	\checkmark	~	\checkmark
Olut	\checkmark					(√)	(√)	✓	\checkmark
08qu	\checkmark					\checkmark	\checkmark	✓	\checkmark
01qu	\checkmark					(√)	(√)	~	\checkmark
08dt	\checkmark					\checkmark	\checkmark	~	\checkmark
Oldt	\checkmark					(√)	(√)	\checkmark	~
08qd	\checkmark					\checkmark	\checkmark	\checkmark	~
01qd	\checkmark					(√)	(√)	 ✓ 	\checkmark
OtG	√				\checkmark	1	1	√	✓
OtW		\checkmark	\checkmark	\checkmark					
ОъW		(√)	(√)						
OtZ				\checkmark		\checkmark			
Off		(√)	(√)	(√)					
Ofq3		\checkmark	\checkmark	\checkmark		\checkmark			
OpQM				\checkmark		\checkmark			
Opt				\checkmark		\checkmark	\checkmark		
Otp							~		

A large number of different dimension-6 SMEFT operators modify **top production at LHC**

Juan Rojo

Notation		S	ensitiv	ity at ($\mathcal{O}(\Lambda^{-2})$	$(\mathcal{O}(\Lambda^{-}$	$^{-4}))$		
	$t\bar{t}$	single-top	tW	tZ	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	$t\bar{t}t\bar{t}$	$t\bar{t}b\bar{b}$
OQQ1								✓	\checkmark
0QQ8								\checkmark	\checkmark
OQt1								\checkmark	\checkmark
OQt8								\checkmark	\checkmark
ОQЪ1								(√)	\checkmark
0Qъ8								(√)	\checkmark
Ott1								\checkmark	\checkmark
Otb1								(√)	\checkmark
Otb8								\checkmark	\checkmark
OQtQb1									
OQtQb8									
081qq	\checkmark				~	✓	✓	✓	✓
011qq	\checkmark				(√)	(√)	(√)	~	~
083qq	\checkmark	\checkmark		(√)	\checkmark	1	1	~	\checkmark
013qq	\checkmark	\checkmark		\checkmark	(√)	(√)	(√)	~	\checkmark
08qt	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
01qt	\checkmark				(√)	(√)	(√)	\checkmark	\checkmark
08ut	\checkmark					~	\checkmark	\checkmark	\checkmark
Olut	\checkmark					(√)	(√)	~	\checkmark
08qu	\checkmark					~	✓	\checkmark	\checkmark
01qu	\checkmark					(√)	(√)	✓	\checkmark
08dt	\checkmark					✓	\checkmark	✓	\checkmark
Oldt	\checkmark					(√)	(√)	\checkmark	✓
08qd	\checkmark					✓	\checkmark	\checkmark	\checkmark
01qd	\checkmark					(√)	(√)	✓	\checkmark
OtG	\checkmark				~	 ✓ 	✓	 ✓ 	✓
OtW		\checkmark	\checkmark	\checkmark					
ОъW		(√)	(√)						
OtZ				\checkmark		~			
Off		(√)	(√)	(√)					
Ofq3		\checkmark	\checkmark	\checkmark		~			
OpQM				\checkmark		\checkmark			
Opt				\checkmark		\checkmark	\checkmark		
Otp							\checkmark		

A large number of different dimension-6 SMEFT operators modify **top production at LHC**

0000

 \mathcal{V}_{W^+}

Juan Rojo

SMEFT constraints from top data

Recipe for a SMEFT analysis of top sector

the SMEFiT approach

From PDF fits to SMEFT analyses

In global PDF fits, LHC cross-sections (incl. top) are used to constrain the input PDFs

$$\sigma^{(\text{th})}\left(Q, \{a_k\}\right) = \sum_{ij} \Gamma_{ij}\left(\alpha_s, Q, Q_0\right) \otimes q_i(x, Q_0, \{a_k\}) \otimes q_j(x, Q_0, \{a_k\})$$

For PDF parameters $\{a_k\}$ are determined from the **minimisation** of a figure of merit

$$\chi^2(\{\boldsymbol{a}_k\}) = \sum_{m,n}^{n_{\text{dat}}} \left(\sigma_n^{(\text{exp})} - \sigma_n^{(\text{th})}\{\boldsymbol{a}_k\} \right) (\text{cov})_{mn}^{-1} \left(\sigma_m^{(\text{exp})} - \sigma_m^{(\text{th})}\{\boldsymbol{a}_k\} \right)$$

If one now fixes the input PDFs (determined from a different set of data) and includes SMEFT effects, one can exploit the same PDF fitting approach to carry out a global SMEFT fit

$$\sigma^{(\mathrm{th})}\left(Q, \{c_k\}\right) = \left(1 + \sum_{k}^{N_{d6}} \frac{c_k \kappa_k}{\Lambda^2}\right) \sum_{ij} \Gamma_{ij}\left(\alpha_s, Q, Q_0\right) \otimes q_i(x, Q_0) \otimes q_j(x, Q_0)$$
$$\chi^2(\{c_k\}) = \sum_{m,n}^{n_{dat}} \left(\sigma_n^{(\mathrm{exp})} - \sigma_n^{(\mathrm{th})}\{c_k\}\right) (\mathrm{cov})_{mn}^{-1} \left(\sigma_m^{(\mathrm{exp})} - \sigma_m^{(\mathrm{th})}\{c_k\}\right)$$

Juan Rojo

From PDF fits to SMEFT analyses

SMEFiT structure

Stand-alone Python code, which exploits functionalities of the NNPDF framework

NNPDF code	aMC@NLO	MCFM
Experimental data and covariance matrices	NLO QCD (benchmark)	NLO QCD (consistent choice of PDFs)
NLO APPLgrids + NNLO C-factors (for processes used in PDF fit)	LO, NLO SMEFT Both O(Λ ⁻²) and O(Λ ⁻⁴) from d=6 operators	<pre>Gross-checks of aMC@NLO</pre>

Python analysis code

Semble theory predictions for generic SMEFT Wilson coefficients

Optimisation with Sequential Quadratic Programming (SciPy)

Look-back cross-validation stopping

Monte Carlo replicas for uncertainty propagation

Juan Rojo

Fitting methodology

Generate large sample of Monte Carlo replicas to construct the probability distribution in the space of experimental top quark measurements

$$\mathcal{O}_i^{(\operatorname{art})(k)} = S_{i,N}^{(k)} \mathcal{O}_i^{(\exp)} \left(1 + \sum_{\alpha=1}^{N_{\operatorname{sys}}} r_{i,\alpha}^{(k)} \sigma_{i,c}^{(\operatorname{sys})} + r_i^{(k)} \sigma_i^{(\operatorname{stat})} \right) \,, \quad k = 1, \dots, N_{\operatorname{rep}}$$

Sector Cross-validation stopping to avoid both under- and over-fitting

- Methodology validated with pseudo-data based on closure tests: decouple from possible data incompatibilities, theory limitations, or genuine bSM effects
- PDF uncertainties included in the x² definition and MC sampling

Closure Tests

- Generate pseudo-data based on a given scenario (SM or BSM) and check that the correct (known) results are reproduced after the fit
- Allows quantifying the **expected statistical significance** for BSM deviations

Cross-validation

Since *N_{par}* is not too different from *N_{dat}*, overfitting will take place for an efficient optimiser

Sector Artificial tensions with the SM are likely to be generated by overfitting!

Fest the role of cross-validation in a closure test with pseudo-data generated with the SM

Fit residuals consistent with true result (SM) only with cross-validation

SMEFiT analysis of the top quark sector

Input dataset (I)

Process	Dataset	\sqrt{s}	Info	Observables	$N_{ m dat}$	Ref
$t ar{t}$	ATLAS_tt_8TeV_ljets	8 TeV	lepton+jets	$\begin{vmatrix} d\sigma/d y_t , d\sigma/dp_t^T, \\ d\sigma/dm_{t\bar{t}}, d\sigma/d y_{t\bar{t}} \end{vmatrix}$	5, 8, 7, 5	[77]
$tar{t}$	CMS_tt_8TeV_ljets	8 TeV	lepton+jets	$\begin{vmatrix} d\sigma/dy_t, d\sigma/dp_t^T, \\ d\sigma/dm_{t\bar{t}}, d\sigma/dy_{t\bar{t}} \end{vmatrix}$	10, 8, 7, 10	[78]
$t\bar{t}$	CMS_tt2D_8TeV_dilep	8 TeV	dileptons	$\begin{vmatrix} d^2\sigma/dy_t dp_t^T, \\ d^2\sigma/dy_t dm_{t\bar{t}}, \\ d^2\sigma/dp_{t\bar{t}}^T dm_{t\bar{t}}, \\ d^2\sigma/dy_{t\bar{t}} dm_{t\bar{t}}, \end{vmatrix}$	$ 16, \\ 16, \\ 16, \\ 16 $	[79]
$t \overline{t}$	CMS_tt_13TeV_ljets	13 TeV	lepton+jets	$\begin{vmatrix} d\sigma/d y_t , d\sigma/dp_t^T, \\ d\sigma/dm_{t\bar{t}}, d\sigma/d y_{t\bar{t}} \end{vmatrix}$	$ \begin{array}{c c} 7, 9, \\ 8, 6 \end{array} $	[83]
$t \overline{t}$	CMS_tt_13TeV_ljets2	13 TeV	lepton+jets	$\begin{vmatrix} d\sigma/d y_t , d\sigma/dp_t^T, \\ d\sigma/dm_{t\bar{t}}, d\sigma/d y_{t\bar{t}} \end{vmatrix}$	$ \begin{array}{c c} 11, 12, \\ 10, 10 \end{array} $	[85]
$t \bar{t}$	CMS_tt_13TeV_dilep	13 TeV	dileptons	$\begin{vmatrix} d\sigma/dy_t, d\sigma/dp_t^T, \\ d\sigma/dm_{t\bar{t}}, d\sigma/dy_{t\bar{t}} \end{vmatrix}$	$ \begin{array}{c c} 8, 6, \\ 6, 8 \end{array} $	[86]
$t\bar{t}$	ATLASCMS_AcMtt_8TeV	8 TeV	Asymm comb	$A_C(m_{t\bar{t}}),$ Eq. (3.1)	6	[80]
$t ar{t}$	ATLAS_WhelF_8TeV	8 TeV	W helicity fract	F_0, F_L, F_R	3	[81]
$t\bar{t}$	CMS_WhelF_8TeV	8 TeV	W helicity fract	F_0, F_L, F_R	3	[82]

Input dataset (II)

Process	Dataset	\sqrt{s}	Info	Observables	$N_{\rm dat}$	Ref
Single t	CMS_t_tch_8TeV_inc	8 TeV	<i>t</i> -channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t}) \ (R_t)$	2 (1)	[95]
Single t	$CMS_t_sch_8TeV$	8 TeV	s-channel	$\sigma_{ m tot}(t+ar{t})$	1	[96]
Single t	ATLAS_t_sch_8TeV	8 TeV	s-channel	$\sigma_{ m tot}(t+ar{t})$	1	[97]
Single t	ATLAS_t_tch_8TeV	8 TeV	<i>t</i> -channel	$\begin{vmatrix} d\sigma(tq)/dp_T^t, d\sigma(\bar{t}q)/dp_T^{\bar{t}} \\ d\sigma(tq)/dy_t, d\sigma(\bar{t}q)/dy_t \end{vmatrix}$	$\left \begin{array}{c}5,4\\4,4\end{array}\right $	[98]
Single t	ATLAS_t_tch_13TeV	13 TeV	<i>t</i> -channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t}) \ (R_t)$	2 (1)	[99]
Single t	$CMS_t_tch_13TeV_inc$	13 TeV	<i>t</i> -channel	$\sigma_{\rm tot}(t+\bar{t}) \ (R_t)$	1 (1)	[100]
Single t	CMS_t_tch_8TeV_dif	8 TeV	t-channel	$\left egin{array}{c} d\sigma/dp_T^{(t+ar t)},\ d\sigma/d y^{(t+ar t)} \end{array} ight.$	6 6	[101]
Single t	CMS_t_tch_13TeV_dif	13 TeV	t-channel	$\left egin{array}{l} d\sigma/dp_T^{(t+ar t)},\ d\sigma/d y^{(t+ar t)} \end{array} ight.$	$\begin{vmatrix} 4\\4 \end{vmatrix}$	[102]
tW	ATLAS_tW_inc_8TeV	8 TeV	inclusive	$\sigma_{ m tot}(tW)$	1	[103]
tW	CMS_tW_inc_8TeV	8 TeV	inclusive	$\sigma_{ m tot}(tW)$	1	[104]
tW	ATLAS_tW_inc_13TeV	$13 \mathrm{TeV}$	inclusive	$\sigma_{ m tot}(tW)$	1	[105]
tW	$CMS_tW_inc_13TeV$	13 TeV	inclusive	$\sigma_{ m tot}(tW)$	1	[106]
tZ	CMS_tZ_inc_13TeV	$13 { m TeV}$	inclusive	$\left \sigma_{ m fid}(Wbl^+l^-q) ight $	1	[107]
tZ	ATLAS_tZ_inc_13TeV	13 TeV	inclusive	$\sigma_{ m tot}(tZq)$	1	[108]

Input dataset (III)

Process	Dataset	\sqrt{s}	Info	Observables	$N_{\rm dat}$	Ref
$t ar{t} b ar{b}$	CMS_ttbb_13TeV	13 TeV	total xsec	$\left \sigma_{ m tot}(t\bar{t}b\bar{b}) \right $	1	[87]
$t\bar{t}t\bar{t}$	CMS_tttt_13TeV	13 TeV	total xsec	$\left \sigma_{ m tot}(t\bar{t}t\bar{t}) \right $	1	[88]
$t\bar{t}Z$	CMS_ttZ_8_13TeV	8+13 TeV	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	2	[89, 90]
$t\bar{t}Z$	ATLAS_ttZ_8_13TeV	8+13 TeV	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	2	[91, 92]
$t\bar{t}W$	CMS_ttW_8_13TeV	8+13 TeV	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	2	[89, 90]
$t\bar{t}W$	ATLAS_ttW_8_13TeV	8+13 TeV	total xsec	$\left \sigma_{\rm tot}(t\bar{t}W) \right $	2	[91, 92]
$t\bar{t}H$	CMS_tth_13TeV	13 TeV	signal strength	$ $ $\mu_{t\bar{t}H}$	1	[93]
$t\bar{t}H$	ATLAS_tth_13TeV	13 TeV	total xsec	$\sigma_{\rm tot}(t\bar{t}H)$	1	[94]

The fit includes more than **100 cross-section measurements** at 8 and 13 TeV from **10 different top-quark production processes**

Theory calculations

Process	SM	Code	SMEFT	Code
$t \bar{t}$	NNLO QCD	$\begin{array}{l} \texttt{MCFM/SHERPA} \ \texttt{NLO} \\ + \ \texttt{NNLO} \ K\text{-factors} \end{array}$	NLO QCD	MG5_aMC
single- t (t -ch)	NNLO QCD	$\begin{array}{c} \text{MCFM NLO} \\ + \text{ NNLO } K \text{-factors} \end{array}$	NLO QCD	MG5_aMC
single- t (s-ch)	NLO QCD	MCFM	NLO QCD	MG5_aMC
tW	NLO QCD	MG5_aMC	NLO QCD	MG5_aMC
tZ	NLO QCD	MG5_aMC	$\begin{vmatrix} \text{LO QCD} \\ + \text{NLO SM } K\text{-factors} \end{vmatrix}$	MG5_aMC
$t\bar{t}W(Z)$	NLO QCD	MG5_aMC	$\begin{vmatrix} \text{LO QCD} \\ + \text{NLO SM } K\text{-factors} \end{vmatrix}$	MG5_aMC
$t\bar{t}h$	NLO QCD	MG5_aMC	$\begin{vmatrix} \text{LO QCD} \\ + \text{NLO SM } K\text{-factors} \end{vmatrix}$	MG5_aMC
$t\bar{t}t\bar{t}$	NLO QCD	MG5_aMC	$\begin{vmatrix} \text{LO QCD} \\ + \text{NLO SM } K\text{-factors} \end{vmatrix}$	MG5_aMC
$t ar{t} b ar{b}$	NLO QCD	MG5_aMC	$\begin{array}{c} \text{LO QCD} \\ + \text{ NLO SM } K \text{-factors} \end{array}$	MG5_aMC

PDF set: NNPDF3.1 NNLO no-top

21

Operator basis

	Class	Notation	Degree of Freedom	Operator Definition
We follow the same flavour assumptions		OQQ1	c_{QQ}^1	$2C_{qq}^{1(3333)} - \frac{2}{3}C_{qq}^{3(3333)}$
		0QQ8	c^8_{QQ}	$8C_{qq}^{3(3333)}$
as in the LHC Top WG note		OQt1	c_{Qt}^1	$C_{qu}^{1(3333)}$
-		OQt8	c_{Qt}^8	$C_{qu}^{8(3333)}$
	QQQQ	OQЪ1	c_{Qb}^1	$C_{qd}^{1(3333)}$
		0QЪ8	c_{Qb}^8	$C_{qd}^{8(3333)}$
Minimal Flavour Violation (MFV), diagonal	4-heavy	Ott1	c_{tt}^1	$C_{uu}^{(3333)}$
CKM zoro Vukowas for first two quark	-	Otb1	c_{tb}^{1}	$C_{ud}^{(3333)}$
CRIVI, ZEIO TUKAWAS IOI IIISI IWO YUAIK		Otb8	c_{tb}^{s}	$C_{ud}^{(0000)}$
gens		OQtQb1	c_{QtQb}^{1}	$C_{quqd}^{(0000)}$
		OQtQb8	c_{QtQb}°	$C_{quqd}^{\circ(0000)}$
		081qq	$c_{Qq}^{1,8}$	$C_{qq}^{1(i33i)} + 3C_{qq}^{3(i33i)}$
		011qq	$c_{Qq}^{1,1}$	$C_{qq}^{1(ii33)} + \frac{1}{6}C_{qq}^{1(i33i)} + \frac{1}{2}C_{qq}^{3(i33i)}$
CP conservation assumed		083qq	$c_{Qq}^{3,8}$	$C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}$
		013qq	$c_{Qq}^{3,1}$	$C_{qq}^{3(i133)} + \frac{1}{6} (C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)})$
		08qt	c_{tq}^8	$C_{qu}^{8(i133)}$
		01qt	c_{tq}^1	$C_{qu}^{i(ii33)}$
Include those SMEFT dimension-6	QQqq	08ut	c_{tu}^8	$2C_{uu}^{(i33i)}$
operators of Warsow basis with at least		01ut		$C_{uu}^{(i00)} + \frac{1}{3}C_{uu}^{(i00)}$
operators of warsaw basis with at least	0	08qu	c_{Qu}°	$C_{qu}^{(001i)}$
one top quark	2-neavy-	Ulqu	c_{Qu}	$C_{qu}^{8(33ii)}$
• •	2-light	01d+	c_{td}	C_{ud} $C^{1(33ii)}$
		Olat	c_{td}^8	C_{ud} $C^{8(33ii)}$
		01ad	C_{Qd}^{1}	C_{qd} $C^{1(33ii)}$
The fit includes a total of 34 independent		l orda	Qd	Q_{qd}
dogroos of froodom		OtG	c_{tG}	$\operatorname{Re}\{C_{uG}^{(3)}\}$
degrees of freedom		OLU	c_{tW}	$\operatorname{Re}\{C_{uW}\}$
		0+7	C_{bW}	$\operatorname{Re}\{C_{dW}\}$ $\operatorname{Re}\{-e_{W}C^{(33)} + e_{W}C^{(33)}\}$
	$QQ + V_{c}G_{c}Q$	0t2 Off	Cred	$\operatorname{Re}\left\{C^{(33)}\right\}$
Include both interference and quadratic	τοτο τ τ, τ, τ, γ	Ofa3	$c^3 \sim$	$C^{3(33)}_{\varphi q q}$
	2-heavy	OpQM	C.C.	$C_{\omega q}^{1(33)} - C_{\omega q}^{3(33)}$
contributions from these operators	+ V/h	Opt	$c_{\omega t}$	$C^{(33)}_{arphi u}$
		Otp	c_{tarphi}	$\operatorname{Re}\{C^{(33)}_{uarphi}\}$

Results (preliminary)

Fit quality

(preliminary)

Good agreement between theory (SM and SMEFT) and data for most datasets

For the 102 fitted cross-sections, we find <u>x²/n_{dat} of 0.81 (0.76) before (after) fit</u>

Including SMEFT effects tend to improve agreement with data: need to quantify how significant this improvement is

Dataset	$\chi^2/n_{\rm dat}$ (prior)	$\chi^2/n_{\rm dat}$ (fit)	n_{dat}
<code>ATLAS_tt_8TeV_ljets</code> [$m_{t\bar{t}}$]	1.51	1.44	7
CMS_tt_8TeV_ljets [y_t]	1.17	1.21	10
CMS_tt2D_8TeV_dilep $[(m_{t\bar{t}},y_t)]$	1.38	1.38	16
CMS_tt_13TeV_ljets2 [$y_{tar{t}}$]	0.25	0.23	8
CMS_tt_13TeV_dilep $\left[\; y_{t ar{t}} \; ight]$	0.26	0.26	6
CMS_tt_13TeV_ljets_2016 [y_t]	0.07	0.08	11
ATLAS_WhelF_8TeV	1.98	1.13	3
CMS_WhelF_8TeV	0.31	0.42	3
CMS_ttbb_13TeV	5.00	3.99	1
CMS_tttt_13TeV	0.05	0.08	1
ATLAS_tth_13TeV	1.61	1.11	1
CMS_tth_13TeV	0.34	0.09	1
ATLAS_ttZ_8TeV	1.32	1.18	1
ATLAS_ttZ_13TeV	0.01	0.01	1
CMS_ttZ_8TeV	0.04	0.06	1
CMS_ttZ_13TeV	0.90	0.94	1
ATLAS_ttW_8TeV	1.34	1.24	1
ATLAS_ttW_13TeV	0.82	0.81	1
CMS_ttW_8TeV	1.54	1.46	1
CMS_ttW_13TeV	0.03	0.02	1
CMS_t_tch_8TeV_dif	0.11	0.21	6
$\texttt{ATLAS_t_tch_8TeV} \left[\begin{array}{c} y_t \end{array} \right]$	0.91	0.61	4
<code>ATLAS_t_tch_8TeV</code> [$y_{ar{t}}$]	0.40	0.33	4
ATLAS_t_sch_8TeV	0.08	0.23	1
$\texttt{CMS_t_tch_13TeV_dif} \left[\begin{array}{c} y_t \end{array} \right]$	0.46	0.48	4
CMS_t_sch_8TeV	1.26	1.16	1
ATLAS_tW_inc_8TeV	0.02	0.00	1
CMS_tW_inc_8TeV	0.00	0.01	1
ATLAS_tW_inc_13TeV	0.52	0.62	1
CMS_tW_inc_13TeV	4.29	3.26	1
ATLAS_tZ_inc_13TeV	0.00	0.02	1
CMS_tZ_inc_13TeV	0.66	0.64	1
Total	0.81	0.76	102

Fit results

- Agreement with the SM expectation within uncertainties
- Bounds on individual operators are in general largely correlated among them
- Large differences between the bounds obtained from each operator

Comparison with previous bounds

SMEFit analysis of top quark sector

Compare to bounds reported in the LHC Top WG EFT note (same flavour assumptions)

- Improvement found (more stringent bounds) in all fitted degrees of freedom
- For some specific operators **our bounds are the first ones** to be reported

Juan Rojo

27

Comparison with data

Juan Rojo

Summary and outlook

- Presented a novel framework, SMEFIT, suitable for global analyses of the SMEFT, which exploit expertise inherited from global PDF fits
- As a proof-of-concept, applied this novel framework to the exploration of the constraints in the SMEFT parameter space provided by LHC top quark data
- (preliminary) results indicate improved constraints compared to previous studies

- Enlarge the operator fitting basis and include additional LHC cross-sections (Higgs, electroweak, jets) as well as flavour and low-energy observables
- Explore implications of our results for specific **UV-complete models**
- Ultimately the simultaneous determination of PDFs and SMEFT degrees of freedom might be required to fully exploit the LHC potential

Juan Rojo