

Charting Electron Energy Loss Spectra with Machine Learning

Juan Rojo

VU Amsterdam & Theory group, Nikhef

2021 Virtual MRS Spring Meeting & Exhibit

Symposium CT05: Artificial Intelligence and Automation for Materials Design April 18th 2021

From the Higgs boson to quantum materials

Juan Rojo (PI)

Jaco ter Hoeve (PhD)

results based on:

- Roest, van Heijst, Maduro, Rojo, Conesa-Boj, Ultramicroscopy (2021)
- van Heijst, Mukai, Okunishi, Hashiguchi, Maduro,
 Roest, Rojo, Conesa-Boj, Annalen der Physiek (2021)
- Postmes, Brokkelkamp, van Heijst, ter Hoeve, Maduro, Rojo, Conesa-Boj, *in preparation*

Sonia Conesa-Boj (PI) Lou

Louis Maduro (PhD)

Laurien Roest (MSc)

Electron Energy Loss Spectroscopy

EELS: monitor **energy losses** suffered by the electrons from a Transmission Electron Microscope (TEM) beam upon **interaction with the sample**

- Challenge: EELS measurements affected by huge background (zero-loss peak) at lowenergy losses from elastic scatterings: complicates interpretation of material properties!
- Solution: parametrise backgrounds from data using Deep Neural Networks and Monte Carlo sampling to remove them in a model-independent manner

ML-driven background subtraction in HEP

outputs: data-driven background model

- Learn from data underlying physical laws and parametrise them with neural nets
- Estimate model uncertainties from Monte Carlo replica method: train a large number of models on *fake replicas* of actual data
- Reliable extrapolation to different datasets and ranges of the input variables

A ML model for EELS backgrounds

The Monte Carlo replica method

Generate Monte Carlo replicas of the original data points with multi-Gaussian distribution with central values and covariance matrices taken from the input measurements

$$I_{\mathrm{ZLP},i}^{(\mathrm{art})(k)} = I_{\mathrm{ZLP},i}^{(\mathrm{exp})} + r_i^{(\mathrm{stat},k)} \sigma_i^{(\mathrm{stat})} + \sum_{j=1}^{n_{\mathrm{sys}}} r_{i,j}^{(\mathrm{sys},k)} \sigma_{i,j}^{(\mathrm{sys})} , \quad \forall i , \quad k = 1, \dots, N_{\mathrm{rep}} ,$$

Frain a NN model on each replica from the minimisation of the log-likelihood

$$E^{(k)}\left(\{\theta^{(k)}\}\right) = \frac{1}{n_{\text{dat}}} \sum_{i=1}^{n_{\text{dat}}} \left(\frac{I_{\text{ZLP},i}^{(\text{art})(k)} - I_{\text{ZLP},i}^{(\text{mod})}\left(\{\theta^{(k)}\}\right)}{\sigma_i^{(\text{exp})}}\right)^2,$$

We end up with a sampling of the probability density in the space of NN models, from which we can compute e.g. the variance of the predicted ZLP intensity for arbitrary inputs

$$\sigma_{I_{\rm ZLP}}^{\rm (mod)}(\{z_1\}) = \left(\frac{1}{N_{\rm rep}} - 1 \sum_{k=1}^{N_{\rm rep}} \left(I_{\rm ZLP}^{\rm (mod)(k)} - \left\langle I_{\rm ZLP}^{\rm (mod)}\right\rangle\right)\right)^{1/2}$$

state of the art for error propagation in deep-learning models

Extrapolation to new TEM operation conditions

Key property of ML: **prediction** to different ranges of input parameters

- Train ZLP model for specific values of TEM operation parameters, e.g. electron beam energy and then inter/extrapolate outside training range
- **M** The model **uncertainties increase** when our prediction is not reliable and more data needed
- Important: no assumptions of functional dependence of background model with input variables

Band gap extraction in polytypic WS₂

 \mathbf{v} Apply to **nanoflowers** composed by **polytypic WS**₂ (a 2D quantum material) \mathbf{v} First extraction of band gap in this material from fit to subtracted EEL spectra

$$I_{\text{inel}}(\Delta E) \simeq A \left(\Delta E - E_{\text{BG}}\right)^b \qquad E_{\text{BG}} = 1.6^{+0.3}_{-0.2} \,\text{eV}\,, \quad b = 1.3^{+0.3}_{-0.7}\,.$$

☑ ML-subtracted spectra make possible mapping **exciton transitions** down to 1.5 eV

Band gap extraction in polytypic WS₂

☑ ML-subtracted spectra make possible mapping exciton transitions down to 1.5 eV

ML analysis of spectral images

STEM intensity sample

- EELS spectral image contains up to O(10⁵) individual spectra
- ✓ Use unsupervised learning (*K*-means clustering) to identify clusters of pixels with comparable sample thickness and combine them for the (supervised) NN training
- Simultaneous determination of physical properties across the **whole nanostructure** with their **uncertainties:** thickness, band gap, position and width of plasmonic and excitonic resonances,...

Summary and outlook

Machine learning algorithms offer exciting avenues to improve and boost data interpretation in electron microscopy and related techniques

- The combination of deep learning models and Monte Carlo replica methods make possible assumption-free, faithful background subtraction in EELS spectra
- One can reliable predict the shape and magnitude of these backgrounds for other operation conditions beyond those used in the training
- The methodology can be applied to any other problem where large (multi-dimensional) backgrounds needs to be removed in order to access the relevant physical information

results obtained with **EELSfitter** code, publicly available in GitHub:

https://github.com/LHCfitNikhef/EELSfitter