

Nucleon PDFs: what we know and what is missing?

Juan Rojo, VU Amsterdam & Nikhef

14th European Research Conference on Electromagnetic Interactions with Nucleons and Nuclei 31 October - 06 November 2021

One may claim that the nucleon is a rather ``boring" particle, surely after one century of studying it, we know everything about the proton?

nothing farther from reality: the proton is a beautiful example of the richness of quantum mechanics: what a **proton is** depends on the **resolution with which we examine it**!

nothing farther from reality: the proton is a beautiful example of the richness of quantum mechanics: what a **proton is** depends on the **resolution with which we examine it**!

long distances / low energies

short distances / high energies

a point particle

nothing farther from reality: the proton is a beautiful example of the richness of quantum mechanics: what a **proton is** depends on the **resolution with which we examine it**!

long distances / low energies

a point particle

short distances / high energies

nothing farther from reality: the proton is a beautiful example of the richness of quantum mechanics: what a **proton is** depends on the **resolution with which we examine it**!

nothing farther from reality: the proton is a beautiful example of the richness of quantum mechanics: what a **proton is** depends on the **resolution with which we examine it**!

Key component of predictions for particle, nuclear, and astro-particle experiments

- ₽ ep: fixed target DIS, HERA
- neutrinos: IceCube, KM3NET,
 - Forward Physics Facility @ LHC
- heavy ions: LHC Pb, LHC O, RHIC
- ₽ pp (future): HL-LHC, FCC, SppS
- ep (future): Electron-Ion Collider,
 LHeC, FCC-eh

$\text{LHC master formula} \\ \text{hard cross-section} \\ \sigma(M, s) \propto \sum_{ij=u,d,g,\dots} \int_{M^2}^{s} d\hat{s} \, \mathscr{L}_{ij}(\hat{s}, s) \, \widetilde{\sigma}_{ij}(\hat{s}, \alpha_s(M)) \\ \text{partonic} \\ \text{partonic} \\ \text{luminosities} \\ \mathscr{L}_{ij}(Q, s) = \frac{1}{s} \int_{Q^2/s}^{1} \frac{dx}{x} f_i\left(\frac{Q^2}{sx}, Q\right) f_j(x, Q)$

Key component of predictions for particle, nuclear, and astro-particle experiments

Address fundamental questions about Quantum Chromodynamics

➡ pp: ATLAS, CMS, LHCb, ALICE

- neutrinos: IceCube, KM3NET,
 - Forward Physics Facility @ LHC
- heavy ions: LHC Pb, LHC O, RHIC
- *≩ pp (future): HL-LHC, FCC, SppS*
- ep (future): Electron-Ion Collider,
 LHeC, FCC-eh

- ₽ origin of mass & spin
- heavy quark & antimatter content
- ≩ 3D imaging
- gluon-dominated matter
- nuclear modifications
- Interplay with BSM e.g. via ``SMEFT PDFs"

PDFs: a gateway to unravelling QCD

THE SCIENCE

Proton Spin Mystery Gains a New Clue

Non-zero gluon polarisation

Intrinsic Charm

The proton keeps surprising us as an endless source of **fundamental discoveries!**

QUANTUM PHYSICS

Decades-Long Quest Reveals Details of the Proton's Inner Antimatter

27 Twenty years ago, physicists set out to investigate a mysterious asymmetry in the proton's interior. Their results, published today, show how antimatter helps stabilize every atom's core.

Antimatter asymmetry

After 40 years of studying the strong nuclear force, a revelation **BFKL dynamics**

This was the year that analysis of data finally backed up a prediction, made in the mid 1970s, of a surprising emergent behaviour in the strong nuclear force

Nucleon Structure: what do we know

Here I focus on unpolarised nucleon structure. Dedicated talks will cover polarised PDFs (Christine Aidala), nuclear PDFs (Pia Zurita), and TMDs (Zhongbo Kang). Also for lattice QCD calculations of PDFs, I refer to dedicated talks in this workshop

Edinburgh 2021/12 Nikhef-2021-013 TIF-UNIMI-2021-11

The Path to Proton Structure at One-Percent Accuracy

The NNPDF Collaboration:

Richard D. Ball,¹ Stefano Carrazza,² Juan Cruz-Martinez,² Luigi Del Debbio,¹ Stefano Forte,² Tommaso Giani,^{1,8} Shayan Iranipour,³ Zahari Kassabov,³ Jose I. Latorre,^{4,5,6} Emanuele R. Nocera,^{1,8} Rosalyn L. Pearson,¹ Juan Rojo,^{7,8} Roy Stegeman,² Christopher Schwan,² Maria Ubiali,³ Cameron Voisey,⁹ and Michael Wilson¹

 ¹ The Higgs Centre for Theoretical Physics, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh EH9 3JZ, Scotland
 ² Tif Lab, Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy
 ³DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
 ⁴ Quantum Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
 ⁵ Center for Quantum Technologies, National University of Singapore, Singapore
 ⁶ Qilimanjaro Quantum Tech, Barcelona, Spain
 ⁷ Department of Physics and Astronomy, Vrije Universiteit, NL-1081 HV Amsterdam
 ⁸Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands
 ⁹ Cavendish Laboratory, University of Cambridge, CB3 0HE, United Kingdom

Abstract

We present a new set of parton distribution functions (PDFs) based on a fully global dataset and machine learning techniques: NNPDF4.0. We expand the NNPDF3.1 determination with 44 new datasets, mostly from the LHC. We derive a novel methodology through hyperparameter optimisation, leading to an efficient fitting algorithm built upon stochastic gradient descent. We use NNLO QCD calculations and account for NLO electroweak corrections and nuclear uncertainties. Theoretical improvements in the PDF description include a systematic implementation of positivity constraints and integrability of sum rules. We validate our methodology by means of closure tests and "future tests" (i.e. tests of backward and forward data compatibility), and assess its stability, specifically upon changes of PDF parametrization basis. We study the internal compatibility of our dataset, and investigate the dependence of results both upon the choice of input dataset and of fitting methodology. We perform a first study of the phenomenological implications of An open-source machine learning framework for global analyses of parton distributions

The NNPDF Collaboration: Richard D. Ball · Stefano Carrazza · Juan Cruz-Martinez · Luigi Del Debbio · Stefano Forte · Tommaso Giani · Shayan Iranipour · Zahari Kassabov · Jose I. Latorre · Emanuele R. Nocera · Rosalyn L. Pearson · Juan Rojo · Roy Stegeman · Christopher Schwan · Maria Ubiali · Cameron Voisey · Michael Wilson

the date of receipt and acceptance should be inserted later

Abstract We present the software framework underlying the NNPDF4.0 global determination of parton distribution functions (PDFs). The code is released under an open source licence and is accompanied by extensive documentation and examples. The code base is composed by a PDF fitting package, tools to handle experimental data and to efficiently compare it to theoretical predictions, and a versatile analysis framework. In addition to ensuring the reproducibility of the NNPDF4.0 (and subsequent) determination, the public release of the NNPDF fitting framework enables a number of phenomenological applications and the production of PDF fits under user-defined data and theory assumptions.

Edinburgh 2021/13 Nikhef-2021-020 TIF-UNIMI-2021-12

Contents

1	Introduction	2
2	Code structure	3
3	The NNPDF analysis code: validphys	6
4	Applications	9
5	Conclusions	11

most results presented here based on the recent NNPDF4.0 global determination of proton structure - note that fitting framework is now available open source

202

Sep

9

[hep-ph]

109.02671v1

 \sim

Antimatter asymmetry in nucleons

The recent SeaQuest data presented as evidence for quark sea (``proton antimatter") asymmetry

$$\frac{\sigma_{\rm DY,deuterium}}{\sigma_{\rm DY,hydrogen}} \approx 1 + \frac{\bar{d}_p(x_t)}{\bar{u}_p(x_t)} \quad \text{with several approximations}$$

The NNPDF4.0 fit prediction (without SeaQuest) agrees with these measurements, mild impact

The nucleon exhibits a marked light sea quark asymmetry $\bar{d}(x)/\bar{u}(x) \ge 1$, $x \ge 10^{-2}$

specially sizeable at large-x

The strangest proton

The proton strange content is **moderately suppressed** with respect to up and down sea

 $R_S(0.023, 1.6 \text{ GeV}) = 0.68 \pm 0.05$

including NOMAD data

Intrinsic Charm

Increasing evidence for non-perturbative charm component within the proton

Solution of constraints provided by new **precision LHC data**, complemented by fixed-target DIS

and consistent with EMC charm DIS measurements

Consistent with recent LHCb measurement of forward Z+D production, directly sensitive to the (large-x) charm content of the nucleon

agreement between indirect (global PDF fit) and direct (LHCb Z+D) constraints on the charm PDF

Intrinsic Charm

Disentangle the perturbative from the intrinsic component of the charm PDF

A **non-zero intrisic charm** a la BHPS favoured by both global PDF fit and LHCb Z+D data

3-sigma local significance in 3FNS

Charm momentum fraction:

(4FNS) $[c] = 0.86 \pm 0.15_{pdf}$ (3FNS) $[c] = 0.60 \pm 0.55_{pdf+mhou}$

The photon content of the proton

Fre proton contains not only quark and gluons as constituents, but also **photons**

 $\frac{1}{2}$ The photon PDF can be evaluated from deep-inelastic structure functions F_2 and F_L

Required for consistent implementation of electroweak corrections at the LHC

LuxQED: Manohar et al 17

Evidence for BFKL dynamics

NNPDF3.1 fits based on fixed order (NNLO) and small-x resumed (NNLO+NLLx) theory

Monitor the fit quality in small-*x* region

Best description of small-x HERA data: BFKL resummation

BFKL dynamics stablished: crucial for description of low-x physics (also @ EIC, HL-LHC, LHeC ...)

Nucleon Structure: what are we missing

a few representative examples only!

QCD uncertainties in PDF fits

Standard global PDF fits are based on fixed-order QCD calculations

$$\sigma = \alpha_s^p \sigma_0 + \alpha_s^{p+1} \sigma_1 + \alpha_s^{p+2} \sigma_2 + \mathcal{O}(\alpha_s^{p+3})$$

The truncation of the perturbative series has associated a theoretical uncertainty: **Missing Higher Order (MHO)** uncertainty

How severe is **ignoring MHOUs** in modern global PDFs fits?

MHOUs are comparable with PDF errors certainly at NLO, likely also at NNLO

QCD uncertainties in PDF fits

A NLO global fit with MHOUs highlights how these cannot be neglected, both in terms of **accuracy** and of **precision**

Ongoing work towards a NNPDF4.0 NNLO global fit with MHOUs

(dis-)agreements in global fits

reasonable agreement with CT18 and MSHT20 in most cases, but some important differences

also some distinct patterns concerning the magnitude of the PDF uncertainties

- Need dedicated measurements on processes sensitive to PDF regions where global PDF fits disagree, such as inclusive jets & dijets & top quark to constrain the large-x gluon
- Crucial information will also be provided on measurements that are now limited by statistics: large-p_T tails, rare processes,
- Several statistical challenges in interpreting LHC measurements limited by systematics

(dis-)agreements in global fits

pattern of PDF uncertainties follows

$\delta_{\text{PDF}}(\text{CT18}) \gtrsim \delta_{\text{PDF}}(\text{MSHT20}) \gtrsim \delta_{\text{PDF}}(\text{NNPDF4.0})$

(qualitatively) the dataset size

Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20	Data set
ATLAS W, Z 7 TeV ($\mathcal{L} = 35 \text{ pb}^{-1}$)	[51]	1	1	1	1	1	CMS W asym
ATLAS W, Z 7 TeV ($\mathcal{L} = 4.6 \text{ fb}^{-1}$)	[52]	1	1	×	(✔)	1	CMS Z 7 TeV
ATLAS low-mass DY 7 TeV	[53]	1	1	×	(✔)	×	CMS W elect
ATLAS high-mass DY 7 TeV	[54]	1	1	×	(✔)	1	CMS W muo
ATLAS W 8 TeV	[79]	×	(✔)	×	x	1	CMS Drell-Ya
ATLAS DY 2D 8 TeV	[78]	×	1	×	x	1	CMS Drell-Ya
ATLAS high-mass DY 2D 8 TeV	[77]	×	1	×	(✔)	1	CMS W rapid
ATLAS $\sigma_{W,Z}$ 13 TeV	[81]	×	1	1	×	×	CMS $W, Z p_T$
ATLAS W+jet 8 TeV	[93]	×	1	×	×	1	CMS $Z p_T 8$
ATLAS $Z p_T$ 7 TeV	[259]	(🗸)	×	×	(1)	×	CMS $W + c$ 7
ATLAS $Z p_T 8$ TeV	[63]	1	1	×	1	1	CMS $W + c$ 1
ATLAS $W + c$ 7 TeV	[83]	×	1	×	(1)	×	CMS single-ir
ATLAS $\sigma_{\rm tot}^{\rm tot}$ 7. 8 TeV	[65]	1	1	1	×	×	CMS single-ir
ATLAS σ_{tot}^{tot} 7 8 TeV	[260-265]	×	×		x	×	CMS dijets 7
ATLAS σ_{tt}^{tot} 13 TeV ($\ell = 3.2 \text{ fb}^{-1}$)	[66]		×		x	×	CMS single-ir
ATLAS σ_{tt}^{tot} 13 TeV ($\mathcal{L} = 0.2 \text{ fb}^{-1}$)	[134]	×		×	Ŷ	×	CMS 3D dijet
ATLAS σ_{tt} is iev ($\mathcal{L} = 139$ ib ⁻¹)	[104]	Ŷ.	×	~	Ŷ		CMS σ_{tt}^{tot} 5 T
AT LAS $\sigma_{t\bar{t}}$ and Z ratios	[200]	^	^	~	^	(*)	CMS σ_{tt}^{tot} 7, 8
AT LAS u reprinting the second sec	[00]	~	· ·	^	~		CMS σ_{tt}^{tot} 8 T
ATLAS <i>tt</i> dilepton 8 TeV	[89]	×		×	×		CMS σ_{tt}^{tot} 5, 7
ATLAS single-inclusive jets 7 TeV, R=0.6	[73]		(🗸)	×	1		CMS σ_{tt}^{tot} 13
ATLAS single-inclusive jets 8 TeV, $R=0.6$	[86]	×	 Image: A set of the set of the	×	×	×	CMS $t\bar{t}$ leptor
ATLAS dijets 7 TeV, $R=0.6$	[148]	×	1	×	×	×	CMS $t\bar{t}$ 2D di
ATLAS direct photon production 8 TeV	[100]	×	(✔)	×	×	×	CMS $t\bar{t}$ leptor
ATLAS direct photon production 13 TeV	[101]	×	1	×	×	×	CMS $t\bar{t}$ dilept
ATLAS single top R_t 7, 8, 13 TeV	[94, 96, 98]	×	1	1	×	×	CMS single to
ATLAS single top diff. 7 TeV	[94]	×	 Image: A second s	×	×	×	CMS single to
ATLAS single top diff. 8 TeV	[96]	×	1	×	×	×	CMS single to

$N_{\text{data}}(\text{CT18}) \leq N_{\text{data}}(\text{MSHT20}) \leq N_{\text{data}}(\text{NNPDF4.0})$

Ref.

[267][268]

[55] **[56]**

[57]

[269]

[58] [270]

[64]

[76]

[<mark>84</mark>]

[75]

[147]

[74]

[87] [149]

[<mark>88</mark>] [**146**]

[271] [68, 272-280]

[69]

[**70**]

[90] [<mark>91</mark>]

92] [<mark>95</mark>]

[97, 99]

[281, 282]

NNPDF3.1

(✔)

NNPDF4.0

()

(✔)

ABMP16

CT18

(✔)

(✔)

(✔)

(✔)

X

MSHT20

1

1

X 1

×

х

1

(✔)

1

1

×

x

×

x

×

1

x

x

× (✔)

Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20
LHCb Z 7 TeV ($\mathcal{L} = 940 \text{ pb}^{-1}$)	[59]	1	1	×	×	1
LHCb $Z \rightarrow ee \ 8 \ \text{TeV} \ (\mathcal{L} = 2 \ \text{fb}^{-1})$	[61]	1	1	1	1	1
LHCb W 7 TeV ($\mathcal{L} = 37 \text{ pb}^{-1}$)	[283]	×	×	×	×	1
LHC b $W,Z \to \mu$ 7 TeV	[60]	1	✓	1	1	 Image: A second s
LHC b $W,Z \to \mu$ 8 TeV	[62]	1	1	1	1	1
LHC b $W \to e$ 8 TeV	[80]	×	(✔)	×	×	×
LHCb $Z \rightarrow \mu\mu, ee \ 13 \text{ TeV}$	[82]	×	1	×	×	×

Can New Physics hide inside the proton?

``How can you be sure you are not reabsorbing BSM physics into your PDFs?"

perhaps most frequent question I am asked in talks!

Assuming the **SM**, the theory calculations that enter a global PDF fit are:

$$\sigma_{\text{LHC}}(\boldsymbol{\theta}) \propto \sum_{ij=u,d,g,\dots} \int_{M^2}^{s} d\hat{s} \, \mathcal{L}_{ij}(\hat{s},s,\boldsymbol{\theta}) \, \widetilde{\sigma}_{\text{SM},ij}(\hat{s},\alpha_s(M)) \\ \text{SM PDFs}$$

However in the case of BSM physics, here parametrised by the SMEFT, the correct expression is:

How different are ``SM PDFs" & ``SMEFT PDFs"? Can we quantify the risk of fitting away BSM in PDFs?

Can New Physics hide inside the proton?

Exp.	$\sqrt{s} \ (\text{TeV})$	Ref.	\mathcal{L} (fb ⁻¹)	Channel	$1\mathrm{D}/2\mathrm{D}$	$n_{ m dat}$	$m_{\ell\ell}^{\rm max}$ (TeV)
ATLAS	7	[120]	4.9	e^-e^+	1D	13	[1.0, 1.5]
ATLAS (*)	8	[86]	20.3	$\ell^-\ell^+$	$2\mathrm{D}$	46	[0.5, 1.5]
CMS	7	[121]	9.3	$\mu^-\mu^+$	2D	127	[0.2, 1.5]
CMS (*)	8	[87]	19.7	$\ell^-\ell^+$	1D	41	[1.5, 2.0]
CMS (*)	13	[122]	5.1	$e^-e^+, \mu^-\mu^+$ $\ell^-\ell^+$	1D	$\begin{array}{c} 43,\ 43\\ 43\end{array}$	[1.5, 3.0]
Total						270 (313)	

Available data: limited interplay between PDF and EFT fits, best constraints from **searches**

SMEFT PDFs required to exploit the PDF/BSM interplay in future LHC runs!

Universal QCD fits

Pushing the **precision frontier** of **QCD fits** requires accounting for **cross-talk** between different **non-perturbative QCD** quantities

	standard approach	universal QCD analysis
fragmentation functions	$N(p+p \to \pi) \propto \sum_{i,j,k} \widetilde{\sigma}_{ij \to k} \otimes f_i^{(p)} \otimes f_j^{(p)} \otimes f_{k \to \pi}$	$N(p + p \to \pi) \propto \sum_{i,j,k} \widetilde{\sigma}_{ij \to k} \otimes f_i^{(p)} \otimes f_j^{(p)} \otimes f_{k \to \pi}$
nuclear PDFs	$N(p + \text{Pb} \to W) \propto \sum_{i,j} \widetilde{\sigma}_{ij \to W} \otimes f_i^{(p)} \otimes f_j^{(A)}$	$N(p + Pb \rightarrow W) \propto \sum_{i,j} \widetilde{\sigma}_{ij \rightarrow W} \otimes f_i^{(p)} \otimes f_j^{(A)}$
proton PDFs	$N(\nu + \text{Pb} \to \mu^+ \mu^-) \propto \sum_{i} \widetilde{\sigma}_{i \to \mu^+ \mu^-} \otimes f_i^{(p)} \times \left(\frac{f_i^{(A)}}{f_i^{(p)}}\right)$	$N(\nu + \text{Pb} \to \mu^+ \mu^-) \propto \sum_{i} \widetilde{\sigma}_{i \to \mu^+ \mu^-} \otimes f_i^{(p)} \times \left(\frac{f_i^{(A)}}{f_i^{(p)}}\right)$
	theory fitted fixed	theory fitted

e.g. proton PDFs fit data on heavy nuclear targets, while nuclear PDF fits reduce to proton baseline for A=1

Ideally we'd like to combine unpolarised and polarised proton PDF determinations with those of nuclear PDFs and fragmentation functions into an **integrated**, **universal QCD fit**

Summary and outlook

- Recent progress in unpolarised nucleon structure has led to a deeper understanding of its content, from strangeness and photons to intrinsic charm and antimatter asymmetry
- This progress benefits from a feedback look with LHC analyses (tests/predictions/ constraints) anticipating how the Electron Ion Collider will scrutinise the nucleon
- Still plenty of work (and room for surprises): PDFs with theory errors, interplay between PDF and BSM searches, integrated/universal QCD analyses

``The simple hydrogen atom nucleus appears to be surprisingly charming"

Extra Material