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Charting proton structure (and 
beyond) with deep learning



 A crash course on proton structure 


 The Neural Network approach to parton distributions

 Deep learning for Effective Field Theory analyses


 Deep learning for data analysis in Electron Microscopy

Outline
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A Crash Course on 
Proton Structure 
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for more info see Gao, Harland-Lang, Rojo Physics Reports (2021)



The many faces of the proton

Origin of spin?Origin of mass?

Heavy quark content?
Nuclear modifications?

QCD bound state of quarks and gluons

3D imaging?Gluon-dominated 

matter?
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The proton keeps surprising us as an endless 

source of fundamental discoveries

The Guardian (2017)


Scientific American (2014) BFKL dynamics
Non-zero gluon polarisation

The proton in the spotlight

Science News (2018)


Nucleon pressure
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The proton keeps surprising us as an endless 

source of fundamental discoveries

Nature + Quanta, Volkskrant, New 
Scientist … (2021)


The proton in the spotlight
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Proton antimatter asymmetry
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From colliders to the cosmos

New elementary particles 
beyond the Standard Model?

Origins and properties of 
cosmic neutrinos? 

Nature of Quark-Gluon Plasma 
in heavy-ion collisions? 

RHIC

LHC

IceCube
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Parton Distributions

8

In high-energy hadron colliders, such as the LHC, the collisions involve 
composite particles (protons) with internal structure (quarks and gluons)

dσ(pp → l+l−)
dmll

= ?
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Parton Distributions

9

In high-energy hadron colliders, such as the LHC, the collisions involve 
composite particles (protons) with internal structure (quarks and gluons)

dσ(pp → l+l−)
dmll

=
dσ(qiq̄j → l+l−)

dmll
⊗ …
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Parton Distributions

10

In high-energy hadron colliders, such as the LHC, the collisions involve 
composite particles (protons) with internal structure (quarks and gluons)

dσ(pp → l+l−)
dmll

=
dσ(qiq̄j → l+l−)

dmll
⊗ Prob(qi, x1) ⊗ Prob(q̄j, x2)

fraction of proton energy
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Parton Distributions

Parton Distribution Functions 

(PDFs)

Proton energy divided among 

constituents: quarks and gluons

Determine from data: 

Global QCD analysis

Mass? Spin? 

Heavy quark content?

Novel QCD dynamics? 

Theoretical predictions 
for LHC, RHIC, IceCube?
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All-order structure: QCD factorisation theorems

NLHC(H) ∼ g ⊗ g ⊗ σ̃ggH

proton

Higgs
σ̃ggH

proton

gluon

gluon

g

g

Parton Distributions

Parton Distributions



Dependence on x fixed by non-perturbative QCD dynamics: extract from experimental data

Probability of finding a gluon inside a 
proton, carrying a fraction x of the proton 
momentum, when probed with energy Q

x: fraction of proton 

momentum carried by gluon

Energy of hard-scattering reaction: 
inverse of resolution length

Energy conservation: momentum sum rule


Quark number conservation: valence sum rules


∫
1

0
dx x (

nf

∑
i=1

[qi((x, Q2) + q̄i(x, Q2)] + g(x, Q2)) = 1

∫
1

0
dx (u(x, Q2) + ū(x, Q2)) = 2

Parton Distributions
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Dependence on Q fixed by perturbative QCD dynamics: computed up to 

Probability of finding a gluon inside a 
proton, carrying a fraction x of the proton 
momentum, when probed with energy Q

x: fraction of proton 

momentum carried by gluon

Energy of hard-scattering reaction: 
inverse of resolution length

𝒪 (α4
s )

∂
∂ ln Q2

qi(x, Q2) = ∫
1

x

dz
z

Pij ( x
z

, αs(Q2)) qj(z, Q2)

DGLAP parton evolution equations

Parton Distributions
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The Global QCD analysis paradigm
QCD factorisation theorems: PDF universality

σl p→μ X = σ̃uγ→u ⊗ u(x)

Determine PDFs from deep-
inelastic scattering…

15

u(x) ≃
σlp→lX (exp)

σ̃uγ*→u (QED theory)

leading-order calculations +

only up quark in proton

in general: introduce a 
parametrisation for the PDFs and fit


their parameters from data 
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The Global QCD analysis paradigm
QCD factorisation theorems: PDF universality

σl p→μ X = σ̃uγ→u ⊗ u(x) σp p→W = σ̃ud̄→W ⊗ u(x) ⊗ d̄(x)

Determine PDFs from deep-
inelastic scattering…

… and use them to compute predictions 
for proton-proton collisions
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A proton structure snapshop

valence 

quark 


number steep rise of

gluons & sea quarks

heavy 

quarks
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Parametrise PDFs at some low scale Q0 
(around the proton mass, 1 GeV)

more than 5000 independent 

cross-section measurements 

from 40 different processes
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g(x, Q0) ≃ Agx−bg(1−x)cg × Pg(x, dg, fg, …)

Fix some parameters from theory 
constraints (e.g. momentum conservation)

Extract remaining parameters (+ their 
uncertainties) from global fit to wide dataset

momentum fraction of partons

en
er

gy
 o

f h
ar

d-
sc

at
te

rin
g

Fitting PDFs



The global PDF fit pipeline 

Theory calculations

APFEL, HOPPET, QCDNUM, …

External (N)NLO codes

The global QCD fitStatistical framework

Experimental data

Fast NLO grids 
NNLO QCD &  

NLO EW K-factors

Fixed-target & collider DIS 
Tevatron and LHC measurements 

Jets, DY, top, Z pT, ….

PDF parametrisation,  
PDF uncertainties and propagation 

Model and theory uncertainties

NNLO DGLAP evolution 
DIS structure functions

MCFM, NLOjet++, FEWZ, 
DYNNLO, private codes…

Minimise figure of merit (*) and  
determine PDF parameters

APFEL WEB

LHAPDF

on-line plotting toolbox 

standard interface for  
public PDF delivery

http://apfel.mi.infn.it/

lhapdf.hepforge.org

fit validation, statistical  
estimators, diagnosis tools

APPLgrid, FastNLO, aMCfast….

(*) 
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gluino-pair production in supersymmetry

Why do we need better PDFs?

PDF uncertainties in the production of New Physics heavy resonances up to 100%


Due to limited coverage of the large Bjorken-x region

PD
F 

er
ro

rs
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Why do we need better PDFs?
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Gluon-Fusion Higgs production, LHC 13 TeV

MMHT14
CT14
NNPDF3.0
ABM12
HERAPDF2.0
JR14VF

Gluon-Fusion Higgs production, LHC 13 TeV

PD
F 
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Inclusive Higgs production rates
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Δσ(BSM)
h

σ(SM)
h

≃
v2

Λ2
= few % for Λ = 𝒪(TeV)

Higgs coupling measurements at the 
few percent level (and below) are a 

must for indirect BSM searches



The Neural Network Approach 
to Proton Structure 
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http://nnpdf.mi.infn.it/



ML for proton structure

Traditional

Neural Nets

Neural Networks can be used universal 

unbiased interpolants to parametrise PDFs 


Removes model dependence: unbiased 

learning the physical laws from data


Highly redundant parametrisation: identical 

results if O(10) increase in # free params

g(x, Q0) = Agx−αg(1 − x)βg ξ(L)
1 (x)

x

ln 1/x

ξ(3)
1

ξ(3)
2

ξ(3)
3

ω(L)
11

ω(L)
13

ω(L)
12 ξ(L)

1

ξ(1)
1

ξ(1)
2

ξ(2)
1

ξ(2)
2

ξ(2)
3

ξ(2)
4

ξ(2)
5

g(x) ≃ NN(x)

g(x) ≃ x−b(1−x)c

Rg(x, A) ≃ NN(x, A)

Rg(x, A) ≃ (1 + bx+cx2) × Ad

Proton PDFs Nuclear PDFs

x: proton’s energy fraction carried by gluons

A: number of protons + neutrons
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ANN-based parametrisation

fi(x, Q0) = x−αi(1 − x)βiNNi(x)

evolution basis

flavor basis

NNPDF4.0 PDF 

parametrisation
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How do we use ML for PDF fits?

 

Deep neural networks as universal unbiased interpolants


Automated hyper-parameter optimisation (NN architecture, minimiser, theory 

constraints, training time,….)


Monte Carlo sampling for faithful uncertainty estimate and propagation (data 

errors, model errors, theory errors, …)


Broad range of minimisers: SGD w. backpropagation, genetic algorithms, CMA-ES


GANs to improve efficiency of PDF compression and reweighting methods

New methods to detect over-learning and under-fitting beyond cross-validation


Deploying GPUs to parallelize tasks and reduce CPU time


Optimisation of NN training time (release fits take several weeks running on 

hundreds of cores)
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http://nnpdf.mi.infn.it/
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ML-based PDFs
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Complete restructure of the NNPDF fitting framework:  enhanced modularity that dramatically 
improves its flexibility, in particular to exploit external ML libraries eg Keras, TensorFlow, …
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ML-based PDFs
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Complete restructure of the NNPDF fitting framework:  enhanced modularity that dramatically 
improves its flexibility, in particular to exploit external ML libraries eg Keras, TensorFlow, …

DGLAP evolution from Q0

convolution with hard-scattering matrix element
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Complete restructure of the NNPDF fitting framework:  enhanced modularity that dramatically 
improves its flexibility, in particular to exploit external ML libraries eg Keras, TensorFlow, …

A new methodology, codename n3fit Motivation: speed & flexibility ! more physics

The goal: towards new methodologies

Data I/O

Monte Carlo

GA Choice

Fitting machinery

PDF generation

nnpdf: nnfit

fitting
method

=)

Data I/O

Monte Carlo

Any framework

Any optimizer

PDF generation

new code: n3fit

abstracted backend

Juan Cruz-Martinez (University of Milan) n3fit PDF4LHC 2019, Durham 4 / 19

ML-based PDFs
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e.g. cost function reward function

29

In most Machine Learning applications, the model has several parameters which are 
typically adjusted by hand (trial and error) rather than algorithmically:

Network architecture: number of layers of neurons per layer, activation functions, …


Choice of minimiser (which of the Gradient Descent variants?)


Learning rate, momentum, memory, size of mini-batches, …. 


Regularisation parameters, stopping, dropout rate, patience, …

one can avoid the need of subjective choice by means of an hyperoptimisation procedure, 
where all model and training/stopping parameters are determined algorithmically

Such hyperoptimisation requires introducing a reward function to grade the model.

Note that this is different from the cost function: the latter is optimised separately model by 

model (e.g. for each NN architecture) while the former compares between all optimised models

C = Etr R =
1
2 (Eval + Etest)

Hyper optimisation
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Juan Rojo                                                                                                      D-ITP Advanced Topics: Machine Learning30

Hyper optimisation

χ2
test set

(not used for the fit at all)
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max. ite.initialiserlearn rateoptimiser

In a hyperparameter scan one 
can compare the performance 
of hundreds or thousands of 
parameter combinations


Some choices are discrete 
(type of minimiser, # of layers) 
others are continuous 
(learning rate)


One can also visualise which 
choices are more crucial and 
which ones less important


The violin plots are the KDE-
reconstructed probability 
distributions for the hyper-
parameters

Hyper optimisation
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AI & forecasting tests
Crucial aspect of ML methods, 
beyond describing existing data, is 
to generalise to future data


Train PDFs on pre-HERA and pre-
LHC data, and then forecast for all 
data available now


Include in this exercise PDF errors 
in the χ2 definition

Training PDFs on only old fixed-target DIS 
and DY datasets, the extrapolation to 
``future’’ data is fully satisfactory: χ2new =1 

Test succesful both with 3.1 and 4.0 
methodologies: in both cases the PDF 
uncertainties are faithfully estimated, 
with 4.0 being more accurate than 3.1

2215 data points not used to train the NN model!
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GANs for PDF fits
Even with all the n3fit speedups, producing large samples of PDF replicas still time-consuming


Solution: produce new PDF fit replicas using Generative Adversarial Networks


While no additional information is being added, such method can be applied to many cases 
with a very large Nrep is beneficial, such as Bayesian reweighting studies
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Deep Learning for 
Effective Field Theories
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based on Chen et al., arXiv:2007.10356


+ ter Hoeve & Rojo, work in progress



Hunting for New Physics



Hunting for New Physics



Hunting for New Physics



Effective 

Theories!

Model-independent & Data-driven strategy

Hunting for New Physics



The Standard Model as an Effective Theory

extract from data

Assemble a New Standard Model from the bottom up!

(Standard Model) + ∑
k

ck × (New Interaction)k

complete basis spanning space 

of New Physics theories

The Standard Model Effective Field Theory (SMEFT):

constrain all SMEFT interactions from a global dataset

more than 2000!

rich variety of signals!
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The Standard Model as an Effective Theory

extract from data

Assemble a New Standard Model from the bottom up!

complete basis spanning space 

of New Physics theories

The Standard Model Effective Field Theory (SMEFT):

constrain all SMEFT interactions from a global dataset

more than 2000!

rich variety of signals!

ℒSMEFT = ℒSM +
∞

∑
d=5

Nd

∑
i=1

c(d)
i

Λd−4
𝒪(d)

i

known physics
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The Standard Model as an Effective Theory

extract from data

Assemble a New Standard Model from the bottom up!

The Standard Model Effective Field Theory (SMEFT):

constrain all SMEFT interactions from a global dataset

rich variety of signals!

σSMEFT = σSM +
N6

∑
i=1

ci

Λ2
σ(eft)

i +
N6

∑
i,j=1

cicj

Λ4
σ̃(eft)

ij

known physics
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Matching

Grant application Vici full proposal form 2020 4

On the lookout for new physics. There exist two main approaches to identify novel particles and interactions arising in
high-energy collisions. In direct searches [6], once the available energy is sufficient to kinematically produce the new
particles, one can isolate their signatures as an excess signal over the known SM background processes – this was the
approach used e.g. for the discovery of the Higgs boson. This strategy is however limited by the available collider en-
ergy, 14 TeV (around 104 times the protonmass) at the LHC. In indirect searches instead, the goal is pinning down subtle
deviations in the properties of known particles, such as the strength of their interactions, arising from yet unknown
heavy particles whose effects feed down to lower scales via virtual quantum effects. This approach benefits frommodel
independence, can achieve a higher energy reach that the direct method, and was successful in predicting the masses
of the Higgs boson and the top quark before they were actually discovered at the LHC and the Tevatron, respectively.

Effective Theories: the ultimate quantum microscope
E

n
e

rg
y

ϕ (mϕ) , Φ (MΦ)

E ≃ MΦ ≫ mϕ

ϕ (mϕ)

ℒint ⊃ λϕ2Φ2

ℒint ⊃ c4(λ, MΦ)ϕ4

Full Theory

Effective Theory

Figure 2: Schematic of the matching be-
tween (toy) Full and Effective Theories.

In many physical systems, the dynamical laws governing widely
separated energy or distance scales become effectively decou-
pled. For instance, as shown in Fig. 3, knowledge about the inter-
nal structure of the proton (or even the existence of the strong
nuclear force) is not required to evaluate electronic transition
energies. An Effective Field Theory (EFT) is an implementation
of this paradigm in the framework of quantum theory [7]. We
can illustrate the EFT philosophy by considering a toy Full Theory
(Fig. 2) composed by a light field � with mass m� and a heavy
field � with mass M� (such that m� ⌧ M�), coupled via a
��2�2 interaction. At low energies, E ⌧ M�, the heavy field
becomes non-dynamical and can be integrated out. The result-
ing Effective Theory is now composed by only the light field �
but with a new interaction c4�4, where the value of c4 depends
on the Full Theory parameters � andM�. Therefore, we can in-
fer indirectly the existence and properties of the heavy particle
� even at low energies, via its modifications to the properties
(e.g. interaction strength) of the light particle �. The take-home
message is that, due to quantum effects, effective theories can
provide access to much higher energy scales than those directly
probed at facilities such as the Large Hadron Collider.

Figure 3: The effective theory paradigm is based on constructing our physical models by keeping only the relevant degrees of
freedom at each energy or length scale. As we image atoms with increasing spatial resolution�x, new degrees of freedom become
apparent: first the outer shell electrons, then the full electronic structure, and finally for the quark and gluon structure of protons.

The Standard Model as an Effective Theory. The Standard Model itself can be also understood as an effective field
theory, known as the SMEFT [8]. Assuming that the Standard Model provides an effective (as opposed to fundamental)
description of nature up to energy scales such thatE ' ⇤, the effects of new heavy particles and interactions present

ℒint = λ3ϕ2Φ

ϕ + ϕ → Φ → ϕ + ϕ
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Low-energy parameters sensitive to ultraviolet dynamics!

Matching

Grant application Vici full proposal form 2020 4

On the lookout for new physics. There exist two main approaches to identify novel particles and interactions arising in
high-energy collisions. In direct searches [6], once the available energy is sufficient to kinematically produce the new
particles, one can isolate their signatures as an excess signal over the known SM background processes – this was the
approach used e.g. for the discovery of the Higgs boson. This strategy is however limited by the available collider en-
ergy, 14 TeV (around 104 times the protonmass) at the LHC. In indirect searches instead, the goal is pinning down subtle
deviations in the properties of known particles, such as the strength of their interactions, arising from yet unknown
heavy particles whose effects feed down to lower scales via virtual quantum effects. This approach benefits frommodel
independence, can achieve a higher energy reach that the direct method, and was successful in predicting the masses
of the Higgs boson and the top quark before they were actually discovered at the LHC and the Tevatron, respectively.
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Figure 2: Schematic of the matching be-
tween (toy) Full and Effective Theories.

In many physical systems, the dynamical laws governing widely
separated energy or distance scales become effectively decou-
pled. For instance, as shown in Fig. 3, knowledge about the inter-
nal structure of the proton (or even the existence of the strong
nuclear force) is not required to evaluate electronic transition
energies. An Effective Field Theory (EFT) is an implementation
of this paradigm in the framework of quantum theory [7]. We
can illustrate the EFT philosophy by considering a toy Full Theory
(Fig. 2) composed by a light field � with mass m� and a heavy
field � with mass M� (such that m� ⌧ M�), coupled via a
��2�2 interaction. At low energies, E ⌧ M�, the heavy field
becomes non-dynamical and can be integrated out. The result-
ing Effective Theory is now composed by only the light field �
but with a new interaction c4�4, where the value of c4 depends
on the Full Theory parameters � andM�. Therefore, we can in-
fer indirectly the existence and properties of the heavy particle
� even at low energies, via its modifications to the properties
(e.g. interaction strength) of the light particle �. The take-home
message is that, due to quantum effects, effective theories can
provide access to much higher energy scales than those directly
probed at facilities such as the Large Hadron Collider.

Figure 3: The effective theory paradigm is based on constructing our physical models by keeping only the relevant degrees of
freedom at each energy or length scale. As we image atoms with increasing spatial resolution�x, new degrees of freedom become
apparent: first the outer shell electrons, then the full electronic structure, and finally for the quark and gluon structure of protons.

The Standard Model as an Effective Theory. The Standard Model itself can be also understood as an effective field
theory, known as the SMEFT [8]. Assuming that the Standard Model provides an effective (as opposed to fundamental)
description of nature up to energy scales such thatE ' ⇤, the effects of new heavy particles and interactions present

ℒint = λ3ϕ2Φ

ϕ + ϕ → Φ → ϕ + ϕ

ϕ + ϕ → ϕ + ϕ

c4 = λ2
3 /M2

Φ



Solution: use a deep learning model to parametrise the extended likelihood ratio

Goal: find the optimal bounds on the EFT coefficients


Neyman-Pearson lemma: the most powerful test at fixed size between two simple 
hypotheses is the (log) likelihood ratio


However, in EFT problems the likelihood ratio is analytically intractable
:

44

Statistically optimal observables for EFT fits

Extended likelihood ratio

SM hypothesis

EFT hypothesis (null)
Expected number 
of events under 

the SM
Cross section ratio

Number of events



Can be generalised to any number of Wilson coefficients

dσ0(x, c) = dσ1(x) 1 +
nop

∑
i=i

ciαi(x) +
nop

∑
j≥i

cicjβij(x)

Exploit quadratic dependence of the EFT cross-sections in its coefficients

Statistically optimal observables for EFT fits

EFT differential cross section

SM differential cross section

Quadratic 
dependence on c 

and positivity 
constraint

Train deep neural networks on Monte Carlo (ideally, real) data to parametrise the 
likelihood ratio and use it to construct statistically optimal EFT observables
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final-state 

kinematics

input: final-state kinematics

output: DNNs



Toy model: (stable) top quark pair production at 14 TeV


Validate NN-based likelihood ratio with analytical calculation

Statistically optimal observables for EFT fits
to

p-
qu

ar
k 

ra
pi

di
ty

top-quark pair invariant mass

dσ0(yt, mtt̄, ctG) |DNN

dσ0(yt, mtt̄, ctG |exact

Reconstructing 2D likelihood 
takes a few minutes


now working on scaling up 
to N operators and fully 
differential processes

Juan Rojo                                                                                                     ML4HEP seminar @ Radboud



Deep Learning for 
Electron Microscopy
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ML4HEP meets Electron Microscopy

Roest, van Heijst, Maduro, Rojo, Conesa-Boj, Ultramicroscopy (2021)


van Heijst, Mukai, Okunishi, Hashiguchi, Maduro, Roest, Rojo, Conesa-Boj, Annalen der Physiek (2021)


Postmes, Brokkelkamp, van Heijst,  ter Hoeve, Maduro, Rojo, Conesa-Boj, in preparation
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Electron energy-loss spectroscopy (EELS) measurements affected by huge background 
at low-energy losses: complicates e.g. interpretation of material properties


Solution: treat these backgrounds as the PDFs: parametrise then from data using 
ANNs and subtract them in an unbiased, model-independent manner

49

Background subtraction in EM
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An ANN model for EELS backgrounds
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WS2 Nanoflowers

Deploy this ML method to characterise local electronic properties of nano-structured 
quantum materials: in this case, nanoflowers built upon 2D materials
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Bandgap determination

For the first time, we determine the bandgap of 3R/2H polytypic WS2
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Big Data in Electron microscopy

 Each EELS spectral image contains O(1M) 
individual spectra


 Use unsupervised learning to cluster them 
and them deep learning to extract 
automatically all physical information


 Bandgap values, thickness, dielectric 
function, plasmons, excitons ….



Summary

 Deep-learning methods allow a robust, bias-free interpretation of precision hard-
scattering data and make possible a deeper understanding of proton structure


 Many hurdles need to be overcome: long training times, choice of hyperparameters, 
avoiding overfitting, unbalanced training …


 The same deep learning strategies can be used in the context of EFT fits to parametrise 
multi-dimensional likelihoods and design optimally sensitive observables


 Ditto for data analysis in electron microscopy: bringing HEP methods to quantum 
material physics opens many avenues for new studies in quantum nanoscience

 The accurate determination of the quark and gluon structure of the proton is 
an essential ingredient for LHC phenomenology and beyond
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