Validphys Report NNPDF revision 528M

The NNPDF Collaboration

February 5, 2013

Contents

1	Fit	summary	1		2.4 Replicas in the evolution basis	$12 \\ 15$
2	Con	Comparing PDFs		•		
	2.1	Distances	2	3	Fit properties	17
			_		3.1 χ^2 details - experimental covariance matrix	18
	2.2	Comparing PDFs in evolution basis	3			
	2.3	Comparing PDFs in LHA basis	8	4	Configuration file of the training	19
		1 0			5	

Validphys 528M	Current Fit	Reference	CTEQ	MSTW
PDF set name	NNPDF23 nlo as 0117 mc $$	NNPDF23 nlo as 0117	CT10nlo	MSTW2008nlo90cl

Table 1: Configuration file

1 Fit summary

• This is the description block, please update these lines before run.

Parameter	Current Fit	Reference Fit		
$\chi^2_{\rm tot} \ ({\rm exp})$	1.14	1.08		
$\langle E \rangle \pm \sigma_E$	$2.21{\pm}0.06$	$2.21{\pm}0.06$		
$\langle E_{\rm tr} \rangle \pm \sigma_{E_{\rm tr}}$	$2.17 {\pm} 0.09$	$2.17 {\pm} 0.09$		
$\langle E_{\rm val} \rangle \pm \sigma_{E_{\rm val}}$	$2.25 {\pm} 0.08$	$2.25 {\pm} 0.08$		
$\langle \mathrm{TL} \rangle \pm \sigma_{\mathrm{TL}}$	$18539 {\pm} 6918$	$18539 {\pm} 6918$		
$\langle \chi^{2(k)} angle \pm \sigma_{\chi^{2(k)}}$	1.15 ± 0.12	$1.14{\pm}0.06$		
$\langle \sigma^{(\exp)} \rangle_{dat}$	14.89%	14.89%		
$\langle \sigma^{(\rm net)} \rangle_{\rm dat}$	3.10%	3.34%		
$\langle \rho^{(\exp)} \rangle_{dat}$	3.81e-01	3.81e-01		
$\langle \rho^{(\rm net)} \rangle_{\rm dat}$	6.03e-01	5.86e-01		
$\langle cov^{(exp)} \rangle_{dat}$	1.87e + 08	1.87e + 08		
$\langle \mathrm{cov}^{(\mathrm{net})} \rangle_{\mathrm{dat}}$	1.48e + 06	1.12e + 06		
$x\Sigma + xg$	$1.00738e + 00 \pm 3.99793e - 03$	$1.00012e + 00 \pm 6.74706e - 04$		
u_v	$1.99948e + 00 \pm 6.79696e - 03$	$1.99997e + 00 \pm 5.74967e - 03$		
d_v	$9.99748e-01\pm7.51917e-03$	$1.00054e + 00 \pm 5.61150e - 03$		
s_v	$-2.06089e-03\pm 2.96586e-03$	$3.75194e-06\pm 1.36847e-05$		
xs_v	$1.84851e-03\pm 1.55617e-03$	$3.17634e-03\pm 1.99802e-03$		
K_s	$3.54934e-01\pm 8.06108e-02$	$3.05342e-01\pm 8.98828e-02$		
Δ_s	$1.25153e-01\pm 3.90499e-02$	$1.24451e-01\pm 3.93600e-02$		

Table 2: Summary.

2 Comparing PDFs

2.1 Distances

Figure 1: Distances in the fitting basis.

Figure 2: Distances in the flavour basis.

2.2 Comparing PDFs in evolution basis

Figure 3: Comparison between PDFs at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

Figure 4: Comparison between PDFs at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

Figure 5: Comparison between PDFs at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

Figure 6: Comparison between PDFs at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

Figure 7: Comparison between PDFs at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

2.3 Comparing PDFs in LHA basis

Figure 8: Comparison between PDFs at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

Figure 9: Comparison between PDFs at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

Figure 10: Comparison between PDFs at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

Figure 11: Comparison between PDFs at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

2.4 Replicas in the evolution basis

Figure 12: Current fit PDFs in the evolution basis at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

Figure 13: Current fit PDFs in the evolution basis at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

Figure 14: Current fit PDFs in the evolution basis at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

2.5 Replicas in the LH basis

Figure 15: Current fit PDFs in the LH basis at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

Figure 16: Current fit PDFs in the LH basis at $Q^2 = 2.0e + 00 \text{ GeV}^2$.

3 Fit properties

Distribution of χ^2 for experiments

Figure 17: Total χ^2 for each experiment.

3.1 χ^2 details - experimental covariance matrix

Experiment	Dataset	DOF	Current χ^2	Reference χ^2	CTEQ χ^2	MSTW χ^2
NMCPD	NMCPD	132	0.97029	0.93665	0.97220	0.99118
NMC	NMC	224	1.59557	1.59632	1.65446	1.46842
SLAC		74	1.19969	1.40088	1.49360	1.21372
	SLACP	37	1.33224	1.48195	1.52293	1.19328
	SLACD	37	1.00112	1.24283	1.27523	1.12047
BCDMS		581	1.22221	1.19570	1.54013	1.37953
	BCDMSP	333	1.22037	1.21713	1.66203	1.36447
	BCDMSD	248	1.17122	1.13374	1.34416	1.30031
HERA1AV		592	1.02359	0.99954	1.06247	1.58658
	HERA1NCEP	379	1.18230	1.14739	1.22286	1.98845
	HERA1NCEM	145	0.79546	0.78818	0.83824	1.09481
	HERA1CCEP	34	0.90321	0.92318	0.99722	0.91196
	HERA1CCEM	34	0.55881	0.56520	0.55712	0.54255
CHORUS		862	1.25035	1.08869	1.43153	1.31677
	CHORUSNU	431	1.17976	1.14206	1.38479	1.23375
	CHORUSNB	431	1.19678	0.97097	1.35769	1.29506
FLH108	FLH108	8	1.30798	1.29173	1.37703	1.31189
NTVDMN		79	0.44969	0.44252	4.04424	1.00540
	NTVNUDMN	41	0.26931	0.26474	2.55603	0.63668
	NTVNBDMN	38	0.62410	0.61615	6.31061	1.65170
ZEUSH2		127	1.17214	1.18153	1.20220	1.48374
	ZO6NC	90	1.12212	1.12433	1.11607	1.53673
	Z06CC	37	1.15427	1.18071	1.20219	1.14221
ZEUSF2C	5511050 000	50	0.77545	0.78822	0.72242	0.89786
	ZEUSF2C99	14	0.72903	0.73913	0.67325	0.95232
	ZEUSF2C03		1.28723	1.31145	1.18144	1.46976
	ZEUSF2C08		0.18599	0.18557	0.20302	0.10034
ILLEOG	ZEUSF2C09	8	0.11817	0.11780	0.13428	0.09074
HIF2C	III FOGOI	38	1.50541	1.50775	1.30627	1.41870
	HIF2C01		1.00810	1.01910	1.05743	1.50535
	HIF2C09	0	2.00021	2.07034	1.89054	1.74802
DVEOOC	HIF2CIU	20	1.29474	1.30338	1.10044	0.74069
DIE880	DIESSOR	10	0.40020	0.44914	0.46207	0.74008
DYE605	DYE605	119	0.88132	0.79728	0.79375	1.02817
CDFWASY	CDFWASYM	13	1.44275	1.55805	3.40204	8.91505
CDFZRAP	CDFZRAP	29	1.41083	1.70022	1.01219	1.99090
	DUZRAP	28	0.56910	0.56665	0.54505	0.56639
ATLASWZRAP	ATLASWZRAP36PB	30	1.24020	1.22687	1.03165	2.09614
DUK2CUN	DUK2CUN	110	0.89264	0.79796	1.06985	1.02583
CDFR2KT	CDFR2KT	76	0.78321	0.61918	1.11642	0.82753
ATLASR04JETS	ATLASR04JETS36PB	90	1.07842	0.91566	1.34143	1.15083
CMSWEASY	CMSWEASY840PB		0.87828	0.88357	1.47448	4.22287
LHCBWZ	LHCBWZ36PB	10	0.64134	0.65784	1.01100	0.93896
Total (sets)		3298	1.12	1.07	1.36	1.00
Total (exps)		3298	1.14	1.08	1.37	1.37

Table 3: Fit quality for datasets.

4 Configuration file of the training

```
Configuration file for NNPDF++,
comments start with # or ; or [
 [Description]
 This is the description block, please update these lines before run.
 [/Description]
Experiments & Datasets]
EXPERIMENT: NNCPD
DATASET = NMCPD 0.5
EXPERIMENT: NNC
DATASET = NMC 0.5
EXPERIMENT: SLAC
DATASET = SLACP 0.5
DATASET = SLACP 0.5
DATASET = BCDNSP 0.5
DATASET = BCDMSP 0.5
EXPERIMENT: HERAIAW
EXPERIMENT: HERA1AV
EXPERIMENT: HERAINCEP 0.5
DATASET = HERAINCEP 0.5
DATASET = HERAICCEP 0.5
DATASET = HERAICCEP 0.5
DATASET = HERAICCEM 0.5
EXPERIMENT: CHORUS
DATASET = CHORUSNE 0.5
DATASET = CHORUSNE 0.5
EXPERIMENT: FLH108
DATASET = FLH108 1
EXPERIMENT: NTVDNN
DATASET = NTVNUDDN 0.5
DATASET = NTVNUDDN 0.5
EXPERIMENT: ZEUSH2
DATASET = ZO6NC 0.5
DATASET = ZO6NC 0.5
EXPERIMENT: ZEUSP20
DATASET = 206CC 0.5
EXPERIMENT: ZEUSF2C99 0.5
DATASET = ZEUSF2C03 0.5
DATASET = ZEUSF2C03 0.5
DATASET = ZEUSF2C09 0.5
EXPERIMENT: HIF2C
DATASET = HIF2C01 0.5
DATASET = HIF2C09 0.5
DATASET = HIF2C10 0.5
FXPFRTMENT: DVES66
DATASET = H1F2C10 0.1
EXPERIMENT: DVE886
DATASET = DVE886R 1
EXPERIMENT: DYE605
DATASET = DVE605 0.5
EXPERIMENT: CDFWASYM 1
EXPERIMENT: CDFZRAP
DATASET = CDFZRAP 1
EXPERIMENT: CDFZRAP
                DATASET = CDFZRAP 1
EXPERIMENT: DOZRAP
EXPERIMENT: DOZRAP
DATASET = DOZRAP 1
EXPERIMENT: ATLASWZRAP
DATASET = ATLASWZRAP36PB 1
EXPERIMENT: DORZCON 0.5
EXPERIMENT: DORZCON 0.5
EXPERIMENT: ODFRZKT
DATASET = CDFR2KT 0.5
EXPERIMENT: ATLASR04JETS
DATASET = ATLASR04JETS36PB 0.5
EXPERIMENT: CMSWEASY
DATASET = CMSWEASY640PB 1
EXPERIMENT: LHCBWZ
DATASET = LHCBWZ36PB 1
[/Experiments & Datasets]
 *****
[/Theory]
 *****
[Experimental Data]
TOPDFSET = NNPDF-t0-set-nlo
IQ2CUT = 0
NPARSAT = 2
PARSAT = 1.5 0.333333
PARSAT = 1.5 0.33
IREG = 1
Q2MINCUT = 3
Q2MIN = 3
W2MIN = 12.5
[/Experimental Data]
 *****
*****
POSITIVITY = 0
MINCH12 = 6
NSMEAR = 200
DELTASM = 200
RV = 1.0003
RT = 0.9999
[/Fit Properties]
 *****
[Positivity]
POSDATASET = FCPOS
POSDATASET = FLPOS
POSDATASET = DMPOS
[/Positivity]
  *********
 [NN Properties]
NMUTANTS = 80
```

NLAYERS = 4 NNODES = 2 5 3 1 SMALLXSNG = 1.05 1.35 LARGEXSNG = 2.55 3.45 SMALLXGLU = 1.05 1.35 LARGEXGLU = 3.55 4.45 SMALLXT = 0 0.5 LARGEXT3 = 2.55 3.45 SMALLXDS = -0.95 -0.65 LARGEXSP = 12.14 SMALLXSP = 1.05 1.35 LARGEXSP = 2.55 3.45 SMALLXSM = 0 0.5 LARGEXSM = 2.55 3.45 [/NN Properties]

[Output Folder] RESULTSDIR = results [/Output Folder]