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The Standard Model EFT

Extend SM Lagrangian with complete, non-redundant basis of higher dimensional operators
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Nas = 59 (2499) for one
(three) flavour generations

Low-energy limit of generic UV-complete theories;
systematic parametrisation of BSM effects; fully
renormalizable QFT: matched to a large number of
BSM models that reduce to the SM; increased
sensitivity at LHC from xsec growth in CoM energy ....

Fulfilling the potential of the SMEFT framework
demands global analyses based on a wide
range of process and data to cover all relevant
directions in the EFT parameter space



The Standard Model EFT
from Lagrangian ..
Zsmertr = ZLsm T Z —0' + Z —@(8) + .
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SM EFTas EFTas
Linear EFT cross-sections: Quadratic EFT cross-sections:
interference SM-EFTge squares EFTge
to cross-sections .... \ /
N6 C, C
(eft) m-n (eft)
osmert (65 A) = ogy X [ 1+ 2 Aa Omn
] m= 1 \ m,n= 1 /
evaluate at (N)NLO QCD + NLO EW evaluate at NLO QCD

with SMEFT@NLO



The Standard Model EFT

.. to constraints on the EFT parameters

1 Ndat B
17, A) = o Z ( G; sSMEFT(C> /\) — lexp> (cov 1),-j (Gj,SMEFT(C’A) B Gj,exp>
dat ;
Lj=1

- o All existing global EFT analyses are based on SM
log-likelihood minimisation

: e measurements " re-interpreted” in EFT framework
(multi-gaussian likelihood)

Linear EFT cross-sections: Quadratic EFT cross-sections:
interference SM-EFTge squares EFTge
to cross-sections ....
N6 C, C
(eft) m-n (eft)
osmert (65 A) = ogy X [ 1+ 2 Aa Omn
m= 1 \ m,n= 1 /
evaluate at (N)NLO QCD + NLO EW evaluate at NLO QCD

with SMEFT@NLO
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Global EFT analyses

€ Various groups have presented EFT analysis combining data from different processes, hence
sensitive to a large number of EFT directions, and their interpretation in terms of UV models

e.g. SMEFiT combines 317 cross-section
measurements to constrain 50 dim-6 EFT coefficients
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€ None of these measurements used has been optimised for EFT studies, can we do better?



From binned to unbinned likelihoods

& Most measurements used for EFT fits are presented in terms of multi-Gaussian likelihoods

EFT # of bins # of events # of events
parameters l per bin (exp) per bin (pred)
N Y
1 (n; —vi(c))
[,('n,, V(C)) = H eXp —_— (only stat
1 2 V; (C) uncertainties here)
1= - -

¢ What is the optimal number of bins for a subsequent EFT analysis? How much information do
we gain/lose by measuring a cross-section differential in additional kinematic variables?

¢ This multi-gaussian likelihood can be extended to a Poissonian likelihood to account for
distributions where some bins have a small # of events (e.g. high energy tails)

o v () —vi(c)
L(n;v(c)) = | | e
i=1

¢ Likelihood maximisation: derive CL internals for the EFT coefficients, given the observed data

are we losing information due to specific choice of
binning and final-state kinematic distributions?



From binned to unbinned likelihoods

main goal: construct unbinned observables from ML and assess their relevance for global EFT
fits, by comparing their impact with those of ""traditional” binned observables

Nev Nev
v, v(e) _
L(c) = 0t 2 g ror(e) H fo (i, €)
unbinned / / N ev! T .
likelihood T 1=1 \
EFT ber of number of probability distribution in
parameters numoero events (pred) the final-state kinematics
events (exp)
; ( ) 1 da(m, C) e.g.in pp — hW — bbfv,
o \&L,C) = 4 b
o(X,c) dx X = (PT»Yf» Mpps Vps P> )

fully differential cross-section

by construction, this unbinned likelihood contains all the information from the observed events

Challenge: evaluation of unbinned Solution: parametrise the diff xsecs in
likelihood very costly, specially for terms of deep neural networks and train
particle & detector level final states them on Monte Carlo data



From binned to unbinned likelihoods

For an analysis sensitive to np EFT coefficients, we can express the SMEFT cross-section as
np MNp

fo(@,c) = fo(x,0)+ Y [ (x)c;+ > > fF(@)cjen
j=1

/ =1 k>
SMEFT cross-section,

differential in all SM cross-section linear quadratic
variables included in x EFT xsec EFT xsec

Technically it is advantageous to parametrise the likelihood ratio to the SM

Np nNp MNp

ro(®,€) = Jol@,0) _, +> P @)e; +) ) rdP(@)ejen

Jo(@,0) j=1 j=1k>;

Once unbinned observables have been constructed, one can extend the
global EFT fit likelihood to account also for the information they provide
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Full likelihood global EFT fit unbinned obs binned, Poisson obs binned, Gaussian obs



Cross-section ML parametrisation

We need hence to parametrise the dependence of the distribution ratios on the kinematics

Np nNp TNp
re(x,c) = fo(@,€) _ 1+ Zr((,j)(m)cj + Z Xr((,j’k) (x)cjck
fo(,0) j=1 j=1 k>

e.g. for Higgs associate production, we may need to parametrise a 5D function

pp = hW — bbty,

1 do(x,c) v = (p? _ b
— ) - p 9y 9m 9y 9p 2
fo (@, ) o(X,¢c) dx ( iz )

. : / b
réf)(x) = r(gf) (pT, Yer Mipps Yb»PT>

Adopt deep neural networks as universal unbiased interpolants and bypass the need to
evaluate the differential cross-section on a event-by-event basis

The structure of EFT corrections (linear + quadratic) make possible parallelizing the training

related work by Chen at al 2007.10356, Tito d’Agnolo et al 1912.12155, Brehmer et al 1805.00013 + many others ...



Cross-section ML parametrisation

Exploit EFT structure: sequential parametrisation of EFT cross-sections with neural nets

generate MC data with single EFT coefficient activated + SM baseline

Deti(c = (0,...,0,¢!™,0,...,0))
parametrise linear term in the cross-section ratio
ro(@, ™) = 1+ "NNU (z)

determine the decision boundary g(x,c) used to classify events into SM or EFT by minimizing cross-entropy

Lig(x, c)] = —/d:c dafj:: °) log(1—g(x,c)) — /da: logg(x,c).

g ->0for EFT g ->1for SM

~1
B do(x,c) /do(x,0) B 1
g(mjc) - <1 _|_ dw / dw > p— 1 —l_ro-(mjc)

outcome of classification problem: NN parametrisation of the linear EFT cross-section

do(x, 0)




Cross-section ML parametrisation

Exploit EFT structure: sequential parametrisation of EFT cross-sections with neural nets

Repeat for each individual EFT coefficient, obtain all the linear EFT cross-sections

Similar approach can be used to parametrise the quadratic EFT terms

. 2 ..
ro(@, i) = {1+ NN (@)} + () NG ()

already from cross-entropy
determined minimisation

finally, parametrise the crossed quadratic terms

To (CI}, C) — {1 + Cj.train ° NN(J) (33) + Ck train ° NN(k) (w)

+C?,train ' NN(j’j) (m) + C%,train ' NN(k,k) (w)} T Cj trainCk,train ° NN(J,k) (iL’)

\ already / from cross-entropy

determined minimisation

# processors required scales as O(np?), making our approach amenable to
parallelisation and suitable to explore large EFT parameter spaces



Neural network training

pp — hW . Truth /NN (median)

Epoch 0 1.05

linear EFT parametrisation

d’c (mZh, Vs c)
dmydy,

Off, = (H' D H)(Qo'Q) 2
Opw = HHHW"™W,,,

Rapidity

-0.99
validate NN outcome with 0.98
exact analytical result .
0.97
0.96

good description of differential
EFT cross-section, challenge A 0.95

is the low-stat tails 500 1000 1500 2000
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Neural network training

Model uncertainties estimated by means of the Monte Carlo replica method: train a
large number of different replicas to distinct, statistically equivalent MC datasets

step 1: learn linear EFT cross-sections,
repeat for many MC replicas

epoch 0

—— NN replicas

---= Truth O (:\_2)

ro(@,c) = 1212:©) o

5 1.0 1.5 2.0

myzy [TeV]

step 2: learn quadratic EFT cross-sections

(having learnt already linear terms)

1.0
epoch 0 —— NN replicas
-=== Truth O (A‘Q)
0.8 f (m C) Truth O (A"‘)
o I NN lo—band

0.0

fully keeps into account correlations

The use of the MC replica method makes possible propagating model and
methodological uncertainties to the final results: bounds on the EFT parameter space

same approach as in the NNPDF framework!

2.0




Results

€ As a proof of concept consider particle-level measurements of Higgs associated production
and for quark pair production (already included in SMEFiIT global analysis)

pp — hW — bbfv,
pp = hZ — bbb+ ¢~

b

pp — 1t — bl;f_i_f_l/fpf

L2

& Same theory settings, operator basis, flavour assumptions as in SMEFIT to allow integration

€ Using this framework, explore a number of crucial questions for global SMEFT fits

How much sensitivity to EFT coefficients we gain in _ N _ _
_ ] _ Under which conditions an unbinned measurement is
unbinned measurements? How differential a .
justified? Does the answer depend on whether or not one

measurement needs to be? Is optimal binning _
has a global EFT fit? What should we do at the HL-LHC?

different in EFT interpretations?



Results

pProcess:

pp — tf — bBZ/ﬂ_FLﬂ_I/Lpr 95% Confidence Level Bounds

SMEFT operators NN
0.4F th
Or) = (Byut) (@y"u) .

- | 25Yins
Oic = (Qo*'T)HGE,, 1 2 bink

Unbinned case: compare analytical
— 3
=

calculation of the likelihood ("truth’) @ 0.0F
with ML interpolation (' NN’)

Binned case: compare coarse with 092t
fine binning

the ML-based observable reproduces the
analytical result within replica uncertainties —04F}

since we consider only stat errors, for | | . . .
—0.04 —0.02 0.00 0.02 0.04

Re OtG

infinitely fine binning one should
reproduce the unbinned result



process. ~
pp — tlT —> bbf-l_bﬂ_l/fpbﬂ

SMEFT operators
Op) = (Fyut) (i u)
O = (Qo*"T*t)HGY.,

Unbinned case: compare analytical
calculation of the likelihood ("truth’)
with ML interpolation (NN’), the latter
case with 2 or three features

the ML-based observable reproduces the
analytical result within replica uncertainties

In this case, adding a third feature
(extra kinematic variable) to the
observable does not affect the bounds

Results
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process:

pp = hZ — bbbl ¢~
SMEFT operators

0f) = (H'i D', H)(Qo'+*Q)
Opw = H'HW"™W,,,

Unbinned case based on analytical
calculation of the likelihood ("truth’)

We can identify that adding a third
kinematic feature brings in extra
sensitivity

X = (P%a Y75 mhz)

Within our approach one can systematically identify when the sensitivity in the EFT coefficients

Results
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on additional bins or kinematic variables “ saturates”, key input for experimental analyses
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process:
pp = hZ — bbb+~
SMEFT operators

0f) = (H'i D', H)(Qo'+*Q)
Opw = H'HW"™W,,,

Unbinned case: compare analytical
calculation of the likelihood ("truth’)
with ML interpolation ('NN’)

Binned case: compare binning in two
different kinematic variables

unbinned observables also provide a robust
benchmark to optimise binned analyses

exact analytical calculation only available for simple

Results
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processes, in general rely on MC generators




Summary and outlook

¢ The EFT framework provides a robust strategy to interpret particle physics data in a (mostly)
model-independent manner of new BSM phenomena

¢ Only within a global SMEFT interpretation it is possible to compare with largest possible class
of UV-complete theories and to reduce assumptions i.e. concerning flavour structure

¢ We are extending the SMEFIT framework to include unbinned observables to further constrain
the EFT parameter space, based on a ML likelihood (ratio) parametrisation

& Our approach scales to an arbitrary large number of EFT coefficients and multi-dimensional
observables and can be used to determine the optimal EFT sensitivity of measurements

¢ Ongoing work to carry out global EFT fits based on both binned and unbinned observables,
to include systematic uncertainties, and to further improve the toolchain performance

public code suitable to include unbinned observables in global EFT fits will be released
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