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Scrutinising Proton 
Structure with AI
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The Standard Model
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Standard Model of particle physics: hugely succesful, powerful framework 
describing elementary particles and their interactions

matter particles

force carriers

 6 quarks (fractional charge)
 3 charged leptons (e.g. electron)
 3 neutrinos (only weak charge)
 Organised in 3 generations: 
identical (?) except for mass

Higgs boson

 photon (electromagnetism)
 gluon (strong nuclear force)
 weak bosons (weak nuclear force)

both matter particle and force carrier!



The (incomplete) Standard Model
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Standard Model of particle physics: hugely succesful, 
but leaves many foundational questions unanswered

requires new particles and interactions beyond the Standard Model!

Origin of 
particle masses and 

Higgs force?

Where is all the 
missing Antimatter?

What is Dark Matter? 

Quantum Gravity?
Inflation? 



The Large Hadron Collider

Geneva

Alps

Jura

27 km



6 Juan Rojo                                                                                                                        PDF@CMS Kick-off Workshop, CERN, 07/05/2012



Proton Structure
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One may claim that the nucleon is a rather ``boring’’ particle, surely 
after one century of studying it, we know everything about the proton?

  Rutherford-Geiger-Marsden experiment (1911)  

nothing farther from reality!



The many faces of the proton

QCD bound state of quarks and gluons
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 Valence quarks (up and down) give the proton 
its quantum numbers (e.g. electric charge)

Ψ⟩ ≈ uud⟩

Qp = + 1 Qu = + 2/3
Qd = − 1/3

  Sea quarks (antiup, antidown, strange, …) 
arise from quantum fluctuations

  Tightly held together by gluons, can only be 
broken in extremely energetic collisions



Energy conservation and quark number 
conservation are fixed boundary conditions

Dependence on x fixed by non-perturbative QCD dynamics: extract from experimental data

Probability of finding a gluon inside a 
proton, carrying a fraction x of the proton 
momentum, when probed with energy Q

x: fraction of proton 
momentum carried by gluon

Energy of hard-scattering reaction: 
inverse of resolution length

g(x, Q0, {ag}) = fg(x, a(1)
g , a(2)

g , …)
constrain from data

Parton Distributions

Dependence with resolution scale Q: DGLAP 
evolution, computable from first principles



NLHC(H) ∼ g ⊗ g ⊗ σ̃ggH

proton

Higgs
σ̃ggH

proton

gluon

gluon

g

g

Parton Distributions

Probing Proton Structure
universal process-dependent



credit: visualising the proton, Arts at MIT (https://arts.mit.edu/visualizing-the-proton/)

https://www.youtube.com/watch?v=Dt8FZ4ksWiY


Machine Learning Proton Structure
 Model-independent PDF parametrisation with neural networks as universal unbiased interpolants 

 Stochastic Gradient Descent via TensorFlow for neural network training

 Automated model hyperparameter optimisation: NN architecture, minimiser, learning rates …

evolution basis
flavor basis

g(x, Q0, {ag}) = fg(x, a(1)
g , a(2)

g , …)



Error estimate based on Monte Carlo replica method (band: standard deviation over the MC replicas)

each curve is a separately trained neural network

Machine Learning PDFs



common assumption: the proton wave function does not contain charm quarks
 the proton contains intrinsic up, down, strange (anti-)quarks but no intrinsic charm quarks

The charm content of the proton

mp ∼ 1 GeV

mp ∼ 1 GeV

charm quarks heavier than the proton itself!



The charm content of the proton

It does not need to be so! An intrinsic charm component predicted in many models

40 years of extensive searches for intrinsic charm: no unambiguous evidence …. 

|p⟩ = 𝒫3q |uud⟩+𝒫5q |uudcc̄⟩ + …

common assumption: the proton wave function does not contain charm quarks
 the proton contains intrinsic up, down, strange (anti-)quarks but no intrinsic charm quarks



Estimate MHOUs from the shift between NNLO and N3LO matching 

The 3FNS charm PDF displays non-zero component peaked at large-x 
which can be identified with intrinsic charm

Intrinsic Charm

Intrinsic Charm in the Proton

JR et al, Evidence for intrinsic charm quarks in the proton, Nature (2023)



credits: https://www.quantamagazine.org/inside-the-proton-the-most-complicated-thing-imaginable-20221019/



Beyond Proton PDFs

(x, Q2, A)

The same approach can be extended to learn more complex 
quantities from the data

 Neutrino structure functions require three inputs and six 
outputs, each with different ranges, variations, asymptotic limits

Input for the brand-new collider neutrino program started 
recently at CERN with the installation of dedicated detectors



GPU & Hyperparameter Optimisation
Deploy NNPDF machinery on GPUs & optimise performance (factor 200 
improvement!)

Develop new strategies for hyperparameter optimisation based on the full 
posterior probability distribution, not only on first moment as most approaches

NNPDF meeting
Amsterdam 
26 February

Performance improvements
• Profile in latest

• parallelising replicas: (merged)
• training/validation seeds varying per replica
• Hashing of data loading
• Tight integration of replicas: MultiDense layer

• Other optimisations: (nearly done)
• Rearranging the contractions of PDFs with FK table
• Reusing computed observables between train and val
• Tensorflow overhead (?)

• Hyperoptimisation: (nearly done)
• Running trials in parallel, one per GPU
• Perhaps multiple on a single GPU (?)

Performance improvements

• Timings for 1000 epochs of 
NNPDF40_nnlo_as_01180_1000

Hyperoptimization with 10 replicas. Statistics: average over replicas and folds

Minimization of chi2 while monitoring 1/phi2



Optimal Observables for New 
Physics Searches with AI
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R. Gomez-Ambrosio, J. ter Hoeve, M. Madigan, J. Rojo, V. Sanz,  `JHEP (2023)
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The Standard Model as an Effective Theory
The Standard Model EFT is defined by: 

Particle (matter) content: quarks and leptons 

Gauge (local) symmetries and their eventual 
breaking mechanisms

Lorentz invariance and other global symmetries

Linearly realised SU(2)L EW symmetry breaking

Validity only up to certain energy scale Λ

All possible operators of mass-
dimension d consistent with 

above requirements
EFT coupling constants,

to be determined from data



22

The Standard Model EFT
The number of SMEFT operators is large: 59 non-redundant operators at dimension 6 for 
one fermion generation, 2499 operators without any flavour assumption

A global SMEFT analysis needs to explore a huge complicated parameter space

pure bosonic

bosonic-fermionic

four-fermion operators



event kinematics

Statistically optimal observables for EFTs
Which kind of measurement is most sensitive to SMEFT operators?

Difficult question to answer in general since SMEFT-sensitive measurements can be:

Inclusive or (1,2,3, …)-differential (in which specific variables?)

Binned (choice of binning?) or unbinned

Unfolded at parton level, at particle level, or at detector level
relevant to many other extractions of SM & BSM parameters from data

deploy unbinned multivariate measurements to determine the best sensitivity that a given 
process can have on SMEFT operators by means of machine learning techniques

Our approach:

Gaussian likelihood

Unbinned multivariate likelihood

observed 
event counts

predicted 
event counts

sum over 
events

event 
probability

retains full information on 
event-by-event kinematics



Statistically optimal observables for EFTs
Which kind of measurement is most sensitive to SMEFT operators?

Difficult question to answer in general since SMEFT-sensitive measurements can be:

Inclusive or (1,2,3, …)-differential (in which specific variables?)

Binned (choice of binning?) or unbinned

Unfolded at parton level, at particle level, or at detector level
relevant to many other extractions of SM & BSM parameters from data

deploy unbinned multivariate measurements to determine the best sensitivity that a given 
process can have on SMEFT operators by means of machine learning techniques

Challenges:
Parameter inference requires knowledge of the likelihood for any value of the EFT coefficients

Evaluation of likelihood functions computationally costly due to high dimensionality both of the 
space of kinematic features x and of EFT parameters c

Solution:
Neural networks as universal unbiased interpolants to parametrise high-dimensional likelihoods

Our approach:



Statistically optimal observables from ML
the dependence of the cross-section on kinematic variables and all EFT coefficients

parametrised with neural networks trained to Monte Carlo simulations & benchmarked with exact calculations

extendable to arbitrary number of kinematic variables and EFT coefficients: training can be parallelised

methodological uncertainties (e.g. finite training samples) assess with the replica method

each replica trained to an independent set of MC events

representation of the probability distribution in the space of ML models



Neural network training

g = (1 + rσ)−1

NN training by minimising cross-entropy loss function

( projection on 1 kinematic feature )
x = (mtt̄, ytt̄)



Neural network training

g = (1 + rσ)−1

NN training by minimising cross-entropy loss function

(2 kinematic features)x = (mtt̄, ytt̄)



Results: Higgs+Z production

Sensitivity improves in unbinned analysis

Sensitivity improves when using all kinematic 
information

Clear improvement as compared to traditional 
observables used in EFT fits

Traditional observables
AI-optimised observables



Quantum Materials under the 
AI-Boosted Microscope
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 Roest, van Heijst, Maduro, JR, Conesa-Boj, Charting the low-loss region in electron energy loss spectroscopy 
with machine learning Ultramicroscopy (2021)
 van Heijst, Mukai, Okunishi, Hashiguchi, Maduro, Roest, JR, Conesa-Boj, Illuminating the Electronic 
Properties of WS2 Polytypism with Electron Microscopy, Annalen der Physiek (2021)
 Brokkelkamp, ter Hoeve, Brokkelkamp van Heijst,  ter Hoeve, Maduro, Davydof, Kryluyk, JR, Conesa-Boj, 
Spatially resolved band gap and dielectric function in two-dimensional materials from electron energy loss 
spectroscopy, Journal of Physical Chemistry A (2022)
 Stijn van der Lippe, Abel Brokkelkamp, JR, Sonia Conesa‐Boj, Localized Exciton Anatomy and BandGap 
Energy Modulation in 1D MoS2 Nanostructures, Advanced Functional Materials (2023)
 La, Brokkelkamp, van der Lippe, Ter Hoeve, JR, Conesa-Boj, Edge-induced excitations in Bi2Te3 from 
spatially-resolved electron energy-gain spectroscopy, Ultramicroscopy (2023).

https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=u02FeDIAAAAJ&sortby=pubdate&citation_for_view=u02FeDIAAAAJ:M05iB0D1s5AC
https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=u02FeDIAAAAJ&sortby=pubdate&citation_for_view=u02FeDIAAAAJ:M05iB0D1s5AC
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202307610
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202307610


Challenge:  EELS measurements affected by huge background (Zero-Loss Peak) at low-
energy losses from elastic scatterings: complicates interpretation of material properties!

Solution:  parametrise backgrounds from data using Deep Neural Networks and Monte Carlo 
sampling to remove them in a model-independent manner

EELS: monitor energy losses suffered by the electrons from a Transmission Electron 
Microscope (TEM) beam upon interaction with the sample

Electron Energy Loss Spectroscopy
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A ML model for EELS backgrounds

energy loss, beam energy, 
exposure time, …

intensity of the Zero-Loss 
Peak background

hidden layers

NNs universal unbiased interpolants: 
can reproduce any physical law without 

a priori assumptions



Generate Monte Carlo replicas of the original data points with multi-Gaussian distribution with 
central values and covariance matrices taken from the input measurements

Train a NN model on each replica from the minimisation of the log-likelihood
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The Monte Carlo replica method

We end up with a sampling of the probability density in the space of NN models, from which 
we can compute e.g. the variance of the predicted ZLP intensity for arbitrary inputs
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Band gap extraction in polytypic WS2

 Apply to nanoflowers composed by 2H/3R polytypic WS2

 First extraction of band gap in this material from fit to subtracted EEL spectra

 ML-subtracted spectra make possible mapping exciton transitions down to 1.5 eV

output of 
NN model
(band from 

MC replicas)

consistent with ab-initio DFT calculations 

WS2 nanoflowers
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ML analysis of spectral images

 EELS spectral image contains up to O(105) individual spectra

 Use unsupervised learning (K-means clustering) to identify clusters of pixels with comparable 
sample thickness and combine them for the (supervised) NN training 

Simultaneous determination of physical properties across the whole nanostructure with their 
uncertainties: thickness, band gap, position and width of plasmonic and excitonic resonances,…
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Exciton Anatomy in 1D-MoS2

 Direct correlation of strain fields, band gap 
modulation, and exciton localisation in 1D-MoS2 
nanostructures with different morphologies 

 Demonstrate that excitons are localised in regions 
with large strain (e.g. bends, tips)

 Implications e.g. for single photon emitters for quantum 
communication

Same methods could be also applied to other types of 
spectroscopy techniques

strain field mapping
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Summary and outlook
Machine learning makes possible identifying patterns in the data whereby one can efficiently 
solve problems which are difficult of intractable with traditional approaches

 Powerful to parametrise in an unbiased way high-dimensional functions and infer them 
from the data, while ensuring faithful uncertainty estimates

 Enable discoveries such as intrinsic charm quarks in the proton & make possible to optimise 
the sensitivity of searches for interesting phenomena hidden in the data

 Our technology is portable to many other problems, as demonstrated for their applicability to 
data analysis in electron microscopy of quantum materials

All codes are open source and extensively documented, and have benefitted from 
contributions as well from BSc and MSc students in our groups


