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The Standard Model EFT
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Extend SM Lagrangian with complete, non-redundant basis of higher dimensional operators

Nd6 = 59 (2499) for one 
(three) flavour generations

FitMaker, 2012.02779 

Fulfilling the potential of the SMEFT framework 
demands global analyses based on a wide 

range of process and data to cover all relevant 
directions in the EFT parameter space

Low-energy limit of generic UV-complete theories; 
systematic parametrisation of BSM effects; fully 
renormalizable QFT; matched to a large number of 
BSM models that reduce to the SM; increased 
sensitivity at LHC from xsec growth in CoM energy ….
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The Standard Model EFT
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The Standard Model EFT

All existing global EFT analyses are based on SM 
measurements ``re-interpreted’’ in EFT framework

(multi-gaussian likelihood)



Global EFT analyses
Various groups have presented EFT analysis combining data from different processes, hence 
sensitive to a large number of EFT directions, and their interpretation in terms of UV models

e.g. SMEFiT combines 317 cross-section 
measurements to constrain 50 dim-6 EFT coefficients 

None of these measurements used has been optimised for EFT studies, can we do better?



From binned to unbinned likelihoods
Most measurements used for EFT fits are presented in terms of multi-Gaussian likelihoods

EFT 
parameters

# of bins # of events 
per bin (pred)

# of events 
per bin (exp)

(only stat 
uncertainties here)

What is the optimal number of bins for a subsequent EFT analysis? How much information do 
we gain/lose by measuring a cross-section differential in additional kinematic variables?

 This multi-gaussian likelihood can be extended to a Poissonian likelihood to account for 
distributions where some bins have a small # of events (e.g. high energy tails)

 Likelihood maximisation: derive CL internals for the EFT coefficients, given the observed data

are we losing information due to specific choice of 
binning and final-state kinematic distributions?



From binned to unbinned likelihoods
 main goal: construct unbinned observables from ML and assess their relevance for global EFT 

fits, by comparing their impact with those of ``traditional’’ binned observables

EFT 
parameters

unbinned 
likelihood

number of 
events (exp)

number of 
events (pred)

probability distribution in 
the final-state kinematics

by construction, this unbinned likelihood contains all the information from the observed events

fully differential cross-section

x = (pℓ
T , yℓ, mbb̄, yb, pb

T, …)
e.g. in pp → hW → bb̄ℓνℓ

Challenge: evaluation of unbinned 
likelihood very costly, specially for 

particle & detector level final states

Solution: parametrise the diff xsecs in 
terms of deep neural networks and train 

them on Monte Carlo data



From binned to unbinned likelihoods
For an analysis sensitive to np EFT coefficients, we can express the SMEFT cross-section as

SMEFT cross-section, 
differential in all 

variables included in x
SM cross-section linear 

EFT xsec
quadratic
EFT xsec

Technically it is advantageous to parametrise the likelihood ratio to the SM

Once unbinned observables have been constructed, one can extend the 
global EFT fit likelihood to account also for the information they provide

Full likelihood global EFT fit unbinned obs binned, Poisson obs binned, Gaussian obs



Cross-section ML parametrisation
We need hence to parametrise the dependence of the distribution ratios on the kinematics

e.g. for Higgs associate production, we may need to parametrise a 5D function

x = (pℓ
T , yℓ, mbb̄, yb, pb

T, )
pp → hW → bb̄ℓνℓ

r( j)
σ (x) = r( j)

σ (pℓ
T , yℓ, mbb̄, yb, pb

T)

Adopt deep neural networks as universal unbiased interpolants and bypass the need to 
evaluate the differential cross-section on a event-by-event basis

The structure of EFT corrections (linear + quadratic) make possible parallelizing the training

related work by Chen at al 2007.10356, Tito d’Agnolo et al 1912.12155, Brehmer et al 1805.00013 + many others …



Cross-section ML parametrisation
Exploit EFT structure: sequential parametrisation of EFT cross-sections with neural nets

parametrise linear term in the cross-section ratio

generate MC data with single EFT coefficient activated + SM baseline

from a faster convergence due to presence of stronger gradients. In practice, the integrations defining the
cross-entropy loss Eq. (3.8) are evaluated from the generated Nev Monte Carlo events,

L[g(x, c)] = �
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i=1

d�(xi, c)

dx
log(1 � g(xi, c)) �

NevX

j=1

d�(xj ,0)

dx
log g(xj , c) , (3.9)

As we discuss next, the classifier function g(x, c) will be parametrised in terms of feed-forward neural
networks. In the limit of infinite training data and su�ciently flexible parametrisation, one can take the
functional derivative of L with respect to the classifier function g to find
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and hence in the ideal situation the solution of the classification problem defined by the cross-entropy function
Eq. (3.8) is nothing but the EFT ratios r� that we need to evaluate in order to determine the associated
profile likelihood ratio. Hence the strategy is to parametrise r�(x, c) with neural networks, benefitting from
the characteristic quadratic structure of the EFT cross-sections, and then training these machine learning
classifiers by minimising the loss function Eq. (3.8).

In practice, one can only expect to obtain a reasonably good estimator ĝ of the true result due to finite
size e↵ects in the Monte Carlo training data Deft and Dsm and in the neural network architecture. Since
EFT and SM predictions largely overlap in a significant region of the phase space, it is crucial to obtain a
decision boundary trained with as much precision as possible in order to have a reliable test statistic to do
inference. This situation is here di↵erent from usual classification problems, for which an imperfect decision
boundary parameterised by g can still achieve high performances whenever most features are disjoint, and
hence a slight modification of g does not lead to a significant performance drops.

Given the quadratic structure of the EFT cross-sections and of their ratios to the SM prediction,

Eqns. (3.4) and (3.5) respectively, once the linear and quadratic ratios r
(j)

� (x) and r
(j,k)

� (x) are determ-
ined throughout the entire phase space one can easily evaluate the EFT di↵erential cross sections (and their
ratio to the SM) for any point in the space of Wilson coe�cients. Here we exploit this quadratic structure of
the EFT cross-sections by dividing the training of the neural network classifier Eq. (3.10) into three steps.

At a first stage, we determine the linear EFT ratio functions r
(j)

� by training the binary classifier from
Eq. (3.8) on a reference dataset Dsm and an EFT dataset defined by

Deft(c = (0, . . . , 0, c
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, in the EFT expansion with all Wilson coe�cients set to zero except

for the j-th one, which we denote by c
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. For such a choice of settings, the EFT cross-section ratio can be
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where only cj,train has survived the sum, since all other EFT parameters are switched o↵ by construction.
Comparing Eq. (3.12) and Eq. (3.5) we see that in the large sample limit

NN(j)(x) ! r
(j)

� (x) , (3.13)

In practice, this relation will only be met with a certain finite accuracy due to statistical fluctuations in the
finite training sets. This is especially relevant in phase space regions where the cross-section is suppressed,
such as in the tails of invariant mass distributions, and indicates that it is important to account for these
methodological uncertainties associated to the training procedure. We discuss below how by means of the
Monte Carlo replica method we can estimate and propagate these uncertainties first to our parametrisation
of the EFT ratio r� and then to the associated limits on the Wilson coe�cients.

Once the set of linear functions {NN(j)(x)} with j = 1, . . . , np has been determined, one can move

to parametrise and train the quadratic counterparts r
(j,j)

� associated to the same Wilson coe�cient. The
strategy is similar as in the linear case, namely using for the neural network training the EFT dataset
Eq. (3.11) where a single Wilson coe�cient is non-zero. We can then write the EFT ratio r� as
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determine the decision boundary g(x,c) used to classify events into SM or EFT by minimizing cross-entropy

g -> 0 for EFT g -> 1 for SM

from a faster convergence due to presence of stronger gradients. In practice, the integrations defining the
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outcome of classification problem: NN parametrisation of the linear EFT cross-section



Cross-section ML parametrisation
Exploit EFT structure: sequential parametrisation of EFT cross-sections with neural nets

Repeat for each individual EFT coefficient, obtain all the linear EFT cross-sections

Similar approach can be used to parametrise the quadratic EFT terms

already 
determined

from cross-entropy 
minimisation

finally, parametrise the crossed quadratic terms

# processors required scales as O(np2), making our approach amenable to 
parallelisation and suitable to explore large EFT parameter spaces 

from cross-entropy 
minimisation

already 
determined



Neural network training

pp → hW

d2σ (mZh, yZ; c)
dmZhdyZ

linear EFT parametrisation

validate NN outcome with 
exact analytical result

good description of differential 
EFT cross-section, challenge 

is the low-stat tails



step 1: learn linear EFT cross-sections,
repeat for many MC replicas

step 2: learn quadratic EFT cross-sections
(having learnt already linear terms)

Neural network training
Model uncertainties estimated by means of the Monte Carlo replica method: train a 

large number of different replicas to distinct, statistically equivalent MC datasets

The use of the MC replica method makes possible propagating model and 
methodological uncertainties to the final results: bounds on the EFT parameter space

same approach as in the NNPDF framework!

fully keeps into account correlations



Results
As a proof of concept consider particle-level measurements of Higgs associated production 
and for quark pair production (already included in SMEFiT global analysis)

pp → hW → bb̄ℓνℓ

pp → hZ → bb̄ℓ+ℓ−
pp → tt̄ → bb̄ℓ+ℓ−νℓν̄ℓ

Same theory settings, operator basis, flavour assumptions as in SMEFiT to allow integration

Using this framework, explore a number of crucial questions for global SMEFT fits

How much sensitivity to EFT coefficients we gain in 
unbinned measurements? How differential a 
measurement needs to be? Is optimal binning 

different in EFT interpretations?

Under which conditions an unbinned measurement is 
justified? Does the answer depend on whether or not one 
has a global EFT fit? What should we do at the HL-LHC?



Results
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pp → tt̄ → bb̄ℓ+ℓ−νℓν̄ℓ

process:

SMEFT operators

Unbinned case: compare analytical 
calculation of the likelihood (`truth’) 
with ML interpolation (`NN’)

Binned case: compare coarse with 
fine binning

the ML-based observable reproduces the 
analytical result within replica uncertainties

since we consider only stat errors, for 
infinitely fine binning one should 
reproduce the unbinned result



Results
pp → tt̄ → bb̄ℓ+ℓ−νℓν̄ℓ

process:

SMEFT operators

Unbinned case: compare analytical 
calculation of the likelihood (`truth’) 
with ML interpolation (`NN’), the latter 
case with 2 or three features

the ML-based observable reproduces the 
analytical result within replica uncertainties

In this case, adding a third feature 
(extra kinematic variable) to the 

observable does not affect the bounds
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Results
process:

SMEFT operators

Unbinned case based on analytical 
calculation of the likelihood (`truth’)

We can identify that adding a third 
kinematic feature brings in extra 

sensitivity

pp → hZ → bb̄ℓ+ℓ−
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x = (pZ
T , yZ, mhZ)

Within our approach one can systematically identify when the sensitivity in the EFT coefficients 
on additional bins or kinematic variables ``saturates’’, key input for experimental analyses



Results
process:

SMEFT operators

unbinned observables also provide a robust 
benchmark to optimise binned analyses

pp → hZ → bb̄ℓ+ℓ−
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Binning mZH

Binning pZ
T

Unbinned case: compare analytical 
calculation of the likelihood (`truth’) 
with ML interpolation (`NN’)

Binned case: compare binning in two 
different  kinematic variables

exact analytical calculation only available for simple 
processes, in general rely on MC generators
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Summary and outlook
 The EFT framework provides a robust strategy to interpret particle physics data in a (mostly) 
model-independent manner of new BSM phenomena 

Only within a global SMEFT interpretation it is possible to compare with largest possible class 
of UV-complete theories and to reduce assumptions i.e. concerning flavour structure

 We are extending the SMEFiT framework to include unbinned observables to further constrain 
the EFT parameter space, based on a ML likelihood (ratio) parametrisation

 Our approach scales to an arbitrary large number of EFT coefficients and multi-dimensional 
observables and can be used to determine the optimal EFT sensitivity of measurements

 Ongoing work to carry out global EFT fits based on both binned and unbinned observables, 
to include systematic uncertainties,  and to further improve the toolchain performance

public code suitable to include unbinned observables in global EFT fits will be released


