

Introduction to Elementary Particles (TN2811) Theory Lecture 4

Dr Juan Rojo

VU Amsterdam and Nikhef Theory group

<u>j.rojo@vu.nl</u> / <u>www.juanrojo.com</u>

Today's lecture

Meutrino oscillations: theory and practice

Quarks and hadrons: strongly interacting particles

Mark model: pinning down hadron spectroscopy

Leptonic number and neutrinos

- **Neutrinos** are electrically neutral, very light, and weakly interacting particles introduced by Pauli in 1930 to guarantee **energy conservation** in the beta decay process
- In the second second
- These ghostly particles are very abundant in the Universe: every second about 100 trillion neutrinos from the Sun cross your body!

Leptonic number and neutrinos

In the Standard Model, not only the **total leptonic number** *L* is conserved: also the **individual leptonic numbers** for the electron, muon, and tau are **conserved**

$$\begin{array}{lll} \left(e^{-},\nu_{e}\right) & \rightarrow & L_{e}=+1\,, L_{\mu}=0\,, L_{\tau}=0 \\ \left(e^{+},\bar{\nu}_{e}\right) & \rightarrow & L_{e}=-1\,, L_{\mu}=0\,, L_{\tau}=0 \\ \left(\mu^{-},\nu_{\mu}\right) & \rightarrow & L_{e}=0\,, L_{\mu}=+1\,, L_{\tau}=0 \\ \left(\mu^{+},\bar{\nu}_{\mu}\right) & \rightarrow & L_{e}=0\,, L_{\mu}=-1\,, L_{\tau}=0 \\ \left(\tau^{-},\nu_{\tau}\right) & \rightarrow & L_{e}=0\,, L_{\mu}=0\,, L_{\tau}=+1 \\ \left(\tau^{-},\nu_{\tau}\right) & \rightarrow & L_{e}=0\,, L_{\mu}=0\,, L_{\tau}=-1 \end{array}$$

Only reactions where L_e , L_μ , L_τ are **separately conserved** are allowed

Leptonic number and neutrinos

In the Standard Model, not only the **total leptonic number** *L* is conserved: also the **individual leptonic numbers** for the electron, muon, and tau are **conserved**

In particular neutrinos cannot **spontaneously change flavour**, that is, they cannot **oscillate** between different flavours

$$\nu_{\tau} \rightarrow \nu_{e}$$
 $\Delta L_{e} \neq 0, \Delta L_{\tau} \neq 0$ not allowed:

This is a consequence of the fact that in the SM neutrinos are strictly massless

Only reactions where L_e , L_μ , L_τ are **separately conserved** are allowed

11

In 1998 the discovery of **atmospheric neutrino oscillations** was announced by the Super-Kamiokande experiment: evidence for **new physics beyond the SM!**

other types of neutrino oscillations have also been observed: neutrinos have mass

In 1998 the discovery of **atmospheric neutrino oscillations** was announced by the Super-Kamiokande experiment: evidence for **new physics beyond the SM!**

Neutrino oscillations appear only over **large distances:** in scattering reactions, the **individual leptonic numbers** are always still **conserved**

Juan Rojo

Introduction to Elementary Particles, 08/01/2019

We can easily compute the effects of neutrino oscillations using quantum mechanics

Say we have a propagating neutrino with mass m_1 . Its time evolution is given by

$$\hat{H}|\psi_{\nu_1}(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi_{\nu_1}(t)\rangle \quad \text{Schroedinger eq}$$

$$|\psi_{\nu_1}(t)\rangle = e^{-i\hat{H}t/\hbar} |\psi_{\nu_1}(t=0)\rangle$$

We can simplify this by using that the **neutrino mass is tiny** and so they move at **ultra-relativistic velocities** close to c

$$\hat{H} = \sqrt{\overrightarrow{p}^2 c^2 + m_{\nu_1}^2 c^4} \simeq |\overrightarrow{p}| c \left(1 + \frac{m_{\nu_1}^2 c^2}{2|\overrightarrow{p}|^2}\right) \simeq E + \frac{m_{\nu_1}^2 c^4}{2E}$$

So the quantum-mechanical time-evolution depends (a little) on the neutrino mass

Neutrinos with a well-defined mass are **quantum mechanical superpositions** of neutrinos with well-defined flavour. Assume for simplicity **only two neutrino flavours**

$$|\psi_{\nu_1}\rangle = \cos\theta |\psi_{\nu_e}\rangle + \sin\theta |\psi_{\nu_{\mu}}\rangle$$

mixing angle θ quantifies degree of superposition between flavour and mass eigenstates

Neutrinos with a well-defined mass are **quantum mechanical superpositions** of neutrinos with well-defined flavour. Assume for simplicity **only two neutrino flavours**

$$|\psi_{\nu_1}\rangle = \cos\theta |\psi_{\nu_e}\rangle + \sin\theta |\psi_{\nu_{\mu}}\rangle$$

mixing angle θ quantifies degree of superposition between flavour and mass eigenstates

$$heta = 0 \quad o \quad |\psi_{
u_1}\rangle = |\psi_{
u_e}\rangle \qquad no \ mixing$$

Neutrinos with a well-defined mass are **quantum mechanical superpositions** of neutrinos with well-defined flavour. Assume for simplicity **only two neutrino flavours**

$$|\psi_{\nu_1}\rangle = \cos\theta |\psi_{\nu_e}\rangle + \sin\theta |\psi_{\nu_{\mu}}\rangle$$

mixing angle θ quantifies degree of superposition between flavour and mass eigenstates

$$heta = 0 \quad o \quad |\psi_{
u_1}\rangle = |\psi_{
u_e}\rangle \qquad no \ mixing$$

maximal mixing?

Neutrinos with a well-defined mass are **quantum mechanical superpositions** of neutrinos with well-defined flavour. Assume for simplicity **only two neutrino flavours**

$$|\psi_{\nu_1}\rangle = \cos\theta |\psi_{\nu_e}\rangle + \sin\theta |\psi_{\nu_{\mu}}\rangle$$

mixing angle θ quantifies degree of superposition between flavour and mass eigenstates

$$\theta = 0 \quad \rightarrow \quad |\psi_{\nu_1}\rangle = |\psi_{\nu_e}\rangle \qquad \text{no mixing}$$
$$\theta = \frac{\pi}{4} \quad \rightarrow \quad |\psi_{\nu_1}\rangle = \frac{1}{\sqrt{2}} |\psi_{\nu_e}\rangle + \frac{1}{\sqrt{2}} |\psi_{\nu_\mu}\rangle \qquad \text{maximal mixing?}$$

Neutrino mass implies mixing between mass and flavour eigenstates, and in turn this leads to the phenomenon of **neutrino oscillations**

What is the probability that an **electron neutrino** produced at *t=0* changes flavour and becomes a **muon neutrino** at time *t* ?

First of all express electron and muon neutrinos in terms of mass eigenstates

$$|\psi_{\nu_{e}}\rangle = \cos\theta |\psi_{\nu_{1}}\rangle + \sin\theta |\psi_{\nu_{2}}\rangle$$
$$|\psi_{\nu_{\mu}}\rangle = -\sin\theta |\psi_{\nu_{1}}\rangle + \cos\theta |\psi_{\nu_{2}}\rangle$$

You can check that as expected electron and muon neutrinos are orthonormal

$$\langle \psi_{\nu_e} | \psi_{\nu_e} \rangle = \cos^2 \theta + \sin^2 \theta = 1$$
$$\langle \psi_{\nu_e} | \psi_{\nu_\mu} \rangle = -\cos \theta \sin \theta + \cos \theta \sin \theta = 0$$

So how can an electro neutrino turn into an electron neutrino?

Via quantum-mechanical time-evolution effects!

Juan Rojo

Introduction to Elementary Particles, 07/01/2019

|4

Compute the time evolution of an electron neutrino

$$|\psi_{\nu_{e}}(t=0)\rangle = \cos\theta |\psi_{\nu_{1}}\rangle + \sin\theta |\psi_{\nu_{2}}\rangle$$
$$|\psi_{\nu_{e}}(t)\rangle = \cos\theta \exp\left(-it/\hbar(E+m_{\nu_{1}}^{2}/2E)\right)|\psi_{\nu_{1}}\rangle$$
$$+\sin\theta \exp\left(-it/\hbar(E+m_{\nu_{2}}^{2}/2E)\right)|\psi_{\nu_{2}}\rangle$$

Now compute the **probability** that at the time **t** the original electron neutrino has turned into a muon neutrino

$$\begin{aligned} \langle \psi_{\nu_{\mu}} | \psi_{\nu_{e}}(t) \rangle &= \left(-\sin\theta \langle \psi_{\nu_{1}} | +\cos\theta \langle \psi_{\nu_{2}} | \right) \cos\theta \exp\left(-it/\hbar(E + m_{\nu_{1}}^{2}/2E) \right) | \psi_{\nu_{1}} \rangle \\ &+ \left(-\sin\theta \langle \psi_{\nu_{1}} | +\cos\theta \langle \psi_{\nu_{2}} | \right) \sin\theta \exp\left(-it/\hbar(E + m_{\nu_{2}}^{2}/2E) \right) | \psi_{\nu_{2}} \rangle \end{aligned}$$

We can simply this matrix element by recalling that mass eigenstates are orthonormal

$$\langle \psi_{\nu_{\mu}} | \psi_{\nu_{e}}(t) \rangle = \left(-\sin\theta \langle \psi_{\nu_{1}} | +\cos\theta \langle \psi_{\nu_{2}} | \right) \cos\theta \exp\left(-it/\hbar(E + m_{\nu_{1}}^{2}/2E) \right) | \psi_{\nu_{1}} \rangle$$

$$+ \left(-\sin\theta \langle \psi_{\nu_{1}} | +\cos\theta \langle \psi_{\nu_{2}} | \right) \sin\theta \exp\left(-it/\hbar(E + m_{\nu_{2}}^{2}/2E) \right) | \psi_{\nu_{2}} \rangle$$

$$\langle \psi_{\nu_{\mu}} | \psi_{\nu_{e}}(t) \rangle = \left(-\sin\theta\cos\theta \right) \exp\left(-it/\hbar(E + m_{\nu_{1}}^{2}/2E) \right)$$
$$+ \left(-\sin\theta\cos\theta \right) \exp\left(-it/\hbar(E + m_{\nu_{2}}^{2}/2E) \right)$$

Now we square to compute the **sought-for probability**, and after some algebra

$$P_{\nu_e \to \nu_\mu}(t) = |\langle \psi_{\nu_\mu} | \psi_{\nu_e}(t) \rangle|^2 = \sin^2 (2\theta) \sin^2 \left(\frac{tc^4}{4\hbar E} \Delta m_{12}^2\right)$$

In terms of the neutrino mixing angle and their mass-square difference

$$\Delta m_{12}^2 \equiv m_{\nu_1}^2 - m_{\nu_2}^2$$

Finally since neutrino travel at almost the speed of light *L* = *c t* and the final result is:

$$P_{\nu_e \to \nu_\mu}(L) = |\langle \psi_{\nu_\mu} | \psi_{\nu_e}(t) \rangle|^2 = \sin^2 (2\theta) \sin^2 \left(\frac{Lc^3}{4\hbar E} \Delta m_{12}^2\right)$$

Finally since neutrino travel at almost the speed of light *L* = *c t* and the final result is:

$$P_{\nu_e \to \nu_\mu}(L) = |\langle \psi_{\nu_\mu} | \psi_{\nu_e}(t) \rangle|^2 = \sin^2 (2\theta) \sin^2 \left(\frac{Lc^3}{4\hbar E} \Delta m_{12}^2\right)$$

If neutrinos **do not mix (** $\theta = 0$ **)** then they do not oscillate

Finally since neutrino travel at almost the speed of light *L* = *c t* and the final result is:

$$P_{\nu_e \to \nu_{\mu}}(L) = |\langle \psi_{\nu_{\mu}} | \psi_{\nu_e}(t) \rangle|^2 = \sin^2 (2\theta) \sin^2 \left(\frac{Lc^3}{4\hbar E} \Delta m_{12}^2\right)$$

If neutrinos **do not mix (** θ = **0**) then they do not oscillate

If neutrinos have the same mass then they do not oscillate

Finally since neutrino travel at almost the speed of light *L* = *c t* and the final result is:

$$P_{\nu_e \to \nu_{\mu}}(L) = |\langle \psi_{\nu_{\mu}} | \psi_{\nu_e}(t) \rangle|^2 = \sin^2 (2\theta) \sin^2 \left(\frac{Lc^3}{4\hbar E} \Delta m_{12}^2\right)$$

If neutrinos **do not mix (** θ = **0)** then they do not oscillate

If neutrinos have the same mass then they do not oscillate

More energetic neutrinos oscillate more frequently that low-energy neutrinos

To measure neutrino oscillations, the baseline lenght L needs to account for both the neutrino energy and the mass difference

Finally since neutrino travel at almost the speed of light *L* = *c t* and the final result is:

Neutrino oscillations summary

https://www.youtube.com/watch?v=7fgKBJDMO54

Application to neutrino detectors

$$e^{xercise}$$

 $P_{\nu_e \to \nu_\mu}(L) = |\langle \psi_{\nu_\mu} | \psi_{\nu_e}(t) \rangle|^2 = \sin^2(2\theta) \sin^2\left(\frac{Lc^3}{4\hbar E}\Delta m_{12}^2\right)$

Assume we have a muon neutrino beam, and determine the smallest value of L for which the probability of conversion to electron neutrinos is bigger than P = 0.75

$$\theta_{12} = 33.62^{\circ}$$
 $\Delta m_{12}^2 = 7.4 \times 10^{-5} \,\mathrm{eV}^2$ $E = 1 \,\mathrm{GeV}$
1 $\,\mathrm{GeV} = 5.1 \times 10^{15} \,\mathrm{m}^{-1}$

23

Application to neutrino detectors

$$e^{xercise} P_{\nu_e \to \nu_\mu}(L) = |\langle \psi_{\nu_\mu} | \psi_{\nu_e}(t) \rangle|^2 = \sin^2(2\theta) \sin^2\left(\frac{Lc^3}{4\hbar E}\Delta m_{12}^2\right)$$

Assume we have a muon neutrino beam, and determine the smallest value of L for which the probability of conversion to electron neutrinos is bigger than P = 0.75

 $\theta_{12} = 33.62^{\circ} \qquad \Delta m_{12}^2 = 7.4 \times 10^{-5} \,\text{eV}^2 \qquad E = 1 \,\text{GeV}$ $1 \,\text{GeV} = 5.1 \times 10^{15} \,\text{m}^{-1}$ $0.75 = 0.85 \sin\left(\frac{Lc^3}{4\hbar E}\Delta m_{12}^2\right) \qquad L = 1.22 \left(\frac{4\hbar E}{c^3 \Delta m_{12}^2}\right)$

using natural units to simplify the calculation

$$L = 1.22 \left(\frac{4E}{\Delta m_{12}^2} \right) = 6.5 \times 10^{22} \,\text{GeV}^{-1} = 1.3 \times 10^4 \,\text{km}$$

Juan Rojo

Quarks and hadrons

Quarks and protons

Scattering of a particles (He nuclei) off atoms lead in 1911 Rutherford to discovery of internal structure of atoms: a point-like nucleus and layers of electrons

70 years later, the scattering of energetic electrons off protons lead to equally surprising result: the internal structure of protons, composed by point-like quarks

Atoms have internal structure! A beam of alpha particles Small deflection Most of the alpha particles pass straight Large deflection Turned back Nucleus Alpha Atoms of the particles gold foil

Rutherford experiment:

Electron-proton collisions at Stanford Linear Accelerator: Protons have internal structure!

name	symbol	$m (MeV/c^2)$	s (ħ)
Pion	π^+	139.6	0
	π^0	135.0	0
Kaon	K^+	493.7	0
	K^0	497.7	0
Phi	Φ	1019.5	1
D-meson	D^+	1869.4	0
	D^0	1864.5	0
	D_s^+	1968	0
J/psi	$J/ec\psi$	3097	1
B-meson	B^+	5279	0
	B^0	5279	0
	B^0_s	5366	0
	B_c^{+}	6277	0
Upsilon	Ϋ́	9460	1
Proton	р	938.3	1/2
Neutron	n	939.6	1/2
Delta	Δ^+	1232	3'/2
	Δ^{++}	1232	3/2
Lambda	Λ^0	1116	1/2
Sigma	Σ^+	1189	1/2

There exists a very large number of particles that experience the **strong** interaction

We denote as **hadrons** all particles that are affected by the strong force

What determines their properties, such as **mass and spin**?

name	symbol	$m ({\rm MeV/c^2})$	s (ħ)
Pion	π^+	139.6	0
	π^0	135.0	0
Kaon	K^+	493.7	0
	K^0	497.7	0
Phi	Φ	1019.5	1
D-meson	D^+	1869.4	0
	D^0	1864.5	0
	D_s^+	1968	0
J/psi	J/ψ	3097	1
B-meson	B^+	5279	0
	B^0	5279	0
	B_s^0	5366	0
	B_c^{+}	6277	0
Upsilon	Ŷ	9460	1
Proton	р	938.3	1/2
Neutron	n	939.6	1/2
Delta	Δ^+	1232	3/2
	Δ^{++}	1232	3/2
Lambda	Λ^0	1116	1/2
Sigma	Σ^+	1189	1/2

Why the **proton** and the **neutron** have almost identical masses?

name	symbol	$m (MeV/c^2)$	s (ħ)
Pion	π^+	139.6	0
	π^0	135.0	0
Kaon	K^+	493.7	0
	K^0	497.7	0
Phi	Φ	1019.5	1
D-meson	D^+	1869.4	0
	D^0	1864.5	0
	D_s^+	1968	0
J/psi	J/ψ	3097	1
B-meson	B^+	5279	0
	B^0	5279	0
	B_s^0	5366	0
	B_c^+	6277	0
Upsilon	Ŷ	9460	1
Proton	n	028.2	1 /9
Neutron	p n	900.0 020 6	$\frac{1}{2}$
Delta	Λ^+	959.0 1929	$\frac{1}{2}$
Delta	Δ + +	1232	$\frac{3}{2}$
T 1 1	$\Delta ' '$	1232	$\frac{3}{2}$
Lambda	Λ°	1116	1/2
Sigma	Σ^+	1189	1/2

Why some hadrons are **much** heavier than others?

name	symbol	$m (MeV/c^2)$	s (ħ)
Pion	π^+	139.6	0
	π^0	135.0	0
Kaon	K^+	493.7	0
	K^0	497.7	0
Phi	Φ	1019.5	1
D-meson	D^+	1869.4	0
	D^0	1864.5	0
	D_s^+	1968	0
J/psi	J/ψ	3097	1
B-meson	B^+	5279	0
	B^0	5279	0
	B_s^0	5366	0
	B_c^+	6277	0
Upsilon	Ŷ	9460	1
Proton	n	038 3	1/9
Neutron	p	930.5	$\frac{1}{2}$
Dolto	Λ^+	1020	$\frac{1}{2}$
Dena	Δ · Λ ++	1202	$\frac{3}{2}$
T 1 1	Δ^{++}	1232	$\frac{3}{2}$
Lambda	Λ°	1116	1/2
Sigma	Σ^+	1189	1/2

Why some hadrons have a **higher spin** than others?

The quark model of hadrons

Hadrons are **not** elementary particles: they are composed by **quarks**

The properties of hadrons become transparent once we identify their quark substructure

To describe hundreds of hadrons, we need to know only the properties of 5 quarks

	Flavour	Mass m	Electric charge Q
First family	up	$\sim 5~{\rm MeV}$	+2/3
	down	$\sim 10~{\rm MeV}$	-1/3
Second family	strange	$\sim 100~{\rm MeV}$	-1/3
	charm	$1.3~{\rm GeV}$	+2/3
Third family	top	$175 \mathrm{GeV}$	+2/3
	bottom/beauty	$4.5~{\rm GeV}$	-1/3

Moreover all quarks have the same spin: $s = \hbar/2$

Quarks vs leptons

Depending on the number of quarks they contain, we can **divide hadrons** as follows:

Mesons: composed by a quark-antiquark pair (can be different flavours)

Mesons have integer spin (0 or 1) and are thus **bosons**

Depending on the number of quarks they contain, we can **divide hadrons** as follows:

Mesons: composed by a **quark-antiquark pair** (can be different flavours) Mesons have integer spin (0 or 1) and are thus **bosons**

e.g.: the positively charged pion is composed by an **up quark** and a **down antiquark**

$$\pi^+ = \left(u \, \bar{d} \right)$$

Note how the constituent quark **electric charges add up** to that of the hadron

$$Q_{\pi^+} = +1 = Q_u + Q_{\bar{d}} = +\frac{2}{3} + \frac{1}{3}$$

Depending on the number of quarks they contain, we can **divide hadrons** as follows:

Mesons: composed by a **quark-antiquark pair** (can be different flavours) Mesons have integer spin (0 or 1) and are thus **bosons**

e.g.: the positively charged pion is composed by an **up quark** and a **down antiquark**

$$\pi^+ = \left(u \, \bar{d} \right)$$

Note how the constituent quark electric charges add up to that of the hadron

$$Q_{\pi^+} = +1 = Q_u + Q_{\bar{d}} = +\frac{2}{3} + \frac{1}{3}$$

The pion has **zero spin** since the two constituent quarks are aligned along opposite directions

Juan Rojo

 $s_{\pi^+} = 0$

Introduction to Elementary Particles, 08/01/2019

Depending on the number of quarks they contain, we can **divide hadrons** as follows:

Mesons: composed by a quark-antiquark pair (can be different flavours)

Mesons have integer spin (0 or 1) and are thus **bosons**

Baryons: composed by **three quarks** or **three antiquarks** (can be different flavours). Baryons have half-integer spin (1/2 or 3/2) and are thus **fermions**

Depending on the number of quarks they contain, we can **divide hadrons** as follows:

e.g.: the proton is composed by **two up quarks** and **one down quark**

$$p = (u \, u \, d)$$

Baryons: composed by **three quarks** or **three antiquarks** (can be different flavours). Baryons have half-integer spin (1/2 or 3/2) and are thus **fermions**

Note how the constituent quark electric charges add up to that of the hadron

$$Q_p = +1 = 2Q_u + Q_d = +2 \times \frac{2}{3} - \frac{1}{3}$$

Depending on the number of quarks they contain, we can **divide hadrons** as follows:

e.g.: the proton is composed by **two up quarks** and **one down quark**

$$p = (u \, u \, d)$$

Baryons: composed by **three quarks** or **three antiquarks** (can be different flavours). Baryons have half-integer spin (1/2 or 3/2) and are thus **fermions**

The proton has **spin one-half** because two constituent quarks are aligned along the opposite directions than the other quark

Juan Rojo

Introduction to Elementary Particles, 08/01/2019

Depending on the number of quarks they contain, we can **divide hadrons** as follows:

Mesons: composed by a quark-antiquark pair (can be different flavours)

Mesons have integer spin (0 or 1) and are thus **bosons**

Baryons: composed by **three quarks** or **three antiquarks** (can be different flavours). Baryons have half-integer spin (1/2 or 3/2) and are thus **fermions**

Tetraquarks / pentaquarks: composed by four / five quarks or antiquarks

The baryonic number

Strongly interacting particles carry a new quantum number: the baryonic number

As for the leptonic number, this baryonic quantum number *B* is **conserved** in all reactions involving hadrons and the strong interaction

For quarks we have that $B_q = +1/3$

Work out the values of **B** for the **proton** and the **pion**

The baryonic number

Strongly interacting particles carry a new quantum number: the baryonic number

As for the leptonic number, this baryonic quantum number **B** is **conserved** in all reactions involving hadrons and the strong interaction

For quarks we have that $B_q = +1/3$

Work out the values of **B** for the **proton** and the **pion**

$$\pi^{+} = \left(u \, \bar{d} \right) \qquad B_{\pi^{+}} = B_{u} + B_{\bar{d}} = +\frac{1}{3} + \left(-\frac{1}{3} \right) = 0$$

As for other quantum charges, *B* for antiquarks is the opposite that for quarks

Same pattern for all other **mesons:** *B* = 0