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Leerdoel 

Doel van het college is de introductie van de basis-concepten voor het 

beschrijven van atomen, elektronische orbitals en moleculen m.b.v. 

quantummechanische principes. Beoogd wordt enerzijds een beter inzicht 

te verkrijgen in de fysische achtergronden van chemische eigenschappen 

en anderzijds te zien hoe quantummechanische concepten zich vertalen in 

meetbare grootheden. Specifieke leerdoelen per hoor/werkcollege staan 

vermeld op p. 7.  

 
Inhoud  

De cursus is opgebouwd uit de volgende onderwerpen 

 

• Introductie in de quantum wereld, golf-deeltje dualisme, de 

Broglie relatie, Heisenberg onzekerheidsprincipe, Schrödinger 

vergelijking, deeltje in een doosje, tunnelling, harmonische oscillator, 

waterstofatoom, electronspin, de opbouw van het periodiek systeem 

• Binding tussen atomen en opbouw van moleculen; valence bond 

theorie, molecular orbital theorie, variatieprincipe, hybridisatie, moleculaire 

interacties, waterstofbruggen, Hückel theorie 

• Moleculaire spectroscopie: vibrationele en electronische spectroscopie 

• magnetische resonantie 

 

onderwijsvorm  

• Hoorcollege 

• werkcollege 

   

Literatuur 

‘Physical Chemistry’ van Atkins en De Paula, 10e editie, Oxford University 

Press.  

 

 

Tentaminering en becijfering  

Schriftelijk deeltentamen 

Schriftelijk tentamen 

   

voorkennis  

Calculus, Mathematische Methoden, Thermodynamica, FMF1, FMF2 
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Werkcolleges 

 

Werkcollege assistenten 

Margherita Marchetti (m.marchetti@vu.nl) 

Luuk Geelen (l.h.c.geelen@student.vu.nl) 

Lisanne de Jong (ljg460@student.vu.nl) 

 

Er worden in totaal 9 werkcolleges gegeven. Voor de werkcolleges worden jullie 

geacht je in groepjes van 3-4 te organiseren. Voorafgaand aan elk werkcollege dien 

je een aantal eenvoudige opgaven gemaakt te hebben die kort besproken worden in 

het werkcollege. Tijdens het werkcollege maak je groepsgewijs ter plekke een aantal 

meer complexe opgaven. De assistenten lopen rond en helpen jullie hiermee. In 

principe worden de opgaven niet op het bord gemaakt, echter in het geval dat een 

groot aantal mensen met hetzelfde probleem zit kan er ad hoc besloten worden om 

iets centraal uit te leggen. Alle thuis- en werkcollegeopgaven worden vooraf 

aangekondigd op blackboard. 

 

Deelname aan het werkcollege is verplicht.  

-deelname aan het werkcollege is verplicht om aan het tentamen te mogen 

deelnemen. Deze regel geldt niet als je in voorgaande jaren het vak (en de 

werkcolleges) gevolgd hebt. 

-zet je handtekening op presentielijst bij begin en eind werkcollege 

-Als je echt verhinderd bent, bijv. i.v.m. ziekte of familieomstandigheden, laat het 

weten, via email, aan docenten en assistenten! 

 

 

 

Tentamenstof 

 

Uit Atkins en De Paula, 10th edition: 

 

Hoofdstuk 7 geheel, behalve 7A1b 

 

Hoofdstuk 8 geheel 

 

Hoofdstuk 9 9A, 9B, 9C1, 9C2a 

 

Hoofdstuk 10 10A, 10B, 10C1, 10D, 10E1, 10E2 

 

Hoofdstuk 11 NIET 
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Hoofdstuk 12 12A1, 12D1-3, 12E1-3, behalve 3(a), 3(c) 

  

Hoofdstuk 13 13A1(c), 13A2a-b, 13B1, 13C 

 

Hoofdstuk 14 14A1, 14A2, 14B1, 14C1-2  

 

Hoofdstuk 16 16B3  

 

 

Vragenuur 

Voorafgaand aan het tentamen zijn de docenten beschikbaar voor vragen over de 

stof, in hun kantoor T130 (JK) en T054A (EP). Exacte tijd wordt aangekondigd op 

blackboard. 

 

 

 

 

 

Tentamen 

 

Er worden een tussententamen en een volledig eindtentamen afgenomen. Het 

tussententamen betreft de stof behandeld in HC1 t/m HC6 (hoofdstukken 7 – 9) en 

vindt plaats op donderdag 4 februari.  

Aan het eind van de cursus wordt een eindtentamen afgenomen over de volledige 

stof, op 22 maart. Dit tentamen bestaat uit Deel I (stof HC 1 – HC 6) en Deel II (stof 

HC7 – HC12). 

 

De regels voor becijfering: 

1. indien je een onvoldoende haalt voor het tussententamen dien je het 

volledige eindtentamen te maken. 

2. indien je een voldoende haalt voor het tussententamen heb jij de keuze om 

Deel I van het eindtentamen wel of niet te maken. Als je het wel maakt dan 

telt het hoogste cijfer (van het tussententamen of Deel I van het 

eindtentamen). 

3. Voor het eindcijfer worden de cijfers van Deel I van het eindtentamen (of het 

tussententamen) en Deel II van het eindtentamen gemiddeld. 

4. Het hertentamen moet altijd helemaal gemaakt worden, het cijfer van het 

tussententamen telt niet mee. Het tussententamen kan ook niet 

meegenomen worden naar volgend jaar. 
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Tijdens het tentamen mag geen gebruik gemaakt worden van cursusmateriaal. Ook 

programmeerbare rekenmachines zijn verboden. Een lijst van uit het hoofd te 

kennen formules wordt op blackboard gezet. 

 

 

Oefententamen 

Een tentamen van voorgaande jaren wordt op blackboard gezet. 

 

 

 

Leerdoelen per hoorcollege 

 

HC1 

-begrijpen hoe experimentele resultaten ertoe geleid hebben dat Quantumtheorie 

ontwikkeld werd 

-begrijpen dat quantumtheorie nodig is om de structuur en eigenschappen van 

kleine deeltjes zoals electronen, atomen en moleculen te beschrijven 

-begrijpen dat zowel materie als licht een deeltjeskarakter en een golfkarakter 

hebben. 

 

HC2 

-begrijpen dat de toestand van een quantumsysteem beschreven wordt met een 

golffunctie, die een oplossing is van de Schrodinger vergelijking. 

- begrijpen en toepassen van de wiskundige beschrijving van de quantumfysica, 

waaronder hermitische operatoren, eigenwaarden vergelijkingen en orthogonaliteit. 

-begrijpen hoe experimentele observabelen kunnen worden berekend uit de 

golffunctie, en deze berekening uitvoeren. 

-De Born interpretatie aangaande de fysische betekenis van de golffunctie begrijpen 

en toepassen. 

-het onzekerheidsprincipe van Heisenberg begrijpen en toepassen 

 

HC3 

-het kunnen oplossen van de Schrodinger vergelijking voor eenvoudige systemen: vrij 

deeltje in 1 dimensie, deeltje in een doosje in 1 en 3 dimensies, de harmonische 

oscillator. 

-begrijpen waardoor opsluiting van een deeltje in een beperkte ruimte leidt tot 

quantisatie van toegestane energieniveaus, en dat de nulpuntsenergie niet gelijk is 

aan 0. 
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-het fysisch kunnen interpreteren van golffuncties die een oplossing zijn van de 

Schrodinger vergelijking 

-het begrijpen en toepassen van de scheiding-van-variabelen wiskundige techniek. 

-het begrijpen en toepassen van het tunneling fenomeen.  

 

HC 4 

-het kunnen oplossen van de Schrödinger vergelijking voor rotationele beweging: 

deeltje op een ring, deeltje op een bol. 

-begrijpen hoe cirkel- of bolsymmetrie in rotationele beweging leidt tot kwantisatie 

van toegestane energieniveaus. 

-het fysisch kunnen interpreteren van golffuncties die een oplossing zijn van de 

Schrödinger vergelijking 

-het begrip spin begrijpen. 

 

HC5 

-de fysische basis kunnen begrijpen van de Schrödinger vergelijking van het 

waterstofatoom. 

-het kunnen oplossen van de Schrödinger vergelijking voor het waterstofatoom met 

scheiding van variabelen. 

-het kunnen interpreteren van de radiale en angulaire golffuncties. 

-het begrijpen van, kunnen rekenen met, een beeld vormen van de atomaire 

orbitalen en de bijbehorende kwantumgetallen, schillen en subschillen. 

 

HC6 

- het kunnen oplossen van de Schrödinger vergelijking voor multi-electron atomen 

met de orbitaalbenadering. 

-het begrijpen van en kunnen werken met 'shielding', het Pauli- en het 

'Aufbau'principe. 

-het begrijpen van singlet- en triplet spintoestanden 

 

HC7 

-het begrijpen en kunnen toepassen van 'valence-bond' theorie op homonucleaire 

diatomaire moleculen en multiatomaire molecule 

-het kunnen visualiseren van moleculaire orbitalen 

-het begrijpen van en kunnen werken met de Born-Oppenheimer benadering 

-het begrijpen van het begrip hybride orbitalen; hybride orbitalen kunnen 

visualiseren. 

 

HC8 
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-het begrijpen en kunnen toepassen van moleculaire orbital theorie (lineaire 

combinaties van atomaire orbitalen) op H2+. 

-het kunnen voorspellen of een orbitaal bonding of antibonding is. 

-het kunnen opstellen van een moleculaire orbitaal energie diagram voor 

homonucleaire diatomaire moleculen. 

-het kunnen visualiseren en het begrijpen van de symmetrie eigenschappen van 

moleculaire orbitalen 

 

HC9 

- het begrijpen en kunnen toepassen van het variatieprincipe op heteronucleaire 

diatomaire molecule. 

-het begrijpen van de wiskunde en natuurkunde achter de Hückelbenadering. 

-het kunnen opstellen van de Hückel matrix voor een willekeurig, niet al te groot, 

molecuul. 

 

HC10 

-begrijpen en toepassen van de basiskenmerken van absorptie en emissie in termen 

van macroscopische grootheden. 

-begrijpen van elementaire experimentele technieken in de spectroscopie 

-begrijpen van vibrationele toestanden en overgangen in twee-atomige en poly-

atomige moleculen, begrijpen dat vibrationele overgangen interactie hebben met 

infrarood licht en Ramanverstrooiing kunnen veroorzaken, en het toepassen van 

deze kennis. 

 

 

HC11 

-begrijpen dat electronische overgangen onder absorptie of emissie van een foton 

plaatsvinden terwijl de kernen stationair zijn (Franck-Condon principe), inclusief de 

wiskundige beschrijving en de gevolgen daarvan voor absorptie- en emissiespectra 

-begrijpen van het overgangsdipoolmoment en toepassing op d-metal complexen, pi-

pi* en n-p* overgangen. 

-begrijpen en toepassen van de principes van fluorescentie en fosforescentie, 

inclusief de spiegelsymmetrie zoals die geobserveerd wordt in absorptie en emissie 

spectra.  

 

HC12 
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Programma vQtM 2015-2016  

 

Week Dag Datum Tijd HC/WC Docent Topic 

1 Ma  4-1 13:30 HC1 JK Overzicht cursus, 

introductie quantum, 

Ch 7 

1 Di 5-1 13:30 HC2 JK Ch 7: Schrodinger 

vergelijking, 

interpretatie vd 

golffunctie, wiskundig 

gereedschap  

1 Vr 8-1 11:00 WC1   

2 Ma 11-1 13:30 

 

 

 

HC3 JK Ch7: Heisenberg 

onzekerheidsrelaties  

Ch 8: vrije deeltje, 

deeltje in ‘n doosje, 

tunneling, 

harmonische oscillator 

2 Di 12-1 13:30 HC4 EP Ch 8: Deeltje op ‘n ring, 

deeltje op ‘n bol 

2 Vr 15-1 11:00 WC2   

3 Ma 18-1 13:30 HC5 EP Ch 9: waterstofatoom 

3 Di 19-1    GEEN COLLEGE  
3 Vr 22-1 11:00 WC3   

4 Ma 25-1 13:30 HC6 EP Ch 9: electronspin, 

meer-electron atomen 

4 Di 26-1    GEEN COLLEGE 

4 Vr 29-1 11:00 WC4   

5 Ma 1-2 13:30 

 

 

HC7 EP Ch 10: moleculaire 

structuur, valence 

bond theorie, MO 

theorie,  

5 Do 4-2 13:30   TUSSENTENTAMEN 

6 Ma 8-2 13:30 HC8 EP Ch 10: MO theorie 

hybridisatie, 

variatieprincipe 

6 Do 11-2 13:30 WC5   

7 Ma 15-2 13:30 HC9 EP Ch10: Hueckel theorie 
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7 Do 18-2 13:30 WC6   

8 Ma 22-2 13:30 HC10 JK Ch 12: moleculaire 

spectroscopie, 

vibrationele 

spectroscopie 

8 Do 25-2 13:30 WC7   

9 Ma 29-2 13:30 HC11 JK Ch 13: moleculaire 

spectroscopie, 

electronische 

overgangen 

9 Do 3-3 13:30 WC8   

10 Ma 7-3 13:30 HC12 JK Ch 14: NMR 

10 Do 10-3 13:30 WC9   

11 Do 17-3 13:30   VRAGENUUR 

12 Di 22-3 15:15-

18:00 

  TENTAMEN 

 

12 HC hoorcollege 

9 WC werkcollege 
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1 HC1: Introduction to Quantum Theory

General introduction to Quantum Theory

Based on Atkins and de Paula, Physical Chemistry 10th edition, Chapter 7

Learning goals of the lecture:

(a) Understand the experimental results that led to the development of Quantum Theory.

(b) Understand that quantum theory is necessary to describe the structure and properties of elec-

trons, atoms and molecules.

(c) Understand that both matter particles and light have a dual wave/particle character.

The small λ limit of Planck’s distribution

ρ =
8πhc

λ5
(
ehc/λkT − 1

) ' 8πhc

λ5
e−hc/λkT → 0 (1.1)

The De Broglie relation for matter particles

λ(p) =
h

p
(1.2)

Photoelectric effect

E(ν) = hν (1.3)

Condition on the incident radiation

E(ν) ≥ Φ→ νmin = Φ/h (1.4)

Ekin =
1

2
mev

2
e = E(ν)− Φ→ ve =

√
2(hν − Φ)

me
(1.5)

Planck’s hypothesis

E = nhv = nh
c

λ
(1.6)

Planck’s constant

h = 6.6 · 10−34J · s (1.7)

Electromagnetic wave

E = A cos (ωt− kx) , ω = 2πν , k =
2π

λ
(1.8)

De Broglie example

Page 3 of 69
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p = mv = 2.8 · 104 kg m/s , λ =
h

p
= 2 · 10−38 m (1.9)
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2 HC2: The quantum wave-function and Schroedinger equation

The Schroedinger equation, the quantum wave-function, the Born interpretation, mathematical tools

of quantum mechanics, the free particle, Heisenberg’s uncertainty principle.

Based on Atkins and de Paula, Physical Chemistry, 10th edition, Chapter 7.

In this lecture we present the mathematical framework of quantum theory, where the main entity is the

quantum wave-function, and the dynamical equation that this wave-function must obey, the Schroedinger

equation. We also introduce a number of mathematical tools which are required in the quantum formalism.

We discuss Heisenberg’s uncertainty principle, and show that it entails a fundamental limitation about the

physical knowledge that we can have about quantum systems.

Learning goals of the lecture:

(a) Understand that the state of a quantum system is described by the quantum wave-function,

which is a solution of the Schroedinger equation.

(b) Understand and apply the mathematical description of quantum physics, including hermitian

operators, eigenvalue equations and orthogonality.

(c) Understand how experimental observables can be calculated from the wave-function, and per-

form these calculations in simple systems.

(d) Understand the Copenhague interpretation of the physical meaning of the wave-function.

(e) Understand and apply Heisenberg’s uncertainty principle.

Page 5 of 69
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2.1 The quantum wave-function and Schroedinger’s equation

The double slit experiment that we discussed in HC1 demonstrated the wave-like character of particles

such as electrons. In quantum theory, the mathematical entity which is used to describe this and related

phenomena is known as the quantum wave-function Ψ. More in general, the complete physical properties

of any quantum system are uniquely determined once its wave-function Ψ is specified. The wave-function

depends on the spatial and time coordinates of the N particles that constitute the quantum system,

Ψ = Ψ (x1, y1, z1, t1, . . . , xN , yN , zN , tN ) , (2.1)

though in this course we will restrict ourselves to time-independent wave-functions.

The wave-function Ψ for a quantum system composed by a single particle satisfies the Schroedinger

equation, which in one dimension x reads

− ~2

2m

d2Ψ(x)

dx2
+ V (x)Ψ(x) = EΨ(x) (2.2)

where the various components of this equation are:

• m, the particle’s mass.

• V (x), the potential energy as a function of the position,

• E, the total energy of the system (which is a conserved quantity), and

• ~ ≡ h/2π is the reduced Planck’s constant.

The Schroedinger equation is an equation of motion for quantum particles, playing a similar role that

Newton’s equation F = ma has in classical mechanics.

The physical meaning of the wave-function can be interpreted as follows: if the wave-function of a particle

takes the value Ψ(x) for some point x, then |Ψ(x)|2 dx represents the probability that, upon performing a

measurement, one will detect this particle in the region [x, x+ dx]. In other words, |Ψ(x)|2 represents the

probability density in the coordinate x for this particle. Regions in x where |Ψ(x)|2 is higher correspond

to those regions where the particle has a higher likelihood to be found when a measurement is performed.

This interpretation is known as the Born interpretation of the wave-function, and is illustrated in Fig. 2.1.

Note that since in general the wave-function is a complex function, what is meant by “the square of the

wave-function” has to be understood as

|Ψ|2 = Ψ∗Ψ = [Re(Ψ)− iIm(Ψ)] [Re(Ψ) + iIm(Ψ)] , (2.3)

and where the symbol ∗ stands for the complex conjugate operation.

Given that |Ψ|2 is a probability density, it needs to be normalized appropriately. Since the probability of

finding the particle anywhere in space must be unity, the wave-function must be normalized to ensure that∫ ∞
−∞

dx |Ψ|2(x) = 1 . (2.4)
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Figure 2.1: The physical interpretation of the quantum wave-function Ψ(x) is that its square |Ψ(x)|2 is the probability
density associated to measuring the particle in a position x in space. Therefore, the probability to find the particle at
position x in the range dx will be given by |Ψ(x)|2dx.

A wave-function Ψ̃ that does not satisfy this normalization condition can be rescaled by a constant factor

Ψ(x) = N Ψ̃ given by

N =

(∫ ∞
−∞

dx |Ψ̃|2(x)

)−1/2

, (2.5)

so that the rescaled wave function Ψ satisfies the correct normalization requirement of Eq. (2.4).

The quantum wave-function Ψ needs to satisfy a number of important conditions everywhere in space:

(a) it must be continous,

(b) its slope (first derivative) needs to be continous as well,

(c) it must be singled-valued, and

(d) it must be squared-integrable, Eq. (2.4), else the Born interpretation would lead to infinite (unphysical)

probabilities.

As we will show now, for most physical systems these requirements imply that the energies that arise in the

solution of the Schroedinger equation Eq. (2.2) can take only a finite set of values, that is, they lead to the

quantization of the energy, which is one of the basic tenets of quantum theory.

2.2 The Schroedinger equation for a free particle

The simplest case that we can study with the Schroedinger equation is that of the motion of a free particle,

that is, a particle which is not subjected to any form of potential, and thus has V (x) = 0. In this case the
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Schroedinger equation Eq. (2.2) takes the following particular simple form:

− ~2

2m

d2Ψ(x)

dx2
= EΨ(x) (2.6)

which is a second-order ordinary differential equation (ODE) that admits a solution in terms of a sum of

exponentials (also known as plane-wave solutions):

Ψ(x) = Aeikx +Be−ikx , (2.7)

where A and B are the integration constants, to be fixed by the initial conditions of the system, and the

energy E and the wave number k are related by

E =
~2k2

2m
. (2.8)

It is easy to show that Ψ = Ae±ikx is a solution of Eq. (2.6), since

− ~2

2m

d2Ae±ikx

dx2
= − ~2

2m
(±ik)

2
Ae±ikx =

~2k2

2m
Ae±ikx = EAe±ikx . (2.9)

In general, rather than solving a Schroedinger equation from first principles, is also possible to assume a

given solution and verify then if it is indeed a solution to this equation. Note that this system, E, the

particle’s kinetic energy, is not quantized and can take any value.

The solution of the free-particle Schroedinger’s equation, Eq. (2.7), has the physical interpretation of

the superposition of two waves, one moving in the positive and the other in the negative x direction - we

will motivate more this interpretation below. For simplicity, let us set B = 0, and keep only the solution

corresponding to a wave propagating in the positive x direction,

Ψ(x) = Aeikx . (2.10)

At this point we can ask ourselves what is the probability of finding the particle at a given point x in space.

Following Born’s interpretation, the probability density for the position x of the particle will be given by the

square of its wave-function,

|Ψ|2 =
(
A∗ e−ikx

)
·
(
Aeikx

)
= |A|2 , (2.11)

so we find the remarkable result that the particle has exactly the same probability of being found anywhere in

space. In other words, its position is maximally undetermined. As we will show below, this indetermination

is a direct consequence that we are assuming (unphysically) that the momentum p =
√

2mE = ~k of the

particle is known with infinite precision.

2.3 Eigenvalue equations in quantum theory

As we have mentioned above, the wave-function Ψ of a quantum system contains the complete physical

information on a quantum system. In particular, the various properties of the system should be calculable

from the knowledge of the wave-function. In quantum theory, we denote as an observable a given property

of a quantum system (energy, momentum, angular momentum, electric charge, ...) that can be extracted
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from a measurement of this system.

Mathematically, the tools that we will use to compute the expected outcome of a measurement of a

quantum system are known as operators, which can be expressed in the language of eigenfunctions and

eigenvectors. Formally, an operator is a way to represent the action of a specific mathematical function onto

the wave-function Ψ. For instance, Schroedinger’s equation Eq. (2.2) can be expressed in operator form as

follows

ĤΨ(x) = EΨ(x) , (2.12)

where the ˆ symbol indicates an operator, in this case the Hamiltonian operator, defined as

Ĥ ≡ − ~2

2m

d2

dx2
+ V (x) . (2.13)

An equation of the form of Eq. (2.12) is known as an eigenvalue equation. In this case the application of

the Hamiltonian operator to the wave-function returns the total energy E, since Ĥ is the operator that

represents the total energy of the quantum system.

In general, an eigenvalue equation will take the general form

Ω̂ Ψ = ωΨ , (2.14)

where:

• Ω̂ represents a generic operator associated to the observable property Ω,

• Ψ is the eigenfunction this operator is acting upon, and

• ω is the eigenvalue of the operator Ω̂ associated with the eigenfunction Ψ.

Note that the eigenvalues ω are constant numbers, and cannot be functions of other variables. In general,

eigenvalues will be complex numbers.

Let us try to become familiar with the concept of eigenvalue equation with a couple of examples:

(a) Is Ψ(x) = eαx an eigenfunction of the operator Ω̂ ≡ d/dx? To verify if this is the case, we apply the

operator to the wave-function to find

Ω̂Ψ =
d

dx
eαx = αeαx = αΨ , (2.15)

so indeed in this case Ψ(x) is an eigenfunction, with α being the associated eigenvalue.

(b) Is Ψ(x) = eαx
2

an eigenfunction of the same operator? Let us check it in the same way as before:

Ω̂Ψ =
d

dx
eαx

2

= (2αx) eαx = 2αxΨ 6= ωΨ , (2.16)

thus now Ψ is not an eigenfunction, since it would have a non-constant eigenvalue, and this is not

allowed.

As mentioned above, the Schroedinger equation itself is an eigenvalue equation, Eq. (2.12). For each

state with a definite energy (eigenvalue) E, there corresponds a unique wave-function Ψ (the eigenfunction).
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Note that in general the Schroedinger equation Eq. (2.12) will admit different solutions for the wave-function

Ψn, each with their associated energy En, where by n we indicate a general quantum number which is used

to label the solutions of the eigensystem.

2.4 Operators and physical observables

In quantum theory, the eigenvalues of specific operators such as the Hamiltonian Ĥ correspond to observables

of the system, in this case the total energy. Indeed, each observable of a quantum system, such as position,

momentum, or angular momentum of the constituent particles, will have associated an operator that, when

acting on the wave-function, will return the corresponding physical property as the eigenvalue. We now

discuss this property in more detail.

In quantum mechanics, any observable property Ω of the quantum system will be represented by an

operator Ω̂ built up from the position and momentum operators, defined respectively as

x̂ ≡ x , (2.17)

p̂x ≡
~
i

d

dx
. (2.18)

For example, let us consider the free-particle solution of Schroedinger’s equation, Eq. (2.7), and compute

what happens if we apply to it the momentum operator p̂. Setting B = 0 first, we get that

p̂Ψ(x) =

(
~
i

d

dx

)
Aeikx = ~kAeikx = ~kΨ(x) , (2.19)

so the momentum along the x direction px that can be associated to the free particle is px = +~k. This is

consistent with the fact that for a given value of k, the kinetic energy is E = ~2k2/2m and thus p =
√

2mE =

~k. It can similarly be shown that the A = 0 solution has associated momentum px = −~k. Therefore,

the case B = 0 corresponds to a particle moving in the positive x direction with momentum px = +~k.

This calculation indicates that the free-particle solutions of Schroedinger’s equation are eigenfunctions of

the momentum operator in addition to of the Hamiltonian, that is, they represent solutions with well-defined

momentum.

Similar considerations apply to other examples. First, the potential energy operator in the case of an

harmonic-like potential (such as that for an harmonic oscillator) will be represented by the operator

V̂ = V (x) =
1

2
kx2 , (2.20)

which is representative of the simplest type of operators, those whose effect correspond to multiply Ψ by

a function (as compared to more complex manipulations like taking derivatives). For the kinetic energy,

Ek = mv2/2 = p2/2m, the corresponding operator can be constructed from the momentum operator

Êk =
1

2m
(p̂)

2
=

1

2m

(
~
i

d

dx

)(
~
i

d

dx

)
= − ~

2m

d2

dx2
. (2.21)

Of course, the combination of the kinetic energy and the potential energy operators corresponds to the
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Hamiltonian operator, whose eigenvalue is the total energy of the system

Ĥ = Êk + V̂ = − ~
2m

d2

dx2
+ V̂ . (2.22)

Before continuing, it is important to consider the mathematical properties that operators must satisfy in

order to represent observables of a quantum system.

2.5 Hermitian operators and orthogonality

We have just mentioned that, in quantum mechanics, observable properties of a system have associated

operators, whose eigenvalues correspond to the values than these observables can take when the measurement

is performed. However, not all operators will lead to physically sensible observables. In particular, only

operators which are Hermitian are physically allowed. Hermitian operators have important properties, such

as they always lead to real (as opposed to complex) eigenvalues, and that the eigenfunctions of Hermitian

operators are orthogonal among them.

An Hermitian operator Ω̂ is such that, given two arbitrary wave-functions Ψi and Ψj , it satisfies the

following property: ∫
dxΨ∗i Ω̂Ψj =

(∫
dxΨ∗i Ω̂Ψj

)†
. (2.23)

It is easy to check that both the momentum and position operators x̂ and p̂ are Hermitian. For instance, in

the case of p̂ we have

∫
dxΨ∗i p̂Ψj =

∫
dxΨ∗i

~
i

d

dx
Ψj =

~
i

Ψ∗iΨj

∣∣∣∣∣
+∞

−∞

−
∫
dxΨj

d

dx
Ψ∗i

 = −
∫
dxΨj

~
i

d

dx
Ψ∗i (2.24)

where we have used integration by parts, and exploited the facts that wave-functions must vanish at infinity.

Noting that the † in Eq. (2.23) indicates that the operator now acts to its left, then we have demonstrated

that p̂ is Hermitian. In quantum theory, all observables are indeed represented by Hermitian operators,

ensuring that the expectation values of these observables in physical systems are real (a system cannot have

i.e. complex energy).

This key property that the eigenvalues of an Hermitian operator Ω̂ are real can be demonstrated from its

definition Eq. (2.23) as follows. Let us assume that Ψi = Ψj = ψ is an eigenfunction of this operator with

eigenvalue ω, that is Ω̂ψ = ωψ. Then we have that∫
dxψ∗Ωψ =

∫
dxψ∗ωψ = ω

∫
dxψ∗ψ = ω , (2.25)

since the wave-function is normalized to one, and that also we have that the conjugate of the above expression

gives (∫
dxψ∗Ωψ

)†
=

(
ω

∫
dxψ†ψ

)∗
= ω∗ (2.26)

and since Ω̂ is hermitian, then ω∗ = ω, that is, ω is a real number.

It is also possible to show that, for an hermitian operator, its eigenfunctions are orthogonal among

them. In other words, they constitute a set of linearly independent basis functions. Mathematically, the
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orthogonality property implies that ∫
dxΨ∗i (x) Ψj(x) = δij , (2.27)

that is, the integral vanishes unless the eigenfunctions are the same, i = j, in which case the integral equals

one because of the normalization condition. This important property allows to express a general quantum

state as a linear superposition of eigenfunctions of an Hermitian operator.

2.6 Quantum superposition and expectation values

The wave-function Ψ can be used to determine the expectation value of physical observables of a quantum

system. In general, there will be multiple solutions Ψn of the Schroedinger equation, each of them be-

ing a specific eigenfunction of the Hamiltonian and thus characterized by well-defined energies En. Since

Schroedinger’s equation is a linear differential equation, it exhibits the property that the superposition of N

independent solutions,

Ψ̃ ≡
N∑
n=1

Ψn (2.28)

is itself also be a solution of the same equation. On the other hand, the new solution Eq. (2.28) will in

general not be an eigenfunction of the Hamiltonian operator Ĥ, and thus will not have associated a well-

defined energy E. Indeed, if we apply the Hamiltonian operator to Eq. (2.28) we find that

ĤΨ̃ =

N∑
n=1

ĤΨn =

N∑
n=1

EnΨn 6= EΨ̃ . (2.29)

Therefore, while a superposition of eigenfunctions constitutes a valid solution of the original Schroedinger

equation, it is not an eigenfunction itself. Crucially, in the limit N → ∞ the basis provided by the {Ψn}
eigenfunctions of an Hermitian operator is complete, that is, any arbitrary function can be expressed as a

linear combination of the elements of the {Ψn} basis.

An explicit example of the fact that a superposition of eigenfunctions of a given Hermitian operator is

not necessarily an eigenfunction itself is provided by the free particle solution, Eq. (2.7) in the case that we

set B = A. In this case, the wave-function can be written as

Ψ = A
(
eikx + e−ikx

)
= 2A cos(kx) , (2.30)

which as shown above corresponds to the superposition of one plane wave moving to the right with momentum

px = +~k and another one moving to the left with px = −~k. If now we apply the momentum operator to

this wave-function, we find

p̂xΨ =
~
i

dΨ

dx
= −2k~

i
A sin(kx) 6= pxΨ , (2.31)

therefore showing that the superposition of two wave-functions with well-defined momentum px is not itself

an eigenfunction of this same operator, and therefore does not have a well-defined momentum. Note that,

on the other hand, the solution Eq. (2.30) is of course an eigenvalue of the Hamiltonian operator, since

ĤΨ = − ~2

2m

d2

dx2
2A cos(kx) =

~2

2m
2Ak2 cos(kx) =

~2k2

2m
Ψ = EΨ , (2.32)
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with the eigenvalue being the total energy of the system, as expected from the linear property of Ĥ.

The example above demonstrate that eigenfunctions of the Hamiltonian operator, that is, the solutions

of the Schroedinger equation, are not necessarily eigenfunctions of other Hermitian operators. Therefore,

how it is possible to determine the expectation values for generic observables of quantum states?

To answer this question, let us start by assuming that we have a quantum state such as Eq. (2.30). In

this system, each measurement of the momentum of the particle will return either +k~ or −k~ with equal

probability. Therefore the expectation value for the operator p̂x for the quantum state Eq. (2.30) will be

given by

〈px〉 =
1

2
· (+k~) +

1

2
· (−k~) = 0 , (2.33)

where we have weighted each eigenvalue by its probability. Therefore, while individual measurements will

always return one of the two possible values of the momentum, either +k~ or −k~, the average value over

many measurements will vanish.

More in general, if we express a given wave-function as a linear superposition of eigenfunctions of an

Hermitian operator Ω̂, which we can always do since these eigenfunctions form a complete basis, we have

Ψ =
∑
k

ck Ψk , Ω̂Ψk = ωkΨk , (2.34)

and then the probability that a given measurement of the physical observable Ω will yield ωk will be

P (ωk) =
c2k∑
j c

2
j

. (2.35)

Therefore, the expectation value of the observable Ω (that is, the average over a large number of measure-

ments) will then be given by

〈Ω〉 =
∑
k

(
c2k∑
j c

2
j

)
ωk , (2.36)

where each possible value of that the observable Ω can take in this quantum system (i. e. each possible

eigenvalue) is weighted by its associated probability.

An equivalent way of computing the expectation value of the observable Ω in terms of the wave-function

is given by the following expression:

〈Ω〉 =

∫
dxΨ∗Ω̂Ψ , (2.37)

which can be shown to be equivalent to above. Moreover, it is also easy to show that, using the definition

Eq. (2.37) the expectation value of an Hermitian operator Ω̂ for a quantum state where the wave function is

an eigenfunction Ψ of this operator is nothing but the eigenvalue ω. Indeed one has

〈Ω〉 =

∫
dxΨ∗Ω̂Ψ =

∫
dxΨ∗ωΨ = ω

∫
dxΨ∗Ψ = ω , (2.38)

due to the normalization of the wave-function.

Thus if a quantum state Ψ is not an eigenfunction of Ω̂, but rather a linear combination of its eigenfunc-

tions Ψk each with eigenvalue ωk,

Ψ =
∑
k

ckΨk , (2.39)
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then the expectation value will be given by the weighted sum of eigenvalues, with weight |ck|2:

〈Ω〉 =

∫
dx

(∑
k

ckΨk

)∗
Ω̂

∑
j

cjΨj

 =
∑
k,j

c∗kcjωj

∫
dxΨ∗kΨj =

∑
k,j

c∗kcjωjδij =
∑
k

|ck|2ωk , (2.40)

where we have use the orthogonality property of the eigenfunctions of an Hermitian operator, namely

Eq. (2.27). Note that in this derivation we assume that the coefficients of the linear superposition Eq. (2.39)

are canonically normalized, that is, they satisfy

∑
k

|ck|2 = 1 , (2.41)

which physically means that the probability of finding the quantum state Ψ in any of the eigenfunction Φk

is simply unity (conservation of probability).

2.7 Heisenberg’s uncertainty principle

Let us now go back to the free-particle solution of Schroedinger’s equation for a plane wave propagating in

the positive x direction,

Ψ = Aeikx , (2.42)

where we found that the probability distribution for the position of the particle was |Ψ|2 = A2, namely

flat: the position of a free particle is maximally undetermined. We also found that, on the other hand, the

momentum of this free particle p̂xΨ = (~/i)(d/dx)Ψ = pxΨ was +k~, a well defined value. So why for a free

particle we have maximum uncertainty concerning its position but instead perfect information concerning its

momentum?

The reason for this is another of the central principles of quantum mechanics, Heisenberg’s uncertainty

principle. This principle states that it is impossible to specify simultaneously, with arbitrary precision, both

the momentum and the position of a particle. Note that this is not a mere practical limitation due to for

example the finite resolution of our measurement apparatus, but a fundamental limitation of the theory that

holds true even in the case of ideal measurements. Mathematically, Heisenberg’s uncertainty principle takes

the following form:

∆x∆px ≥
~
2
, (2.43)

or in other words, the better the position of a particle is known, the greater the uncertainty concerning its

momentum will be. This explains the expectation values of x̂ and p̂ in the case of a free particle: since the

uncertainty on its momentum its zero (p = ~k) then the uncertainty on its position, due to Eq. (2.43), must

be infinite, and indeed the probability distribution for the position of the free particle is the same everywhere

in space.

Mathematically, the uncertainty in the two observables, x and p, is computed from the square root of the

variance, known as the standard deviation, of the distribution of values that these two operators can take,

that is

∆x ≡
(〈
x2
〉
− 〈x〉2

)1/2

, (2.44)
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Figure 2.2: The wave function Eq. (2.47) corresponding to the superposition of N plane-wave free particle solutions,
each with a different value of k = nπ. We show the results from the addition of N = 2, 5, 21 terms in Eq. (2.47),
showing that the more terms we include, the better the localization of the free particle (since the higher is the
indetermination of its momentum px).

∆p ≡
(〈
p2
〉
− 〈p〉2

)1/2

, (2.45)

where
〈
x2
〉

stands for the expectation value of the x̂2 operator and so on.

Does this imply that the position of a free particle is always maximally uncertainty? No, if we take into

account that physically, from Eq. (2.43), there should be an uncertainty associated also to the expectation

value of p̂, the momentum of the quantum state. A wave function for a free particle with a finite momentum

resolution can be achieved by constructing a superposition of free-particle solutions, each with different wave

numbers k, namely

Ψ(x) =

N∑
k

cke
ikx . (2.46)

The more the number of contributions N to the above sum, the higher the uncertainty on the momentum of

the particle, and thus we obtain an increased localization of the particle in x. This can be seen by plotting

the free-particle wave-function superposition:

Ψ(x) =

N∑
n=1

cos(nπx) , (2.47)

which is shown in Fig. 2.2: the more terms we add in the sum, the more values the momentum ~k of the

particle can take, hence ∆p is higher (more uncertain) and ∆x smaller (increased localization in space).

To be more precise about Eq. (2.43), there are two important remarks to be done. First of all, Heisenberg’s

uncertainty principle applies only to position and momentum along the same spatial direction. So actually

we have

∆x∆px ≥
~
2
, ∆y∆py ≥

~
2
, ∆z∆pz ≥

~
2
, (2.48)

but on the other hand we can also have for instance ∆x∆py = 0, that is, it is possible to simultaneously
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measure x and px with arbitrary precision.

The second important implication of Heisenberg’s uncertainty principle is that it illustrates a more general

concept of quantum theory known as complementary observables. We define two observables Ω1 and Ω2 to

be complementary if the sequential application of the corresponding operators Ω̂1 and Ω̂2 does not commute,

that is,

Ω̂1

(
Ω̂2Ψ

)
6= Ω̂2

(
Ω̂1Ψ

)
, (2.49)

or in other words, the results of applying the two operators Ω̂1 and Ω̂2 to a generic wave-function depends

on the order in which they have been applied. It can be demonstrated that for each pair of complementary

observables there will be a relation of the form of Eq. (2.43), implying that a simultaneous measurement of

Ω1 and Ω2 with arbitrary precision is not possible.

The result that in quantum theory the subsequent application of Hermitian operators to a quantum

system does not necessarily commute can be represented introducing another useful mathematical concept,

the commutator between two operators, defined as[
Ω̂1, Ω̂2

]
≡ Ω̂1Ω̂2 − Ω̂2Ω̂1 , (2.50)

where note that the commutator of two operators is another operator, that is, it should be understood as

being applied to a wave-function. With this definition, for the position and momentum operators we find

[x̂, p̂x] = i~ , (2.51)

as is easy to verify explicitly. Indeed, since

x̂p̂xΨ = x

(
~
i

d

dx

)
Ψ =

~
i
x
dΨ

dx
, (2.52)

p̂xx̂Ψ =

(
~
i

d

dx

)
(xΨ) =

~
i

Ψ +
~
i
x
dΨ

dx
, (2.53)

then their commutator gives

[x̂, p̂x] Ψ = −~
i

Ψ = i~Ψ , (2.54)

which is the sought-for result Eq. (2.51). Therefore, x and p are complementary observables (their operators

do not commute) and thus they cannot be measured simultaneously with arbitrary precision. This is another

way of representing Heisenberg’s uncertainty principle.

2.8 Overview of the postulates of quantum theory

We can now recapitulate what we have learned in this lecture about the basic postulates of quantum me-

chanics. These are fundamental assumptions, not derived from any other theory (at least so far), and play

a similar role as the axioms of a mathematical system. These postulates are:

(a) All the physical information about a quantum system is contained in its wave-function Ψ.

(b) This wave-function satisfies a specific equation of motion, known as the Schroedinger equation.
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(c) The square of the wave-function |Ψ({Ωk})|2 represents the probability density associated to a measure-

ment of the {Ωk} set of physical observables.

(d) The wave-function Ψ must be continous, have a continous first derivative, be single valued and be

squared-integrable.

(e) Observables Ω are represented by Hermitian operators Ω̂ built upon the position x̂ and momentum p̂

operators.

(f) Some observables are complementary, that is, they can not be measured simultaneously with arbitrary

precision. Mathematically, their associated observables do not commute. Complementary observables

obey then relations of the form of Heisenberg’s uncertainty principle.
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3 HC3: Quantum mechanics of simple systems

Quantum mechanics of simple systems: the particle in a box, quantum tunneling, the quantum

harmonic oscillator, particle in a box with finite potential barriers.

Based on Atkins and de Paula, Physical Chemistry, 10th edition, Chapter 8.

In this lecture we discuss quantum mechanics applied to relatively simple systems such as the particle

in a confining box and the quantum harmonic oscillator. We will study some remarkable phenomena that

appear in these systems that do hot have an analog in classical mechanics, such as that the the quantization

of energies and the quantum tunneling.

The learning goals of this lecture are:

(a) Solving the Schroedinger equation for simple quantum systems.

(b) Understanding that confinement of a quantum particle in space leads to the quantization of its

energy levels, with an non-vanishing energy for the ground state.

(c) Interpret the physical content of the wave-functions from the solutions of the Schroedinger

equation.

(d) Understanding and applying the mathematical technique of separation of variables.

(e) Understanding and applying the phenomenon of quantum tunneling.

3.1 Particle in a box and energy quantization

In HC2, when we solved the Schroedinger equation for a free particle, we found that its energy was given by

Ek = k2~2/2m, where k was a real parameter that could take any value. Therefore, for a free particle, energy
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levels are not quantized. We now will see how once the particle is confined into a limited region of space,

energy levels become automatically quantized. One of the simplest system in which energy quantization

arises is for the so-called particle in a box system.

This system is defined by a single particle moving under the effects of a potential of the form

V (x) = 0 for 0 ≤ x ≤ L (3.1)

V (x) = +∞ for x < 0 and x > L

In other words, the particle undergoes free motion for 0 ≤ x ≤ L, but cannot move outside this range because

it is confined by the potential Eq. (3.1) (since the particle would need an infinite energy to overcome that

potential barrier).

Inside the region limited by the confining potential, 0 ≤ x ≤ L, the solution of Schroedinger’s equation

will be the same as for a free particle (since the potential vanishes there) and thus we have

Ψk = Aeikx +B−ikx = (A+B) cos(kx) + (A−B)i sin(kx) ≡ D cos(kx) + C sin(kx) , (3.2)

where we have expanded the exponentials using eix = cos(x) + i sin(x) and then redefined the (arbitrary)

integration coefficients for reason that will become apparent below.

Since for x > L and x < 0 we have that V (x) = ∞, the particle cannot travel to this region (since it

would require infinite energy) and thus the wave-function will be zero there. In particular this means that

Ψk(x = 0) = 0 , Ψk(x = L) = 0 . (3.3)

Now, since as discussed in HC2, the wave-function must be continuous, we can use the boundary conditions

Eq. (3.3) to fix the coefficients in Eq. (3.2):

Ψk(x = 0) = D → D = 0 , (3.4)

Ψk(x = L) = C sin(kL) = 0→ k =
nπ

L
, (3.5)

where n is an arbitrary integer number. Therefore we find that for a particle in a box the quantum wave-

functions and energies are given by

Ψn(x) = C sin
(nπx
L

)
, En =

~2π2n2

2mL2
. (3.6)

Therefore, we now find that the energies of the particle are quantized, and labeled by an integer number n

rather than by a real number k as was the case for a free particle. Finally, the coefficient C = (2/L)1/2 can

be determined from requiring the normalization of the wave-function.

Remarkably, we note that the lowest energy that a particle can have in this system is not zero, but

rather E1 = ~2π2/2mL2 6= 0. This is known as the zero-point energy, and is a consequence of the fact that

a quantum particle in a confining potential cannot be at rest (because else we would know its momentum

with arbitrary precision, contradicting Heisenberg’s uncertainty principle). Note also that the solution n = 0

corresponds to Ψ0 = 0, that is, the absence of any particle in the system, so it cannot really be associated
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with the group state (which is instead the n = 1 state).

The conclusions that we can extract from the particle in a box system are fully general and apply to

other systems: in quantum mechanics, energy quantization arises from the wave nature of the wave-function

in the presence of boundary conditions.

Let us now computes the expectation value of the momentum px for this system. As we have shown, the

wave-function that solves the Schroedinger equation accounting for the boundary conditions of the system

is given by

Ψn(x) =

√
2

L
sin
(πnx
L

)
, (3.7)

and if we compute the expectation value of px, using the definition of Eq. (2.37), we find that

〈px〉 =
2

L

∫ L

0

dx sin
(πnx
L

)(~
i

d

dx

)
sin
(πnx
L

)
=

2~nπ
iL2

∫ L

0

sin
(πnx
L

)
cos
(πnx
L

)
= 0 , (3.8)

since the integral vanishes for any value of n, as can be checked using trigonometric identities. So therefore

we find that the expectation value of the momentum for the particle in a box is 〈px〉 = 0. This can be

understood if we expand the solution Eq. (3.7) as follows

Ψn(x) =

√
2

L
sin
(πnx
L

)
=

√
1

2L

1

i

(
eπnx/L − e−πnx/L

)
, (3.9)

which correspond to the superposition (with equal amplitude) of a plane wave moving in the positive direction

with momentum px = ~πn/L and another moving in the opposite direction with px = −~πn/L, hence when

averaging the two components of the wave-function cancel to each other leading to 〈px〉 = 0.

Note also that in the limit where n → ∞ the energies of the particle become effectively continous, as

expected in classical physics. This is the realization of the so-called correspondence principle of quantum

theory: for large values of the quantum numbers, the behaviour of the quantum theory becomes effectively

classical.

3.2 Particle in a two-dimensional box

The next system that we will consider is similar than the previous one, but now the box has two dimensions

in space, which we will denote by x and y Therefore, the confining 2D potential of this system will take the

following form:

V (x, y) = 0 for 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly (3.10)

V (x, y) = +∞ for y < 0 , y > Ly , x < 0 , x > Lx

Inside the box, the Schroedinger equation is the same as that of the free particle but now in two dimensions,

namely

− ~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
Ψ(x, y) = EΨ(x, y) , (3.11)

where note that now the wave-function depends on two variables, x and y, and thus the derivatives that

appear are partial derivatives rather than total derivatives.

To solve this differential equation, we need to adopt the method of separation of variables, namely
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assuming that the full wave-function Ψ(x, y) can be expressed as a product of two functions, each depending

separately on x and y only, that is,

Ψ(x, y) = ΨX(x)ΨY (y) . (3.12)

If we plug this ansatz on the two-dimensional Schroedinger equation Eq. (3.11), we find that

− ~2

2m
ΨY (y)

(
∂2

∂x2

)
ΨX(x)− ~2

2m
ΨX(x)

(
∂2

∂y2

)
ΨY (y) = EΨX(x)ΨY (y) , (3.13)

and now, if we divide each side of the equation by Ψ(x, y), we find that

− ~2

2m

1

ΨX(x)

(
∂2

∂x2

)
ΨX(x)− ~2

2m

1

ΨY (y)

(
∂2

∂y2

)
ΨY (y) = E . (3.14)

In Eq. (3.14), the RHS is independent of both x and y, and in the LHS we have the sum of two pieces, the

first one depending only on x and the second one depending only on y. Therefore, the only way the equation

can be true is if each piece is separately equal to a constant. If these two constants are denoted respectively

by EX and EY respectively, we find

− ~2

2m

1

ΨX(x)

(
∂2

∂x2

)
ΨX(x) = EX , (3.15)

− ~2

2m

1

ΨY (y)

(
∂2

∂y2

)
ΨY (y) = EY , (3.16)

which are of course nothing but two separate Schroedinger equations, one for the x component of the wave

function, ΨX(x), and another for the y component of the wave function, ΨY (y). The total energy of the

system is then E = EX + EY , which justifies our choice of notation for the integration constants.

From the discussion above, we see that the solution of the Schroedinger equation for a particle in a 2D

box will be given by the product of solutions to the same equation in a 1D box. That is, we will have that

the x- and y-components of the wave functions are

Ψx(x) =

√
2

Lx
sin

(
nxπx

Lx

)
, (3.17)

Ψy(y) =

√
2

Ly
sin

(
nyπy

Ly

)
, (3.18)

and thus the quantum state of the system is now being defined by two independent integer numbers (nx, ny)

(the two quantum numbers of the system), and therefore the total wave-function is

Ψ(x, y) = Ψx(x)Ψx(y) =

√
4

LxLy
sin

(
nxπx

Lx

)
sin

(
nyπy

Ly

)
. (3.19)

The total energy of a given quantum state of the system will be specified by the quantum numbers of this

state, nx and n2, and thus reads

Enx,ny
=

h2

8m

(
n2
x

L2
x

+
n2
y

L2
y

)
. (3.20)
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Note that in the limit in which Lx = Ly = L there will be a degeneracy of quantum states, meaning that

different quantum states, defined by different pairs of quantum numbers (nx, ny) will have associated the

same total energy. In this limit indeed the total energy becomes

Enx,ny
=

h2

8m

(
n2
x + n2

y

L2

)
, (3.21)

so for example the quantum state (nx = 1, ny = 2) will correspond to a state with the same energy as that

with (nx = 2, ny = 1). Degeneracy is a generic property of quantum states: in general, many different states

can have associated the same total energy.

3.3 Quantum tunneling

In classical physics, when we have a particle with total energy E moving inside a conservative potential V (x),

the particle will confined to the region defined by E ≥ V (x). Indeed, from energy conservation we have that

the sum

E = Ek + V (x) =
1

2
mv2 + V (x) , (3.22)

where Ek is the particle’s kinetic energy, is a constant of motion and must hold for all values of x. Therefore,

we have that

v2 =
2

m
(E − V (x)) (3.23)

can only be satisfied if E ≥ V (x), else the velocity would be an unphysical complex number. Therefore, the

particle cannot move in the region of x for which V (x) > E: we know that this region is classically forbidden.

However, in quantum physics this is not necessarily the case: a particle can cross a potential barrier even

when its kinetic energy is smaller than the potential energy of the barrier. This remarkable phenomenon is

known as the quantum tunneling effect, and is schematically represented in Fig. 3.1, where we show how the

wave function of a particle is non-zero even in the classically forbidden region with V > Ek, and thus leads

to a finite probability of finding the particle at the right of the potential barrier.

The quantum tunneling effect is a direct consequence of the wave-like nature of the wave function. We

can now quantify and compute explicitly the value of the wave-function inside and on the other side of the

potential barrier. As indicated in Fig. 3.1, at the left of the barrier we have V = 0, and thus the solution of

the Schroedinger equation there is the usual free-particle solution, namely

Φk(x) = Aeikx +Be−ikx , (3.24)

where the kinetic energy is Ek = ~2k2/2m and thus the linear momentum is px = k~ =
√

2mEk.

Now, in the region inside the barrier the Schroedinger equation looks like

− ~2

2m

d2Ψ

dx2
+ VΨ = EkΨ , with V ≥ Ek . (3.25)

Note that here I have identified the total energy E with the kinetic energy at the left side of the barrier,

E = Ek, in order to energy conservation to be satisfied. Moreover, since the potential V is constant, this
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Figure 3.1: Schematic representation of the quantum tunneling effect: the wave-function of a particle with kinetic
energy Ek is non-zero inside a barrier with potential energy V > Ek, and therefore has a finite probability (non-zero
wave-function) to be found at the other side of the barrier.

equation can be rewritten as

− ~2

2m

d2Ψ

dx2
= −(V − Ek)Ψ , (3.26)

which has the form of a free-particle equation, but this time with a negative energy, E = −(V −Ek). Using

the same method as solution as for a free particle, we get that the wave-function inside the barrier is now

Ψ = C eκx +De−κx , κ~ =
√

2m (V − Ek) ≥ 0 , (3.27)

which as an exponential solution, rather than the oscillatory solution of the free particle equation. Therefore,

the wave-function is non-zero inside the barrier, despite V > Ek and thus of being forbidden in classical

physics.

Finally, in the region right to the barrier, we have again a free-particle solution for a particle moving in

the positive x direction, that is

Ψ = A′eikx , k~ =
√

2mEk , (3.28)

with equal momentum and energy as in the left side of the barrier. In order to determine the values of the five

integration constants introduced above, A,B,C,D,A′, we need exploit two properties of the wave-function:

it is continous everywhere, and its derivative is also continous for any value of x. If we label as x = 0 and

x = L the start and end points of the potential barrier, continuity of the wave-function there implies that

A+B = C +D , (3.29)

CeκL +De−κ
′L = A′eikL ,
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Figure 3.2: The physical interpretation of the quantum tunneling effect: an incident wave Aeikx left to the barrier
is partially transmitted to the other side of the barrier with wave function A′ = eikx and partially reflected, with
momentum in the opposite direction as compared to the incident wave, Be−ikx. The ratio T = A′/A of the transmitted
over the incident amplitude is known as the transmission coefficient.

while the continuity of the first derivative of the wave-function at the same endpoints implies that

ikA− ikB = κC − κD , (3.30)

κCeκL − κDe−κL = ikA′eikL .

Note that we have five unknowns and four equations, and therefore we can express four of these unknowns

in terms of a single one, say A.

As we saw in the free-particle case, for the solution in the left side of the barrier, Eq. (3.24) we could make

the interpretation that the Aeikx component of the wave function can be associated with the incident wave

(since its momentum was px = +~k), while the Be−ikx instead would be the reflected wave (with momentum

px = −~k pointing in the negative x direction). Therefore, we can define a ratio T = A′/A which physically

can be interpreted as the ratio of the amplitude of the transmitted wave over the incident wave, see Fig. 3.2.

This transmission coefficient T can be computed using the values of the integration coefficients B,C,D,A′

obtained as explained above, resulting in the following expression:

T (κL, ε) =

(
1 +

(
eκL − e−κL

)2
16ε(1− ε)

)−1

, ε ≡ E/V , (3.31)

and where κ has been defined in Eq. (3.27). The transmission amplitude T has a number of important

limiting cases. When taking the various limits, note that κ depends implicitly on ε as well, since

κ~ =
√

2m(V − Ek) =
√

2mV
√

1− ε . (3.32)
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With this caveat, it is possible to derive the following important properties of the transmission amplitude T :

• In the limit L→ 0 for fixed κ, then the transmission coefficient T → 1.

This limit corresponds either to very short barriers L. In this two cases, it makes sense physically that

the probability of tunneling becomes very high (and the amplitude of the reflected way conversely very

small).

• In the limit κ→ 0 (ε→ 1) for fixed L, then the transmission coefficient goes to

T →
(

1 +
mV L2

~

)−1

, (3.33)

so it does not tend to one even if Ek ∼< V (only in the case of very short barriers L→ 0 then T → 1).

• For Ek � V , or what is the same ε→ 0, we find that T → 0.

This can be physically understood from the fact that for a steep enough barrier, eventually the prob-

ability of transmission will become vanishingly small, in agreement with the classical expectation.

• As Ek → V (ε→ 1), the value of the transmission amplitude increases monotonically, until the limiting

value Eq. (3.33) is achieved.

• in the limit κL� 1 the transmission amplitude Eq. (3.31) becomes

T ' 16ε(1− ε)e−2κL . (3.34)

This limit corresponds to either very steep (κ → ∞) or very long (L → ∞) barriers, or the two

at the same time. In this case we intuitively expect that the transmission probability will be small,

and what Eq. (3.34) indeed shows is that T is exponentially small in this limit. We also note that

T ∼ e−2L
√

2mV /~, and thus that lighter particles will have a higher probability of tunneling that

heavier particles.

The fact that the transmission coefficient Eq. (3.31) is different from zero is a striking deviation of

quantum theory with respect to classical physics. The quantum tunneling effect indicates that for instance a

naive particle picture of electrons or other quantum particles is far from adequate to describe the phenomena

of the microcosm.

To conclude this discussion of the tunneling effect, recall that in HC2 we mentioned the correspondence

principle of quantum theory, namely that in the appropriate limits the quantum behaviour should become

effectively classical. In the case of the quantum tunneling effect, since we have that

κ =
1

~
√

2m(V − Ek) , (3.35)

we find that, for fixed values of V and Ek, if κ → ∞ then from Eq. (3.31) we see that T → 0. This limit

can be realized if

~�
√

2m(V − Ek) . (3.36)

Therefore, in this limit (where Planck’s constant can be set to zero) we find that the tunneling probability

goes to zero and this recover the classically expected behaviour.
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Figure 3.3: Schematic representation of the particle-in-a-box quantum system, characterized by finite potential
barriers V at the two sides of the box (left plot). In the right plot we show the wave function for the first two
quantum states of the system, n = 1 and n = 2, which exhibit oscillatory behaviour inside the box but decay
exponentially fast in the classically forbidden region with E < V .

3.4 Particle in a box with finite potential walls

The next quantum system that one could study is a modification of the particle-in-a-box system discussed

above, with the difference that the potential barriers V at the two sides of the box now are finite (as opposed

to infinite as before). In other words, the potential function in this system now reads

V (x) = 0 for 0 ≤ x ≤ L , (3.37)

V (x) = +|V | for x < 0 and x > L .

Although we will not work out this case explicitly in the lectures, the solution to the Schroedinger equation

here follows quite directly the tunneling derivation that was presented above. Indeed, one has to solve the

Schroedinger equation both inside the potential well (where we have the free-particle, oscillatory, solution)

and in the classically forbidden regime inside the left and the right barriers, where we find a exponentially

decaying solution. The integration constants of this problem can be uniquely determine by the conditions

condition that the wave-function and its derivate should be continuous at both sides of the potential barrier,

x = 0 and x = L, as well as by the overall normalization of the wave function.

In Fig. 3.3 we show in the left plot the schematic representation of the particle-in-a-box quantum system,

characterized by finite potential barriers V at the two sides of the box. In the right plot, we show the wave

function for the first two quantum states of the system, n = 1 and n = 2, which exhibit oscillatory behaviour

inside the box but decay exponentially fast in the classically forbidden region with E < V . Note that, as in

the quantum tunneling case discussed above, the wave-function is non-zero even inside the potential barrier,

where V > Ek with Ek being the kinetic energy of the particle inside the box, but quickly becomes very

small if V � Ek.
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3.5 The harmonic oscillator in quantum mechanics

In classical mechanics, an harmonic oscillator is defined in general as particle moving under the effects of a

quadratic potential, that is

V (x) =
1

2
kkx

2 , (3.38)

where kf is known as the spring constant or Hooke’s constant. Though physically this potential is usually

associated to a system based on a frictionless body attached to a flexible spring, the form Eq. (3.38) is fully

general and applies to many other potentials. In particular, any potential can be approximated by Eq. (3.38)

in the region near local minima (as can be seen by doing a Taylor expansion).

The harmonic potential Eq. (3.38) vanishes at x = 0, the equilibrium position of the particle. Note that

this potential is confining, since it increases quadratically as |x| increases, and thus a particle in this potential

would never be able to completely escape from it, no matter how large its energy is. From this potential, we

can compute the force that the particle will experience, namely

F = −dV (x)

dx
= −κfx , (3.39)

which is known as Hooke’s law: in an harmonic oscillator (or in general, for a quadratic potential) the force

is attractive and proportional to the deviation with respect to the equilibrium position.

Let us now study the behaviour of a quantum particle under the effects of the potential Eq. (3.38), that

is, a quantum harmonic oscillator. The Schroedinger equation associated to this system will now be:

− ~2

2m

d2Ψ

dx2
+

1

2
kfx

2Ψ = EΨ . (3.40)

Solving this equation is beyond the scope of this course, though for completeness let me show here the

explicit form of the solutions for the wave function:

Ψn(x) =
1√

2nn!

(mω
π~

)1/4

e−mωx
2/2~Hn

(√
mω

~
x

)
, (3.41)

where Hn(x) are as special family of orthogonal polynomials known as Hermite polynomials, and we have

defined the frequency of the oscillator as ω ≡
√
k/m, in analogy with the classical treatment. The solutions

of Eq. (3.40) are labeled by the quantum number n, which takes only integer values n = 0, 1, 2, 3, . . ..

As a consequence of the potential barrier that confines the particle, the energies of the quantum harmonic

oscillator are quantized, and it is possible to show that they are given by

En = ~ω
(
n+

1

2

)
. (3.42)

There are two important consequences of this result. First of all, we note that the difference in energy

between two adjacent quantum levels n and n+ 1 is constant, that is

En+1 − En = ~ω , (3.43)

independently of the value of n. Second, and more strikingly, we find that the energy of the ground state
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(that is, the vacuum) of the system, the eigenfunction with the smallest associated energy, is different from

zero. Indeed we find that for n = 0 we get

E0 =
1

2
~ω , (3.44)

which is known as the zero-point energy of a quantum harmonic oscillator. This is a direct consequence of

Heisenberg’s uncertainty principle: if the energy and momentum were zero, the particle would be at rest,

and we would know p with arbitrary precision. But then the indetermination on its position x would be

maximal, as in the free particle case, and this is not possible due to the confining harmonic potential.

For small values of n, the Hermite polynomials that appear in the quantum wave-function Eq. (3.41)

take relatively simple forms,

H0(x) = 1 ,

H1(x) = 2y ,

H2(x) = 4y2 − 2 , (3.45)

H3(x) = 8y3 − 12y ,

and so on. Therefore, for the ground state of the system, n = 0, the wave-functions takes the particularly

simple form

Ψ0(x) =
(mω
π~

)1/4

e−mωx
2/2~ , (3.46)

which is known as a Gaussian function. It is easy to check explicitly that these wave-function is correctly

normalized (as is the case for other values of n), by verifying that∫ ∞
−∞

dx |Ψ0(x)|2 = 1 . (3.47)

To show this, first one should make the change of variable y ≡=
√
mω/~x and then use the result for the

Gaussian integral that ∫ ∞
−∞

dx e−x
2

=
√
π . (3.48)

It is interesting to compare the probability densities for the position x for the first two energy levels,

namely |Ψ0(x)|2 with |Ψ1(x)|2, where

Ψ1(x) =
√

2
(mω
π~

)1/4
√
mω

~
x e−mωx

2/2~ , (3.49)

This comparison is shown in Fig. 3.4, where we show the wave-function Ψn(x) and its square |Ψn(x)|2 (which

remember represents the probability density for the position x) in the quantum harmonic oscillator for the

first two eigenstates, n = 0 (left plot) and n = 1 (right plot). We observe that while for n = 1 (the ground

state) the maximum probability |Ψ|2 is found for x = 0 (the classical equilibrium position), for the excited

state n = 1 it is rather more likely to find the particle far from the equilibrium position. This property holds

for other excited states: the higher the value of n, the more likely is to find the particle far from x = 0.

This behaviour is consistent with the classical theory, where the harmonic oscillator spends more time in the

turning points than in the equilibrium point because its velocity is the smallest in the former positions.
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Figure 3.4: The wave-function Ψn(x) and its square |Ψn(x)|2 (which represents the probability density for the
position x) in the quantum harmonic oscillator for the first two eigenstates, n = 0 (left plot) and n = 1 (right plot).
We observe that while for n = 1 (the ground state) the maximum probability |Ψ|2 is found for x = 0, for the excited
state n = 1 it is rather more likely to find the particle far from the equilibrium position.

The exponential suppression in the wave function of the quantum harmonic oscillator, Eq. (3.41) implies

that it goes to zero for x → ±∞, no matter the value of n (that is, of how energetic is the particle). This

is because the particle has a oscillatory behaviour in the region E > V (x), but then decays exponentially in

the classically forbidden region E < V (x), which is eventually reached no matter how large is E (because of

the form of the potential).

Since we have the wave-functions for all values of n, Eq. (3.41), we know that we have a complete

knowledge of this quantum system, and thus we can compute the expectation values of arbitrary physical

observables. First of all, we can show that the expectation value of the position x of the harmonic oscillator

is, for any value of the quantum number n,

〈x〉 = 0 , (3.50)

in other words, the particle has a symmetric distribution of positions around the classical equilibrium position

x = 0. This can be easily shown by noting that

〈x〉 =

∫ ∞
−∞

dxx |Ψ(x)|2 ∼
∫ ∞
−∞

dxx e−mωx
2/~
[
Hn

(√
mω

~
x

)]2

= 0 , (3.51)

since the integrand is an odd function, f(x) = f(−x), and the integration range is symmetrical. To see this,

note that Hn(−x) = ±Hn(x) for any values of n.

Having established that in the quantum harmonic oscillator the particle can be found with equal proba-

bility at the right and at the left of the equilibrium position, it is perhaps more interesting to now compute
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its mean square displacement, given by

〈
x2
〉

=

(
n+

1

2

)
~√
mkf

. (3.52)

Therefore, the standard deviation of the position x is

∆x ≡
√
〈x2〉 − 〈x〉2 =

√(
n+

1

2

)
~

(mkf )1/2
(3.53)

which for large values of n grows like ∆x ∼
√
n: the likelihood of finding the particle at a greater distance

from x = 0 increases as the square root of the quantum number n, despite the fact that on average the

expectation value will still be 〈x〉 = 0. These results are consistent with the previous discussion above,

based on the behaviour of the wave functions Ψn. From Heisenberg’s uncertainty principle, Eq. (2.43) we

can determine the standard deviation associated to measurements of the linear momentum of the quantum

harmonic oscillator in this limit,

∆px ∼
~

∆x
∼ ~
n1/2

, (3.54)

so the higher the value of n, the better the momentum of the harmonic oscillator can be predicted (in the

correspondence limit, we recover the classical expectation that px can be determined with vanishingly small

uncertainty.)

There are other properties of this quantum system that are useful to compute. The expectation value of

the potential energy is given by

〈V 〉 =
1

2
kf
〈
x2
〉

=
1

2

(
n+

1

2

)
~
(
kf
m

)1/2

=
1

2

(
n+

1

2

)
~ω , (3.55)

where we have used the fact that the expectation value of an operator is linear, and the result for
〈
x2
〉

just computed above. Therefore, given that the complete energy of the quantum harmonic oscillator was

Eq. (3.42), we find that 〈V 〉 = En/2, and thus for the kinetic energy 〈Ek〉 = En/2. So in the quantum

harmonic oscillator, the energy is equally shared between kinetic and potential, for any value of n. This is

actually a consequence of a deep principle called the equipartition theorem. In other words, we have that for

this quantum system

〈E〉 = 〈Ek〉+ 〈V 〉 =
1

2
〈E〉+

1

2
〈E〉 . (3.56)

3.6 Summary

To summarize, some important concepts that we have learned in this lecture are:

• The boundary conditions on the wave-function induced by a confining potential lead to the quantization

of the allowed energy levels. This is a generic property of quantum systems, as we have seen in various

examples such as the particle in a box with finite barriers and the quantum harmonic oscillator.

• In many quantum systems, the energy of the ground state is different to zero, unlike classical physics.

We denote this effect as the zero-point energy.
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• Quantum particles have a non-zero probability of being measured within classically forbidden regions,

and to tunnel potential barriers even when their kinetic energy is smaller than the energy of the barrier.

• In some circumstances, quantum states can be degenerate, meaning that different states, characterized

by different quantum numbers, can have associated the same total energy.

• In the correspondence limit, usually associated to high values of the quantum numbers of the system,

quantum theory predictions should reproduce their classical counterparts.

Page 31 of 69



Dr Juan Rojo van Quantum tot Molecuul: Lecture Notes February 13, 2017

4 HC4

5 HC5

6 HC6

7 HC7

8 HC8

9 HC9

Page 32 of 69



Dr Juan Rojo van Quantum tot Molecuul: Lecture Notes February 13, 2017

10 HC10: Molecular and vibrational spectroscopy

1Juan Rojo                                                                                                                     Institute for Subatomic Physics, Utrecht, 27/09/2016
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Molecular and Vibrational Spectroscopy

Based on Atkins and de Paula, Physical Chemistry 10th edition, Chapter 12

HC10 is the first of the last three lectures of the course. In this final part, we will discuss the interaction

of molecules and nuclei with different types of electromagnetic radiation. First of all, in HC10 we will discuss

the general properties of molecular spectroscopy and vibrational spectra, where by spectroscopy we understand

the study of the interaction between electromagnetic radiation and matter using different experimental tech-

niques. Then in HC11 we will study electronic transitions in molecules. Finally, in HC12 we will illustrate

the underpinnings of Nuclear Magnetic Resonance (MNR), highlighting how quantum physics is central to

one of the most widely used methods of medical imaging.

The learning goals of this lecture are:

• Understanding and applying the basic properties of absorption and emission of electromagnetic

radiation in molecules.

• Become familiar with the vibrational states and the corresponding transitions among them for

di- and poly-atomic molecules.

• Understand that vibrational transitions lead the interactions with infrared light via Raman

scattering, and learn how to exploit this knowledge for practical applications.

10.1 Basics of molecular spectroscopy

We start this lecture by presenting the basic aspects of the interactions between light and molecules. As

mentioned above, the term spectroscopy stands for the study of the interactions between electromagnetic

radiation and matter. This interaction can take place in two ways:
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Ground state  E=Ei 

Excited state  E=Ef > Ei  

Figure 10.1: Schematic representation of the possible interactions between light and matter for a two-level quantum
system, defined by a ground state with energy Ei and an excited state with energy Ef > Ei.

• by absorption of electromagnetic radiation by matter,

• or by the complementary process, the emission of electromagnetic radiation. This emission can be

either spontaneous or stimulated, as we explain below.

Let us start by considering a two-level system, represented in Fig. 10.1. This is a quantum system in

which a given particle, say an electron in a molecular orbital, can only occupy two quantum states, one with

energy Ei, called the ground state, and the other with energy Ef with Ef > Ei, called the excited state.

In this system, spontaneous emission of electromagnetic radiation (in the absence of external radiation) will

take place via the transition Ef → Ei, that is, where the system moves from the excited state to the ground

state. By energy conservation, the energy of the emitted photon will be

Eγ = hν = Ef − Ei , and thus ν = (Ef − Ei) /h (10.1)

will the the frequency of the emitted radiation by this system.

The complementary process to spontaneous emission is that of the stimulated absorption of a photon

with energy Eγ = (Ef − Ei), which excites the system from the ground state Ei to the excited state Ef .

This is process has an associated transition rate given by

wf←i = Bfiρ(ν) , (10.2)

where wf←i stands for the number of transitions i → f which take place per unit time and per molecule

in the system, Bfi is known as the Einstein coefficient for stimulated absorption, and ρ(ν) is the spectral

energy density of the isotropic radiation field at the frequency ν of the transition, in other words, the density

of states available for a photon of frequency ν. From Eq. (10.2), we can derive that the total number of
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Figure 10.2: Stimulated emission of electromagnetic radiation in a two-level quantum system. The system is found
in the excited state E2, and as result of the interaction with an incident photon with energy Eγ = hν = E2−E1, the
system ends up in the ground state and two photons with energy Eγ are emitted from the system.

stimulated absorptions Wf←i that take place in our system is

Wf←i = Ni wf←i = NiBfiρ(ν) , (10.3)

where Ni is the number (or its density) of molecules in the system in the ground state.

The spontaneous emission of photons is not the only possible way to induce a f → i transition in our

system. In the presence of external electromagnetic radiation (incoming photons) in our two-level system, as

illustrated in Fig. 10.2, an stimulated emission of a photon will also take place, and the associated transition

rate is

wf→i = Bif ρ(ν) , (10.4)

where Bif is the Einstein coefficient for stimulated emission. Note that the difference between spontaneous

and stimulated emission is that in the latter case the system of molecules is already in the presence of elec-

tromagnetic radiation with frequency Eq. (10.1). In contrast, spontaneous emission of a photon corresponds

to the case where no external electromagnetic radiation is incident in our system.

Now, we will show below that Bfi = Bif . Therefore we find that in thermal equilibrium, where the the

transition rate i→ j must be the same as that of j → i (else the system would not be in equilibrium), and

ignoring the effects of spontaneous emission, one has that

Wf←i = Wi←j → Ni = Nf , (10.5)

that is, the population of the ground and the excited state is the same. This is in contradiction with

thermodynamics, since according to the Boltzmann distribution the occupation number of a state with
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energy E at temperature T should be

N(E) ∼ exp

(
− E

kBT

)
, (10.6)

with kB being Boltzmann constant, and then the ratio between the population of a state with energy Ef

and another one with density Ei should be classically be given by

Nf
Ni

= exp

(
− (Ef − Ei)

kBT

)
, (10.7)

which is inconsistent with Eq. (10.5).

As the reader might have imagined, the incorrect assumption in the derivation above has been neglecting

the effects of spontaneous emission. The rate of this process is given by A, the Einstein coefficient for

spontaneous emission, which is independent of ρ. Therefore, the total rate for electromagnetic emission in

our system per molecule will be given by the sum of the rates for spontaneous and stimulated emission,

wf→i = A+Bifρ . (10.8)

Therefore, in thermal equilibrium, where populations of the two levels, Ni and Nf , do not vary with time,

we find that

NiBfiρ(ν) = Nf (A+Bifρ) (ν) , (10.9)

and therefore we obtain the following condition on the density of states for photons of frequency ν,

ρ(ν) =
NfA

NiBfi −NfBif
=

A/Bfi
Ni/Nf −Bif/Bfi

=
A/Bfi

ehν/kBT −Bif/Bfi
, (10.10)

where in the last step we have used the condition that Nf/Ni should be determined by the Boltzmann

distribution Eq. (10.7).

For electromagnetic radiation off a black body, or in other words, for electromagnetic radiation in thermal

equilibrium at temperature T , we know that the density of states for photons of energy ν is given by Planck’s

distribution,

ρ(ν) =
8πhν3/c3

ehν/kBT − 1
, (10.11)

and then the comparison with Eq. (10.10) allows us to identify Bfi = Bif ≡ B as well as to determine the

Einstein coefficient for spontaneous emission, which is given by

A =

(
8πhν3

c3

)
B . (10.12)

There are a number of important implications of this derivation:

• The Einstein coefficients for stimulated absorption and emission are identical.

• The Einstein coefficient A for spontaneous emission is proportional to B, that of spontaneous emission.

• Since A ∼ ν3, we find that spontaneous emission becomes important for high frequencies, i.e. is

important for light emission but much less for radio emission.
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Selection rules In general, not all transitions that are consistent with energy conservation will be allowed

in a given quantum system. There are two main conditions for emission and absorption to take place for a

specific quantum system, and these are:

(a) Resonance: the energy of the photon must be the same as the difference in energy between ground

level and the excited state, hν = Ef − Ei.

(b) Selection rules: conditions on the quantum numbers of the states f and i which restrict the allowed

transitions, arising for instance from the conservation of angular momentum (since the photon is a

spin-1 particle).

Let us briefly recall the origin of these selection rules. The interactions between matter and electromag-

netic radiation can be described in quantum mechanics using the time independent perturbation theory, since

the EM field oscillates in time. Classically, for a molecule to interact with an electromagnetic field and emit

or absorb a photon with frequency ν, it must posses, even if for a short amount of time, a dipole oscillating

at that frequency. In quantum theory, the corresponding Hamiltonian for this interaction is

Ĥ = Ĥ(0) + Ĥ(1)(t) Ĥ(1)(t) = −µzE cos(ωt) , (10.13)

where Ĥ(1)(t) is the interaction term between the oscillating electric field of frequency ω and amplitude E
and the molecular dipole moment µz. Assuming that the perturbation is switched on at t = 0, it is possible

to show that the rate of change of the population of the quantum state Ψf due to transitions from Ψi induced

by Ĥ(1)(t) (where Ψf and Ψi are eigenstates of the time-independent Hamiltonian Ĥ(0)) is given by

wf←i ∝ |H(1)
fi |

2 Hfi =

∫
Ψ∗f Ĥ

(1)(t)Ψidτ , (10.14)

which in the case of electromagnetic radiation corresponds to

wf←i ∝ |µfi|2E2 µfi =

∫
Ψ∗f µ̂zΨidτ , (10.15)

and therefore the rate of this transition is proportional to the square of the transition dipole moment µfi.

For µfi = 0, the rate vanishes and thus such specific transition is not allowed. This is the main condition

that underlies the selection rules for electronic transitions in a molecule. Recall that for atoms we have that

~̂µ = −e~r , (10.16)

so that its components are µx = −ex and so on, and a similar expression holds for molecules but summing

over all its individual components.

As we have mentioned, electronic transition can only take place if the dipole matrix element is different

from zero, µfi 6= 0. Qualitatively, µfi 6= 0 corresponds of a modification in the geometric distribution of the

electric charge within a given atomic state. For example, the transition 1s → 2s does not have associated

charge shape redistribution, so µfi = 0 and this transition is not allowed. On the other hand, for the

transition 1s → 2p there is a charge redistribution, so µfi 6= 0 and this this transition is allowed. This

is illustrated in Fig. 10.3, which represents the changes in the electric charge distribution in the 1s → 2s

transition (forbidden) and in the 1s→ 2p transition (allowed).
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Selection rules for electronic transitions

1s => 2s (forbidden) 1s => 2p (allowed)

Figure 10.3: In electronic transitions, only those transitions which involve a charge redistribution, and this a non-
zero value of the electric dipole moment matrix element µfi, are allowed by the selection sum rules. For instance, the
1s → 2s transition (left plot) does not involve a change of shape of the charge distribution, and thus is forbidden,
unlike the 1s→ 2p transition which is instead allowed.

The Beer-Lambert law From the macroscopic point of view, absorption of electromagnetic radiation can

be described by the so-called Beer-Lambert law, which states that

I = I0 10−ε[J]L , (10.17)

where I0 and I are the intensities of the electromagnetic radiation beam before and after crossing a material,

[J ] is the concentration of absorbing molecules, ε is the molar absorption coefficient, also now as extinction

coefficient, and L is the optical path length (which differs from the geometrical path length in mediums other

than vacuum). In other words, the Beer-Lambert law states that absorption increases exponentially with

the optical patch length L, the molar absorption coefficient ε (which is specific of the material) and the

concentration of absorbing molecules. It then follows that the absorbance of the sample is given by

A ≡ log
I0
I

= ε[J ]L . (10.18)

Similarly, a transmission coefficient T = I/I0 can be defined, which related to the absorbance as A = − log T .

This law can be derived as follows: consider the change of intensity of the incident electromagnetic

radiation over an infinitesimal length,

dI = −κ[J ]Idx , (10.19)

where κ is an undetermined proportionality constant. Integrating over the total length L, and redefining

ε = κ/10, the sought-for result Eq. (10.17) is recovered. The molar absorption coefficient ε depends on

the wavelength of the incident light. Thus for some applications it is advantageous to define an integrated

absorption coefficient A as follows

A =

∫
ε(ν)dν , (10.20)

which takes into account the contribution to the total absorption from all relevant frequencies.

Summary of this section In this part of the lecture we have seen that:
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• The Einstein coefficients A, Bfi and Bif describe the (spontaneous and stimulated) absorption and

emission of electromagnetic radiation (photons) in a two-level quantum system.

• The Einstein coefficients for stimulated absorption and emission are equal Bfi = Bif = B.

• The Einstein coefficient for spontaneous emission A is proportional to both B and to ν3, and thus

spontaneous emission can be neglected for long wavelengths.

• The selection rules determine which transitions between atomic levels are allowed. Only those tran-

sitions for which the dipole matrix element µfi 6= 0 are possible. The condition µfi 6= 0 can be

understood as a redistribution of the geometrical charge configuration.

• The Beer-Lambert law can be used to describe macroscopically the phenomenon of the absorption of

electromagnetic radiation

10.2 Vibrational modes and light interaction in diatomic molecules

We now discuss the important topic of vibrational modes and their interaction with electromagnetic radiation

in molecules, a topic known as vibrational spectroscopy. To begin with, we will restrict ourselves to diatomic

molecules, and then move to more complex poly-atomic molecules.

As a representative diatomic molecule, we can consider ionized deuterium, H+
2 . The potential energy of

the ionized deuterium molecule can be represented by a potential V (r) of the form of Fig. 10.4, where r is

the distance between the atoms that constitute the molecule, the proton and the neutron. This potential is

characterized by an equilibrium distance re where it has an absolute minimum (thus V ′(r = re) = 0), so that

for smaller or larger values of the inter-atomic separation r the potential energy increases. This potential is

known as the Morse potential, and can be described by the equation

V (r) = De

(
1− e−a(r−re)

)2

, (10.21)

where r is the inter-atomic distance, re the equilibrium distance, a is a parameter that determines the width

of the potential well, and De is the dissociation energy, the energy above which the molecule separates into

its two constituents atoms separately (in other words, r → ∞). When r → 0 the potential becomes highly

repulsive, in this case due to nuclear effects that present the neutron and the proton to be too close to each

other.

For small deviations of r with respect the equilibrium position, the Morse potential reduces to the

harmonic oscillator potential. Indeed, starting from Eq. (10.21) we find that that

V (r = re) = 0 (10.22)

dV (r)

dr
= 2De

(
1− e−a(r−re)

)
(−ae−a(r−re)) = 0→ r = re (10.23)

d2V (r)

dr2
(r = re) = 2a2De , (10.24)

and therefore the Taylor expansion of the Morse potential up to second order reads

V (r) ' a2De (r − re)2
+O

(
(r − re)3

)
, (10.25)
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Figure 10.4: The Morse potential V (r)/De Eq. (10.21) as a function of r/re, for two values of the parameter a. We
note that when the separation is large, r � re, the Morse potential V (r) tends to the dissociation energy De: even
small energy fluctuations can break the molecule in this limit. For small values of r the Morse potential becomes
highly repulsive because of strong nuclear force effects.

which can be identified with an harmonic oscillator potential, such as the one we studied in some detail in

HC3, with spring constant now set to kf = 2a2De. In other words, the larger the value of a, the stiffer the

potential between the two atoms that form the diatomic molecule. Therefore, the vibrational modes of a

diatomic molecule can be described to good approximation by the quantum states of a quantum harmonic

oscillator of spring constant kf = 2a2De.

In HC3, we showed that the Schroedinger equation for a quantum harmonic oscillator was

− ~2

2meff

d2Ψ

dx2
+

1

2
kfx

2Ψ = EΨ , (10.26)

where since vibrations are with respect the center of mass of the diatomic system, the effective mass is

given by the reduced mass meff = m1m2/(m1 + m2). The energies of the quantum harmonic oscillator are

quantized and given by

En =

(
n+

1

2

)
~ω , ω =

√
kf
meff

, (10.27)

and thus the quantum states are equally spaced in energy among them. Eq. (10.27) can be rewritten as

En = hcG̃n , G̃n ≡
(
n+

1

2

)
ν̃ , ν̃ =

1

2πc

(
kf
meff

)1/2

, (10.28)

which is sometimes useful since now Gn has units of wave numbers, that is, units of inverse length. The

angular frequency of the oscillations is given by ω. What is the order of magnitude for frequencies associated

to these transitions between different vibrational states in a diatomic molecule? In the case of the HCl

molecule for instance, we have that the effective spring constant is found to be kf = 520 N/m, and then it is

possible to show that λ ' 3.4 µm, which corresponds to the infrared region of the electromagnetic spectrum.

Therefore, molecular vibrational modes can be explored by means of infrared (IR) spectroscopy.

As in the case of transitions between electronic states, also for the transitions between vibrational states

that involve the emission or absorption of a photon there exist a number of selection rules that restrict the
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allowed transitions. As in the case of individual atoms, the allowed transitions will be determined by the

dipole moment matrix element

~µfi =

∫
Ψ∗i ~̂µΨi dτ (10.29)

where in the case of molecules the dipole moment operator reads

~̂µ =

N∑
i=1

qi~ri , (10.30)

and the sum runs over the components of the system. In atoms, only transitions for which ~µfi 6= 0, and

thus involving a charge redistribution, were allowed. For infrared transitions between vibrational states of

a molecule, the condition for allowed transitions is that the electric dipole moment of the molecule changes

when the atoms are displaced relative to each other. From the harmonic oscillator, we know that the selection

rules tells us that ∆n = ±1, with n the principal quantum number, which involve a change in wave number

of

∆G̃n = G̃n+1 − G̃n = ν̃ , (10.31)

which is of course independent of n. At room temperatures we have that KT/hc ' 200 cm−1, so this will be

the typical wave number of infrared absorptions by vibrational modes. Since from thermodynamics we know

that the ground state n = 0 will be the one with higher occupation, this implies that infrared absorption by

molecules will be dominated by the fundamental transition 1← 0.

Anharmonicity While for small values of n the harmonic approximation Eq. (10.25) to the Morse potential

Eq. (10.21) is reasonable, for excited states with high values of the quantum number n eventually the

quadratic approximation will break down. To see this, let us first of all rewrite the Morse potential as

V (r) = hcD̃e

(
1− e−a(r−re)

)2

, a =

(
meffω

2

2hcD̃e

)2

. (10.32)

Then, as n is increased, the energy levels become more densely packed, as opposed to the result with the

quadratic potential where ∆En = En+1 − En = ~ω was constant and independent of n. It can be shown

that the energy of the harmonic oscillator for larger values of n is better approximated by

Gn =

(
n+

1

2

)
ν̃ −

(
n+

1

2

)2

xeν̃ , xe ≡
a2~

2meffω
=

ν̃

4D̃e

, (10.33)

and xe is defined as the anharmonicity constant, which quantifies the deviations of the energy of the vibra-

tional modes of a diatomic molecule with respect to the quadratic approximation. What this means is that

now the differences in wavenumber between two adjacent quantum states will be given by

∆G̃n ≡ G̃n+1 − G̃n = ν̃ − 2(n+ 1)xeν̃ +O(n2) , (10.34)

so we see that for high values of n the separation between adjacent energy levels will be reduced due to

these anharmonicity effects. We also note that anharmonicity also leads to the partial lifting of the ∆n = ±1

selection rule for vibrational modes, since that rule was derived assuming an harmonic potential.
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Normal modes van CO2 

Symmetrische stretch 

antisymmetrische stretch 

Bending modes 

Iedere normal mode gedraagt zich als onafhankelijke harmonische oscillator 

Normal vibration modes

CO2 H2O
Figure 10.5: Some of the normal vibration modes that appear in CO2 (left plot) and in H2O (right plot) molecules,
where we also indicate the associated value of the wave number associated to each mode. In the case of CO2, the
first two modes are known as symmetric stretch and antisymmetric stretch respectively, while the two bottom ones
are the bending modes.

10.3 Vibration modes and light interaction in poly-atomic molecules

Up to here the discussions concerning the vibration modes in the simples possible molecules, the diatomic

molecules. Next we turn to discuss the effects of vibrational models in more complex molecules composed by

more than two atoms. In molecules composed by two atoms, there can only be one possible vibration mode,

corresponding to vibrations with respect the equilibrium position of the inter-atomic potential. On the other

hand, for a molecule composed by N atoms, in general we can have up to 3N − 5 vibrational modes. Of

particular interest are the so called normal modes of vibration, which is another name of the independent

vibration modes. In other words, the excitation of a normal vibration mode, which affects the motion of a

number of atoms, does not lead to the excitation of any other normal mode or group of atomic motions.

An suitable example of a poly-atomic molecule is carbon dioxide, CO2. Since this molecule has three

atoms, N = 3, it will be characterized by 3N −5 = 4 normal modes. An interesting question here is: can the

first and the third atom in the molecule vibrate in a fully independent way? As illustrated in Fig. 10.5, there

are various possible vibration models of the CO2 molecule. The first two modes are known as symmetric

stretch and antisymmetric stretch respectively, while the two bottom ones are the bending modes. We also

indicate the indicate the associated value of the wave number associated to each mode. Every normal mode

behaves as a fully independent harmonic oscillator, characterized by their own set of vibrational energy

levels,

G̃q(n) =

(
n+

1

2

)
ν̃q ν̃q =

1

2πc

(
kq
mq

)1/2

. (10.35)

Given that the selection rules require a change in the electric dipole moment to activate a given vibration
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mode, we see that the symmetric stretch mode is infrared active (since the electric dipole moment is un-

changed) but that on the other hand the other three normal modes of the CO2 molecule are IR active. So

therefore not all possible vibrational modes of a molecule can be probed with infrared spectroscopy.

10.4 Raman spectroscopy

Raman spectroscopy is based on the scattering via molecules of incident monochromatic light. With this

technique the vibrational and rotational modes of a molecule can be observed. The inelastic scattering

of the incoming Raman photons with these vibrational states changes the energy of the scattered photon,

which then can be detected providing information on the vibrational spectrum of the molecule (for example

allowing to identify which kind of molecules we have in our system). The vibrational transitions underlying

Raman scattering are represented in Fig. 10.6. If the outgoing photon has a higher energy than the incoming

radiation, the associated transition is called a anti-Stokes transition, and in the opposite case the have a

Stokes transition.

Raman spectroscopy

Figure 10.6: Schematic representation of Raman spectroscopy: incident monochromatic radiation undergoes inelastic
scattering with the vibrational energy levels of a molecule, and thus in general the outgoing photon will have both
different energy and polarization as the incoming photon (as shown in the right plot).

Also in Raman scattering only transitions that comply with a set of selection rules will be physically

allowed. For instance, in general if the molecular vibrational state changes due to the Raman scattering the

polarizability of the molecule will be also modified. As a rule of thumb, weak infrared transitions will lead to

strong Raman transitions, and conversely. We know that in the quantum harmonic oscillator the selection

rule ∆n = ±1 should hold. Transitions with ∆n = +1 are the Stokes transitions and those with ∆n = −1

are the anti-Stokes one, that in general will have associated low intensities since higher vibrational states are

scarcely populated at room temperatures.

What is the main difference then between Raman spectroscopy and IR spectroscopy? That in the latter

case the motion corresponding to a normal mode should be accompanied by a change of the electric dipole

moment, while in the former case we require instead a change in the molecule’s polarizability as it changes

its vibrational state. Therefore we can probe complementary vibration modes in Raman as compared to

Page 43 of 69



Dr Juan Rojo van Quantum tot Molecuul: Lecture Notes February 13, 2017

IR spectroscopy. And here a useful exclusion rule follows: if a molecule has a centre of symmetry, then no

normal modes can be at the same time infrared and Raman active.

A specific example of Raman spectroscopy is known as resonant Raman spectroscopy, where the incident

radiation has a frequency corresponding to almost the actual electronic excitation of the molecule. In these

conditions, a photon is emitted when the excited state returns to a state close to the ground state.

Vibrational spectroscopy of molecules To summarize, some of the important concepts that we have

learned in the second part of this lecture, about vibrational modes in diatomic and poly-atomic molecules,

are the following:

• The quantum vibrational states of molecules can be modeled using the harmonic oscillator with a

given effective mass and effective spring constant kf upon approximating the inter-atomic potential by

a quadratic expansion.

• There are selection rules which restrict the vibrational transitions, and only those that change the

electric dipole moment of the molecule are allowed.

• For excited vibrational states, deviations of the quadratic potential become important, and are quan-

tified by xe, the anharmonicity constant.

• An a poly-atomic molecule, the normal modes represent the independent motion of groups of atoms,

and each normal mode can be treated as fully independent harmonic oscillator.

• Raman spectroscopy can be used to probe some of the infrared transitions between vibrational modes

of a molecule that cannot be accessed by IR spectroscopy.
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Molecular Spectroscopy and Electronic Transitions

Based on Atkins and de Paula, Physical Chemistry 10th edition, Chapter 13

In this lecture, we will study electronic transitions in p-electron conjugate systems, the Franck-Condon

principle, the physics underlying the phenomena of fluorescence and phosphorescence, as well as the basic

principles of operation of a laser. We will also present an application of these ideas in the medical context,

namely the photo-dynamic therapy (PDT).

The learning goals of this lecture are:

(a) Understanding and applying π-π∗ electronic transitions in molecules.

(b) Understanding which electronic transitions can take place for either absorption or emission

of a photon while the atomic nuclei are at rest (the Franck-Condon principle), including the

mathematical description and implications of absorption and emission spectra.

(c) Understanding and applying the principles of fluorescence and phosphorescence.

(d) Understanding the basic principles that underlie the operation of a laser, such as the concept

of population inversion.

11.1 Electronic transitions in molecules

In HC10 we studied the transitions between different vibrational states of a molecule. We now consider

instead the electronic transitions that take place between different electronic states of a molecule. As opposed

to vibrational transitions, which were associated to infrared frequencies, electronic molecular transitions take

place mainly in the visible and ultraviolet regions of the electromagnetic spectrum, and therefore, among
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Molecular Orbitals

Pi-Bond !
(partial overlap of atomic p orbitals) Pi and σ bonds in Ethilene

Figure 11.1: Left plot: a π-bond in a molecule is formed by the partial overlap between atomic p-type orbitals. Right
plot: the bonding structure of ethylene, C2H4, showing a σ bond between the two C atoms (rotationally symmetric
with respect to the bond axis) and the two halves of the π bond arising from the p atomic orbitals.

the many important properties of these transitions, they are also responsible of the color of materials and

substances.

Molecular orbitals It is useful at this point to recall some important properties of molecular orbitals. We

know that that electronic orbitals in atoms can have different principal quantum numbers: s, p, d and so on.

In molecules, under the right circumstances, the electrons might become de-localized by means of the overlap

between individual atomic orbitals, that is, they cannot be assigned to any of the specific components of the

molecule.

The strongest type of chemical covalent bonds in molecules are known as σ-bonds, formed by a head-on

overlapping between atomic orbitals leading to a molecular orbital. The key property of this bond is that

the resulting orbitals are rotationally symmetric with respect to the bond axis. Another important type of

molecular bonds are the so-called π-bonds, covalent chemical bonds where two lobes of one atomic orbital

overlap with the two lobes of another atomic orbital, resulting in the bonding between the two atoms. In

Fig. 11.1 we show how a π-bond in a di-atomic molecule is formed by the partial overlap between atomic

p-type orbitals. In the same figure we also show the bonding structure of the ethylene molecule, C2H4,

showing a σ bond between the two C atoms (rotationally symmetric with respect to the bond axis) and the

two halves of the π bond arising from the p atomic orbitals.

In this lecture we will focus on conjugate p-electron systems, which denote molecules where atomic p-type

orbitals are connected by means of de-localized electrons, thus giving place to π-type covalent bonds. These

molecules are very important in organic chemistry and biology, and the wide majority of light-absorbing

molecules, known as chromophores, that appear biology are indeed p-electron conjugate systems.

The electronic transitions within a conjugate p-electron molecular system are known as the π → π∗

transitions. This is a specific type of molecular electronic transitions, others include the σ → σ∗ and the

n → σ∗ transitions. Here by π∗ we indicate an anti-bonding molecular orbital of the π-type, that is, a

molecular orbital that when occupied by electrons weakens the bond between the constituents atoms of the

molecule and thus increases (rather than decreases) the energy of the molecule relative to the separated

individual atoms. These π → π∗ transitions, involving de-localized p-orbitals, can be described by Huckel

theory and are characterized by strong light absorption. Recall that Huckel theory can be used to construct
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Figure 11.2: Schematic representation of the molecular orbitals of the butadiene molecule, C4H8. The two bottom
orbitals are bonding π molecular orbitals, while the top two ones are instead anti-bonding π∗ molecular orbitals. The
highest occupied molecular orbital (HOMO) is here π2, while the lowest unoccupied molecular orbital (LUMO) is
instead π∗3 . Note that in the HOMO the two electrons are paired (opposite spins).

linear combinations of atomic orbitals (LCAO) into molecular orbitals to determine the energies of π electrons

in general conjugated molecules.

For molecular orbitals, we often make the distinction between HOMO, the highest occupied molecular

orbital and LUMO, the lowest unoccupied molecular orbital. Let us consider the representative case of the

butadiene molecule C4H6. In Fig. 11.2 we show a schematic representation of the molecular orbitals of

butadiene. The two bottom orbitals are bonding π molecular orbitals, while the top two are instead anti-

bonding π∗ molecular orbitals. The highest occupied molecular orbital (HOMO) is here π2, while the lowest

unoccupied molecular orbital (LUMO) is instead π∗3 . Note that in the HOMO the two electrons are paired,

that is, they have opposite spins.

Allowed molecular transitions In order to determine which electronic molecular transitions are possible,

we need to take into account the corresponding selection rules. In the case of individual atoms and of

vibrational transitions in molecules, these selection rules have been reviewed in HC10. Similarly as in the

case of the selection rules for electronic transitions in individual atoms, also for electronic transitions in

molecules, only if the dipole moment matrix element satisfies µfi 6= 0 a given transition will be allowed.

Therefore, in the case of electronic transitions between the molecular orbitals of butadiene represented

in Fig. 11.2, only those that are characterized by a non-zero electric dipole matrix element, µfi 6= 0, will be
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physically allowed. Using the wave function for the molecular orbitals of butadiene, it it can be shown that∫
Ψ∗π∗3 µ̂Ψπ2

dτ 6= 0 , (11.1)

and therefore a transition between the HOMO and LUMO levels, that is, a π → π∗ transition, is allowed.

This transition will have associated the absorption of visible light by the butadiene molecule. It can also be

shown that is x is the molecular bonding axis, only µx,fi 6= 0, while instead µy,fi = µz,fi = 0. This has the

consequence that the optical transition π2 → π∗3 will only be possible for light polarized along the x axis. On

the other hand, the absorption of a photon by the HOMO-1 level, that is, the electronic state immediately

below HOMO, labeled π1 in Fig. 11.2, resulting into a transition to the LUMO level π∗3 turns out not to be

allowed by the selection rules, since all the possible dipole moment matrix element vanish,∫
Ψ∗π∗3 µ̂Ψπ1

dτ = 0 . (11.2)

By computing the energy of allowed electronic molecular transitions, it can be shown that often organic

molecules actually absorb light in the ultraviolet range, for instance ethylene absorbs at λ = 163 nm while

butadiene at λ = 220 nm.

More about electronic molecular transitions We can now present some additional facts that are

important for the understanding of the physics underlying electronic transitions between molecular orbitals:

• In molecular orbitals, the conjugation length is defined as the length of the orbital resulting from the

partial overlap of atomic p-orbitals. The more p-orbitals that contribute to a molecular orbital, the

larger its conjugation length will be. This means that an electron that belongs to this orbital will be

more de-localized the larger the conjugating length of that orbital, since it will be able to hop between

more atoms that compose the molecule. As a general rule, the greater the conjugation length of a

molecular orbital, and this the greater the amount of de-localization of the electrons that belong to

this orbital, the smaller its energy, or in other words, the stronger its contribution to the molecular

bonding.

Recall that a similar behaviour was observed when studying the particle in a box system using the

Schroedinger equation in HC3. There we saw that the energy of the allowed quantum states of the

particle scaled with the length of the box L as E ∼ L−2, in other words, the greater the box (and

thus the de-localization) the smaller the energy of the particle, qualitatively the same behaviour as for

molecular orbitals.

• Another important type of electronic molecular transitions are the n→ π∗ optical transitions. Recall

that by n we denote the molecular orbital of an auxochrome, a functional group of atoms with free

(unbounded) electron pairs that when attached to a chromophore (that is, a light-absorbing molecule)

modifies both the wavelength and intensity of absorption. In some circumstances, an electron might

transition between a n orbital of an auxochrome to the π∗ orbital of a chromophore. In this transitions,

the larger the conjugation length, the larger the extinction coefficient that determines how strongly

this specific molecule will absorb light of a given wavelength.

• It can be shown that there is a direct connection between the value of the dipole moment transition
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matrix element µfi and the extinction coefficient ε(ν) for light of a given frequency, that determines

how strongly this molecule does absorb light of this specific frequency. Intuitively, one could expect

that the greater the value of the electric dipole moment transition matrix element µfi, the stronger the

absorption of light with wavelengths corresponding to this specific electronic transition. And indeed,

the integral over all frequencies of ε(ν) is proportional to the square of µfi, in other words∫
ε(ν)dν ∝ |µfi|2 . (11.3)

Therefore, for very narrow transitions, the extinction coefficient ε is simply proportional to |µfi|2.

11.2 The Franck-Condon principle

We now turn to discuss the Franck-Condon principle, which describes the transitions in which a simultaneous

change in the vibrational and electronic states of a molecule takes place, due to the emission or absorption

of a photon of the appropriate energy. This principle is important to explain the vibrational fine structure

in the optical absorption spectrum. Recall that vibrational transitions (in the infrared range of the EM

spectrum) have associated much smaller energies than optical transitions (in the visible range), and thus

appear in the optical absorption spectrum as small splittings of the main absorption lines. In general, we

denote as a vibronic transition a transition that involves simultaneous modifications in the vibrational and

electronic energy states of a given molecule.

The Franck-Condon (FC) principle states that since nuclei are so much more massive than electrons,

me � mN , electronic transitions between different quantum states take place at much shorter time-scales

that those for which the nuclei can respond, therefore the vibrational transitions take place at slower rates. In

other words, the probability of an electronic molecular transition is the highest where the relative separation

between two atomic nuclei is unchanged. This phenomenon is thus also known as a vertical transition, since

in a (r, E) plane the transition takes place vertically along the y axis, as shown in Fig. 11.3. As in general in

quantum mechanics, the transition probability will be proportional to the overlap between vibrational wave

functions in the ground electronic and in an excited electronic states, and it can be shown that this overlap

is maximal when the relative separation between nuclei r is unchanged.

The physical interpretation of the Franck-Condon principle is summarized in Fig. 11.3, where we show

a schematic representation of the molecular potential energies for the ground and the excited electronic

states in a molecule. This molecular potential energy is nothing by the Morse potential that we discussed

in HC10, Eq. (10.21). According to the Franck-Condon principle, the most intense vibronic transitions take

place between the ground vibrational state in the electronic ground state to to the vibrational state lying

immediately above it in the electronic excited state. Transitions to other vibrational states also occur, but

with lower intensities.

In the quantum mechanical description of the FC principle, the molecule undergoes a transition to the

upper vibrational state that most closely resembles the vibrational wave-function of the vibrational ground

state of the lower electronic state. The two wave functions shown here exhibit the greatest overlap and hence

the matrix element for the transition probability among them is the highest.
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Figure 11.3: Schematic representation of the molecular potential energy (Morse potential Eq. (10.21)) for the
ground and the excited electronic states in a molecule. Left plot: according to the Franck-Condon principle, the most
intense vibronic transitions takes place between the ground vibrational state in the electronic ground state to to the
vibrational state lying immediately above it in the electronic excited state, in a way that the inter-nuclei separation
is kept constant. Transitions to other vibrational states also occur, but this lower intensities. Right plot: in the
quantum mechanical description of the FC principle, the molecule undergoes a transition to the upper vibrational
state that most closely resembles the vibrational wave-function of the vibrational ground state of the lower electronic
state. The two wave functions shown here exhibit the greatest overlap, and hence the matrix element for the transition
probability among them is the highest, corresponding to a transition with fixed inter-nuclear separation.

Dipole matrix element for vibronic transitions In order to compute the matrix element for the

electric dipole moment of such a vibronic transition, we need to take into account the sum of electronic and

of nuclear contributions to the total molecular dipole moment operator, that is

~̂µ = −e
∑
j

~rj + e
∑
I

ZI ~RI , (11.4)

where j runs over the electrons and I over the nuclei in our molecule, and ZI is the total positive charge of

the nucleus I. In order to compute the dipole transition matrix element, for both the initial and final states

we separate the wave function into its electronic Ψε and vibrational Ψν components. This way the dipole

matrix element for a given vibronic transition between an initial Ψi = ΨεiΨνi and final Ψf = Ψεf Ψνf final

state, will be given by

~µfi =

∫
Ψ∗εf Ψ∗νf

−e∑
j

~rj + e
∑
I

ZI ~RI

ΨεiΨνi dτ , (11.5)
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which can be rearranged as follows:

~µfi = −e
∑
j

∫
Ψ∗εf~rjΨεidτε

∫
Ψ∗νf Ψνidτν + e

∑
I

ZI

∫
Ψ∗εf Ψεidτε

∫
Ψ∗νf

~RIΨνidτν , (11.6)

where we have used that the vibrational wave functions Ψν depend only on the inter-nuclei separation ~RI

while the electronic wave functions Ψεi depend only on the position of the electrons ~ri.

The second term in Eq. (11.6) vanishes since the electronic wave functions are orthogonal among them,∫
Ψ∗εf Ψεidτε = 0 for i 6= i , (11.7)

but note that this does not apply to the vibrational wave functions necessarily, they correspond to different

electronic states so they do not need to be orthogonal among them. Taking this property into account, we

find that the dipole matrix element can be written as

~µfi = −e
∑
j

∫
Ψ∗εf~rjΨεidτε

∫
Ψ∗νf Ψνidτν ≡ µεf εiS(νf , νi) , (11.8)

where we have introduced the following definitions:

µεf εi ≡ −e
∑
j

∫
Ψ∗εf~rjΨεidτε . (11.9)

S(νf , νi) ≡
∫

Ψ∗νf Ψνidτν . (11.10)

The first of these expressions, µεf εi , corresponds to the electronic dipole transition matrix element between

two molecular electronic states. The second of these expressions, S(νf , νi), corresponds instead to the

overlap between the vibrational wave functions in the ground and in the excited states. Therefore, the rate

for a vibronic transition that involves simultaneously the change in the electronic and vibrational states of

a molecule will be proportional to the Franck-Condon factor,

|S(νf , νi)|2 , (11.11)

which states quantitatively what was qualitatively illustrated in Fig. 11.3, namely that the rate for vibronic

transitions is maximal when the vibrational wave functions in the ground and excited electronic states

resemble the most.

11.3 Fluorescence and phosphorescence

We now describe to important phenomena related to light emission by molecules:

• Phosphorescence is the slow emission of light in molecules, taking place in an interval of microseconds

or more.

• Fluorescence is the fast emission of light in molecules, taking place within a time interval of nanoseconds

or less.
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Therefore, these two phenomena related to light emission in molecules have time scales that differ by several

orders of magnitude, and now we explain the reason for this behaviour.

Fluorescence Let us start by discussing the phenomenon of fluorescence. From our discussion of HC10,

we can recall a number of important properties of the electronic transitions within the two-level system,

represented in Figs. 10.1 and 10.2, in particular we found that:

• The Einstein coefficient for stimulated absorption Bfi was proportional to the integral of the extinction

coefficient over the relevant absorption band. It is therefore an intrinsic property of a given molecule.

• The Einstein coefficients for stimulated absorption and emission are identical, Bfi = Bif ≡ B.

• The Einstein coefficient for spontaneous emission A was proportional to both B and ν3, with ν being

the frequency of the emitted light:

A =

(
8πhν3

c3

)
B , (11.12)

implying that spontaneous emission become relevant only at relatively high frequencies.

With these properties, we can compute rate of variation in time of the population of molecules in in the

excited electronic state f due to emission an absorption as follows

dNf
dt

= −NfA−NfBifρ(ν) +NiBfiρ(ν) . (11.13)

In normal circumstances ρ(ν), the density of states of the EM field is small (unless a very powerful illumi-

nation is used) and can be neglected. This leaves a simple differential equation which depends only on the

probability of spontaneous emission A,

dNf
dt

= −NfA → Nf (t) = N0e
−At = N0e

−t/τR , (11.14)

where τR = 1/A is the radiative lifetime of this specific electronic state of the molecule. The higher the rate

for spontaneous emission, the smaller the radiative lifetime of the molecule will be. In the absence of other

processes that decrease the population of the state f , the radiative lifetime τR is equal to the total lifetime

of the excited state.

In general however there are other contributions to this process that need to be taken into account.

Indeed, the total life time of an excited state f will receive contributions from various mechanisms, in

addition to spontaneous emission. The most important ones are:

• The internal conversion (IC) from an excited vibrational state to the vibrational ground state of a

given electronic level, with constant rate kIC .

• An inter-system crossing (ISC) from a singlet to a triplet state, with constant rate kISC

• Other processes such as electron transfer , with constant rate kQ.

To study these electronic transitions within molecules, in general it is useful to use a special type of

diagrams known as Jablonski diagram, which schematically indicates the transitions that can take place

starting from an excited state. In Fig. 11.4 we show the schematic representation of the fluorescence and
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Figure 11.4: Schematic representation of the fluorescence and phosphorescence phenomena by means of the Jablonski
diagram. In this diagram, A indicates the absorption of a photon, F and P represent the fluorescence and phospho-
rescence transitions respectively, S and T denote singlet and triplet states, and finally IC and ISC label the internal
conversion and the inter-system crossing respectively.

phosphorescence phenomena by means of a Jablonski diagram. In this diagram, A indicates the absorption of

a photon, F and P represent the fluorescence and phosphorescence transitions respectively, S and T denote

singlet and triplet states, and finally IC and ISC label the internal conversion and the inter-system crossing

respectively.

Let us discuss the Jablonski diagram of Fig. 11.4. First of all, an electron in the electronic ground state

absorbs an incoming photon and is promoted to an excited electronic state, as well as to an excited vibrational

state. From the internal conversion (IC) process, this electron loses energy via non-radiative (vibrational)

transitions until it is found in the ground vibrational state of the first excited electronic state S1. From

there on, two things can happen: either decay to the electronic ground state (fluorescence) or a inter-system

crossing (ISC) to a triplet state, which eventually gives rise to a much slower light emission (phosphoresce)

since the triplet to singlet transition is suppressed. We therefore see that an important component of the

fluorescence process involves the molecule relaxing from an excited vibrational state to the lowest vibrational

state via non-radiative transitions.

As a result of the competition between the various processes that de-populate the excited state f , its total

lifetime τ will be in general shorter than the radiation lifetime τR. The total lifetime of the excited state is

called the fluorescence lifetime τF . Therefore, in general the radiative lifetime will be different (larger) from

the fluorescence lifetime. Let us make this statement more quantitative. In the presence of these additional
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processes, the occupancy number of the electronic state f , Nf , will vary with time as follows:

dNf
dt

= −Nf (A+ kIC + kISC + kQ) → Nf (t) = N0e
−(A+kIC+kISC+kQ)t , (11.15)

from where we readily see that the fluorescence lifetime τF will be determined by the sum of the rates of all

processes that de-populate f , namely,

1/τF = A+ kIC + kISC + kQ , (11.16)

In the fluorescence process, one usually introduces the quantum yield ΦF defined as the number of emitted

photons divided by the number of absorbed photons

ΦF ≡
# Emitted Photons

# Absorbed Photons
=

A

A+ kIC + kISC + kQ
, (11.17)

Let us know take a look at the rates for these various processes in a representative molecule, in this case

clorofyll. In this molecule, the rates for the various processes that de-populate the quantum state f are

kR = A = 0.5× 108 s−1 → τR = 20 ns

kISC = 1.0× 108 s−1 → τISC = 10 ns (11.18)

kIC = 1.5× 108 s−1 → τIC = 16.6 ns

from where the fluorescence lifetime is τF = 3.3 ns, and the fluorescence quantum yield ΦF = 0.166, meaning

that for each 100 absorbed photons by the molecule, there will be 16 emitted photons.

As can be seen from the Jablonski diagram in Fig. 11.4, in general fluorescence radiation will correspond

to longer wavelengths (that is, smaller energies) than the absorbed light, since the electrons undergo internal

transitions losing energy before a photon is radiated. This difference is as known as the Stokes shift: the

difference, either in wavelength or in wave number, between the absorption and fluorescence emission maxima.

Phosphorescence In the phosphorescence radiation phenomenon, the molecule goes from a singlet excited

state to a triplet excited state, via the so-called inter-system crossing. as illustrated in Fig. 11.4 (see also

the left plot of Fig. 11.7). The resulting triplet states are long-lived, with lifetimes that can range from

microseconds to seconds, since a transition to the ground state is forbidden by the selection rules (Pauli

exclusion principle). Recall that a singlet to triplet conversion is a transition from paired spin to unpaired

spin in a given molecular electronic state.

Therefore, as shown in Fig. 11.5, the origin of a phosphorescence transition is a transition from a ground

singlet state (with paired spins) to the excited LUMO state where the electron spin remains the same. From

there, a transition from the excited singlet state to the excluded triplet state via inter-system crossing will

take place, since the latter has lower energy due to Hunds’s rule. This inter-system crossing is enhanced by

the spin-orbit coupling, and thus mostly occurs when heavy nuclei are nearby, such as S, Fe or Mg. The

longevity of the phosphorescence radiation is then explain since the relaxation of a triplet to a singlet ground

state is spin-forbidden.

The key property of phosphorescence is that, following light absorption, the subsequent re-emission takes
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Figure 11.5: In phosphorescence transitions, the molecule undergoes an inter-system crossing from a singlet to a
triplet state, and the resulting state has a very long lifetime since the relaxation from the excited triplet to the singlet
ground state is not allowed by Pauli’s exclusion principle.

place at a lower intensity for up to several hours after the original excitation. It is thus a very slow transition.

11.4 Lasers

The use of lasers is ubiquitous in spectroscopy, as well as in many forms of microscopy and in a wealth

of medical applications. Therefore, it is important to understand how a laser works. The name laser was

originally an acronym of Light Amplification by Stimulated Emission of Radiation, since it is a device that

amplifies the intensity of the incident electromagnetic radiation. Let us now show how this is possible.

To illustrate how a laser works, we consider first of all the usual two-level system, such as the one depicted

in Fig. 10.1. Since the Einstein coefficient for stimulated emission is Bif , the rate of f → i transitions leading

to light stimulated emission will be given by NfBifρ(ν), as we have demonstrated in HC10. Now, a necessary

condition for lasing is achieving population inversion in the system, that is, a situation such that in thermal

equilibrium the population of excited states is higher than the population of lower energy states. Only under

this condition it will be possible to achieve more stimulated emission than stimulated absorption, and this

achieve amplification of the incident radiation intensity. Otherwise, given that the Einstein coefficients for

stimulated absorption and emission are the same, Bfi = Bif , and that in thermal equilibrium the ratio of

populations of the ground state and the excited state are given by the Boltzmann distribution

Nf
Ni

= exp

(
−Ef − Ei

kBT

)
, (11.19)

it would be impossible to achieve more emission than absorption.

The concept of population inversion in the simple case of a two-level system is illustrated in Fig. 11.6:

starting from a system in thermal equilibrium, obeying Boltzmann statistics and thus where the population
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Figure 11.6: Left plot: the operation of a laser is based on the principle of population inversion: starting from a
system in thermal equilibrium, obeying Boltzmann statistics and thus where the population of the excited state is
smaller than that of the ground state, a pumping system increases the population of the excited state until it becomes
larger than that of the ground state. In these conditions, stimulated emission will dominate over absorption and this
the laser will indeed enhance light intensity. Right plot: The schematic operation of a three-level (upper diagram)
and four-level (lower diagram) laser, where we indicate the specific transition that is responsible for the lasing.

of the excited state is smaller than that of the ground state, Nf < Ni, a pumping system increases the

population of the excited state until it becomes larger than that of the ground state. Under these conditions,

the overall rates for stimulated emission will be higher than those of the stimulated absorption, and lasing

(light amplification) will take place. The crucial point for the laser operation is therefore how to best

implement this pumping to achieve population inversion.

It is easy to realize is that actually lasing is impossible in a two level system. To see this, note that due

to the equality of the Einstein coefficients, Bif = Bfi, the population of Nf can only be as large as 50%

of the total population of the system, NT = Ni + Nf , no matter how hard we pump. To implement the

lasing concept one needs at least a system with three quantum states or even four. In Fig. 11.6 we show

the schematic operation of a three-level and four-level laser, where we indicate the specific transition that is

responsible for the lasing. Of all the possible transitions in the system, the one that is responsible for the

lasing effect (and that requires population inversion) is A→ X for the three-level laser and A→ A′ for the

four-level laser, and therefore the pumping should be such that in equilibrium NA ≥ NX (NA ≥ NA′) for the

three (four) level laser. The best molecules to be used for lasing are thus for which the rates of inter-system

transitions are those that facilitate the most achieving population inversion.
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Figure 11.7: Left plot: the basic molecular electronic transition in Photodynamic Therapy is the one from a singlet
state with paired electrons to a triplet state where the two electrons have unpaired spin via an inter-system crossing.
Right plot: schematic representation of the molecular orbitals in the O2 molecule, where the 2s orbitals form two
σ-bonds and the 2p orbitals form two σ and two π bonds.

The basic mechanism of light amplification in a laser arises from the snowball effect applied to stimulated

emission: each time that a stimulated emission takes place, additional photons with the correct energy are

produced, inducing yet further additional simulated emissions, with an exponential grow of the intensity of

the incident electromagnetic radiation.

11.5 Photodynamic Therapy (PDT)

Photodynamic therapy, or PDT for short, is a representative example of a medical application which is

based on the optical transitions between different molecular electronic states. PDT, also known as photo-

chemotherapy, is a form of photo-therapy involving light and a photosensitizing chemical substance, which

in conjunction with molecular oxygen can eliminate cancerous tissue.

PDT works as follows. We start from a molecular singlet state, with two paired electrons (opposite

spin) in the same electronic quantum level. This level will be the HOMO, the Higher Occupied Molecular

Orbital, as illustrated in Fig. 11.7. Using laser radiation, an electron is excited to first the LUMO orbital

and then via an inter-system crossing it ends up in its first excited triplet state 3P . The resulting state

photosensitizes the formation of an excited singlet state of O2, 1O2, which are extremely reactive and destroy

cellular components. Therefore, the photochemical cycle that leads to the shrinkage of diseased tissue is the

following:

Absorption → P + hν → P ∗

Inter− system crossing → P ∗ → 3P

Photosensitization → 3P + 3O2 → P + 1O2 (11.20)

Oxidation reactions → 1O2 + reactants→ products

Note that the energy in the triplet state is lower than that of the singlet state due to Hunds’s rule, as
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Figure 11.8: In photo-dynamic therapy, a photo-sensitive (PS) molecule is injected on the patient and accumulates
on tumor. The subsequent irradiation activates a chemical reaction which creates reactive oxygen molecules 1O2

which destroy the cancerous tissue.

illustrated in Fig. 11.7. In the right plot of Fig. 11.7 we show an schematic representation of the molecular

orbitals in the O2 molecule, where the 2s orbitals form two σ-bonds and the 2p orbitals form two σ and

two π bonds. As we mentioned above, an inter-system crossing transition is enhanced by large spin-orbit

couplings, and therefore occurs mostly where heavy nuclei such as S, Fe and Mg are nearby. Since the

relaxation from the triplet state to the singlet ground state is forbidden by Pauli exclusion system (which

forbids two electrons with the same spin in the same quantum state), the electronic configuration displayed

in Fig. 11.7 has a remarkable longevity, which facilitates the photosensitization of a large number oxygen

molecules. This is the same mechanism that explained the very long lifetime of phosphorescence.

Therefore, PDT is based on the photosensitization of O2 molecules to turn them into extremely reactive

and destroy cancerous tissue. In this technique, first of all the patient is injected with a photosensitive

molecule, and one waits until this substance accumulates in the tumor. Then the tumor is illuminated with

laser light, induces the singlet to triplet transition in the molecule and which leads to the selective formation

of reactive 1O2 and the restriction of cancerous tissue. This technique is mostly used for cancer present in

body cavities such as mouth, throat or bladder. A summary of the PDT mechanism is shown in Fig. 11.5.

11.6 Summary and outlook

Some of the important lessons that we have learned in this lecture are the following:

• The absorption of light (visible and UV) in biological molecules takes place predominantly by means

of π → π∗ transitions in p-conjugated electron systems.

• A larger p-electron conjugation length leads to absorption at longer wavelengths, that is, at smaller

photon energies. This is explained by the reduced electron confinement for large conjugation lengths.

• Symmetry considerations are important when determining whether or not an given optical transition

is possible within a specific molecule.

• The Franck-Condon principle explains the transitions in which a simultaneous change in the vibrational

and electronic states of a molecule takes place, the so-called vibronic transitions.
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• The Einstein coefficient for spontaneous emission determines the radiation lifetime of a molecule τR,

which in general is different (larger) than its total lifetime.

• The fluorescence lifetime τF is usually shorter than the radiative lifetime τR due to competing processes

that de-populate the excited states.

• The phosphorescence phenomenon is explained by the long-lived emissions from a triplet excited state

to a singlet ground state.

• The light amplification achieved in a laser is based on the concept of population inversion.

• The Photodynamic Therapy is an representative example of a medical application based on optical

transitions in biomolecules.
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Magnetic Nuclear Resonance

Based on Atkins and de Paula, Physical Chemistry 10th edition, Chapter 14

In this final lecture of the course, we will explore the important topic of Magnetic Nuclear Resonance

and show it is the basis for one of the most important applications of quantum theory in medical therapy,

namely Magnetic Resonance Imaging.

The learning goals of this lecture are:

(a) Understand that the atomic nucleus has a magnetic moment, and that upon interaction with a

magnetic field its energy levels split for different values of z component of the nuclear spin.

(b) Understand and be able to interpret Nuclear Magnetic Resonance (NMR) spectra.

(c) Understand how pulse techniques can be employed in order to measure NMR spectra.

(d) Become familiar with the basic principles of Magnetic Resonance Imaging (MRI).

12.1 Nuclear spin

Classically in the presence of an external magnetic field ~B a particle with a magnetic moment ~µ has associated

an energy E = −~µ · ~B. In quantum theory, promoting observables to operators, we find that the Hamiltonian

that describes this interaction is

Ĥ = −~̂µ · ~B . (12.1)
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An electron moving around an atomic nucleus has associated an associated angular momentum ~l and thus a

magnetic moment, so in this case the Hamiltonian operator reads

Ĥ = −γe~̂l · ~B , γe ≡ −
e

2me
, (12.2)

where γe is the magnetogyric ratio of the electron, also known as gyro-magnetic ratio.

Considering without loss of generality a magnetic field with magnitude B0 pointing in the z direction,

the Hamiltonian will be Ĥ = −γeB0 l̂z. From our previous discussion of angular momentum in quantum

mechanics, we know that this Hamiltonian will have as eigenvalues:

Eml
= −γeml~B0 ≡ µBmlB0 , µB ≡

e~
2me

= 9.27× 10−24 J T−1 , (12.3)

where the constant µB is known as Bohr’s magneton, and ml is the quantum number of angular momentum

in the z direction.

The result above is the contribution from the electron energy from the interaction of its orbital angular

momentum with an external magnetic field. However, an electron also has an intrinsic angular momentum,

its spin, which will also need to be accounted for. In this case the corresponding Hamiltonian will be

Ĥ = −geγe ~B · ~̂s , (12.4)

with ge ' 2.002319 is known as the electron’s g-factor, which deviates from 2 due to relativistic quantum

effects, and ~̂s is the spin operator. As in the case of the angular momentum, for a magnetic field in the z

direction, the contribution to the total electron energy of the interaction between the electron spin and the

magnetic field will be:

Ems
= ge µBmsB0 , (12.5)

where of course now ms = ±1/2. Therefore, for B0 6= 0 a given energy level will split due to this effect by

an amount ∆E = geµBB0, as shown in Fig. 12.1.

The interaction between a magnetic moment and an external field can also be represented within the

vector model of the spin, illustrated in Fig. 12.2. In this picture, the external magnetic field induces a

precession of the electron spin, defined in general as the change in the orientation of the rotational axis of

a rotating body. The magnetic moment of the electron will experience a torque ~Γ = ~µ ⊗ ~B, and thus the

magnetic moment will rotate around the axis defined by the magnetic field with frequency

νL =
|γeB0|

2π
, (12.6)

which is known as the Larmor frequency, and play an important role in the following discussion.

The splitting of energy levels due to the interaction between a magnetic field and an angular momentum

can be used for the so-called magnetic resonance. Let us first discuss we case of electrons, and then we will

turn to nuclei. Since the magnetic field induces an energy splitting of ∆E = geµBB0, a transition between

these two energy levels will have associated a frequency

ν =
geµBB0

h
=
geeB0

4πme
, (12.7)
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Figure 12.1: In the presence of an external magnetic field B0, a given electronic energy state splits into two different
states due to the different contribution to the ~s · ~B coupling to the total energy. These two states are separated by
an energy shift of ∆E = geµBB0.

where we have use the definition of Bohr’s magneton. Eq. (12.7) is known as the resonance frequency for

electrons: absorption of electromagnetic radiation for this value of ν will thus be favored. For a reasonably

strong magnetic field of B = 0.3 T, we find that this frequency is ν ' 10 GHz, in the domain of microwave

radiation. Note that the Boltzmann distribution predicts that the state with lower energy will have higher

population, and this the absorption of EM radiation at these frequencies will be facilitated. Note also that

this transition can take place only with the condition of paired electrons between the initial and final levels.

Now, any particle that has associated an angular momentum will exhibit similar interactions with an

external electric field. What about the atomic nucleus then? Atomic nuclei are composed by protons and

neutrons, each of which are fermions, that is, spin 1/2 particles. Their angular momenta will add up and

in general the nuclear spin I will be different from zero. And from there on the usual properties of angular

momentum follow, for instance, a nucleus with spin I will have associated an intrinsic angular momentum of√
I(I + 1)~, and its components mI~ along a given axis will take the values mI = I, I − 1, . . . ,−I + 1,−I.

The resulting splitting of the energy levels will be similar to the electron case, with the only difference

that now the atomic nucleus has a different magnetic moment. Therefore, we will have that the energies

associated to the nuclear spin in a external magnetic field are given by

EmI
= −γ~B0mI , γ~ ≡ gIµN µN =

e~
2mp

= 5.051× 10−27 J T−1 , (12.8)

where we have introduced the nuclear magneton µN and the nuclear g-factor gI . In the specific case of a

I = 1/2 nucleus, the energy levels will split into two with a energy difference γ~B0, and now the resonance

frequency Eq. (12.7) for B = 12 T will be ν ' 500 MHz, in the regime of radio-waves. This very significant

change in the resonant frequency of nuclei as compared to electrons is explained from the fact that µN � µe

because of the much larger nucleon mass mN � me. Therefore, nuclear magnetic resonance can be achieved

for radiation much smaller energies (longer wavelengths) than those of the electron case.
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No magnetisation Net magnetisationVector model of spin

Figure 12.2: Left plot: in the vector model of electron spin, spin can be represented by a vector of length
√

3/2 whose
component in the z direction is ±1/2. Right plot: in the absence of an external field, there is no net magnetization
of the electron spin. For an external magnetic field, the electron spin develops a net magnetization, represented as a
precession around the z axis.

12.2 The chemical shift

In practice, the interaction between atomic nuclei and external magnetic fields will be partially shielded due

to the surrounding electrons (atomic and/or molecular), and therefore nuclei experience a smaller magnetic

field,

B̃0 = B0 − δB ≡ B0 (1− σ) , (12.9)

where σ is the so-called shielding constant, and its value depends very sensitively on the specific chemical

structure surrounding the nucleus. As a consequence of this shielding, for a fixed value of the external

magnetic field B0, nuclei of different chemical identify will have associated different resonant frequencies.

We call this chemical shift the measure of the differences in the resonance frequency due to the shielding

effects of the electrons, which allows to discriminate not only between different chemical elements but also

between the same element in different locations within a molecule.

Given that the local magnetic field experienced by the nucleus is B0 (1− σ), the associated Larmor

frequency will also be reduced, and will be given by

νL = (1− σ)
γB0

2π
. (12.10)

Then we can define the chemical shift δ as the shift of the Larmor frequency relative to a reference value ν0,

that is

δ ≡ νL − νL,0
νL,0

× 106 , (12.11)

which is roughly independent of the specific value of B0, which cancels partially in the ratio. Therefore, if

for example we have a reference Larmor frequency of 500 MHz for a given field B0, then a chemical shift

of δ = 1 ppm (parts per million) corresponds to a shift in the Larmor frequency νL as compared to the

reference value of 500 Hz.

To illustrate the concept of chemical shift, in Fig. 12.3 we show a schematic representation of the ethanol

molecule, CH3CH2OH. In the same figure we also show chemical shift δ associated to different hydrogen

nucleus in the ethanol molecule. We observe that the closer to the oxygen nucleus, the larger the chemical
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Figure 12.3: Right plot: schematic representation of the ethanol molecule, CH3CH2OH. Left plot: the chemical shift
δ associated to different hydrogen nucleus in the ethanol molecule. We observe that the closer to the O nucleus, the
larger the chemical shift.

shift. This can be explained since oxygen is the most electro-negative element of the molecule and thus

attracts the most the molecular electron density, leading to an enhanced chemical shift of the neighboring

hydrogen nucleus. From Fig. 12.3 we also see that there is a fine structure for the each nucleus in the ethanol

molecule. This fine structure arises from the spin-spin coupling, where the spin from one nucleus contributes

to the local magnetic field of a neighboring nucleus.

12.3 NMR spectroscopy

We now want to illustrate how we can measure NMR spectra and chemical shifts, as required for medical

applications. This can be achieved by means of the NMR spectrometer, and requires introducing the concept

of the pulsed technique.

The basic ingredient of NMR is the measurement of the chemical shifts for each atom in a molecule of the

analysed sample, which then allows its identification by comparing with the reference spectra. One possibility

would be to measure the rate of absorption of radio waves as a function of their frequency ν, which should

be dominated by the Larmor frequencies of the nuclei in the sample. As illustrated by Fig. 12.1 (applied to

the magnetic moment of nuclei), the value of the photon energy that induces the resonant transition β → α,

Eγ = γB0/2π, lies in the radio part of the EM spectrum. This approach is however challenging, since first

of all the population difference between α and β, the nuclear atomic states with different spin, is small, and

second because such a frequency scan is a rather slow process. Indeed, the difference in population between

α and β can be as small as O
(
10−5

)
.

The alternative is to use pulse techniques, which are much more efficient. To understand the pulse method

works, we consider a vector model for the nuclear spin, such as that shown in Fig. 12.2 for the electron. Let

us assume that the nuclear spin is I = 1/2 for simplicity. The length of this vector is
√
I(I + 1) =

√
3/2 (in

units of ~), and the projection in the z direction is fixed to be Iz = ±1/2. Recall that the operators Îx, Îy
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Figure 12.4: In the pulse method, a magnetic field polarized in the (x, y) plane oscillates with frequency νL (left
plot), perpendicular to the nuclear spin. In the rotating reference frame, the nuclear spin experiences a constant
magnetic field B1 (right plot).

and Îz do not commute among them.

For a vanishing external magnetic field, B0 = 0, the energy of the two states α and β are the same,

and so they have the same average population. Once we switch on the external magnetic field, B0 6= 0, the

energy of the two levels splits, with Eβ < Eα (see Fig. 12.1). Due to Boltzmann statistics, we know that the

population of the lower energy state α will be larger than that of the higher energy one β, Nα < Nβ . This

implies that a net magnetization is created in the analyzed material, proportional to Nβ −Nα.

The next step in the pulse method is that, in addition to the static magnetic field B0, we also add an

oscillatory magnetic field in the (x, y) plane, with Larmor frequency νL and circular polarization so that

B1 rotates in the (x, y) plane with frequency νL. Recall that the static magnetic field B0 is applied along

the z direction, and is thus perpendicular to the new oscillatory magnetic field. This additional field will

induce the transition α ← β, that is, from the lower to the higher energy nuclear magnetic states. If we

now transform to the rotating frame with Larmor frequency νL, the nuclear spins will experience a constant

magnetic field B1. Therefore, in this frame, the nuclear spins will exhibit a precession with a different value

of νL, as illustrated in Fig. 12.4. This new Larmor frequency will be

ν̃L =
γB1

2π
, (12.12)

and thus the period of the new Larmor precession will be

T =
2π

γB1
. (12.13)

In the pulse method, rather than having the oscillatory field B1 activated the whole time, we have it

on only for a small amount of time, the pulses. In particular the duration of this pulses should be one

quarter of the total precession period, (1/4) · (2π)/γB1, corresponding to am angular rotation of π/2, which

typically corresponds to a duration of microseconds. Now, while in the rotating frame the magnetization

M is constant in the (x, y) plane, in the laboratory frame it will rotate with Larmor frequency νL. This

oscillatory magnetization can be detected in the coil of an NMR spectrometer, where it can be transformed
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Figure 12.5: The oscillating signal measured in the MNR spectrometer can be Fourier transformed to determine
the values of the Larmor frequencies present for the studied sample. In a sample with different nuclei and/or nuclei
with different chemical shifts, the Fourier transform will exhibit multiple peaks corresponding to each of the relevant
Larmor frequencies.

into output electromagnetic radiation in the radio spectrum.

A characteristic signal of the measured MNR signal is that it will appear as a Free Induction Decay

(FID), which oscillates with Larmor frequency νL but whose amplitude decays exponentially due to the

finite duration of the length of the pulse. The oscillating signal detected in the MNR spectrometer can

then be Fourier-transformed to determine the values of the Larmor frequencies for each of the nuclei in

the studied sample, as shown in Fig. 12.5. This way, in a sample with different nuclei and/or nuclei with

different chemical shifts, the Fourier transform will exhibit multiple peaks corresponding to each of the

relevant Larmor frequencies.

The reason why the MNR signal in Fig. 12.5 decays exponentially with time can be undertood as follows.

After a π/4 pulse, the magnetization of the atomic nuclei is not in thermal equilibrium with its surroundings.

In particular, since β has a higher population than α, the pulse will affect more the former level and thus

contradict the expected Boltzmann populations. Indeed, after the π/4 pulse the population of spins in the

two levels is similar. After a some time, following the pulse, the system will be back to thermal equilibrium

where
Nα
Nβ

= e−hνL/kBT . (12.14)

This longitudinal relaxation time T1 will be given by the time it takes for the system to recover its original

magnetization M0 along the z direction, namely

(Mz(t)−M0) ∝ e−t/T1 , (12.15)
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Figure 12.6: In an NMR spectrometer, a powerful magnet is used to apply a strong magnetic field to the studied
sample. Then, the sample is irradiated with pulsed electromagnetic radio waves and the response of the system under
this radiation (which frequencies are absorbed) is monitored to determine the resultant NMR spectra.

where we see that for t� T1 the magnetization will be Mz(t) = M0, as was the case before the pulse.

Moreover, after the π/4 pulse there will also be a new magnetization My along a given direction in

the (x, y) plane, that is, the phase of individual nuclear spins along this plane (in the vector model of the

atomic spin) will be common. Some time after the pulse, this common phase will be lost and the associated

macroscopic magnetization in the transverse direction My will disappear. We can then define the transverse

relaxation time T2 as

My(t) ∝ e−t/T2 , (12.16)

so that for t � T2 we have that My → 0, as was the case before the pulse. The longitudinal relaxation

mechanism also affects the transversal one, so typically T1 ≥ T2, of the order of a few seconds. The main

impact of the T2 relaxation is the broadening of spectral lines. Indeed, it can be shown that the width at

half-maximum of a MNR line is given by

ν1/2 =
1

πT2
. (12.17)

The experimental apparatus for the measurement of NMR spectra is illustrated in Fig. 12.6. First of

all, in an NMR spectrometer, a powerful magnet is used to apply a strong magnetic field B1 to the studied

sample. Then, pulsed electromagnetic radio waves and the response of the system under this radiation

(which frequencies are absorbed) is monitored to determine the resultant NMR spectra. The frequency of

the pulsed radio waves is tuned to reproduce the Larmor frequencies of specific magnetic nuclear resonances,

as explained above. The Fourier transform of the output radio frequency, as indicated in Fig. 12.5, indicates

the Larmor frequencies of the various atomic components of the sample.

12.4 Magnetic resonance imaging (MRI)

Magnetic Nuclear Resonance is the key principle underlying Magnetic Resonance Imaging. This imaging

method is based on the deliberate application of an inhomogeneous magnetic field, in other words, a magnetic
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Figure 12.7: By means of Molecular Resonance Imaging, it is possible to obtain three-dimensional images of soft
tissue, in this case white and grey matter inside the skull.

field gradient. As we have discussed, each molecule of the imaged sample, in the presence of a external

magnetic field, will have associated a Larmor frequency of

νL(~r) = (1− σ)
γB0(~r)

2π
, (12.18)

which now will be different for each position ~r of the sample, due to the inhomogeneity of the magnetic field.

By comparing the observed Larmor frequencies with the expected values for some molecules and taking into

account the magnetic field gradient applied to the sample, we can reconstruct a three-dimensional image of

the chemical components of the sample.

The typical MRI application is based on the proton resonance, therefore the largest signal will come from

those body parts with the highest concentration of water. To enhanced the contract, it is possible to use

that the longitudinal and transverse relaxation times T1 and T2 depend on the time of local environment,

for example they are different in membranes than in bulk water. This way, it is possible to image separately

using MRI different types of soft tissue such as gray matter, white matter or spinal fluid. In Fig. 12.7 we

illustrate how by means of Molecular Resonance Imaging it is possible to obtain three-dimensional images

of soft tissue, in this case white and grey matter inside the skull.

12.5 Summary

Let us summarize some of the important topics that have been covered in this lecture:

• A moving electric charge has an associated angular momentum ~l, which can then interact with a

external magnetic field ~B.

• The interaction of the electron spin with an external magnetic field induces an energy splitting that

can be proved by resonant absorption at microwave frequencies.

• Atomic nucleus also have an intrinsic angular momentum, spin, built upon the spin of its components,

protons and neutrinos. Depending on the specific nucleus, this spin can be zero, half-integer or integer.
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• The nuclear magneton µN is much smaller than the electron magneton µB due to the mass suppression

of the atomic nuclei as compared to the electron mass.

• Magnetic resonance absorption in nuclei takes place at radio frequencies.

• The chemical shift quantifies the degree of shielding of nucleus by core electrons in the presence of

external magnetic field.

• Magnetic nuclear resonances can be efficiently probed using the pulse method, were short pulses of π/4

angle are used to excite the magnetic resonances.

• The MNR signal decays exponentially die to the longitudinal and transverse mechanism of spin relax-

ation.

• Magnetic nuclear resonance is the key for Magnetic Resonance Imaging, where a magnetic field gradient

can be used to obtain a three-dimensional image of soft tissues.
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Self-organise yourselves in groups of 3/4 students to prepare beforehand the tutorial 
work for each session

It is possible to submit specific questions by email about the exercises to the TAs before 
each session

Juan Rojo                                                                                       vQtM introduction, 10/01/2017



Communications
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Relevant information  about the course, tutorial sessions, and evaluations and exams 
will take place though your VU student email

Check regularly your VU email, at least once per day during term 

It might be in your interest to configure a forward to the email account you check more 
frequently

Juan Rojo                                                                                       vQtM introduction, 10/01/2017



Evaluation

10

There  will  be  first  an  intermediate  examination  (tussentoets)  followed  by  a  final 
examination (volledig eindtentamen)

Tussentoets: Friday 17th February 2017, 11am, covering HC1 to HC6

Tentamen:  Tuesday 28th March 2017, 3.15pm, covering HC1 to HC6 (Part I)  and HC7 to 
HC12 (Part II)

If the mark obtained in the intermediate exam is insufficient, the complete final exam needs 
to be performed (Parts I+II)

If  the  mark  obtained  in  this  exam is  a  pass,  there  is  the  option  to  either  skipping  or 
attempting Part I in the final exam. In the latter case, the best of the two marks will be the 
one that counts for the course evaluation

The final exam mark will be the sum of Part I (or of the intermediate exam, if higher) and 
Part II

During  the  exams,  the  use  of  any  material  from  the  course  is  forbidden.  Scientific 
(programmable) calculators are likewise not allowed

Those students repeating the course need to perform the complete final exam (Part I + Part 
II). Marks from intermediate examinations cannot be carried forward from previous years

Juan Rojo                                                                                       vQtM introduction, 10/01/2017



Office hours
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Lecturers will be available for up to 30 minutes after the lecture to address questions 
related to the content covered in each lecture

In addition, it is possible to schedule further discussion time via email

Questions about tutorial exercises/sessions should be addressed to the course TAs

Do not wait to the last minute to ask questions or  to discuss the course material!

Juan Rojo                                                                                       vQtM introduction, 10/01/2017



Course overview
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Basic principles of quantum mechanics

The Schrodinger equation and the quantum wave function

Application to simple systems: free particle, particle in a box, harmonic oscillator

The electronic structure of atoms

Molecular structure and chemical bonding from quantum mechanics

Quantitative description of molecules: vibration, rotation, optical transitions, spectroscopy

Magnetic resonance spectroscopy and Magnetic Resonance Imaging (MRI)

Juan Rojo                                                                                       vQtM introduction, 10/01/2017

The detailed list of topics for each lecture (and where they are covered in 
Atkins & De Paula) can be found in the course Study Guide in BlackBoard
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The following material is based on Chapter 7 of “McKeachie’s Teaching Tips: Strategies, Research,

and Theory for College and University Teachers”, 14th Edition.

1 General context

• Every course must come with some method of assessment, aiming to evaluate if the students have

satisfactorily achieved its original learning goals.

Page 1 of 6
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General	context - 1
Every course must have some specific methods of assessment,
aiming to evaluate if students have satisfactorily achieved their
learning goals

Some	learning	goals	
are	not	measurable	
by	conventional	tests

Assessing should not be limited to testing: classroom, lab, and out-of-
class activities should play an important role (``embedded assessment’’)

Look	for	other	evidence

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017
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General	context - 2
Crucial to avoid using exclusively a single assessment method for all
cases

Some students perform badly in written tests, while they
perform better with assignments or small projects that they can
work on their own

Better use variety of complementary assessment methods:
``triangulation of data’’

The specific assessment method
adopted influences what the students learn

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017

Dr Juan Rojo Assessing Testing and Evaluating: Handout September 18, 2017

• There exist di↵erent methods to carry out this assessment, some of them more conventional, others

more innovative.

• It is important to avoid using exclusively a single assessment method for all cases. Some students, for

instance, perform very badly in written tests, while they perform much better in case of assignments

or small projects that they can work on their own.

• To some extent, the specific assessment method adopted influence what the students learn. For instance,

if the exam only contains numerical problem-solving, the students will focus less on the more conceptual

issues of the course.

• Some goals (such as motivation and attitudes) are not measurable by conventional tests, and need

other ways to gauge their development in the students.

• Assessing is not limited to testing: classroom, laboratory, and out-of-class activities should play an

important role as well in the process. This concept is know as embedded assessment.

• Relying on one or two tests only to determine the grades can be dangerous. Use better a variety of

complementary assessment methods, what the students call triangulation of data. Avoid situations like

the UK system, where until recently (for example in Oxford) a whole three-year course was assessed

based on a single test.

Assessment should not be limited to a method to grade students: it can and should be also a

learning opportunity for the students (and their teachers).

2 Planning methods of assessment

• Prerequisite: list the goals and objectives for the course.

• Then determine which kind of assessment is most suitable for each specific objective.

• Consider an appropriate variety of assessment methods: some students do well in high-stakes tests

(like in the end of year exam) while others do better in out-of-class assignments or short projects.

• The reflection upon the interplay between goals and objectives to be achieved and the corresponding

assessment methods often leads to exploring innovative forms of testing.

• Using assessment material with greater relevance to the course contents motivates better the students

taking them.

• One possible pitfall of more innovative assessment methods is that it becomes more di�cult to ensure

objectivity. In a traditional test it is much easier to be objective in the grading, at least within scientific

subjects.

Page 2 of 6
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Let’s	make	a	“test”!

How	would	you	evaluate	those	learning	goals?	

q Our	students	are	aware/sensitive	to	a	disrupted	world

q Our	students	master	business	basics	and	are	able	to	anticipate	business	transformation

q Students	develop	a	creative	mindset	and	are	able	to	make	ideas	happen

q Students	reflect	on	themselves	and	project	themselves	in	the	future

q Students	are	able	to	identify	issues	in	their	own	area	of	expertise

General	context - 2

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017



Firstly	list	the	main	
learning	goals and	
objectives for	the	course

Determine	which	kind	of	
assessment	is	most	
suitable for	each
objective

Use	assessment	material	
with	greater	relevance	
to	the	course	contents
and	assessment	to	
increase	the	motivation	
of	the	students	

7

Planning	methods	of	assessment

...	and	an	assessment

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017



Many institutions monitor learning outcomes of their programs

More challenging task than monitoring at the level of individual
courses.

Involvement of faculty is critical here, but requires appropriate
guidance from university management

Faculty members can provide valuable data by incorporating the
assessment information from their courses into the overall process

Designing assessment methods for the course that provide
information useful for the improvement of a whole degree or the
university leads to a double benefit

Institutional	purposes	for	course	assessment

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017



Consider	a	variety	of	assessment	methods:

some	students	do	well	in	high-stakes	tests (like	in	the	end-of-
year	exam)	

others	do	better	in	out-of-class	assignments or	short	projects

9

Methods	of	assessing	learning	- 1

Possible	pitfall	of	more	
innovative	assessment	
methods:	how	to	ensure	
the same	level	of	
objectivity as	in	a	
traditional	test?

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017
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v Tests: in- and out-of-class

v Performance assessment

v Journals and research papers

v Portfolios

v Peer assessment

v Assessing group work

v Embedded assessment

...many others!

Methods	of	assessing	learning	- 2

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017

Dr Juan Rojo Assessing Testing and Evaluating: Handout September 18, 2017

Institutional purposes for your course assessments

• Many institutions are monitoring learning outcomes of their programs, although of course this moni-

toring is rather more challenging at the level of individual courses.

• Involvement of faculty is critical here, but requires appropriate guidance from the university man-

agement as well as the possibility of devoting an appropriate amount of time. In this respect, the

faculty members can provide very valuable data by incorporating the assessment information from

their courses into the overall process.

• Designing assessment methods for the course that moreover provide information that can be used for

the improvement of a whole degree or the university in general leads to a double benefit, but specific

preparation is required in order to prepare such tailored assessment methods.

3 Methods of assessing learning

There exist di↵erent methods that can be used to assess learning, in other words, to evaluate if the

original learning goals of the course have been fulfilled by the students.

Tests: in- and out-of-class

• Tests are an unavoidable part of the assessment of many courses, but often lead to frustration in

students.

• It is very well know that perfectly able students underperform in tests, even if they have appropriately

achieved the learning goals of the course.

• In the information age, tests which are based on simple fact recalling are not appropriate anymore.

Tests should focus on assess how students deal with the information that they have at their disposal,

not with the sheer fact of whether or not students are able to memorize a given chunk of information.

• The specific ways to assess a course a↵ect how students study for these course.

• While it is preferable to devise tests that emphasize their abilities to use the acquired knowledge, as

opposed to just dump memorized information, it is also important to realize that some students are

not flexible than others at addressing novel situations, so one should avoid the “happy idea” tests

which require a lot of intuition to tackle for instance a specific problem that the students have never

encountered beforehand.

• A higher frequency of tests/quizzes (meaning more than 2 per term) has been demonstrated to lead to

an improved student performance.

It has been demonstrated that tests requiring inferences enhance learning more than those requiring

memorized knowledge, and therefore should be used more often.
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v Tests:	in- and	out-of-class

Tests represent an unavoidable part of the assessment, but often
lead to frustration / underperformance in students

Tests should focus on assessing how students deal with the
information that they have at their disposal, not with the sheer fact
of memorising a given chunk of information.

Tests which are based on simple fact recalling are not
appropriate anymore

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017
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Tests should emphasise the student’s abilities to use the acquired
knowledge

But some students are more flexible than others at addressing novel
situations, so one should:

v Tests:	in- and	out-of-class

1) avoid the “happy idea”
tests which require a lot of
intuition to tackle

2) use higher frequency of
tests/quizzes (>2/term leads
to improved performance)

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017
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Institutional purposes for your course assessments

• Many institutions are monitoring learning outcomes of their programs, although of course this moni-

toring is rather more challenging at the level of individual courses.

• Involvement of faculty is critical here, but requires appropriate guidance from the university man-

agement as well as the possibility of devoting an appropriate amount of time. In this respect, the

faculty members can provide very valuable data by incorporating the assessment information from

their courses into the overall process.

• Designing assessment methods for the course that moreover provide information that can be used for

the improvement of a whole degree or the university in general leads to a double benefit, but specific

preparation is required in order to prepare such tailored assessment methods.

3 Methods of assessing learning

There exist di↵erent methods that can be used to assess learning, in other words, to evaluate if the

original learning goals of the course have been fulfilled by the students.

Tests: in- and out-of-class

• Tests are an unavoidable part of the assessment of many courses, but often lead to frustration in

students.

• It is very well know that perfectly able students underperform in tests, even if they have appropriately

achieved the learning goals of the course.

• In the information age, tests which are based on simple fact recalling are not appropriate anymore.

Tests should focus on assess how students deal with the information that they have at their disposal,

not with the sheer fact of whether or not students are able to memorize a given chunk of information.

• The specific ways to assess a course a↵ect how students study for these course.

• While it is preferable to devise tests that emphasize their abilities to use the acquired knowledge, as

opposed to just dump memorized information, it is also important to realize that some students are

not flexible than others at addressing novel situations, so one should avoid the “happy idea” tests

which require a lot of intuition to tackle for instance a specific problem that the students have never

encountered beforehand.

• A higher frequency of tests/quizzes (meaning more than 2 per term) has been demonstrated to lead to

an improved student performance.

It has been demonstrated that tests requiring inferences enhance learning more than those requiring

memorized knowledge, and therefore should be used more often.
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v Performance	assessment

Focuses	on	assessing	the	degree	
with	which	students	have	grasped	
the	learning	objectives

proposing	assignments	that	
can	be	addressed	from	
different	points	of	view

Exploit	assessment	methods	closely	
related	to	later	use	of	learning	

simulations	(computer	and	role-
play),	hands-on	field	or	laboratory	
exercises,	research	project,	juried	
presentations

But:
1) It	depends	on	the	subject
2) They	require	additional	time

Both	from	the	point	of	view	of	preparing the	
assessment	methods	
and	for	evaluating	and	marking them	in	an	
objective	and	fair	way

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017
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Performance assessment (authentic assessment)

Authentic assessment favors problems that can be admit di↵erent alternative solutions, rather than

those that can be solved in a fully algorithmic way.

• Other assessment methods more closely related to later use of learning are simulations (computers,

role play) hands-on field or laboratory exercises, research project and juried presentations.

• The downside of these methods, as opposed to a traditional tests, is that they require to devote a

significant amount of additional time, both from the point of view of preparing the assessment methods,

and then for evaluating and marking them in an objective and fair way.

Graphic representation of concepts

• Specially in scientific subjects, graphical representation of concepts is a rather standard assessment

technique.

Journals and research papers

• Demonstrate that one can read, understand, and explain a real research paper is a powerful assessment

method to gauge if the students have properly grasped the learning objectives of the course.

• This method specifically improves critical reflection and self-awareness, as well as direct motivation

when demonstrating the usefulness of the contents that have been learned during the course.

• Moreover, this provides valuable training preparation for instance for oral and presentation skills, which

are then very valuable in many di↵erent contexts.

Portfolios

• Portfolios are not restricted to artistic subjects and architecture: they also make a lot of sense in

scientific subjects.

• For instance, many courses include the creating of a portfolio of computer programs to be part of the

course assessment. Such virtual portfolio could be based on commercial packages such as Mathematica

or Matlab, or in more general-use computer languages such as Python.

• Skills in computer programming are a very valued asset both in academia and in private sector compa-

nies, so we should encourage them as much as possible as part of the evaluation of scientific subjects.

Peer assessment

• This concept means that fellow students help each other to provide feedback about some of the assess-

ment tasks.
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v Graphic	representations

An	organized	framework	of		
(graphic	organizer	or	
concept	map)	is	important	
for	both	thinking	and	
learning

proposing	assignments	
with	a	copy	of	a	basic	
structure	with	concepts	
missing,	that	should	be	
filled	by	the	students

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017
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Journals	and	research	papers
Demonstrate	that	students	can	read,	
understand,	and	explain	a	real	
research	paper	

Powerful	method	to	gauge	if	the	
students	have	properly	grasped	the	
learning	objectives

Improves	critical	reflection and	self-
awareness

Constitutes	a	direct	motivation	
showing the	usefulness	of	the	
contents	learned	during	the	course

Valuable	training	preparation	for	oral	
and	presentation	skills

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017



Portfolios

Portfolios not	restricted	to	arts	and	
architecture,	they	also	make	sense	in	
scientific	subjects

They	might	include	only	student’s	best	work	
or	its	development

Some	courses	involve	creating	a	portfolio	of	computer	programs as	
part	of	its	assessment (Skills	in	computer	programming	are	a	highly	
valued	asset	both	in	academia	and	in	private	sector	companies)

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017



Peer	Assessment
Fellow	students	help	each	other to	provide	feedback	about	some	of	the	
assessment	tasks

Difficult	to	implement	unless	for	relatively	small	groups,	and	where	
moreover	only	when	their	level	and	background is	rather	similar

Delicate	issues	like	plagiarism,	or	harassing, when	the	topics	of	the	
assignment	are	sensitive.	Should	be	limited	to	situations	where	it	can	
really	help	to	attain	the	LOs

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017



18

Assessing	group	work

Assessing	team	work	individually	is	a	notoriously	difficult	task

Perhaps	only	meaningful	method	is	a	common	mark	to	the	whole	
group,	but	ensure	that	beforehand	the	group	is	well	balanced	(in	terms	
of	preparation,	skills,	and	commitment)

One	suggestion	has	been	to	write	individual	reports,	but	this	increases	
the	workload	while	reducing	the	overall	quality	of	the	final	joint	report

Assessing	each	other’s	performance	within	a	group is	highly	delicate	
and	difficult	to	be	really	objective

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017



Example	of	a	grid	for	assessing	group	work
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Embedded	assessment
Design	assessment	methods	that	are	integral	part	of	the	standard	
classroom	activities

One	popular	example:	personal	response	systems	within	the	lecture

but	biased	towards	easy	questions	that	can	be	quickly	answered	

does	not	allow	detailed	and	nuanced	answers	to	difficult	
questions.

Information	collected	during	course	activities	can	also	be	used	for	
assessment,	such	as	laboratory	notes	or	field	trip	reports
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Assessing:	some	food	for	thought - 1

Elisa Govannetti / Juan Rojo                                                                                                                UTQ-ft, VU Amsterdam, 24/09/2017

The	many	assessment	methods are	all	potentially	useful	both	for	the	
students	and	the	instructors,	but	are	they	realistic?

How	can	overworked	lecturers with	several	deadlines	looming	
provide	continuous,	individual	feedback	and	partial	assessment	to	
large	groups	of	students?	

the	contribution	from	teaching	and	laboratory	assistants is	really	
instrumental

Dr Juan Rojo Assessing Testing and Evaluating: Handout September 18, 2017

• The assessment process itself should also be a learning experience.

• Providing continuous feedback to the student’s learning process is very important, and cannot be

limited to the final grade.

• A combination of more traditional and more innovative assessment methods is possibly the optimal

combination.

All the principles stated above sound great in theory, but can then be realistically carried out?

What are the main concerns of experienced lecturers in this respect?

• The detailed assessment methods discussed in this presentation are all potentially useful both for

the students and the instructors to enhance learning output, but how can overworked lecturers with

several deadlines looming provide continuous, individual feedback to large groups of students? Here the

contribution from teaching and laboratory assistants is really instrumental, specially in the marking

and evaluation of the di↵erent assessment methods.

• Some competition and anxiety in the assessment process is essential: else, how can we claim that

the students are prepared for the real world? They need to learn how to function properly under

pressure, which does not mean that their value is only limited to that of their marks. A combination of

assessment methods (say traditional tests together with small projects and assignments to be carried

out outside the classroom) are probably the best combination. And avoid grading the whole course on

a single very final test!

• Should we care about student evaluations at all? The subjective student satisfaction might very well

not reflect objectively if the course has been useful for them. A light course with a very easy exam

might lead to a higher degree of satisfaction, but it is unlikely to lead say to a higher chance of student

employability. In this respect, the very same questions that are asked to the students when they

evaluate their courses can have a dramatic e↵ect in the actual outcome. This reasoning also includes

the student evaluation of the various assessment methods used during the course.

• Another important fact that should make us very way of student evaluations is that they have been

shown to be disproportionately biased against women and racial minorities (as quantified by several

studies). So it is important to devise objective measurements of student satisfaction (perhaps related as

how well do they perform in follow-up courses and their employability), while the subjective satisfaction

is much more di�cult to extract sense from it.
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Some	competition	and	tension in	the	assessment	process	can	
be	beneficial:	

else,	how	can	we	claim	that	the	students	are	prepared	for	
the	real	world?	

Assessing:	some	food	for	thought - 2

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017
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A	combination	of	assessment	methods,	traditional	tests	
together	with	small	projects	and	assignments	to	be	carried	out	
outside	the	classroom,	is	probably	best	combination	

Avoid	grading	the	whole	course	based	on	a	single	very	final	
test!

Assessing:	some	food	for	thought - 3

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017
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Assessing	the	assessors (?)

The	subjective	student	satisfaction	
might	not	reflect	objectively	if	the	
course	has	been	useful	for	them

A	light	course	with	an	easy	exam	
might	lead	to	a	higher	degree	of	
satisfaction,	but	unlikely	to	lead	
to	higher	chance	of	employability

Student	evaluations	have	been	shown	to	be	disproportionately	biased	
against	women	and	racial	minorities

Crucial	to	devise	objective	measurements	of	student	satisfaction,	
perhaps	related	to	how	well	do	they	perform	in	follow-up	courses	and	
on	their	employability

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017
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The	art	of	assessing:	take	home	messages

Learning	is	more	important	than	grading

The	value	of	a	learning	experience cannot	be	reduced	to	a	single	
mark at	the	end	of	course	test.

The	assessment	process	itself should	also	be	a	learning	experience

A	combination	of	more	traditional	and	more	innovative	
assessment	methods is	possibly	the	optimal	combination

Providing	continuous	feedback	to	the	student’s	learning	process is	
very	important,	and	cannot	be	restricted	to	the	final	grade

Duplat / Giovannetti / Rojo UTQ-ft, VU Amsterdam, 04/10/2017
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• A major limitation of this method is that it requires a relatively small group, and where moreover their

level and background should all be rather similar, else it is di�cult to meaningfully assess the progress

of your fellow students.

• Here there are also delicate issues like plagiarism, or harassing when the topics of the assignment are

rather sensitive. So this method of assessment should be limited to situations where it can really help.

Assessing group work

• Assessing team work individually is a notoriously di�cult task

• Here perhaps the only meaningful assessment method is to give a common mark to the whole group, but

ensure that beforehand the group is well balanced among its members (both in terms of preparation,

skills, and commitment to the specific project).

• One suggestion is to write individual reports, but this increases the workload while reducing the overall

quality if the final joint report due to the limited time that can be devoted to its writing.

• Assessing each other’s performance within a group is highly delicate and di�cult to be objective.

• Overall, aiming for balanced groups and ensure that there is good communication between them is the

most important ingredient for the success of group work.

Embedded assessment

Embedded assessment means that opportunities to assess student progress and performance are

integrated into the instructional materials and are indistinguishable from everyday classroom

activities.

• One example is the use of personal response systems within the lecture, but of course this is biased

towards easy questions that can be answered more or less intuitively, and does not allow detailed

reasoned answers to di�cult questions.

• Information collected during course activities can also be used for assessment, such as laboratory notes

or field trip reports. Though again this represents a significant burden for assessors.

4 Summary

The primary goal of assessment is to provide feedback to both students

and the instructors so that learning can be facilitated

The most important points of the above discussion can be summarized as follows:

• Learning is more important than grading. The value of a learning experience cannot be reduced to a

single mark in the end of course test.
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The following material is based on Chapter 7 of “McKeachie’s Teaching Tips: Strategies, Research,

and Theory for College and University Teachers”, 14th Edition.

1 General context

• Every course must come with some method of assessment, aiming to evaluate if the students have

satisfactorily achieved its original learning goals.

• There exist different methods to carry out this assessment, some of them more conventional, others

more innovative.

• It is important to avoid using exclusively a single assessment method for all cases. Some students, for

instance, perform very badly in written tests, while they perform much better in case of assignments

or small projects that they can work on their own.

• To some extent, the specific assessment method adopted influence what the students learn. For instance,

if the exam only contains numerical problem-solving, the students will focus less on the more conceptual

issues of the course.

• Some goals (such as motivation and attitudes) are not measurable by conventional tests, and need

other ways to gauge their development in the students.

• Assessing is not limited to testing: classroom, laboratory, and out-of-class activities should play an

important role as well in the process. This concept is know as embedded assessment.

• Relying on one or two tests only to determine the grades can be dangerous. Use better a variety of

complementary assessment methods, what the students call triangulation of data. Avoid situations like

the UK system, where until recently (for example in Oxford) a whole three-year course was assessed

based on a single test.

Assessment should not be limited to a method to grade students: it can and should be also a

learning opportunity for the students (and their teachers).
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2 Planning methods of assessment

• Prerequisite: list the goals and objectives for the course.

• Then determine which kind of assessment is most suitable for each specific objective.

• Consider an appropriate variety of assessment methods: some students do well in high-stakes tests

(like in the end of year exam) while others do better in out-of-class assignments or short projects.

• The reflection upon the interplay between goals and objectives to be achieved and the corresponding

assessment methods often leads to exploring innovative forms of testing.

• Using assessment material with greater relevance to the course contents motivates better the students

taking them.

• One possible pitfall of more innovative assessment methods is that it becomes more difficult to ensure

objectivity. In a traditional test it is much easier to be objective in the grading, at least within scientific

subjects.

Institutional purposes for your course assessments

• Many institutions are monitoring learning outcomes of their programs, although of course this moni-

toring is rather more challenging at the level of individual courses.

• Involvement of faculty is critical here, but requires appropriate guidance from the university man-

agement as well as the possibility of devoting an appropriate amount of time. In this respect, the

faculty members can provide very valuable data by incorporating the assessment information from

their courses into the overall process.

• Designing assessment methods for the course that moreover provide information that can be used for

the improvement of a whole degree or the university in general leads to a double benefit, but specific

preparation is required in order to prepare such tailored assessment methods.

3 Methods of assessing learning

There exist different methods that can be used to assess learning, in other words, to evaluate if the

original learning goals of the course have been fulfilled by the students.

Tests: in- and out-of-class

• Tests are an unavoidable part of the assessment of many courses, but often lead to frustration in

students.

• It is very well know that perfectly able students underperform in tests, even if they have appropriately

achieved the learning goals of the course.
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• In the information age, tests which are based on simple fact recalling are not appropriate anymore.

Tests should focus on assess how students deal with the information that they have at their disposal,

not with the sheer fact of whether or not students are able to memorize a given chunk of information.

• The specific ways to assess a course affect how students study for these course.

• While it is preferable to devise tests that emphasize their abilities to use the acquired knowledge, as

opposed to just dump memorized information, it is also important to realize that some students are

not flexible than others at addressing novel situations, so one should avoid the “happy idea” tests

which require a lot of intuition to tackle for instance a specific problem that the students have never

encountered beforehand.

• A higher frequency of tests/quizzes (meaning more than 2 per term) has been demonstrated to lead to

an improved student performance.

It has been demonstrated that tests requiring inferences enhance learning more than those requiring

memorized knowledge, and therefore should be used more often.

Performance assessment (authentic assessment)

Authentic assessment favors problems that can be admit different alternative solutions, rather than

those that can be solved in a fully algorithmic way.

• Other assessment methods more closely related to later use of learning are simulations (computers,

role play) hands-on field or laboratory exercises, research project and juried presentations.

• The downside of these methods, as opposed to a traditional tests, is that they require to devote a

significant amount of additional time, both from the point of view of preparing the assessment methods,

and then for evaluating and marking them in an objective and fair way.

Graphic representation of concepts

• Specially in scientific subjects, graphical representation of concepts is a rather standard assessment

technique.

Journals and research papers

• Demonstrate that one can read, understand, and explain a real research paper is a powerful assessment

method to gauge if the students have properly grasped the learning objectives of the course.

• This method specifically improves critical reflection and self-awareness, as well as direct motivation

when demonstrating the usefulness of the contents that have been learned during the course.

• Moreover, this provides valuable training preparation for instance for oral and presentation skills, which

are then very valuable in many different contexts.
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Portfolios

• Portfolios are not restricted to artistic subjects and architecture: they also make a lot of sense in

scientific subjects.

• For instance, many courses include the creating of a portfolio of computer programs to be part of the

course assessment. Such virtual portfolio could be based on commercial packages such as Mathematica

or Matlab, or in more general-use computer languages such as Python.

• Skills in computer programming are a very valued asset both in academia and in private sector compa-

nies, so we should encourage them as much as possible as part of the evaluation of scientific subjects.

Peer assessment

• This concept means that fellow students help each other to provide feedback about some of the assess-

ment tasks.

• A major limitation of this method is that it requires a relatively small group, and where moreover their

level and background should all be rather similar, else it is difficult to meaningfully assess the progress

of your fellow students.

• Here there are also delicate issues like plagiarism, or harassing when the topics of the assignment are

rather sensitive. So this method of assessment should be limited to situations where it can really help.

Assessing group work

• Assessing team work individually is a notoriously difficult task

• Here perhaps the only meaningful assessment method is to give a common mark to the whole group, but

ensure that beforehand the group is well balanced among its members (both in terms of preparation,

skills, and commitment to the specific project).

• One suggestion is to write individual reports, but this increases the workload while reducing the overall

quality if the final joint report due to the limited time that can be devoted to its writing.

• Assessing each other’s performance within a group is highly delicate and difficult to be objective.

• Overall, aiming for balanced groups and ensure that there is good communication between them is the

most important ingredient for the success of group work.

Embedded assessment

Embedded assessment means that opportunities to assess student progress and performance are

integrated into the instructional materials and are indistinguishable from everyday classroom

activities.
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• One example is the use of personal response systems within the lecture, but of course this is biased

towards easy questions that can be answered more or less intuitively, and does not allow detailed

reasoned answers to difficult questions.

• Information collected during course activities can also be used for assessment, such as laboratory notes

or field trip reports. Though again this represents a significant burden for assessors.

4 Summary

The primary goal of assessment is to provide feedback to both students

and the instructors so that learning can be facilitated

The most important points of the above discussion can be summarized as follows:

• Learning is more important than grading. The value of a learning experience cannot be reduced to a

single mark in the end of course test.

• The assessment process itself should also be a learning experience.

• Providing continuous feedback to the student’s learning process is very important, and cannot be

limited to the final grade.

• A combination of more traditional and more innovative assessment methods is possibly the optimal

combination.

All the principles stated above sound great in theory, but can then be realistically carried out?

What are the main concerns of experienced lecturers in this respect?

• The detailed assessment methods discussed in this presentation are all potentially useful both for

the students and the instructors to enhance learning output, but how can overworked lecturers with

several deadlines looming provide continuous, individual feedback to large groups of students? Here the

contribution from teaching and laboratory assistants is really instrumental, specially in the marking

and evaluation of the different assessment methods.

• Some competition and anxiety in the assessment process is essential: else, how can we claim that

the students are prepared for the real world? They need to learn how to function properly under

pressure, which does not mean that their value is only limited to that of their marks. A combination of

assessment methods (say traditional tests together with small projects and assignments to be carried

out outside the classroom) are probably the best combination. And avoid grading the whole course on

a single very final test!

• Should we care about student evaluations at all? The subjective student satisfaction might very well

not reflect objectively if the course has been useful for them. A light course with a very easy exam

might lead to a higher degree of satisfaction, but it is unlikely to lead say to a higher chance of student
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employability. In this respect, the very same questions that are asked to the students when they

evaluate their courses can have a dramatic effect in the actual outcome. This reasoning also includes

the student evaluation of the various assessment methods used during the course.

• Another important fact that should make us very way of student evaluations is that they have been

shown to be disproportionately biased against women and racial minorities (as quantified by several

studies). So it is important to devise objective measurements of student satisfaction (perhaps related as

how well do they perform in follow-up courses and their employability), while the subjective satisfaction

is much more difficult to extract sense from it.

Page 7 of 7


