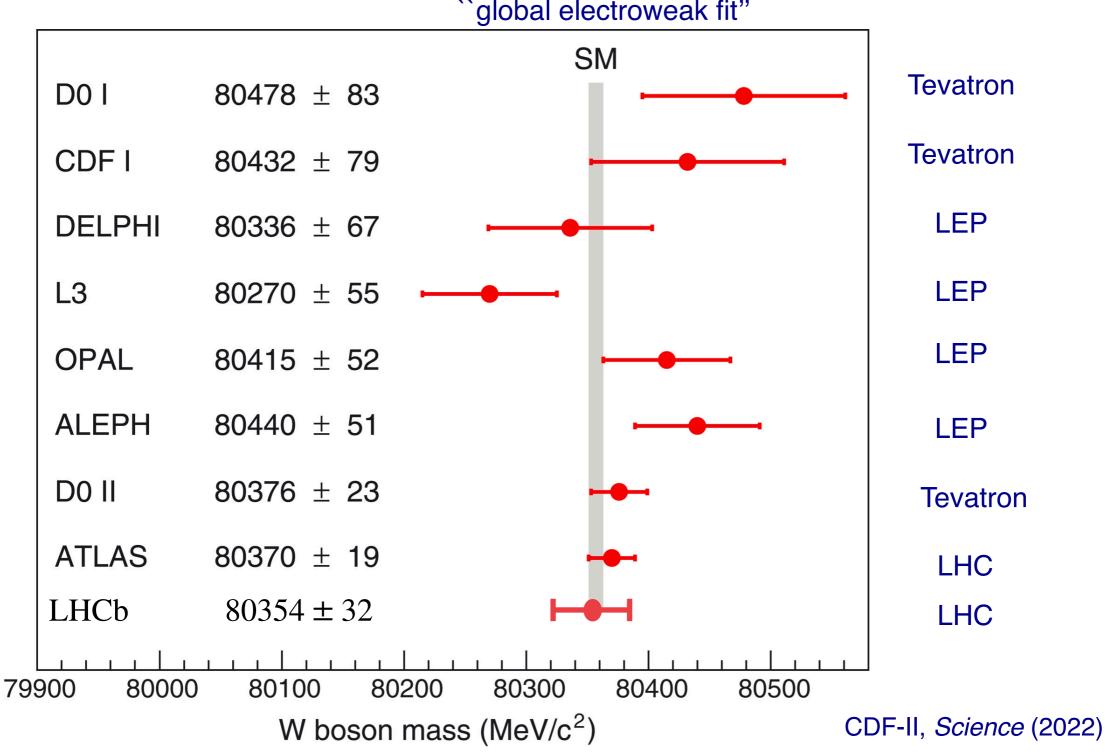

The W mass measurement at hadron colliders: a SM perspective

Juan Rojo, VU Amsterdam & Nikhef

Theory Meets Experiment mini-workshop


Nikhef, 03/06/2022

Within the Standard Model, measurements of a subset of its parameters can be used to **predict** the values of others such as the **W boson mass** until recently, all direct measurements agreed with the SM prediction

Within the Standard Model, measurements of a subset of its parameters can be used to **predict** the values of others such as the **W boson mass** the new CDF-II result reduces the CDF-I error by almost a factor 10 (same central value)

the new CDF-II result reduces the CDF-I error by almost a factor 10 (same central value) ``global electroweak fit" SM **Tevatron** D0 I 80478 ± 83 **Tevatron** CDF I 80432 ± 79 **DELPHI** 80336 ± 67 LEP L3 80270 ± 55 LEP LEP **OPAL** 80415 ± 52 **ALEPH** 80440 ± 51 **LEP** D0 II 80376 ± 23 **Tevatron** LHC **ATLAS** 80370 ± 19 Clearly LHC LHCb 80354 ± 32

80400

80500

CDF II

79900

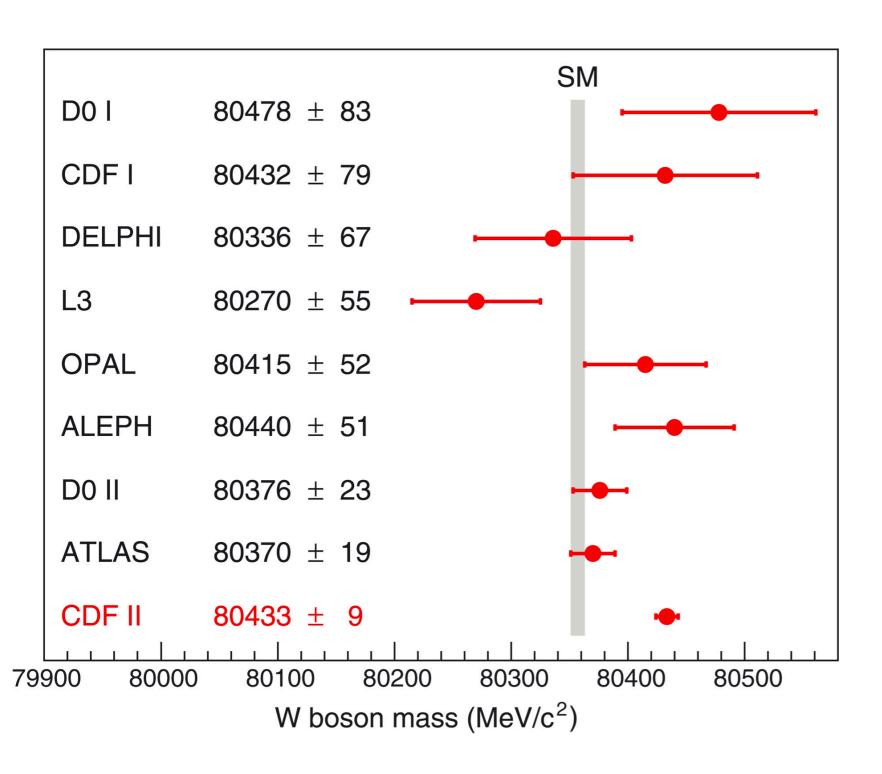
80000

 80433 ± 9

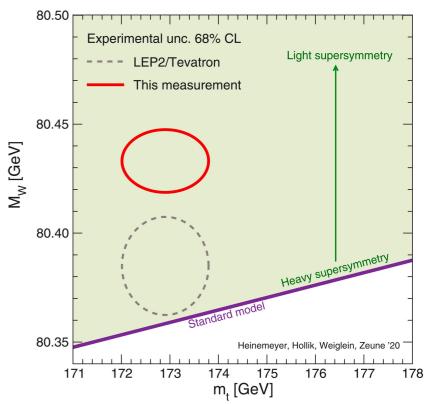
80100

80200

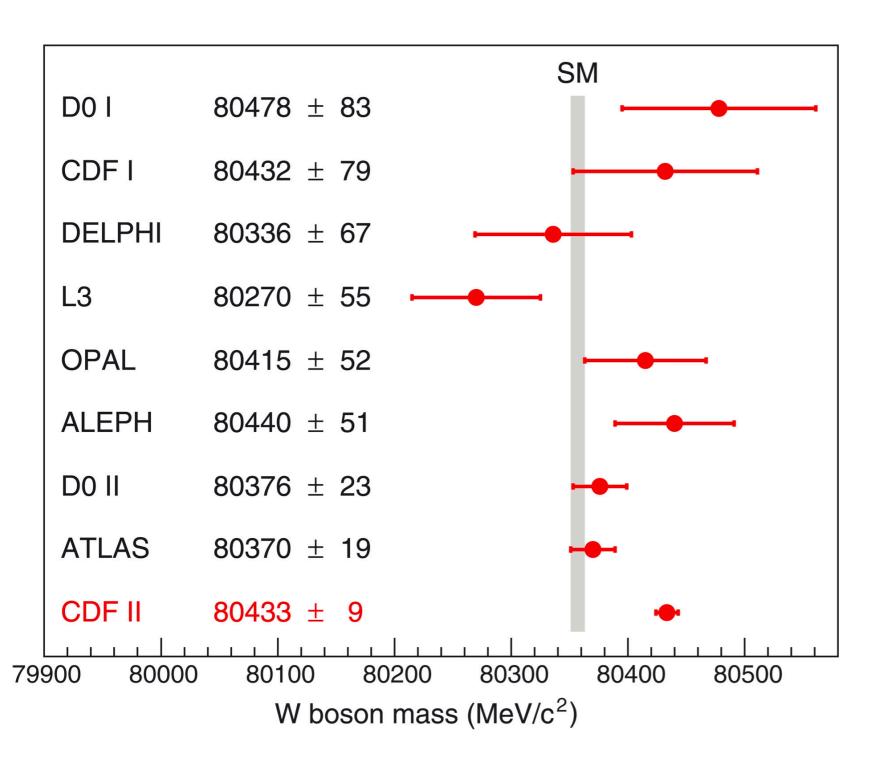
W boson mass (MeV/c²)

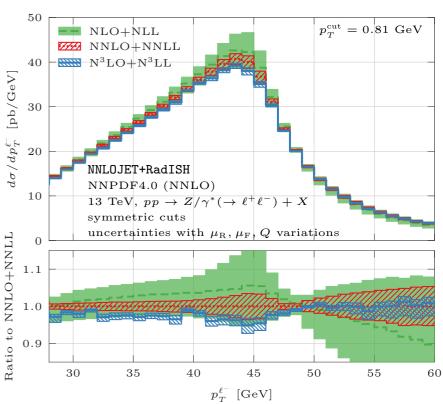

80300

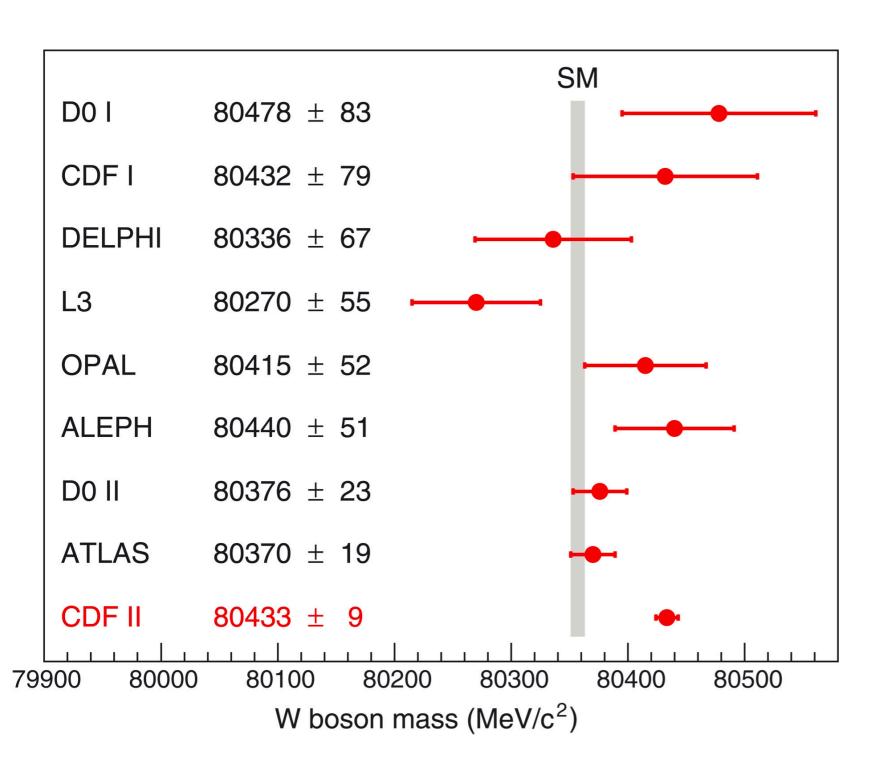
CDF-II, Science (2022)


Tevatron

inconsistent with


SM prediction!


Explanation A: New Physics!


Jordy's talk

Explanation B: Mismodeling of SM predictions

some possible explanations considered in this talk

Explanation C: issues with the experimental analysis

local ATLAS & LHCb experts!

Template fits for the W mass

As opposed to other SM parameters, measurements of the *W* boson mass at hadron colliders rely heavily on theoretical modelling (of the Drell-Yan process)

Why this is the case?

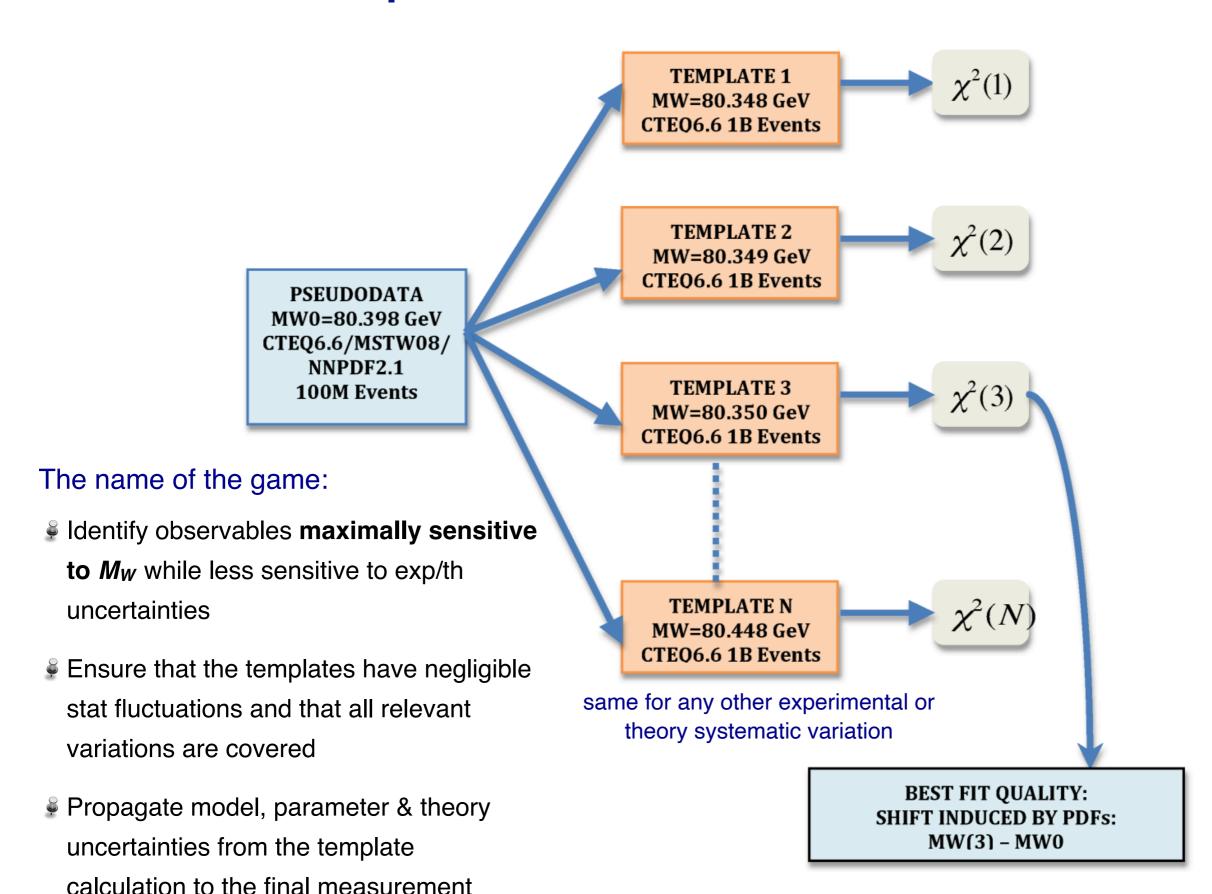
The mass of the W boson can be extracted from data by means of template fits

- \subseteq Start from a **baseline theoretical model** of final-state distributions sensitive to M_W
- \mathbb{P} Produce **theory templates** of this distribution with a given binning and a range of M_W values
- Measure the same distributions, and compare them with your templates
- \S The template that agrees better with data corresponds to your central M_W value
- \S Repeat the process for additional templates generated by varying experimental systematic errors or theory parameters to estimate the systematic (theory+exp) error on M_W

challenge: small variations in the templates can propagate into large shifts in M_W

ep-ph] 11 Apr 2011

The impact of PDF uncertainties on the measurement of the W boson mass at the Tevatron and the LHC

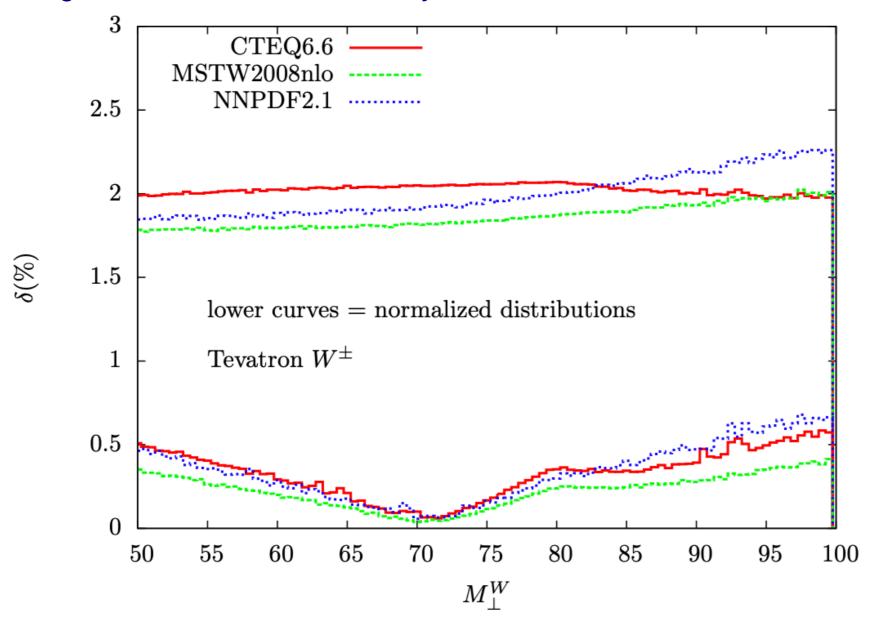

G. Bozzi*, J. Rojo[†] and A. Vicini[‡]

Università degli Studi di Milano and INFN, Sezione di Milano,
Via Celoria 16, I-20133 Milano, Italy

Abstract

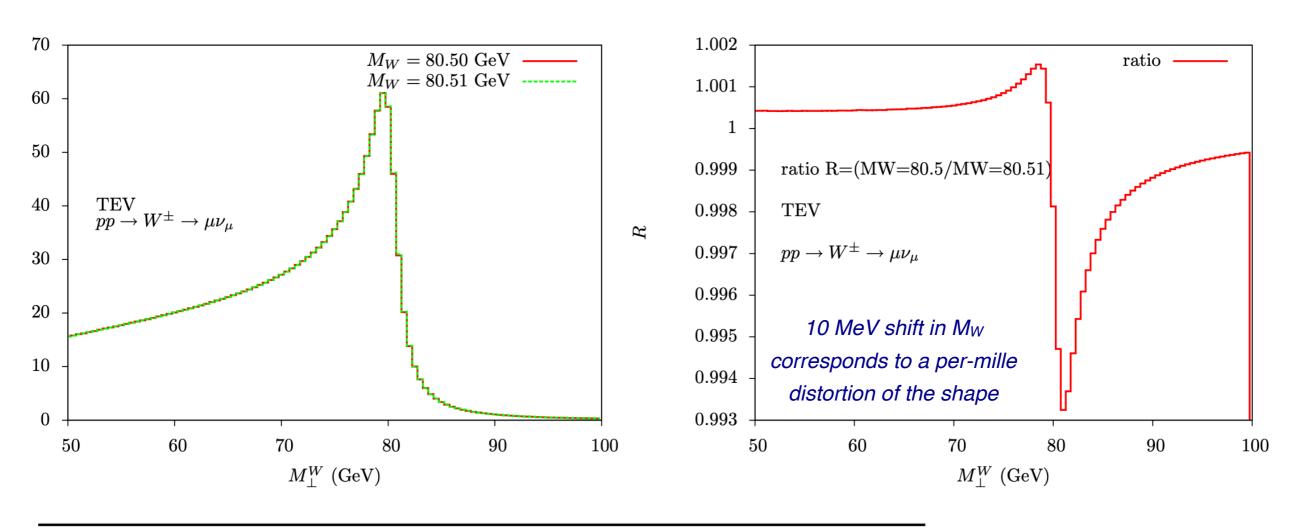
We study at a quantitative level the impact of the uncertainties on the value of the W boson mass measured at hadron colliders due to: i) the proton parton distribution

Template fits for the W mass


Template fits for the Wmass

Two of the most frequently used distributions in M_W measurements are \mathbf{p}_T and the **transverse mass** \mathbf{M}^W

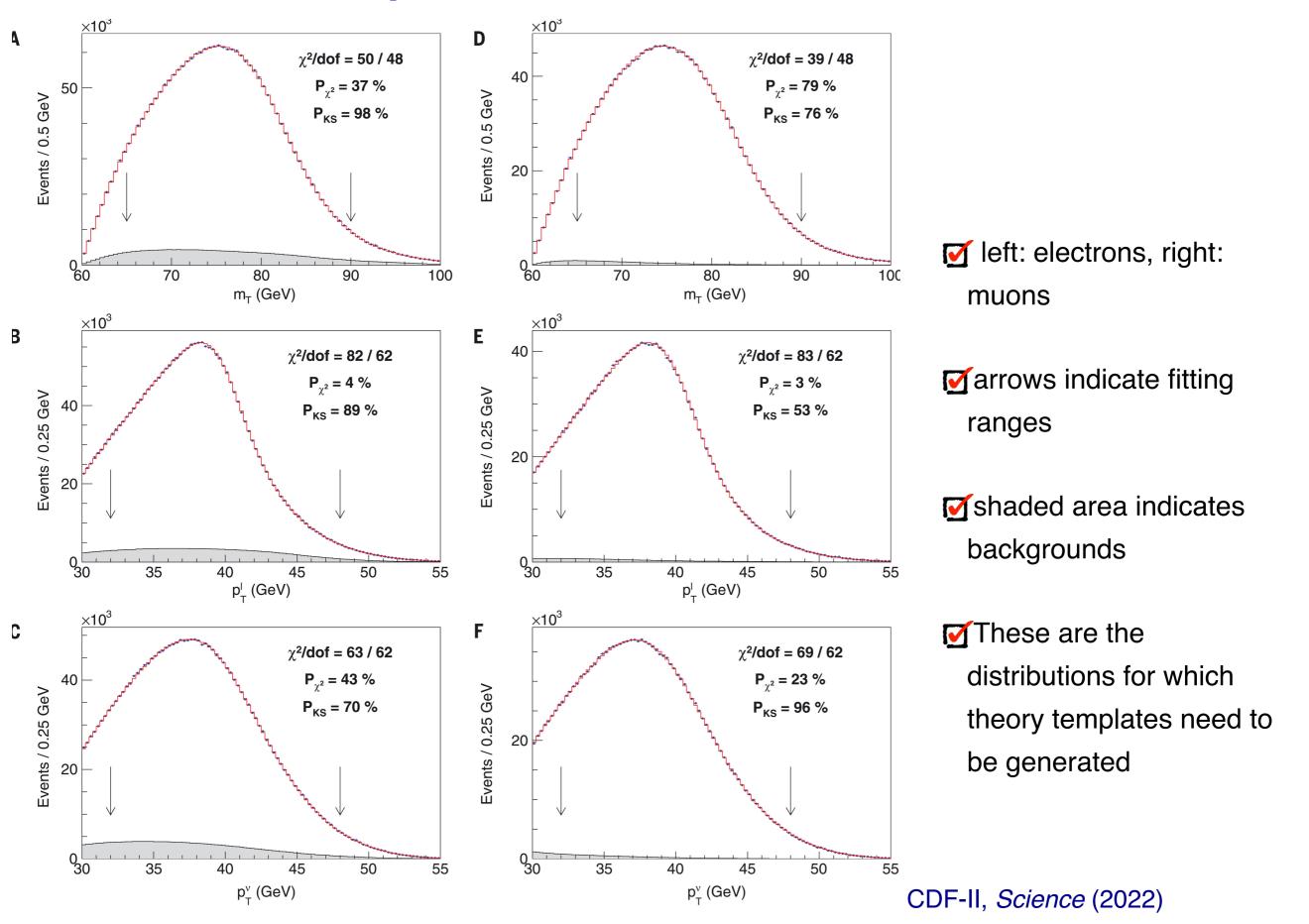
$$M_T^W = \sqrt{2p_T^{\ell}p_T^{\nu}\left(1 - \cos(\phi^{\ell} - \phi^{\nu})\right)}$$


The M_W measurement is sensitive to the **shape** of the distribution: often normalised distributions are used

e.g. PDF uncertainties markedly reduced in normalised distributions

Template fits for the W mass

How sensitive is the measurement to variations in the theory modelling of the experimental distributions?



	$pp \rightarrow W^+, \sqrt{s} = 14 \text{ TeV}$	$M_{\rm W}$ shifts (MeV)					
	Templates accuracy: NLO-QCD+QCD _{PS}	$W^+ \to \mu^+ \nu$ $W^+ \to e^+ \nu \text{(dres)}$					
	Pseudodata accuracy	QED FSR	M_T	p_T^l	M_T	p_T^l	
1	NLO-QCD+(QCD+QED) _{PS}	PYTHIA	-95.2±0.6	-400±3	-38.0±0.6	-149±2	
2	NLO-QCD+(QCD+QED) _{PS}	PHOTOS	-88.0±0.6	-368±2	-38.4±0.6	-150±3	
3	$NLO-(QCD+EW)+(QCD+QED)_{PS}$ two-rad	PYTHIA	-89.0±0.6	-371±3	-38.8±0.6	-157±3	
4	$NLO-(QCD+EW)+(QCD+QED)_{PS}$ two-rad	PHOTOS	-88.6±0.6	-370±3	-39.2±0.6	-159±2	

Shifts induced by the inclusion of QED radiation and EW corrections

Many small effects can affect the measurement!

Template fits for the W mass

The CDF measurement

m_T on the muon channel has the lowest uncertainty (and highest central value ...)

		ı
Distribution	W boson mass (MeV)	χ ² /dof
$m_{\mathrm{T}}(e, v)$	$80,429.1 \pm 10.3_{\text{stat}} \pm 8.5_{\text{syst}}$	39/48
$p_{\mathrm{T}}^{\ell}(e)$	$80,411.4 \pm 10.7_{\text{stat}} \pm 11.8_{\text{syst}}$	83/62
$p_{\mathrm{T}}^{\mathrm{ u}}(e)$	$80,426.3 \pm 14.5_{\text{stat}} \pm 11.7_{\text{syst}}$	69/62
$m_{\mathrm{T}}(\mu, \nu)$	$80,446.1 \pm 9.2_{\text{stat}} \pm 7.3_{\text{syst}}$	50/48
$p_{\mathrm{T}}^{\ell}(\mu)$	$80,428.2 \pm 9.6_{\text{stat}} \pm 10.3_{\text{syst}}$	82/62
$p_{\mathrm{T}}^{\mathrm{v}}(\mu)$	$80,428.9 \pm 13.1_{\text{stat}} \pm 10.9_{\text{syst}}$	63/62
Combination	$80,433.5 \pm 6.4_{\text{stat}} \pm 6.9_{\text{syst}}$	7.4/5

Note that in this categorisation one cannot easily separate theory from experimental systematics, since these are **intertwined** (e.g. modelling p_T^V)

dominated by statistics

Source	Uncertainty (MeV)
Lepton energy scale	3.0
Lepton energy resolution	1.2
Recoil energy scale	1.2
Recoil energy resolution	1.8
Lepton efficiency	0.4
Lepton removal	1.2
Backgrounds	3.3
p_{T}^{Z} model	1.8
$p_{\mathrm{T}}^{W}/p_{\mathrm{T}}^{Z}$ model	1.3
Parton distributions	3.9
QED radiation	2.7
W boson statistics	6.4
Total	9.4

PDFs are the dominant source of systematic error
Where QCD errors are classified?

Template fits for the Wmass

From a theoretical point of view, which components of the modelling should we pay attention to?

- Parton Distribution Functions (PDFs) and the associated uncertainties
- Hard-scattering matrix element (fixed-order) and the associated uncertainties

$$\sigma_{W^{\pm}}(M,s) \propto \sum_{ij} \int_{M^2}^{s} d\hat{s} \, \mathcal{L}_{ij}(\hat{s},s) \, \widetilde{\sigma}_{ij}(\hat{s},\alpha_s(M)) \,, \quad i,j=u,d,s,g,\dots$$

$$\begin{array}{c} i,j=u,d,s,g,\dots\\ \text{partonic} & \text{partonic cross-}\\ \text{luminosities} & \text{section} \end{array}$$

$$\widetilde{\sigma}(\alpha_s, \alpha) = \widetilde{\sigma}^{(0)}(\alpha_s, \alpha) \left(1 + c_{1,0}\alpha_s + c_{0,1}\alpha + c_{2,0}\alpha_s^2 + c_{3,0}\alpha_s^3 + c_{1,1}\alpha_s\alpha + c_{0,2}\alpha^2 \right)$$

Born (tree-level)

NLO QCD correction

NLO EW correction

NNLO QCD correction

N3LO QCD correction

NNLO mixed correction

NNLO EW correction

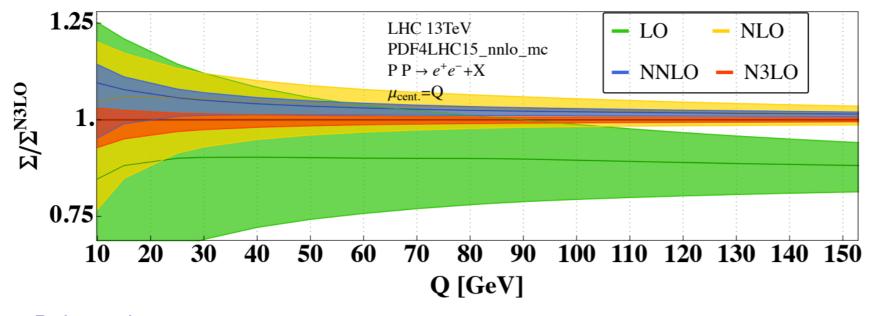
- Mard-scattering matrix element (transverse momentum resummation)
- QCD and QED parton showers and extra radiation
- Electroweak corrections
- **!**

n.b. naive power counting often poor predictor of the size of HOs

$$\alpha_s \sim 0.1, \quad \alpha \sim 0.01$$


Drell-Yan at N3LO QCD

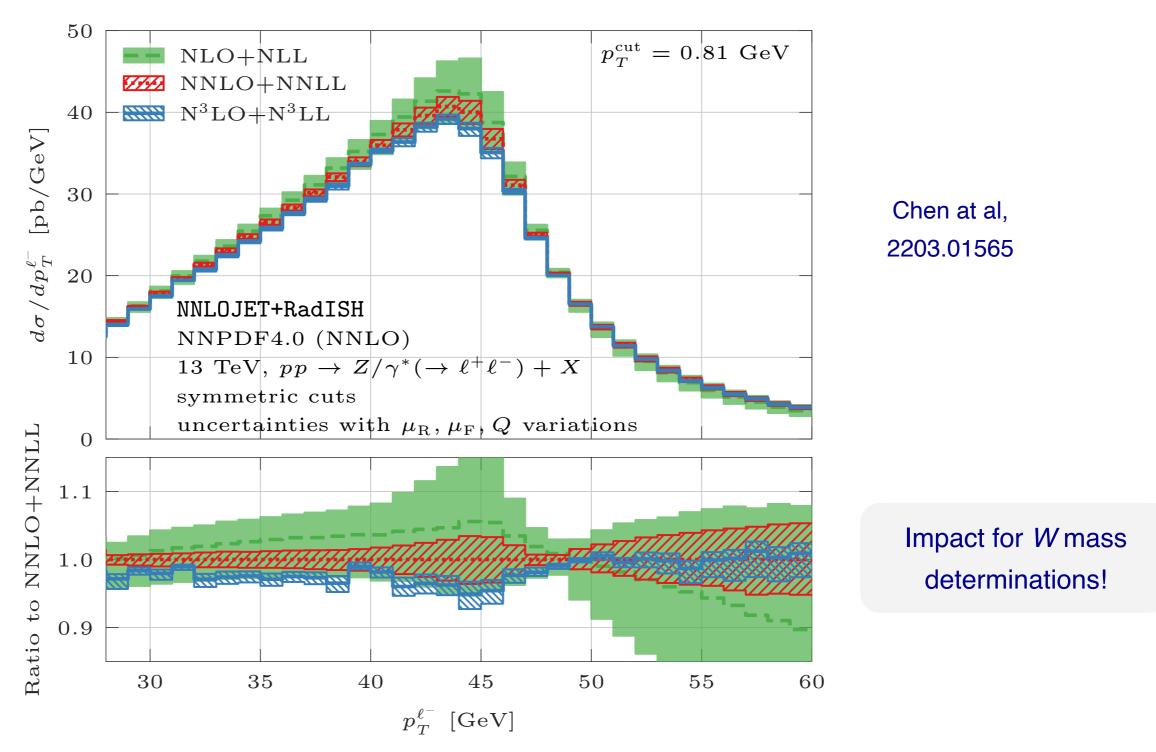
Several key LHC processes are now available with N3LO QCD corrections (inclusive and/or differential)


e.g. inclusive charged and neural-current **Drell-Yan**

Perturbative convergence not ideal: for both *W* and *Z/*y* production the NNLO and N³LO bands do not overlap

nb all ``N3LO" calculations rely on NNLO PDFs, hence one cannot claim N3LO accuracy yet

Duhr et al, 2007.13313



Impact for *W* mass measurement?

Duhr et al, 2111.10379

Drell-Yan at N3LO QCD

Drell-Yan is also available at N3LO at the fiducial level, where realistic kinematic cuts can be applied

perturbative stability can be optimised with tailored kinematic cuts

precision does not necessarily improve at N³LO

Parton Distributions and M_W

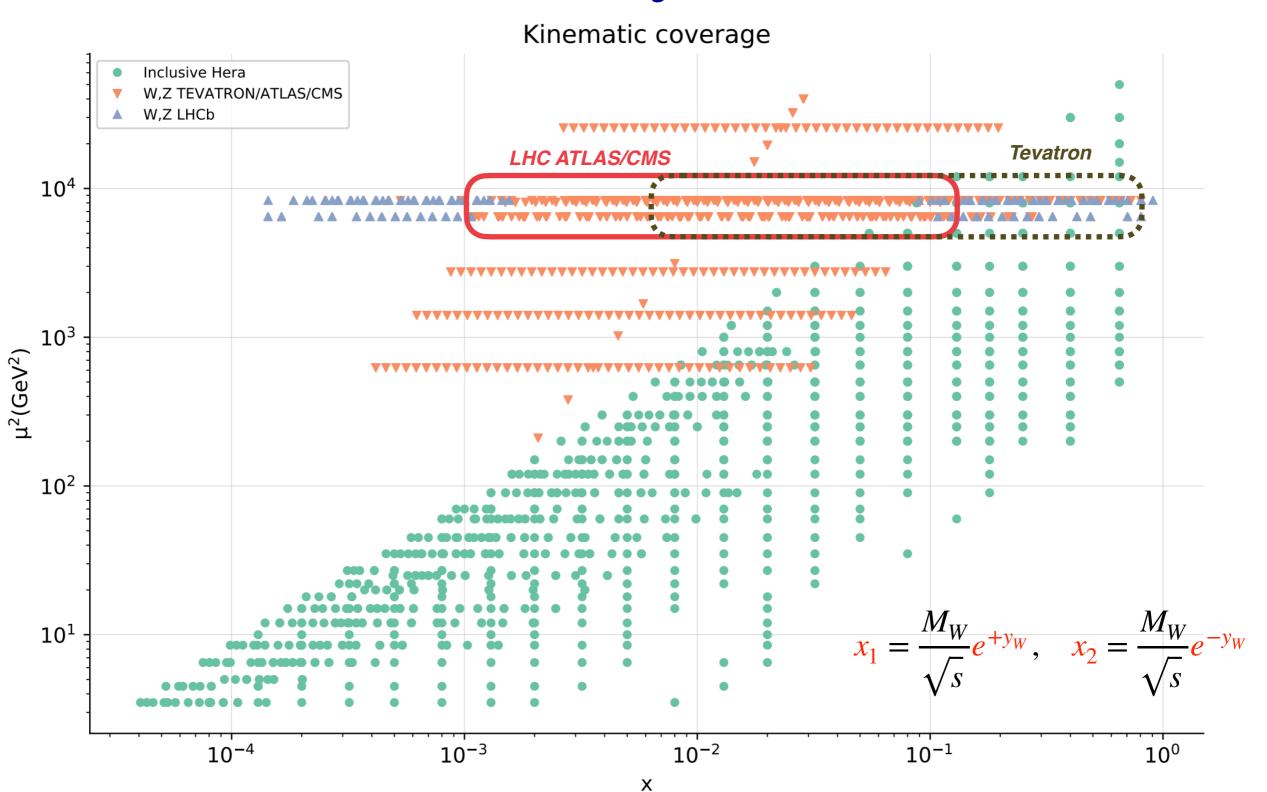
Drell-Yan measurements are mostly sensitive to the quark and antiquark PDFs at intermediate x

$$\sigma_{W^+}(M,s) \propto \int_{M^2}^s d\hat{s} \, \mathcal{L}_{u\bar{d}}(\hat{s},s) \, \tilde{\sigma}_{u\bar{d}}(\hat{s},\alpha_s(M)) + \dots$$

$$\mathcal{L}_{u\bar{d}}(Q,s) = \frac{1}{s} \int_{Q^2/s}^1 \frac{dx}{x} f_u\left(\frac{Q^2}{sx},Q\right) f_{\bar{d}}(x,Q)$$

$$p$$

$$\bar{d}(x)$$

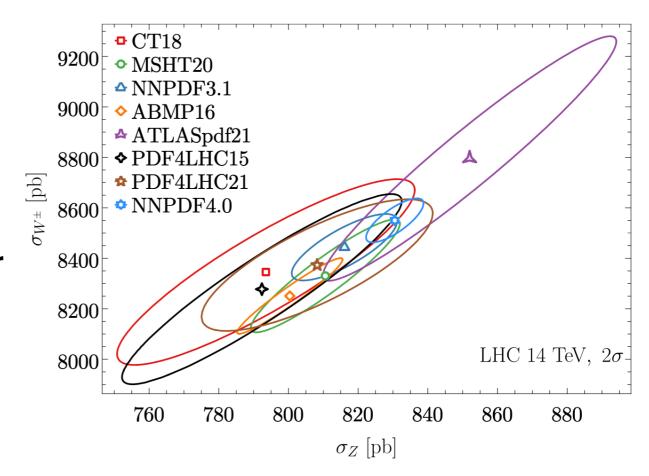

$$x_1 = \frac{M_W}{\sqrt{s}} e^{+y_W}, \quad x_2 = \frac{M_W}{\sqrt{s}} e^{-y_W}$$

large contributions from subleading partonic channels

Parton Distributions and M_W

Drell-Yan measurements are mostly sensitive to the quark and antiquark PDFs at intermediate x

Tevatron is sensitive to larger-x PDFs than LHC

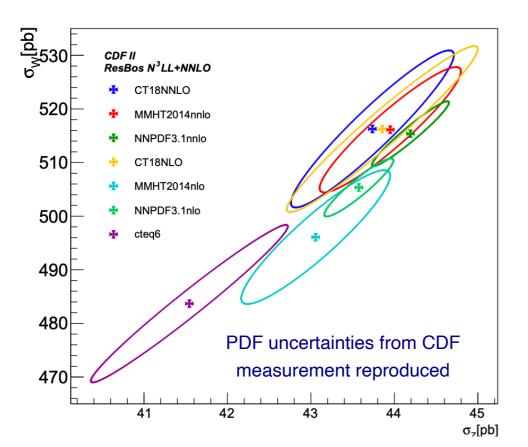

Parton Distributions and M_W

program (*58*, *59*). We use the NNPDF3.1 (*60*) parton distribution functions (PDFs) of the (anti)proton, as they incorporate the most complete relevant datasets of the available next-to-next-to-leading order (NNLO) PDFs. Using 25 symmetric eigenvectors of the NNPDF3.1 set, we estimate a PDF uncertainty of 3.9 MeV. We find that the CT18 (*61*), MMHT2014 (*62*), and NNPDF3.1 NNLO PDF sets produce consistent results for the *W* boson mass, within ±2.1 MeV of the midpoint of the interval spanning the range of values. The model-dependent nature of the analysis implies that future improvements or corrections in any relevant theoretical modeling can be used to update our measurement quantifiably [see section IV of (*63*)].

CDF-II, Science (2022)

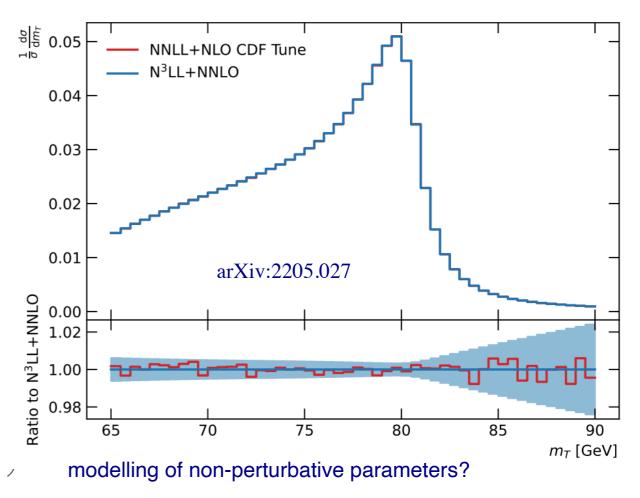
The CDF measurements quotes 4 MeV as PDF error

- not enough info to reproduce their extraction
- Spread in size of PDF errors accounted for?
- Specific selection of PDF sets?
- PDF correlations accounted for?



$\overline{\delta M_W}$ in MeV	sta.	NNPDF3.1	CT18	MMHT14	NNPDF4.0	MSHT20	CTEQ6M
$\overline{\langle M_T \rangle ({ m LO})}$	_	$0^{+8.3}_{-8.3}$	$-1.0^{+8.3}_{-11.4}$	$-3.3^{+7.4}_{-4.2}$	$+7.8^{+5.1}_{-5.1}$	$-3.1^{+6.7}_{-5.7}$	$-7.3^{+8.4}_{-12.0}$
χ^2 fit (LO)	8.0	$0^{+7.6}_{-7.6}$	$-1.0^{+5.4}_{-8.6}$	$-3.3^{+6.1}_{-3.0}$	$+8.0^{+3.7}_{-3.7}$	$-3.0^{+5.0}_{-4.0}$	$-7.3^{+5.6}_{-9.3}$
$\overline{\langle M_T \rangle ({ m NLO})}$	_	$0^{+5.9}_{-5.9}$	$-4.2^{+8.8}_{-13.3}$	$-5.0^{+6.7}_{-5.3}$	$+6.9^{+6.2}_{-6.2}$	$-7.6^{+7.9}_{-6.7}$	$-14.0^{+9.0}_{-11.9}$
χ^2 fit (NLO)	8.0		$-4.3^{+5.4}_{-10.1}$	$-5.1^{+4.8}_{-3.4}$	$+7.1^{+4.5}_{-4.5}$	$-7.8^{+5.7}_{-4.5}$	$-14.6^{+5.8}_{-5.4}$
$\overline{\text{CDF}}$	9.2	$0^{+3.9}_{-3.9}$	_	_	_	_	-3.3

Modelling differential distributions


The data distributions of $m_{\rm T}$, $p_{\rm T}^{\ell}$, and $p_{\rm T}^{\nu}$ are compared with corresponding simulated line shapes ("templates") as functions of M_W from a custom Monte Carlo simulation that has been designed and written for this analysis. A binned likelihood is maximized to obtain the mass and its statistical uncertainty. The kinematic properties of W and 2 boson production and decay are simulated using the RESBOS program (54-56), which cal culates the differential cross section with respect to boson mass, transverse momentum, and rapidity for boson production and decay. The calculation is performed at next-to-leading order in perturbative quantum chromodynamics (QCD), along with next-to-next-to-leading logarithm resummation of higher-order radiative quantum amplitudes. RESBOS offers one of the most accurate theoretical calculations available for these processes. The nonperturbative model parameters in RESBOS and the QCD interaction coupling strength α_s are external inputs needed to complete the description of the boson p_{T} spectrum and are constrained from the high-resolution dilepton $p_{\mathrm{T}}^{\ell\ell}$ spectrum of the Z boson data and the p_{T}^{W} data spectrum. EM radiation from the leptons is modeled with the PHOTOS program (57), which is calibrated to the more accurate HORACE program (58, 59). We use the NNPDF3.1 (60) parton distribution functions (PDFs) of the

CDF-II, Science (2022)

Templates for the differential distributions are produced with **ResBos** at NLO+NNLL, complemented with a data-driven determination of input parameters

A similar extraction of M_W with pseudo-data and ResBos2 (NNLO+N³LL) finds at most a downward shift of 10 MeV, unable to explain the discrepancy with the SM

CDF vs ATLAS/LHCb

CDF-II ATLAS

Source	Uncertainty (MeV)
Lepton energy scale	3.0
Lepton energy resolution	1.2
Recoil energy scale	1.2
Recoil energy resolution	1.8
Lepton efficiency	0.4
Lepton removal	1.2
Backgrounds	3.3
p_{T}^{Z} model	1.8
$p_{\mathrm{T}}^{W}/p_{\mathrm{T}}^{Z}$ model	1.3
Parton distributions	3.9
QED radiation	2.7
W boson statistics	6.4
Total	9.4

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	$\mathbf{E}\mathbf{W}$	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
m_{T}, W^+, e - μ	80370.0	12.3	8.3	6.7	14.5	9.7	9.4	3.4	16.9	30.9	2/6
m_{T}, W^{-}, e - μ	80381.1	13.9	8.8	6.6	11.8	10.2	9.7	3.4	16.2	30.5	7/6
m_{T},W^{\pm},e - μ	80375.7	9.6	7.8	5.5	13.0	8.3	9.6	3.4	10.2	25.1	11/13
$p_{\mathrm{T}}^{\ell}, W^{+}, e$ - μ	80352.0	9.6	6.5	8.4	2.5	5.2	8.3	5.7	14.5	23.5	5/6
$p_{\mathrm{T}}^{\ell},W^{-},e$ - μ	80383.4	10.8	7.0	8.1	2.5	6.1	8.1	5.7	13.5	23.6	10/6
$p_{\mathrm{T}}^{\ell},W^{\pm},e$ - μ	80369.4	7.2	6.3	6.7	2.5	4.6	8.3	5.7	9.0	18.7	19/13
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
m_{T} - $p_{\mathrm{T}}^{\ell},W^{+},e$	80345.4	11.7	0.0	16.0	3.8	7.4	8.3	5.0	13.7	27.4	1/5
m_{T} - p_{T}^{ℓ} , W^{-} , e	80359.4	12.9	0.0	15.1	3.9	8.5	8.4	4.9	13.4	27.6	8/5
m_{T} - p_{T}^{ℓ} , W^{\pm} , e	80349.8	9.0	0.0	14.7	3.3	6.1	8.3	5.1	9.0	22.9	12/11
$p_{\mathrm{T}}^{\ell},W^{\pm},\mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{\mathrm{T}}, W^{\pm}, \mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7
m_{T} - $p_{\mathrm{T}}^{\ell},W^{+},\mu$	80364.1	11.4	12.4	0.0	4.0	4.7	8.8	5.4	17.6	27.2	5/7
m_{T} - p_{T}^{l} , W^{-} , μ	80398.6	12.0	13.0	0.0	4.1	5.7	8.4	5.3	16.8	27.4	3/7
m_{T} - $p_{\mathrm{T}}^{ar{\ell}},W^{\pm},\mu$	80382.0	8.6	10.7	0.0	3.7	4.3	8.6	5.4	10.9	21.0	10/15
m_{T} - p_{T}^{ℓ} , W^{+} , e - μ	80352.7	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4	7/13
m_{T} - p_{T}^{\dagger} , W^{-} , e - μ	80383.6	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4	15/13
m_{T} - p_{T}^{ℓ} , W^{\pm} , e - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

PDF errors halved in CDF compared to ATLAS/LHCb

Statistical error the same in ATLAS and CDF

Theory (excl. PDF) errors is 11 MeV and 17 MeV in ATLAS/LHCb, what about CDF?

explained by different kinematics? Data-driven theory calibration? Different definition of uncertainties?

Source	Size [MeV	7]
Parton distribution functions	9	
Theory (excl. PDFs) total	17	
Transverse momentum model	11	
Angular coefficients	10	
QED FSR model	7	
Additional electroweak corrections	5	
Experimental total	10	
Momentum scale and resolution modelling	7	LHCb
Muon ID, trigger and tracking efficiency	6	
Isolation efficiency	4	
QCD background	2	
Statistical	23	
Total	32	

Some points for discussion

From a theoretical perspective, a measurement of M_W at hadron colliders with **O(few MeV) precision** is extremely challenging. Some points for the discussion

How to define the PDF systematic error? Which PDF sets to include? How to combine them?

Treatment of missing higher-order uncertainties and resummation parameters? Dependence with the generator? Impact of N3LO?

Modelling of the correlations between the p_T^z and p_T^w distributions?

Impact of higher order electroweak and mixed QED/QCD corrections?

Why the CDF-II measurement is more precise than ATLAS/LHCb?
What about CMS?

What would have happened if different MC generators other than ResBos had been used?

What is the most appropriate definition of theory uncertainties in this measurement?