

Heavy hadron production in the very forward region at the LHC

Juan Rojo, VU Amsterdam & Nikhef

2nd Workshop on Electromagnetic Dipole Moments of Unstable Particles

Gargnano del Garda, 26th September 2022

Forward particle production @ LHC

 $\mathscr{L}_{ij}(\mathcal{Q},s) = \frac{1}{s} \int_{\mathcal{Q}^2/s}^{1} \frac{dx}{x} f_i\left(\frac{\mathcal{Q}^2}{sx}, \mathcal{Q}\right) f_j\left(x, \mathcal{Q}\right),$

proton Parton Distribution Functions (PDFs)

collinear factorisation can be extended with all-order resummation (e.g. **BFKL resummation at small-x**) but **cannot** describe non-linear or non-factorisable dynamics

 $f_i(x,Q)$

momentum

fraction

flavour

index

energy scale of

partonic scattering

Forward particle production @ LHC

forward measurements of low invariant mass states provides direct access to **small-x QCD phenomena and hadron structure**

Forward particle production @ LHC

Precise predictions for forward charm and bottom hadron production requires:

small- and very large-x

knowledge of hard scattering cross-sections at low masses

in addition, heavy quark fragmentation/hadronisation & decays need also to be modelled

Heavy quark production

For bottom quarks, fully differential cross-sections available up to NNLO in pQCD

Even at NNLO scale errors on absolute rates are O(25%), can be markedly reduced by working with normalised distributions
Catani et al 21

Heavy quark production

For charm quarks NNLO is not available, state of the art is NLO+resummation (FONLL)

Heavy quark production

As for bottom quarks, bulk of NLO scale error from overall cross-section normalisation

- In NLO pQCD predictions also available for distributions relevant for fixed-target kinematics, such as the total charm quark energy
- Any prediction for heavy quark and meson production in p+p collisions needs to carefully assess the three intertwined sources of theory error: **PDFs**, **MHOUs**, **and fragmentation**

Heavy quark fragmentation

- Quarks are not observable: to connect theory with experiment we need theory predictions for either heavy hadrons or heavy flavour jets
- Heavy flavour fragmentation functions obey DGLAP-type evolution equations and the non-perturbative component can be extracted from experimental data

$$e^+e^- \to Z/\gamma \ (q) \to Q \ (p) + X \qquad x \equiv \frac{2 p \cdot q}{q^2}$$
$$\frac{d\sigma_{P,Q}}{dx}(x,q^2,m^2) = \sum_i \int_x^1 \frac{dz}{z} C_{P,i} \left(z,q^2,\mu^2\right) \ D_i \left(\frac{x}{z},\mu^2,m^2\right)$$

heavy quark FF
Existing FFs based on electron-positron collider
data, constraints from LHC not exploited

Different models for FF available

e.g Peterson FF
$$f(z) \propto 1/[z(1-rac{1}{z}-rac{arepsilon}{(1-z)})^2]$$

z = ratio between partonic and hadronic energy

Heavy quark hadronisation models in MC event generators are different from pQCD fragmentation

Heavy quark fragmentation

Heavy flavour jets are jets containing a heavy meson or hadron among its constituents

Used frequently in experimental measurements, e.g. LHCb **Z+c measurement**

Parton Distributions

g(x,Q)

Energy of hard-scattering reaction: inverse of resolution length

Probability of finding a gluon inside a proton, carrying a fraction *x* of the proton momentum, when probed with energy *Q*

x: fraction of proton momentum carried by gluon

Dependence on *x* fixed by **non-perturbative QCD dynamics**: extract from experimental data

$$g(x, Q_0, \{a_g\}) = f_g(x, a_g^{(1)}, a_g^{(2)}, \dots)$$

constrain from data

Quark number conservation

Energy conservation: momentum sum rule

$$dx \left(u(x, Q^2) - \bar{u}(x, Q^2) \right) = 2 \qquad \qquad \int_0^1 dx \, x \left(\sum_{i=1}^{n_f} \left[q_i((x, Q^2) + \bar{q}_i(x, Q^2)] + g(x, Q^2) \right] \right) = 1$$

Parton Distributions

g(x,Q)

Energy of hard-scattering reaction: inverse of resolution length

Probability of finding a gluon inside a proton, carrying a fraction *x* of the proton momentum, when probed with energy *Q*

x: fraction of proton momentum carried by gluon

Dependence on **Q** fixed by perturbative QCD dynamics: computed up to $\mathcal{O}(\alpha_s^4)$

$$\frac{\partial}{\partial \ln Q^2} q_i(x, Q^2) = \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z}, \alpha_s(Q^2)\right) q_j(z, Q^2)$$

DGLAP parton evolution equations

Forward measurements for proton PDFs

NNPDF4.0: data set extension

- In global PDF fits, the small-*x* region ($x < 10^{-3}$) is constrained mostly by **inclusive and charm HERA** structure functions and by **inclusive** *W*, *Z* **production from LHCb**
- D-meson production at LHCb has also been considered and extends coverage down to x = 10⁻⁶ but is only available at NLO and affected by large missing higher order uncertainties (MHOUs)
- Within the next decade, several new experiments will explore the small-x region: EIC, FoCal, Faser/FPF ...

A proton structure snapshop

Perturbative stability

LO PDFs fail to describe available HERA and LHC data and differ significantly from NLO/ NNLO PDFs: not recommended for phenomenology
Use modern NNLO PDFs also

Use modern NNLO PDFs also with LO simulations!

Forward charm production

Include LHCb D meson production at 5, 7, 13 TeV

Fit normalised distributions & ratios between CoM energies to reduce MHOUs

$$\begin{split} N_X^{ij} &= \frac{d^2 \sigma(\text{X TeV})}{dy_i^D d(p_T^D)_j} \middle/ \frac{d^2 \sigma(\text{X TeV})}{dy_{\text{ref}}^D d(p_T^D)_j} \\ R_{13/X}^{ij} &= \frac{d^2 \sigma(13 \text{ TeV})}{dy_i^D d(p_T^D)_j} \middle/ \frac{d^2 \sigma(\text{X TeV})}{dy_i^D d(p_T^D)_j} \end{split}$$

gluon PDF uncertainties reduced by factor 10 at $\mathbf{x} \approx \mathbf{10}^{-6}$

Excellent description of all LHCb datasets

and ratios (after errata corrected)

$N_{5}(84)$	$N_{7}(79)$	$N_{13}(126)$	$R_{13/5}(107)$	$R_{13/7}(102)$
1.97	1.21	2.36	1.36	0.80
0.86	0.72	1.14	1.35	0.81
1.31	0.91	1.58	1.36	0.82
0.74	0.66	1.01	1.38	0.80
1.08	0.81	1.27	1.29	0.80
1.53	0.99	1.73	1.30	0.81
1.07	0.81	1.34	1.35	0.81
0.82	0.70	1.07	1.35	0.81
0.84	0.71	1.10	1.36	0.81

Gauld, JR 16

Forward charm production

BFKL dynamics at small-x

- QCD calculations in the DGLAP factorisation framework successful in describing data from proton-proton and electron-proton collisions
- Need to go beyond DGLAP: at small-x, logarithmically enhanced terms in 1/x become dominant and need to be resummed to all orders
- BFKL (high-energy, small-x) resummation can be matched to DGLAP collinear framework and included into PDF fits

$$\begin{array}{ll} \begin{array}{ll} \textbf{DGLAP} \\ \textbf{Evolution in } Q^2 \end{array} & \begin{array}{l} \frac{\partial}{\partial \ln Q^2} f_i(x,Q^2) = \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z},\alpha_s(Q^2)\right) f_j(z,Q^2) \\ \end{array} \\ \begin{array}{l} \textbf{BFKL} \\ \textbf{Evolution in } x \end{array} & \begin{array}{l} \frac{\partial}{\partial \ln 1/x} f_+(x,Q^2) = \int_0^\infty \frac{d\nu^2}{\nu^2} K\left(\frac{Q^2}{\nu^2},\alpha_s(Q^2)\right) f_+(x,\nu^2) \\ \end{array} \\ \begin{array}{l} \textbf{ABF, CCSS, TW} \\ \textbf{+ others, 94-08} \end{array} & P_{ij}^{N^k LO+N^h LLx}(x) = P_{ij}^{N^k LO}(x) + \Delta_k P_{ij}^{N^h LLx}(x) \end{array} \end{array}$$

Forward measurements for proton PDFs

BFKL dynamics stablished from HERA data from inclusive and charm structure functions

Accessible also in forward measurements @ LHC? Interplay with **non-linear QCD studies?** Similar techniques to pinpoint **saturation?**

Will also affect heavy hadron production @ LHC in forward region

From the LHC to neutrino telescopes

LHCb data on charm production at 5, 7, 13 TeV used to constrain the small-x gluon PDF

implications for high-energy astroparticle physics:

prompt neutrino fluxes from charm in CRs

Forward photons at the LHC

Fre new Forward Calorimeter (FoCal) of ALICE will be able to measure prompt photons in the forward region

Directly sensitive to the (nuclear) gluon PDF via the QCD Compton scattering process

Coverage of the small-x region comparable or better than D-meson production with very different theory and experimental systematics: fully complementary probes of small-x QCD phenomena

Forward photons at the LHC

Several projection studies for the physics reach of FoCal have been carried out

Fre ultimate sensitivity depends on the amount of quark and gluon small-x shadowing

Section 2015 Clear sensitivity down to (at least) x = 10-5 demonstrated, precise and accurate QCD calculations available

Non-linear & CGC dynamics, if present, could be **reabsorbed in the nuclear PDF fit** Crucial to combine information from **different probes of small-x QCD** and study the kinematical dependence of the constraints and fit quality (*e.g.* discovery of BFKL dynamics at HERA)

The Forward Physics Facility

A proposed new facility in a tailor-made underground cavern hosting a suite of farforward experiments suitable to detect long-lived BSM particles and neutrinos produced at the High-Luminosity LHC (ATLAS interaction point)

No modifications to the HL-LHC operations required

small-x QCD at the FPF

Neutrino DIS at the LHC

- Deep-inelastic CC scattering with TeV neutrinos: validate our understanding of neutrino crosssections (relevant for oscillation experiments)
- Continue succesful program of neutrino DIS
 experiments @ CERN
- Constrain proton & nuclear light (anti-)quarkPDFs including strangeness

Overview of forward processes for (n)PDFs

Process	Availabilty	Strenghts	Weakneses
D -meson production	LHCb (pp & pA)	Large production xsec Clean identification BFKL resummation wip	Large MHOUs, dependence on charm fragmentation, interplay with IC, impact of FCEL
Prompt photon	FoCal@ALICE pp & pA (> 2027)	Electroweak probe NNLO QCD + NLO EW xsec Gluon PDF from QCD-Compton	Fragmentation component?
Single inclusive light hadron production	RHIC, TeVatron & LHC (pp & pA)	Large production xsecs	Dependence on fragmentation functions, impact of FCEL
Quarkonia production	RHIC & LHC (pp & pA)	Large statistics, well-understood measurement in HI collisions	Modelling of production matrix elements, final state effects
Deep-Inelastic Scattering	HERA (ep) EIC (ep & eA) (> 2030)	Very clean EW elementary probe Access different <i>A</i> -nuclei Inclusive & exclusive (charm)	Reach in ep of the EIC not competitive with HERA
Inclusive weak boson & Drell-Yan production	LHCb (pp & pA)	Clean EW probe High-precision of QCD differential calculations	Limited statistics in pA Initial state quark-dominated
Neutrinos @ LHC	FaserNu & SND@LHC (Run III) Forward Physics Facility (>2030)	Coverage of ultra low-x region from charm production	Disentangle neutrino flux from charm, interplay with neutrino DIS at the target

Summary and outlook

- Forward particle production in pp and pA collisions provides direct access to many exciting phenomena in small-x QCD and hadronic & nuclear structure
- In the collinear factorisation framework, different forward processes exhibit complementary strengths and weaknesses to probe small-x QCD, e.g. D-meson production is abundant but suffers from large MHOUs while prompt photons provide a clean electroweak probe
- Upcoming experiments from the HL-LHC to the EIC and the FPF will shed further light on QCD at small-x and on predictions for heavy hadron production in the forward region

Potentially useful constraints also from heavy hadron production in fixed-target LHC mode!