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Scrutinising Proton
Structure with Al



The Standard Model

Standard Model of particle physics: hugely succesful, powerful framework
describing elementary particles and their interactions

matter particles

6 quarks (fractional charge)

€«

3 charged leptons (e.g. electron)

€«

3 neutrinos (only weak charge)

.G,(

Organised in 3 generations:
identical (?) except for mass
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force carriers

photon (electromagnetism)

“€cC

gluon (strong nuclear force)

€«

weak bosons (weak nuclear force)

€

Higgs boson

both matter particle and force carrier!



The (incomplete) Standard Model

Standard Model of particle physics: hugely succesful,
but leaves many foundational questions unanswered

@Dark@
Quantum Gravity?
Inflation?

requires new particles and interactions beyond the Standard Model!
4

Origin of
particle masses and
Higgs force?

Where is all the
missing Antimatter?




The Large Hadron Collider







Proton Structure

One may claim that the nucleon is a rather "boring” particle, surely
after one century of studying it, we know everything about the proton?
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nothing farther from reality!



The many faces of the proton

QCD bound state of quarks and gluons

[ Valence quarks (up and down) give the proton
its quantum numbers (e.g. electric charge)
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M Sea quarks (antiup, antidown, strange, ...)
arise from quantum fluctuations
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M Tightly held together by gluons, can only be
broken in extremely energetic collisions



Parton Distributions

g(z, Q)
\ Energy of hard-scattering reaction:
inverse of resolution length

Probability of finding a gluon inside a
proton, carrying a fraction x of the proton x: fraction of proton
momentum, when probed with energy Q momentum carried by gluon

Dependence on x fixed by non-perturbative QCD dynamics: extract from experimental data

g(X, Q()9 {Clg}) =]fg(x9 a(él)a a(éZ), oo )

constrain from data

¢ Dependence with resolution scale Q: DGLAP ¢ Energy conservation and quark number
evolution, computable from first principles conservation are fixed boundary conditions



Probing Proton Structure

universal process-dependent
NLHC(H) ~ 8 ® g ® GggH

Parton Distributions




credit: visualising the proton, Arts at MIT (https://arts.mit.edu/visualizing-the-proton/)



https://www.youtube.com/watch?v=Dt8FZ4ksWiY

Machine Learning Proton Structure

M Model-independent PDF parametrisation with neural networks as universal unbiased interpolants
[ Stochastic Gradient Descent via TensorFlow for neural network training

M Automated model hyperparameter optimisation: NN architecture, minimiser, learning rates
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Machine Learning PDFs
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Error estimate based on Monte Carlo replica method (band: standard deviation over the MC replicas)

each curve is a separately trained neural network



the proton contains intrinsic up, down, strange (anti-)quarks but no intrinsic charm quarks

The charm content of the proton

common assumption: the proton wave function does not contain charm quarks
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charm quarks heavier than the proton itself!
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The charm content of the proton

common assumption: the proton wave function does not contain charm quarks

the proton contains intrinsic up, down, strange (anti-)quarks but no intrinsic charm quarks

It does not need to be so! An intrinsic charm component predicted in many models

THE INTRINSIC CHARM OF THE PROTON P(x,)
%
S.J. BRODSKY ! _r
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|p) = P3, luud)+Ps, |uudcc) + ...

Recent data give unexpectedly large cross-sections for charmed particle production at high x in hadron collisions. This

may imply that the proton has a non-negligible uudcc Fock component. The interesting consequences of such a hypothesis
are explored.

40 years of extensive searches for intrinsic charm: no unambiguous evidence ....



Intrinsic Charm in the Proton
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The 3FNS charm PDF displays non-zero component peaked at large-x
which can be identified with intrinsic charm

JR et al, Evidence for intrinsic charm quarks in the proton, Nature (2023)



credits: https:/www.quantamagazine.org/inside-the-proton-the-most-complicated-thing-imaginable-20221019/




Beyond Proton PDFs

€ The same approach can be extended to learn more complex
quantities from the data

¢ Neutrino structure functions require three inputs and six
outputs, each with different ranges, variations, asymptotic limits

€ Input for the brand-new collider neutrino program started - 5
O-vp—>e+X(Ey) = Oyu—d 029 u(x, Q )

recently at CERN with the installation of dedicated detectors l | |

neutrino-proton partonic cross- up-quark content int
scattering rate section the proton
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GPU & Hyperparameter Optimisation

¢ Deploy NNPDF machinery on GPUs & optimise performance (factor 200

improvement!)

¢ Develop new strategies for hyperparameter optimisation based on the full
posterior probability distribution, not only on first moment as most approaches
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Optimal Observables for New
Physics Searches with Al

R. Gomez- Ambrosio, J. ter Hoeve, M. Madigan, J. Rojo, V. Sanz, JHEP (2023)
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The Standard Model as an Effective Theory

The Standard Model EFT is defined by:

¢ Particle (matter) content: quarks and leptons

¢ Gauge (local) symmetries and their eventual
breaking mechanisms

¢ Lorentz invariance and other global symmetries
¢ Linearly realised SU(2)L. EW symmetry breaking

¢ Validity only up to certain energy scale A

oo Na (d) (f)(d)
LSMEFT({Ci}aA) = Lsm ZZC Ad—4

d=5 1=1

All possible operators of mass-
EFT coupling constants,  dimension d consistent with

5| to be determined from data above requirements



The Standard Model EFT

€ The number of SMEFT operators is large: 59 non-redundant operators at dimension 6 for
one fermion generation, 2499 operators without any flavour assumption

¢ A global SMEFT analysis needs to explore a huge complicated parameter space
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Statistically optimal observables for EFTs

Which kind of measurement is most sensitive to SMEFT operators?

Difficult question to answer in general since SMEFT-sensitive measurements can be:
¢ Inclusive or (1,2,3, ...)-differential (in which specific variables?)
¢ Binned (choice of binning?) or unbinned

¢ Unfolded at parton level, at particle level, or at detector level

relevant to many other extractions of SM & BSM parameters from data

Our approach:

deploy unbinned multivariate measurements to determine the best sensitivity that a given
process can have on SMEFT operators by means of machine learning techniques

observed predicted
G . I'k I'h d event counts event counts
aussian likelihoo
N N v
b 2
L(n;v(c)) =||ex _L{ns —vile))
y — P 2 U ( C) retains full information on
1=1 event-by-event kinematics
Unbinned multivariate likelihood sum over e: e;: .';.t
/ events pro I iy
Viot (C) ev Vot c) . 1 dO'(QZ, C)
L(c) = ° fa T, C fo (z,€) = ,
N, ! opa(c) dx

event kinematics



Statistically optimal observables for EFTs

Which kind of measurement is most sensitive to SMEFT operators?

Difficult question to answer in general since SMEFT-sensitive measurements can be:
¢ Inclusive or (1,2,3, ...)-differential (in which specific variables?)
¢ Binned (choice of binning?) or unbinned

¢ Unfolded at parton level, at particle level, or at detector level

relevant to many other extractions of SM & BSM parameters from data

Our approach:

deploy unbinned multivariate measurements to determine the best sensitivity that a given
process can have on SMEFT operators by means of machine learning techniques

Challenges:

¢ Parameter inference requires knowledge of the likelihood for any value of the EFT coefficients

¢ Evaluation of likelihood functions computationally costly due to high dimensionality both of the
space of kinematic features x and of EFT parameters ¢

Solution:
¢ Neural networks as universal unbiased interpolants to parametrise high-dimensional likelihoods



Statistically optimal observables from ML
the dependence of the cross-section on kinematic variables and all EFT coefficients

_ fo(zsc
- fo(2,0

Neft Neft Neft

; =1+ Zr((,j)(:c)cj + >: :r((,j’k) (x)cjck
j=1

J=1k2>j

ro(x,c)

parametrised with neural networks trained to Monte Carlo simulations & benchmarked with exact calculations

Neft Neft Meft
Fo(x,e) =1+ NNU(Z)c; + ) Y NNUH(z)c;c)
7=1 J=1k>j

extendable to arbitrary number of kinematic variables and EFT coefficients: training can be parallelised

methodological uncertainties (e.g. finite training samples) assess with the replica method

Neft . Neft MNeft .
Pz, c) =1+ Z NNZ(J)(a:)cj + S: S: NNgj’k) (T)cjick, i =1,..., Niep
7=1 J=1 k2>

each replica trained to an independent set of MC events

representation of the probability distribution in the space of ML models



Neural network training
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Neural network training

Unbinned exact/Unbinned ML
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Results: Higgs+Z production

Marginalised 95 % C.L. intervals, O (A_4) at £ =300 fb*

=1 Traditional observables -

p+p—o>h+Z>b+b+4T 4+

- AI-optimised observables

SM eyr . . . .
& Sensitivity improves in unbinned analysis

& Sensitivity improves when using all kinematic
information

¢ Clear improvement as compared to traditional
observables used in EFT fits
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TUDelft

Quantum Materials under the
Al-Boosted Microscope

M Roest, van Heijst, Maduro, JR, Conesa-Boj, Charting the low-loss region in electron energy loss spectroscopy
with machine learning Ultramicroscopy (2021)

M van Heijst, Mukai, Okunishi, Hashiguchi, Maduro, Roest, JR, Conesa-Boj, llluminating the Electronic
Properties of WSz Polytypism with Electron Microscopy, Annalen der Physiek (2021)

[ Brokkelkamp, ter Hoeve, Brokkelkamp van Heijst, ter Hoeve, Maduro, Davydof, Kryluyk, JR, Conesa-Boj,
Spatially resolved band gap and dielectric function in two-dimensional materials from electron energy loss
spectroscopy, Journal of Physical Chemistry A (2022)

4 Stijn van der Lippe, Abel Brokkelkamp, JR, Sonia Conesa-Boj, Localized Exciton Anatomy and BandGap
Energy Modulation in 1D MoS2 Nanostructures, Advanced Functional Materials (2023)

™ La, Brokkelkamp, van der Lippe, Ter Hoeve, JR, Conesa-Boj, Edge-induced excitations in Bi2Te3 from
spatially-resolved electron energy-gain spectroscopy, Ultramicroscopy (2023).
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https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=u02FeDIAAAAJ&sortby=pubdate&citation_for_view=u02FeDIAAAAJ:M05iB0D1s5AC
https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=u02FeDIAAAAJ&sortby=pubdate&citation_for_view=u02FeDIAAAAJ:M05iB0D1s5AC
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202307610
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202307610

Electron Energy Loss Spectroscopy

EELS: monitor energy losses suffered by the electrons from a Transmission Electron
Microscope (TEM) beam upon interaction with the sample

; Electron gun
v ZLP core-loss
region
e Condenser lenses — IZLP(AE) —
— o Objective lens =
el
Sample ((®)
f—
> :
-2 -1 0 | 2
Post-specimen lenses <——— o .4:
V)]
TEM viewing screen . , Selecting EELS C ultra- low-loss region
aperture  detector Q low loss
1 g region
: 2 e
Magnetic prism —
Energy
| - Loss
| |
| | | | | |

0 D 10 | B 20 P o 30 35
Energy loss (eV)

Intensity

¢ Challenge: EELS measurements affected by huge background (Zero-Loss Peak) at low-
energy losses from elastic scatterings: complicates interpretation of material properties!

¢ Solution: parametrise backgrounds from data using Deep Neural Networks and Monte Carlo
sampling to remove them in a model-independent manner



A ML model for EELS backgrounds

energy loss, beam energy,

Input .

exposure time, ...
Sigmoid

hidden layers
Sigmoid
RelU

intensity of the Zero-Loss

Output Peak background

Intensity

NNs universal unbiased interpolants:
can reproduce any physical law without
a priori assumptions
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The Monte Carlo replica method

¢ Generate Monte Carlo replicas of the original data points with multi-Gaussian distribution with
central values and covariance matrices taken from the input measurements

Nsys
Iy = Ippy + ™o £ 3 " Nl Wi, k=1, Nep,
71=1

¢ Train a NN model on each replica from the minimisation of the log-likelihood

2
(I e (o
E(k) ({O(k)}) ZLP, (Zel;(];) ({ }) |

ndat —1 O ;

¢ We end up with a sampling of the probability density in the space of NN models, from which
we can compute e.g. the variance of the predicted ZLP intensity for arbitrary inputs

Nrep 1/2

mod 1 mod)(k mod
ol ({z)) = | —— > ("% - (57))
rep
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Band gap extraction in polytypic WS

‘\ \ —-— original
(R —— subtracted
N ——-- ZLP

\
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MC replicas)
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M Apply to nanoflowers composed by 2H/3R polytypic WS

[ First extraction of band gap in this material from fit to subtracted EEL spectra

ina(AE) ~ A(AE — Epg)’  Epg=1.6703eV, b=13%3

M ML-subtracted spectra make possible mapping exciton transitions down to 1.5 eV

consistent with ab-initio DFT calculations
33



ML analysis of spectral images

InSe — Bandgap Energy (Median)
a) WS, nanoflower — Bandgap Energy (Median) b) : o ——
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M EELS spectral image contains up to O(105) individual spectra

M Use unsupervised learning (K-means clustering) to identify clusters of pixels with comparable
sample thickness and combine them for the (supervised) NN training

4 Simultaneous determination of physical properties across the whole nanostructure with their
uncertainties: thickness, band gap, position and width of plasmonic and excitonic resonances,...
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Exciton Anatomy in 1D-MoS:-

strain field mapping

(@

400 -

nm)

= 200 -

0

200 400 600
x (nm)

[ Direct correlation of strain fields, band gap
modulation, and exciton localisation in 1D-MoS>
nanostructures with different morphologies

M Demonstrate that excitons are localised in regions
with large strain (e.g. bends, tips)

4 Implications e.g. for single photon emitters for quantum
communication

[ Same methods could be also applied to other types of
spectroscopy techniques
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Summary and outlook

¢ Machine learning makes possible identifying patterns in the data whereby one can efficiently
solve problems which are difficult of intractable with traditional approaches

& Powerful to parametrise in an unbiased way high-dimensional functions and infer them
from the data, while ensuring faithful uncertainty estimates

¢ Enable discoveries such as intrinsic charm quarks in the proton & make possible to optimise
the sensitivity of searches for interesting phenomena hidden in the data

¢ Our technology is portable to many other problems, as demonstrated for their applicability to
data analysis in electron microscopy of quantum materials

€ All codes are open source and extensively documented, and have benefitted from
contributions as well from BSc and MSc students in our groups

NINPDF

ml4eft 0.0.5

pip install ml4eft @

achine Learning for Effective Field Theories

Storage of data and theory predictions

Navigation Project description Theory

Chi square figures of merit

= Project description

MLAEFT is a general open-source framework for the integration of unbinned multive Contributing guidelines and tools
of particle physics data. It makes use of machine learning regression and classificat
high-dimensional likelihood ratios, and can be seamlessly integrated into global an
Standard Model Effective Field Theory and Parton Distribution Functions.

Releases and compatibility polic:
*D Release history p y policy

Continuous integration and deployment

Servers
External codes

Tutorials

@ / The NNPDF collaboration

The NNPDF collaboration

The NNPDF collaboration performs research in the field of high-energy physics.
proton using contemporary methods of artificial intelligence. A precise knowledg
the proton, which describe their structure in terms of their quark and gluon cons
Large Hadron Collider of CERN.

The NNPDF code

The scientific output of the collaboration is freely available to the public through
Along with this online documentation, we release the NNPDF code, used to proc
code is made available as an open-source package together with the user-friend|

The code can be used to produce the ingredients needed for PDF fits, to run the
framework used to produce a global PDF fit made publicly available, enabling for
NNPDF4.0 analysis. Moreover, the code enables the user to explore a number of
the impact of new experimental data on PDFs, the effect of changes in theory se
comparison between theoretical predictions and experimental data over a broad

If you are a new user head along to Getting started and check out the Tutorials.
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Welcome to the EELSFitter website!

EELSFitter is an open-source Python-based framework developed for the analysis and interpretation of Electron Energy
Spectroscopy (EELS) measurements in Transmission Electron Microscopy (TEM). EELSfitter is based on the machine lear
techniques developed by the NNPDF Collaboration in the context of applications in high energy physics, in particular fe
forward neural networks for unbiased regression in multidimensional problems.
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