

Global analyses of precision LHC data: from PDFs to the SMEFT

Juan Rojo

VU Amsterdam & Nikhef Theory group

Particle Physics Seminar

Brookhaven National Laboratory (BNL), 29/11/2018

Juan Rojo

Particle Physics in the Higgs boson era

The Higgs boson

Huge gap between weak and Plank scales?

Compositeness? Non-minimal Higgs sector?

Coupling to Dark Matter? Role in cosmological phase transitions?

Is the vacuum state of the Universe stable?

Juan Rojo

The Higgs boson

Huge gap between weak and Plank scales?

Compositeness? Non-minimal Higgs sector?

Coupling to Dark Matter? Role in cosmological phase transitions?

Is the vacuum state of the Universe stable?

Dark matter

- Weakly interacting massive particles?
 Neutrinos? Ultralight particles (axions)?
- Interactions with SM particles? Selfinteractions?
- Structure of the Dark Sector?

The Higgs boson

Huge gap between weak and Plank scales?

Compositeness? Non-minimal Higgs sector?

Coupling to Dark Matter? Role in cosmological phase transitions?

Is the vacuum state of the Universe stable?

Quarks and leptons

Why **3 families?** Origin of **masses, mixings**?

Origin of Matter-Antimatter asymmetry?

Are **neutrinos Majorana or Dirac**? CP violation in the lepton sector?

Dark matter

- Weakly interacting massive particles? Neutrinos? Ultralight particles (axions)?
- Interactions with SM particles? Selfinteractions?
- Structure of the Dark Sector?

Crucial information on these fundamental questions will be provided by the LHC: the **exploration of the high-energy frontier** has just started!

6

Global analyses of LHC data

Many important open issues in particle physics require global analyses combining a large number of LHC measurements

The quark and gluon substructure of protons

- PDF constraints from LHC measurements
- Parton distributions with theoretical uncertainties
- Projections for future colliders: HL-LHC and LHeC

Model-independent bSM searches from precision measurements

- Fowards a global fit of the Standard Model Effective Field Theory
- Fit analysis of the top quark sector

The inner life of protons

See also ``The structure of the proton in the LHC precision era"

J. Gao, L. Harland-Lang, JR (Physics Reports 17)

Juan Rojo

Parton distributions @ LHC

QCD Factorisation theorem:

Event rates = **parton distributions** + hard-scattering partonic cross-sections

Parton distributions @ LHC

DGLAP evolution (upwards in Q)

Momentum sum rule (energy conservation)

$$\frac{\partial}{\partial \ln Q^2} q_i(x, Q^2) = \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z}, \alpha_s(Q^2)\right) q_j(z, Q^2)$$

$$\int_0^1 dx \, x \left(\sum_{i=1}^{n_f} \left[q_i((x, Q^2) + \bar{q}_i(x, Q^2)) \right] + g(x, Q^2) \right) = 1$$

QCD factorisation

The QCD factorization theorems guarantee PDF universality

$$\sigma_{lp \to \mu X} = \widetilde{\sigma}_{u\gamma \to u} \otimes u(x) \implies \sigma_{pp \to W} = \widetilde{\sigma}_{u\bar{d} \to W} \otimes u(x) \otimes \bar{d}(x)$$

Determine PDFs in **lepton-proton collisions** (deep-inelastic scattering) ...

Juan Rojo

... and use them to compute predictions for **proton-proton collisions**

From the proton mass to the LHC

- Extract PDFs at hadronic scales (few GeV), where non-perturbative QCD sets in
- Use perturbative evolution to compute PDFs at high scales as input to LHC predictions

Why better PDFs?

The NNPDF approach to PDF fits

- Neural Networks as universal unbiased interpolants to parametrise
 PDFs: eliminate model assumptions
- Monte Carlo replicas to propagate uncertainties wo Gaussian assumptions
- Genetic algorithms and Machine
 Learning to explore parameter space

	Proton PDFs	Nuclear PDFs
Traditional	$g(\mathbf{x}) \simeq \mathbf{x}^{-b}(1-\mathbf{x})^c$	$R_g(x, A) \simeq (1 + bx + cx^2) \times A^d$
Neural Nets	$g(x) \simeq NN(x)$	$R_g(x, A) \simeq NN(x, A)$

Juan Rojo

The NNPDF approach to PDF fits

Combine precision measurements and state-of-the-art theory within robust statistical framework

Juan Rojo

The NNPDF approach to PDF fits

Highly non-trivial validation of the QCD factorisation framework: Including O(5000) data points, from O(40) experiments, some of them with $\approx 1\%$ errors, yet the global PDF fit achieves $\chi^2/N_{dat} \approx 1$!

PDF constraints from LHC data

PDF information from p+p collisions

Gluon PDF from top quarks

19

Complementary probe of the large-x gluon

Included differential top distributions in NNPDF3.0 NNLO: constraints on large-x gluon comparable to inclusive jet production

Stability wrt choice of distribution (*i.e.* **m**_{tt} vs **y**_{tt})

Sequence Reduced theory uncertainties in regions crucial for searches, *i.e.*, $m_{tt} > 1$ TeV (fitting y_t and y_{tt})

Gluon PDF from direct photons

- Revisited the impact of LHC direct photon data into the global PDF fit Campbell, JR, Slade, Williams 18
- Theory based on NNLO QCD and LL electroweak calculations
- Moderate impact on medium-x gluon
- Good **consistency** with other gluonsensitive experiments in NNPDF3.1

	NNPDF3.1	$ m NNPDF3.1{+}ATLAS\gamma$
Fixed-target lepton DIS	1.207	1.203
Fixed-target neutrino DIS	1.081	1.087
HERA	1.166	1.169
Fixed-target Drell-Yan	1.241	1.242
Collider Drell-Yan	1.356	1.346
Top-quark pair production	1.065	1.049
Inclusive jets	0.939	0.915
$Z p_T$	0.997	0.980
Total dataset	1.148	1.146

Flavour separation from forward W,Z

Forward coverage of LHCb: unique sensitivity to small-x and large-x regions beyond that of ATLAS/CMS

Specially important to disentangle **quark** flavour at large-x

NNPDF 17

NNPDF3.1 NNLO, Q = 100 GeV

Parton Distributions with theoretical uncertainties

NNPDF Collaboration, in preparation

PDF uncertainties

PDF uncertainties receive contributions from different sources:

Theory uncertainties on PDFs from **Missing Higher Orders** (MHOs) never quantified!

Theory uncertainties from MHOs

At any finite order, perturbative QCD calculations depend on the unphysical **renormalisation** and **factorisation scales**

$$\sigma(\boldsymbol{\mu}_{R},\boldsymbol{\mu}_{F}) = \sum_{k=0}^{n} \sum_{i,j}^{n_{f}} \alpha_{s}^{p+k}(\boldsymbol{\mu}_{R}) \,\widetilde{\sigma}^{(k)}(\boldsymbol{\mu}_{R},\boldsymbol{\mu}_{F}) \otimes q_{i}(\boldsymbol{\mu}_{F}) \otimes q_{j}(\boldsymbol{\mu}_{F}) + \mathcal{O}\left(\alpha_{s}^{p+n+1}\right)$$

In PDF fits, both scales are set to a fixed value, the typical **momentum transfer of the process** *Q*, and the MHOUs are ignored

$$\sigma(\mu_R = Q, \mu_F = Q) = \sum_{k=0}^n \sum_{i,j}^{n_f} \alpha_s^{p+k}(Q) \,\widetilde{\sigma}^{(k)}(Q) \otimes q_i(Q) \otimes q_j(Q)$$

At order N^kLO, the dependence on the two scales is determined by the N^{k-1}LO splitting functions and partonic cross-sections by imposing:

$$\sigma(\boldsymbol{\mu}_{R}, \boldsymbol{\mu}_{F}) = \sigma(\boldsymbol{Q}, \boldsymbol{Q}) + \mathcal{O}\left(\boldsymbol{\alpha}_{s}^{p+n+1}\right)$$

Scale variations provide an estimate of the perturbative MHOs

Theory uncertainties from MHOs

How severe is **ignoring MHOUs** in modern global PDFs fits?

Shift between NLO and NNLO PDFs comparable or larger than PDF errors

Given the high precision of modern PDF determinations, accounting for MHOUs is most urgent

Option #1: PDF fits with scale variations

Perform PDF fits where **theory calculations** are constructed by exploring a range of values for the **renormalisation** and **factorisation scales**

Define the theory error due to MHOUs from envelope of the scale-varied PDFs

Option #1: PDF fits with scale variations

Perform PDF fits where **theory calculations** are constructed by exploring a range of values for the **renormalisation** and **factorisation scales**

The 7pt envelope seems to work fine in most cases (perhaps too conservative?)

- Non-trivial theory-induced correlations between e.g. DIS and collider processes
- CPU-intensive, and cumbersome or LHC applications can we do better?

Juan Rojo

Construct a theory covariance matrix from scale-varied cross-sections and combine it with the experimental covariance matrix

$$\chi^{2} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(D_{i} - T_{i} \right) \left(\text{cov}^{(\text{exp})} + \frac{\text{cov}^{(\text{th})}}{i_{j}} \right)_{ij}^{-1} \left(D_{j} - T_{j} \right)$$

Different scale variation prescriptions possible, e.g, the 5-point prescription

$$\begin{aligned} \operatorname{cov}_{ij}^{(\text{th})} &= \frac{1}{2} \left(\Delta_i(+,0) \Delta_j(+,0) + \Delta_i(-,0) \Delta_j(-,0)^2 + \Delta_i(0,+) \Delta_j(0,+)^2 + \Delta_i(0,+) \Delta_j(0,+)^2 \right) \\ \Delta_i(-,0) &\equiv \sigma_i(\mu_R = Q/2, \mu_F = Q) - \sigma_i(\mu_R = Q, \mu_F = Q) \\ \Delta_i(+,+) &\equiv \sigma_i(\mu_R = 2Q, \mu_F = 2Q) - \sigma_i(\mu_R = Q, \mu_F = Q) \end{aligned}$$

Different scale correlation patterns expected in different processes e.g. DIS and jets

Construct a theory covariance matrix from scale-varied cross-sections and combine it with the experimental covariance matrix

Systematic validation of the theory covariance matrix on the `exact' result, the NNLO-NLO shift, with the O(5000) data points of the global fit

Juan Rojo

Experiment correlation matrix NMC 0.75 SLAC BCDMS 0.50 CHORUS 0.25 NTVDMN 0.00 HERACOMB -0.25 HERAFZOHAB -0.50ATLAS CMS -0.75 CDF HERAF280149040 ATLAS LHCb CHORUS HERACOMB NTVDMN CMS NMELAC BCDMS OFFCD

1.00

Towards Ultimate PDFs at the High Lumi LHC

Abdul-Khalek, Bailey, Gao, Harland-Lang, JR 18 + HL/HE-LHC Yellow Report, to appear

A luminous future

In the framework of the update of the European Strategy for Particle
 Physics, a CERN Yellow Report will evaluate the physics potential of the HL-LHC (to appear in Dec 2018)

We have studied the impact of HL-LHC data on PDFs, including projections with (future) LHCb measurements.

> What is the **ultimate precision** that can be expected for PDFs from **hadron collider data?**

HL-LHC constraints from LHCb

Projected forward W+charm data

Projected invariant tī mass data

HL-LHC measurements will be specially useful to constrain the gluon and

quark flavour separation in the large-x region, including strangeness

HL-LHC constraints on PDFs

Reduction factor for PDF uncertainties in luminosities as compared to PDF4LHC15

Ratio to baseline	$10 \text{ GeV} \le M_X \le 40 \text{ GeV}$	$40 \text{ GeV} \le M_X \le 1 \text{ TeV}$	$1 \text{ TeV} \le M_X \le 6 \text{ TeV}$
gluon–gluon	0.50 (0.60)	0.28 (0.40)	0.22 (0.34)
gluon–quark	0.66 (0.72)	0.42 (0.45)	0.28 (0.37)
quark–quark	0.74 (0.79)	0.37 (0.46)	0.43 (0.59)
quark–antiquark	0.71 (0.76)	0.31 (0.40)	0.50 (0.60)
strange-antistrange	0.34 (0.44)	0.19 (0.30)	0.23 (0.27)
strange–antiup	0.67 (0.73)	0.27 (0.38)	0.38 (0.43)

HL-LHC data will lead to stringent constraints on PDFs, reducing uncertainties by up to a factor 5, and making possible precise predictions of central processes such as Higgs p_T

HL-LHC and the LHeC

Compare with projections for the Large Hadron electron Collider (LHeC), a lepton-proton collider proposed to operate in sync with the HL-LHC

The LHeC would provide **fully complementary information** on PDFs with different exp/th systematics and reduced risk of **BSM contamination**

A SMEFT global analysis of the top quark sector

Based on work in progress with: Nathan P. Hartland, Fabio Maltoni, Emanuele R. Nocera, Emma Slade, Eleni Vryodinou, Cen Zhang

The Standard Model EFT

Heavy bSM physics beyond the direct reach of the LHC can be parametrised in a model-independent in terms of complete basis of higher-dimensional operators

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

Some operators induce **growth with the partonic centre-of-mass energy**: increased sensitivity in LHC cross-sections in the TeV region

$$\sigma(\boldsymbol{E}) = \sigma_{\rm SM}(\boldsymbol{E}) \left(1 + \sum_{i}^{N_{d6}} \omega_i \frac{c_i m_{\rm SM}^2}{\Lambda^2} + \sum_{i}^{N_{d6}} \widetilde{\omega}_i \frac{c_i \boldsymbol{E}^2}{\Lambda^2} + \mathcal{O}\left(\Lambda^{-4}\right) \right)$$

The number of SMEFT operators is large: 59 non-redundant operators at dimension 6 with Minimal Flavour Violation, > 2000 operators without any flavour assumption

38

A global SMEFT analysis needs to explore a huge complicated parameter space

From PDF fits to SMEFT analyses

In global PDF fits, LHC cross-sections (incl. top) are used to constrain the input PDFs

$$\sigma^{(\text{th})}\left(Q, \{a_k\}\right) = \sum_{ij} \Gamma_{ij}\left(\alpha_s, Q, Q_0\right) \otimes q_i(x, Q_0, \{a_k\}) \otimes q_j(x, Q_0, \{a_k\})$$

For PDF parameters $\{a_k\}$ are determined from the **minimisation** of a figure of merit

$$\chi^2(\{a_k\}) = \sum_{m,n}^{n_{\text{dat}}} \left(\sigma_n^{(\exp)} - \sigma_n^{(\text{th})}\{a_k\}\right) (\operatorname{cov})_{mn}^{-1} \left(\sigma_m^{(\exp)} - \sigma_m^{(\text{th})}\{a_k\}\right)$$

If one now fixes the input PDFs (determined from a different set of data) and includes SMEFT effects, one can exploit the same PDF fitting approach to carry out a global SMEFT fit

$$\sigma^{(\mathrm{th})}\left(Q, \{c_k\}\right) = \left(1 + \sum_{k}^{N_{d6}} \frac{c_k \kappa_k}{\Lambda^2} + \sum_{k,l}^{N_{d6}} \frac{c_k c_l \widetilde{\kappa}_{kl}}{\Lambda^4}\right) \sum_{ij} \Gamma_{ij}\left(\alpha_s, Q, Q_0\right) \otimes q_i(x, Q_0) \otimes q_j(x, Q_0)$$
$$\chi^2(\{c_k\}) = \sum_{m,n}^{n_{dat}} \left(\sigma_n^{(\mathrm{exp})} - \sigma_n^{(\mathrm{th})}\{c_k\}\right) (\mathrm{cov})_{mn}^{-1} \left(\sigma_m^{(\mathrm{exp})} - \sigma_m^{(\mathrm{th})}\{c_k\}\right)$$

Recipe for a global PDF fit

Juan Rojo

40

Recipe for a global SMEFT fit

Juan Rojo

41

Notation		S	ensitiv	ity at ($\mathcal{O}(\Lambda^{-2})$	$(\mathcal{O}(\Lambda^{-}$	$^{-4}))$		
	$t\bar{t}$	single-top	tW	tZ	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	$t\bar{t}t\bar{t}$	$t\bar{t}b\bar{b}$
OQQ1								< ✓	 ✓
0QQ8								\checkmark	\checkmark
0Qt1								\checkmark	\checkmark
0Qt8								\checkmark	\checkmark
ОQЪ1								(√)	\checkmark
0Qъ8								(√)	\checkmark
Ott1								\checkmark	\checkmark
Otb1								(√)	\checkmark
Otb8								\checkmark	\checkmark
OQtQb1									
OQtQb8									
081qq	\checkmark				\checkmark	~	~	\checkmark	~
011qq	\checkmark				(√)	(√)	(√)	\checkmark	\checkmark
083qq	\checkmark	\checkmark		(√)	\checkmark	~	~	\checkmark	\checkmark
013qq	\checkmark	\checkmark		\checkmark	(√)	(√)	(√)	\checkmark	\checkmark
08qt	\checkmark				\checkmark	~	~	\checkmark	\checkmark
01qt	\checkmark				(√)	(√)	(√)	\checkmark	\checkmark
08ut	\checkmark					✓	 ✓ 	\checkmark	\checkmark
Olut	\checkmark					(√)	(√)	✓	\checkmark
08qu	\checkmark					✓	 ✓ 	✓	\checkmark
01qu	\checkmark					(√)	(√)	~	\checkmark
08dt	\checkmark					~	 ✓ 	\checkmark	\checkmark
Oldt	\checkmark					(√)	(√)	\checkmark	\checkmark
08qd	\checkmark					✓	✓	\checkmark	\checkmark
01qd	✓					(√)	(√)	\checkmark	✓
OtG	✓				✓	 ✓ 	< ✓	✓	√
OtW		\checkmark	\checkmark	\checkmark					
ОъW		(√)	(√)						
OtZ				\checkmark		\checkmark			
Off		(√)	(√)	(√)					
Ofq3		\checkmark	\checkmark	\checkmark		\checkmark			
OpQM				\checkmark		\checkmark			
Opt				\checkmark		\checkmark	✓		
Otp							✓		

A large number of different dimension-6 SMEFT operators modify **top production at LHC**

Juan Rojo

42

Notation		S	ensitiv	ity at ($\mathcal{O}(\Lambda^{-2})$	$(\mathcal{O}(\Lambda^{-}$	$^{-4}))$		
	$t\bar{t}$	single-top	tW	tZ	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	$t\bar{t}t\bar{t}$	$t\bar{t}b\bar{b}$
OQQ1								\checkmark	\checkmark
0QQ8								\checkmark	\checkmark
OQt1								\checkmark	\checkmark
OQt8								\checkmark	\checkmark
0Qb1								(√)	\checkmark
0QЪ8								(√)	\checkmark
Ott1								\checkmark	\checkmark
Otb1								(√)	\checkmark
Otb8								\checkmark	\checkmark
OQtQb1									
OQtQb8									
081qq	\checkmark				\checkmark	~	\checkmark	\checkmark	\checkmark
011qq	\checkmark				(√)	(√)	(√)	\checkmark	\checkmark
083qq	\checkmark	\checkmark		(√)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
013qq	\checkmark	\checkmark		\checkmark	(√)	(√)	(√)	\checkmark	\checkmark
08qt	\checkmark				\checkmark	~	\checkmark	\checkmark	\checkmark
01qt	\checkmark				(√)	(√)	(√)	\checkmark	\checkmark
08ut	\checkmark					~	\checkmark	\checkmark	\checkmark
01ut	\checkmark					(√)	(√)	\checkmark	\checkmark
08qu	\checkmark					~	\checkmark	\checkmark	\checkmark
01qu	\checkmark					(√)	(√)	\checkmark	\checkmark
08dt	\checkmark					✓	\checkmark	\checkmark	\checkmark
Oldt	\checkmark					(√)	(√)	\checkmark	\checkmark
08qd	\checkmark					1	\checkmark	\checkmark	\checkmark
01qd	\checkmark					(√)	(√)	\checkmark	\checkmark
OtG	\checkmark				\checkmark	✓	✓	~	\checkmark
OtW		\checkmark	\checkmark	\checkmark					
ОъМ		(√)	(√)						
OtZ				\checkmark		\checkmark			
Off		(√)	(√)	(√)					
Ofq3		\checkmark	\checkmark	\checkmark		\checkmark			
OpQM				\checkmark		\checkmark			
Opt				\checkmark		\checkmark	\checkmark		
Otp							\checkmark		

A large number of different dimension-6 SMEFT operators modify **top production at LHC**

Juan Rojo

43

Notation		S	ensitiv	ity at ($\mathcal{O}(\Lambda^{-2})$	$(\mathcal{O}(\Lambda^{-}$	$^{-4}))$		
	$t\bar{t}$	single-top	tW	tZ	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	$t\bar{t}t\bar{t}$	$t\bar{t}b\bar{b}$
OQQ1								✓	\checkmark
0QQ8								~	\checkmark
0Qt1								~	\checkmark
OQt8								~	\checkmark
0Qb1								(√)	~
0Qъ8								(√)	\checkmark
Ott1								✓	\checkmark
Otb1								(√)	\checkmark
Otb8								✓	~
OQtQb1									
OQtQb8									
081qq	✓				\checkmark	✓	 ✓ 	✓	✓
011qq	\checkmark				(√)	(√)	(√)	~	\checkmark
083qq	\checkmark	\checkmark		(√)	\checkmark	\checkmark	\checkmark	~	~
013qq	\checkmark	\checkmark		\checkmark	(√)	(√)	(√)	✓	~
08qt	\checkmark				\checkmark	~	\checkmark	✓	\checkmark
01qt	\checkmark				(\checkmark)	(√)	(√)	✓	\checkmark
08ut	\checkmark					1	\checkmark	✓	\checkmark
Olut	\checkmark					(√)	(√)	✓	~
08qu	\checkmark					\checkmark	\checkmark	✓	~
01qu	\checkmark					(√)	(√)	✓	\checkmark
08dt	\checkmark					\checkmark	\checkmark	✓	\checkmark
Oldt	\checkmark					(√)	(√)	✓	\checkmark
08qd	\checkmark					\checkmark	\checkmark	✓	\checkmark
01qd	 ✓ 					(√)	(√)	 ✓ 	✓
OtG	√				\checkmark	1	 ✓ 	√	\checkmark
OtW		\checkmark	\checkmark	\checkmark					
ОъМ		(√)	(√)						
OtZ				\checkmark		\checkmark			
Off		(√)	(√)	(√)					
Ofq3		\checkmark	\checkmark	\checkmark		\checkmark			
OpQM				\checkmark		\checkmark			
Opt				\checkmark		\checkmark	\checkmark		
Otp							1		

A large number of different dimension-6 SMEFT operators modify **top production at LHC**

Juan Rojo

44

Notation		S	ensitiv	ity at ($\mathcal{O}(\Lambda^{-2})$	$(\mathcal{O}(\Lambda^{-}$	$^{-4}))$		
	$t\bar{t}$	single-top	tW	tZ	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	$t\bar{t}t\bar{t}$	$t\bar{t}b\bar{b}$
OQQ1								\checkmark	\checkmark
0QQ8								\checkmark	\checkmark
OQt1								\checkmark	\checkmark
0Qt8								\checkmark	\checkmark
0Qb1								(√)	\checkmark
ОQЪ8								(√)	\checkmark
Ott1								\checkmark	\checkmark
Otb1								(√)	\checkmark
Otb8								\checkmark	\checkmark
OQtQb1									
OQtQb8									
081qq	\checkmark				\checkmark	\checkmark	~	\checkmark	\checkmark
011qq	\checkmark				(√)	(√)	(√)	\checkmark	~
083qq	\checkmark	\checkmark		(√)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
013qq	\checkmark	\checkmark		\checkmark	(√)	(√)	(√)	\checkmark	\checkmark
08qt	\checkmark				\checkmark	~	~	\checkmark	\checkmark
01qt	\checkmark				(√)	(√)	(√)	\checkmark	\checkmark
08ut	\checkmark					✓	 ✓ 	\checkmark	\checkmark
Olut	\checkmark					(√)	(√)	\checkmark	\checkmark
08qu	\checkmark					~	 ✓ 	\checkmark	\checkmark
01qu	\checkmark					(√)	(√)	\checkmark	√
08dt	\checkmark					~	✓	\checkmark	\checkmark
Oldt	\checkmark					(√)	(√)	\checkmark	\checkmark
08qd	\checkmark					✓	 ✓ 	\checkmark	\checkmark
01qd	\checkmark					(√)	(√)	\checkmark	✓
OtG	\checkmark				~	✓	✓	\checkmark	\checkmark
OtW		\checkmark	~	\checkmark					
ОъМ		(\checkmark)	(√)						
OtZ				\checkmark		\checkmark			
Off		(\checkmark)	(√)	(√)					
Ofq3		\checkmark	~	\checkmark		\checkmark			
OpQM				\checkmark		\checkmark			
Opt				\checkmark		~	✓		
Otp							✓		

A large number of different dimension-6 SMEFT operators modify **top production at LHC**

Juan Rojo

SMEFT constraints from top data

SMEFiT structure

Stand-alone Python code, which exploits functionalities of the NNPDF framework

NNPDF code	aMC@NLO	MCFM
Experimental data and covariance matrices	₩NLO QCD (benchmark)	NLO QCD (consistent choice of PDFs)
NLO APPLgrids + NNLO C-factors (for processes used in PDF fit)	 LO, NLO SMEFT Both O(Λ⁻²) and O(Λ⁻⁴) from d=6 operators 	<pre> ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</pre>

Python analysis code

Semble theory predictions for generic SMEFT Wilson coefficients

Optimisation with Sequential Quadratic Programming (SciPy)

Look-back cross-validation stopping

Monte Carlo replicas for uncertainty propagation

Fitting methodology

Generate large sample of Monte Carlo replicas to construct the probability distribution in the space of experimental top quark measurements

$$\mathcal{O}_i^{(\operatorname{art})(k)} = S_{i,N}^{(k)} \mathcal{O}_i^{(\exp)} \left(1 + \sum_{\alpha=1}^{N_{\operatorname{sys}}} r_{i,\alpha}^{(k)} \sigma_{i,c}^{(\operatorname{sys})} + r_i^{(k)} \sigma_i^{(\operatorname{stat})} \right) \,, \quad k = 1, \dots, N_{\operatorname{rep}}$$

Sector Cross-validation stopping to avoid both under- and over-fitting

- Methodology validated with pseudo-data based on closure tests: decouple from possible data incompatibilities, theory limitations, or genuine bSM effects
- PDF uncertainties included in the x² definition and MC sampling

Closure Tests

- Generate pseudo-data based on a given scenario (SM or BSM) and check that the correct (known) results are reproduced after the fit
- Allows quantifying the **expected statistical significance** for BSM deviations

Fit quality

(preliminary)

Good agreement between theory (SM and SMEFT) and data for most datasets

For the 102 fitted cross-sections, we find χ²/n_{dat} of 0.81 (0.76) before (after) fit

Including SMEFT effects tend to improve agreement with data: need to quantify how significant this improvement is

Dataset	$\chi^2/n_{\rm dat}$ (prior)	$\chi^2/n_{\rm dat}$ (fit)	$n_{\rm dat}$
<code>ATLAS_tt_8TeV_ljets</code> [$m_{tar{t}}$]	1.51	1.44	7
$ ext{CMS_tt_8TeV_ljets} \left[\ y_t \ ight]$	1.17	1.21	10
CMS_tt2D_8TeV_dilep $[(m_{t\bar{t}},y_t)]$	1.38	1.38	16
CMS_tt_13TeV_ljets2 [$y_{tar{t}}$]	0.25	0.23	8
CMS_tt_13TeV_dilep [$y_{tar{t}}$]	0.26	0.26	6
CMS_tt_13TeV_ljets_2016 [y_t]	0.07	0.08	11
ATLAS_WhelF_8TeV	1.98	1.13	3
CMS_WhelF_8TeV	0.31	0.42	3
CMS_ttbb_13TeV	5.00	3.99	1
CMS_tttt_13TeV	0.05	0.08	1
ATLAS_tth_13TeV	1.61	1.11	1
CMS_tth_13TeV	0.34	0.09	1
ATLAS_ttZ_8TeV	1.32	1.18	1
ATLAS_ttZ_13TeV	0.01	0.01	1
CMS_ttZ_8TeV	0.04	0.06	1
CMS_ttZ_13TeV	0.90	0.94	1
ATLAS_ttW_8TeV	1.34	1.24	1
ATLAS_ttW_13TeV	0.82	0.81	1
CMS_ttW_8TeV	1.54	1.46	1
CMS_ttW_13TeV	0.03	0.02	1
CMS_t_tch_8TeV_dif	0.11	0.21	6
$\texttt{ATLAS_t_tch_8TeV} \left[\begin{array}{c} y_t \end{array} \right]$	0.91	0.61	4
<code>ATLAS_t_tch_8TeV</code> [$y_{ar{t}}$]	0.40	0.33	4
ATLAS_t_sch_8TeV	0.08	0.23	1
$\texttt{CMS_t_tch_13TeV_dif} \left[\begin{array}{c} y_t \end{array} \right]$	0.46	0.48	4
CMS_t_sch_8TeV	1.26	1.16	1
ATLAS_tW_inc_8TeV	0.02	0.00	1
CMS_tW_inc_8TeV	0.00	0.01	1
ATLAS_tW_inc_13TeV	0.52	0.62	1
CMS_tW_inc_13TeV	4.29	3.26	1
ATLAS_tZ_inc_13TeV	0.00	0.02	1
CMS_tZ_inc_13TeV	0.66	0.64	1
Total	0.81	0.76	102

Fit results

- Agreement with the SM expectation within uncertainties
- Bounds on individual operators are in general largely correlated among them
- Large differences between the bounds obtained from each operator

Comparison with previous bounds

SMEFit analysis of top quark sector

- Compare to bounds reported in the LHC Top WG EFT note (same flavour assumptions)
- Improvement found (more stringent bounds) in all fitted degrees of freedom
- For some specific operators **our bounds are the first ones** to be reported

High-energy behaviour

top quark pair production @ 13 TeV

Energy-growing effects enhance sensitivity to SMEFT effects with TeV-scale cross-sections

but need to be careful to ensure validity of EFT description

Summary and outlook (part II)

The accurate determination of the quark and gluon structure of the proton is an essential ingredient for LHC phenomenology

LHC data provides stringent constraints on PDFs

PDFs with **theoretical uncertainties**: the next milestone for global QCD analyses

At the HL-LHC, theory calculations with **1% PDF uncertainties** are within reach

The SMEFIT framework is a novel approach for global analyses of the SMEFT, which exploits expertise from the NNPDF fits

Proof-of-concept: SMEFT analysis of the **top quark sector**

Next steps: enlarge the operator basis and include additional LHC cross-sections (Higgs, electroweak, jets) as well as flavour and low-energy observables

Ultimately the **simultaneous determination of PDFs and SMEFT** degrees of freedom might be required to fully exploit the LHC potential

Extra material

Cross-validation

Since *N_{par}* is not too different from *N_{dat}*, overfitting will take place for an efficient optimiser

Sector Artificial tensions with the SM are likely to be generated by overfitting!

Fest the role of cross-validation in a closure test with pseudo-data generated with the SM

Fit residuals consistent with true result (SM) only with cross-validation

Input dataset (I)

Process	Dataset	\sqrt{s}	Info	Observables	$N_{ m dat}$	Ref
$t ar{t}$	ATLAS_tt_8TeV_ljets	8 TeV	lepton+jets	$\begin{vmatrix} d\sigma/d y_t , d\sigma/dp_t^T, \\ d\sigma/dm_{t\bar{t}}, d\sigma/d y_{t\bar{t}} \end{vmatrix}$	$5, 8, \\7, 5$	[77]
$t ar{t}$	CMS_tt_8TeV_ljets	8 TeV	lepton+jets	$\begin{vmatrix} d\sigma/dy_t, d\sigma/dp_t^T, \\ d\sigma/dm_{t\bar{t}}, d\sigma/dy_{t\bar{t}} \end{vmatrix}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[78]
$t\bar{t}$	CMS_tt2D_8TeV_dilep	8 TeV	dileptons	$\begin{vmatrix} d^2\sigma/dy_t dp_t^T, \\ d^2\sigma/dy_t dm_{t\bar{t}}, \\ d^2\sigma/dp_{t\bar{t}}^T dm_{t\bar{t}}, \\ d^2\sigma/dy_{t\bar{t}} dm_{t\bar{t}}, \end{vmatrix}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[79]
$t \overline{t}$	CMS_tt_13TeV_ljets	13 TeV	lepton+jets	$\begin{vmatrix} d\sigma/d y_t , d\sigma/dp_t^T, \\ d\sigma/dm_{t\bar{t}}, d\sigma/d y_{t\bar{t}} \end{vmatrix}$	$ \begin{array}{ c c c c } 7, 9, \\ 8, 6 \end{array} $	[83]
$t ar{t}$	CMS_tt_13TeV_ljets2	13 TeV	lepton+jets	$\begin{vmatrix} d\sigma/d y_t , d\sigma/dp_t^T, \\ d\sigma/dm_{t\bar{t}}, d\sigma/d y_{t\bar{t}} \end{vmatrix}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[85]
$t\bar{t}$	CMS_tt_13TeV_dilep	13 TeV	dileptons	$\begin{vmatrix} d\sigma/dy_t, d\sigma/dp_t^T, \\ d\sigma/dm_{t\bar{t}}, d\sigma/dy_{t\bar{t}} \end{vmatrix}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[86]
$t \bar{t}$	ATLASCMS_AcMtt_8TeV	8 TeV	Asymm comb	$A_C(m_{t\bar{t}}),$ Eq. (3.1)	6	[80]
$t ar{t}$	ATLAS_WhelF_8TeV	8 TeV	W helicity fract	F_0, F_L, F_R	3	[81]
$t\bar{t}$	CMS_WhelF_8TeV	8 TeV	W helicity fract	F_0, F_L, F_R	3	[82]

Input dataset (II)

Process	Dataset	\sqrt{s}	Info	Observables	$N_{\rm dat}$	Ref
Single t	CMS_t_tch_8TeV_inc	8 TeV	<i>t</i> -channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t}) \ (R_t)$	2 (1)	[95]
Single t	CMS_t_sch_8TeV	8 TeV	s-channel	$\sigma_{ m tot}(t+ar{t})$	1	[96]
Single t	ATLAS_t_sch_8TeV	8 TeV	s-channel	$\sigma_{ m tot}(t+ar{t})$	1	[97]
Single t	ATLAS_t_tch_8TeV	8 TeV	t-channel	$\begin{vmatrix} d\sigma(tq)/dp_T^t, d\sigma(\bar{t}q)/dp_T^{\bar{t}} \\ d\sigma(tq)/dy_t, d\sigma(\bar{t}q)/dy_t \end{vmatrix}$	$\left \begin{array}{c}5,4\\4,4\end{array}\right $	[98]
Single t	ATLAS_t_tch_13TeV	13 TeV	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t}) \ (R_t)$	2 (1)	[99]
Single t	CMS_t_tch_13TeV_inc	13 TeV	t-channel	$\sigma_{\rm tot}(t+\bar{t}) \ (R_t)$	1 (1)	[100]
Single t	CMS_t_tch_8TeV_dif	8 TeV	t-channel	$\left egin{array}{c} d\sigma/dp_T^{(t+ar t)},\ d\sigma/d y^{(t+ar t)} \end{array} ight.$	6 6	[101]
Single t	CMS_t_tch_13TeV_dif	13 TeV	t-channel	$\left egin{array}{l} d\sigma/dp_T^{(t+ar t)},\ d\sigma/d y^{(t+ar t)} \end{array} ight.$	$\begin{vmatrix} 4\\4 \end{vmatrix}$	[102]
tW	ATLAS_tW_inc_8TeV	8 TeV	inclusive	$\sigma_{ m tot}(tW)$	1	[103]
tW	CMS_tW_inc_8TeV	8 TeV	inclusive	$\left \sigma_{ m tot}(tW) ight $	1	[104]
tW	ATLAS_tW_inc_13TeV	$13 \mathrm{TeV}$	inclusive	$\sigma_{ m tot}(tW)$	1	[105]
tW	CMS_tW_inc_13TeV	$13 \mathrm{TeV}$	inclusive	$\sigma_{ m tot}(tW)$	1	[106]
tZ	CMS_tZ_inc_13TeV	13 TeV	inclusive	$\left \sigma_{ m fid}(Wbl^+l^-q) ight $	1	[107]
tZ	ATLAS_tZ_inc_13TeV	13 TeV	inclusive	$\sigma_{ m tot}(tZq)$	1	[108]

Input dataset (III)

Process	Dataset	\sqrt{s}	Info	Observables	N_{dat}	Ref
$t ar{t} b ar{b}$	CMS_ttbb_13TeV	13 TeV	total xsec	$\left \sigma_{ m tot}(t\bar{t}b\bar{b}) ight $	1	[87]
$t\bar{t}t\bar{t}$	CMS_tttt_13TeV	13 TeV	total xsec	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[88]
$t\bar{t}Z$	CMS_ttZ_8_13TeV	8+13 TeV	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	2	[89, 90]
$t\bar{t}Z$	ATLAS_ttZ_8_13TeV	8+13 TeV	total xsec	$\sigma_{ m tot}(t\bar{t}Z)$	2	[91, 92]
$t\bar{t}W$	CMS_ttW_8_13TeV	8+13 TeV	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	2	[89, 90]
$t\bar{t}W$	ATLAS_ttW_8_13TeV	8+13 TeV	total xsec	$\left \sigma_{\rm tot}(t\bar{t}W) \right $	2	[91, 92]
$t\bar{t}H$	CMS_tth_13TeV	13 TeV	signal strength	$\mu_{t\bar{t}H}$	1	[93]
$t\bar{t}H$	ATLAS_tth_13TeV	13 TeV	total xsec	$\sigma_{\rm tot}(t\bar{t}H)$	1	[94]

The fit includes more than **100 cross-section measurements** at 8 and 13 TeV from **10 different top-quark production processes**

Theory calculations

Process	\mathbf{SM}	Code	SMEFT	Code
$t ar{t}$	NNLO QCD	$\begin{array}{l} \texttt{MCFM/SHERPA} \ \texttt{NLO} \\ + \ \texttt{NNLO} \ K\text{-factors} \end{array}$	NLO QCD	MG5_aMC
single- t (t -ch)	NNLO QCD	$\left \begin{array}{c} \text{MCFM NLO} \\ + \text{NNLO } K \text{-factors} \end{array}\right $	NLO QCD	MG5_aMC
single- t (s-ch)	NLO QCD	MCFM	NLO QCD	MG5_aMC
tW	NLO QCD	MG5_aMC	NLO QCD	MG5_aMC
tZ	NLO QCD	MG5_aMC	$\begin{vmatrix} \text{LO QCD} \\ + \text{NLO SM } K\text{-factors} \end{vmatrix}$	MG5_aMC
$t\bar{t}W(Z)$	NLO QCD	MG5_aMC	$\begin{vmatrix} \text{LO QCD} \\ + \text{NLO SM } K\text{-factors} \end{vmatrix}$	MG5_aMC
$t\bar{t}h$	NLO QCD	MG5_aMC	$\begin{vmatrix} \text{LO QCD} \\ + \text{NLO SM } K\text{-factors} \end{vmatrix}$	MG5_aMC
$t\bar{t}t\bar{t}$	NLO QCD	MG5_aMC	$\begin{vmatrix} \text{LO QCD} \\ + \text{NLO SM } K\text{-factors} \end{vmatrix}$	MG5_aMC
$t ar{t} b ar{b}$	NLO QCD	MG5_aMC	$\begin{vmatrix} \text{LO QCD} \\ + \text{NLO SM } K\text{-factors} \end{vmatrix}$	MG5_aMC

PDF set: NNPDF3.1 NNLO no-top

61

Operator basis

	Class	Notation	Degree of Freedom	Operator Definition
We follow the same flavour assumptions		OQQ1	c_{QQ}^1	$2C_{qq}^{1(3333)} - \frac{2}{3}C_{qq}^{3(3333)}$
		0QQ8	c^8_{QQ}	$8C_{qq}^{3(3333)}$
as in the LHC Top WG note		OQt1	c_{Qt}^1	$C_{qu}^{1(3333)}$
		OQt8	c_{Qt}^8	$C_{qu}^{8(3333)}$
	QQQQ	OQЪ1	c_{Qb}^1	$C_{qd}^{1(3333)}$
		0QЪ8	c_{Qb}^8	$C_{qd}^{8(3333)}$
Minimal Flavour Violation (MFV), diagonal	4-heavy	Ott1	c_{tt}^1	$C_{uu}^{(3333)}$
CKM zoro Vukowas for first two quark	-	Otb1	c_{tb}^{1}	$C_{ud}^{(3333)}$
CRIVI, ZEIO TUKAWAS IOI IIISI IWO YUAIK		Otb8	c_{tb}°	$C_{ud}^{(0003)}$
gens		OQtQb1	c_{QtQb}^{1}	$C_{quqd}^{(0000)}$
		OQtQb8	c_{QtQb}°	$C_{quqd}^{\circ(0000)}$
		081qq	$c_{Qq}^{1,8}$	$C_{qq}^{1(i33i)} + 3C_{qq}^{3(i33i)}$
		011qq	$c_{Qq}^{1,1}$	$C_{qq}^{1(ii33)} + \frac{1}{6}C_{qq}^{1(i33i)} + \frac{1}{2}C_{qq}^{3(i33i)}$
CP conservation assumed		083qq	$c_{Qq}^{3,8}$	$C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}$
		013qq	$c_{Qq}^{3,1}$	$C_{qq}^{3(i133)} + \frac{1}{6} (C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)})$
		08qt	c_{tq}^8	$C_{qu}^{8(i133)}$
		01qt	c_{tq}^1	$C_{qu}^{i(ii33)}$
Include those SMEFT dimension-6	QQqq	08ut	c_{tu}^8	$2C_{uu}^{(i33i)}$
operators of Marcow basis with at least		01ut		$C_{uu}^{(i00)} + \frac{1}{3}C_{uu}^{(i00)}$
operators of warsaw basis with at least	0	08qu	c_{Qu}°	$C_{qu}^{(001i)}$
one top quark	2-neavy-	Ulqu	c_{Qu}	$C_{qu}^{8(33ii)}$
• •	2-light	01d+	c_{td}	C_{ud} $C^{1(33ii)}$
		Olat	c_{td}^8	C_{ud} $C^{8(33ii)}$
		01ad	C_{Qd}^{1}	C_{qd} $C^{1(33ii)}$
The fit includes a total of 34 independent		l orda	Qd	Q_{qd}
dogroos of froodom		OtG	c_{tG}	$\operatorname{Re}\{C_{uG}^{(3)}\}$
degrees of freedom		OLU	c_{tW}	$\operatorname{Re}\{C_{uW}\}$
		0+7	C_{bW}	$\operatorname{Re}\{C_{dW}\}$ $\operatorname{Re}\{-e_{W}C^{(33)} + e_{W}C^{(33)}\}$
	$QQ + V_{c}G_{c}Q$	0t2 Off	Cred	$\operatorname{Re}\left\{C^{(33)}\right\}$
Include both interference and quadratic	46 46 T T T T T T T T T T T T T T T T T	Ofa3	$c^3 \sim$	$C^{3(33)}_{\varphi q q}$
	2-heavy	OpQM	C.C.	$C_{\omega q}^{1(33)} - C_{\omega q}^{3(33)}$
contributions from these operators	+ V/h	Opt	$c_{\omega t}$	$C^{(33)}_{arphi u}$
		Otp	c_{tarphi}	$\operatorname{Re}\{C^{(33)}_{uarphi}\}$

Operator basis

4-quark operators

$$\begin{split} &O_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{q}_k \gamma_{\mu} q_l), \\ &O_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^{\mu} \tau^I q_j) (\bar{q}_k \gamma_{\mu} \tau^I q_l), \\ &O_{qu}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{u}_k \gamma_{\mu} u_l), \\ &O_{qu}^{8(ijkl)} = (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{u}_k \gamma_{\mu} T^A u_l), \\ &O_{qd}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &O_{qd}^{8(ijkl)} = (\bar{q}_i \gamma^{\mu} u_j) (\bar{d}_k \gamma_{\mu} u_l), \\ &O_{uu}^{(ijkl)} = (\bar{u}_i \gamma^{\mu} u_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &O_{ud}^{1(ijkl)} = (\bar{u}_i \gamma^{\mu} u_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &O_{ud}^{8(ijkl)} = (\bar{u}_i \gamma^{\mu} T^A u_j) (\bar{d}_k \gamma_{\mu} T^A d_l), \\ ^{\ddagger} O_{quqd}^{8(ijkl)} = (\bar{q}_i u_j) \varepsilon (\bar{q}_k d_l), \\ ^{\ddagger} O_{quqd}^{8(ijkl)} = (\bar{q}_i T^A u_j) \varepsilon (\bar{q}_k T^A d_l). \end{split}$$

2-quark + V/g/h operators

$${}^{\ddagger}O_{u\varphi}^{(ij)} = \bar{q}_{i}u_{j}\tilde{\varphi} (\varphi^{\dagger}\varphi),$$

$$O_{\varphi q}^{1(ij)} = (\varphi^{\dagger}i\overrightarrow{D}_{\mu}\varphi)(\bar{q}_{i}\gamma^{\mu}q_{j}),$$

$$O_{\varphi q}^{3(ij)} = (\varphi^{\dagger}i\overrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{j}),$$

$$O_{\varphi u}^{(ij)} = (\varphi^{\dagger}i\overrightarrow{D}_{\mu}\varphi)(\bar{u}_{i}\gamma^{\mu}u_{j}),$$

$${}^{\ddagger}O_{\varphi ud}^{(ij)} = (\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\bar{u}_{i}\gamma^{\mu}d_{j}),$$

$${}^{\ddagger}O_{uW}^{(ij)} = (\bar{q}_{i}\sigma^{\mu\nu}\tau^{I}u_{j})\tilde{\varphi}W_{\mu\nu}^{I},$$

$${}^{\ddagger}O_{uB}^{(ij)} = (\bar{q}_{i}\sigma^{\mu\nu}\tau^{I}d_{j})\varphi W_{\mu\nu}^{I},$$

$${}^{\ddagger}O_{uB}^{(ij)} = (\bar{q}_{i}\sigma^{\mu\nu}T^{A}u_{j})\tilde{\varphi}B_{\mu\nu},$$

$${}^{\ddagger}O_{uG}^{(ij)} = (\bar{q}_{i}\sigma^{\mu\nu}T^{A}u_{j})\tilde{\varphi}G_{\mu\nu}^{A},$$