Introduction to Elementary Particles (TN2811)

Theory Lecture 4

Dr Juan Rojo

VU Amsterdam and Nikhef Theory group
 j.rojo@vu.nl / www.juanrojo.com

Today's lecture

IV Neutrino oscillations: theory and practice
[Quarks and hadrons: strongly interacting particles

IV The quark model: pinning down hadron spectroscopy

Neutrino oscillations

Leptonic number and neutrinos

[- Neutrinos are electrically neutral, very light, and weakly interacting particles introduced by Pauli in 1930 to guarantee energy conservation in the beta decay process

Due to their very low interaction rate they are extremely difficult to measure, and huge detectors are required to be able to study then

I These ghostly particles are very abundant in the Universe: every second about 100 trillion neutrinos from the Sun cross your body!

Leptonic number and neutrinos

In the Standard Model, not only the total leptonic number L is conserved: also the individual leptonic numbers for the electron, muon, and tau are conserved

$$
\begin{aligned}
& \left(e^{-}, \nu_{e}\right) \quad \rightarrow \quad L_{e}=+1, L_{\mu}=0, L_{\tau}=0 \\
& \left(e^{+}, \bar{\nu}_{e}\right) \quad \rightarrow \quad L_{e}=-1, L_{\mu}=0, L_{\tau}=0 \\
& \left(\mu^{-}, \nu_{\mu}\right) \quad \rightarrow \quad L_{e}=0, L_{\mu}=+1, L_{\tau}=0 \\
& \left(\mu^{+}, \bar{\nu}_{\mu}\right) \quad \rightarrow \quad L_{e}=0, L_{\mu}=-1, L_{\tau}=0 \\
& \left(\tau^{-}, \nu_{\tau}\right) \quad \rightarrow \quad L_{e}=0, L_{\mu}=0, L_{\tau}=+1 \\
& \left(\tau^{-}, \nu_{\tau}\right) \quad \rightarrow \quad L_{e}=0, L_{\mu}=0, L_{\tau}=-1
\end{aligned}
$$

Only reactions where L_{e}, L_{μ}, L_{τ} are separately conserved are allowed

Leptonic number and neutrinos

In the Standard Model, not only the total leptonic number L is conserved: also the individual leptonic numbers for the electron, muon, and tau are conserved

In particular neutrinos cannot spontaneously change flavour, that is, they cannot oscillate between different flavours

$$
\nu_{\tau} \rightarrow \nu_{e} \quad \Delta L_{e} \neq 0, \Delta L_{\tau} \neq 0 \quad \text { not allowed! }
$$

This is a consequence of the fact that in the SM neutrinos are strictly massless

Only reactions where L_{e}, L_{μ}, L_{τ} are separately conserved are allowed

Neutrino oscillations

In 1998 the discovery of atmospheric neutrino oscillations was announced by the Super-Kamiokande experiment: evidence for new physics beyond the SM!

$$
\nu_{\mu} \rightarrow \nu_{e} \rightarrow \nu_{\mu}
$$

other types of neutrino oscillations have also been observed: neutrinos have mass

Neutrino oscillations

In 1998 the discovery of atmospheric neutrino oscillations was announced by the Super-Kamiokande experiment: evidence for new physics beyond the SM!

Neutrino oscillations appear only over large distances: in scattering reactions, the individual leptonic numbers are always still conserved

Neutrino oscillations

We can easily compute the effects of neutrino oscillations using quantum mechanics
Say we have a propagating neutrino with mass \boldsymbol{m}_{1}. Its time evolution is given by

$$
\begin{aligned}
& \hat{H}\left|\psi_{\nu_{1}}(t)\right\rangle=i \hbar \frac{\partial}{\partial t}\left|\psi_{\nu_{1}}(t)\right\rangle \quad \text { schrodinger eq } \\
& \left|\psi_{\nu_{1}}(t)\right\rangle=e^{-i \hat{H} t \mid \hbar}\left|\psi_{\nu_{1}}(t=0)\right\rangle
\end{aligned}
$$

We can simplify this by using that the neutrino mass is tiny and so they move at ultra-relativistic velocities close to c

$$
\hat{H}=\sqrt{\vec{p}^{2} c^{2}+m_{\nu_{1}}^{2} c^{4}} \simeq|\vec{p}| c\left(1+\frac{m_{\nu_{1}}^{2} c^{2}}{2|\vec{p}|^{2}}\right) \simeq E+\frac{m_{\nu_{1}}^{2} c^{4}}{2 E}
$$

So the quantum-mechanical time-evolution depends (a little) on the neutrino mass

Neutrino oscillations

Neutrinos with a well-defined mass are quantum mechanical superpositions of neutrinos with well-defined flavour. Assume for simplicity only two neutrino flavours

$$
\left|\psi_{\nu_{1}}\right\rangle=\cos \theta\left|\psi_{\nu_{e}}\right\rangle+\sin \theta\left|\psi_{\nu_{\mu}}\right\rangle
$$

mixing angle θ quantifies degree of superposition between flavour and mass eigenstates

Neutrino oscillations

Neutrinos with a well-defined mass are quantum mechanical superpositions of neutrinos with well-defined flavour. Assume for simplicity only two neutrino flavours

$$
\left|\psi_{\nu_{1}}\right\rangle=\cos \theta\left|\psi_{\nu_{e}}\right\rangle+\sin \theta\left|\psi_{\nu_{\mu}}\right\rangle
$$

mixing angle θ quantifies degree of superposition between flavour and mass eigenstates

$$
\theta=0 \quad \rightarrow \quad\left|\psi_{\nu_{1}}\right\rangle=\left|\psi_{\nu_{e}}\right\rangle \quad \text { no mixing }
$$

Neutrino oscillations

Neutrinos with a well-defined mass are quantum mechanical superpositions of neutrinos with well-defined flavour. Assume for simplicity only two neutrino flavours

$$
\left|\psi_{\nu_{1}}\right\rangle=\cos \theta\left|\psi_{\nu_{e}}\right\rangle+\sin \theta\left|\psi_{\nu_{\mu}}\right\rangle
$$

mixing angle θ quantifies degree of superposition between flavour and mass eigenstates

$$
\theta=0 \quad \rightarrow \quad\left|\psi_{\nu_{1}}\right\rangle=\left|\psi_{\nu_{e}}\right\rangle \quad \text { no mixing }
$$

maximal mixing?

Neutrino oscillations

Neutrinos with a well-defined mass are quantum mechanical superpositions of neutrinos with well-defined flavour. Assume for simplicity only two neutrino flavours

$$
\left|\psi_{\nu_{1}}\right\rangle=\cos \theta\left|\psi_{\nu_{e}}\right\rangle+\sin \theta\left|\psi_{\nu_{\mu}}\right\rangle
$$

mixing angle θ quantifies degree of superposition between flavour and mass eigenstates

$$
\begin{gathered}
\theta=0 \quad \rightarrow \quad\left|\psi_{\nu_{1}}\right\rangle=\left|\psi_{\nu_{e}}\right\rangle \quad \text { no mixing } \\
\theta=\frac{\pi}{4} \quad \rightarrow \quad\left|\psi_{\nu_{1}}\right\rangle=\frac{1}{\sqrt{2}}\left|\psi_{\nu_{e}}\right\rangle+\frac{1}{\sqrt{2}}\left|\psi_{\nu_{\mu}}\right\rangle \quad \text { maximal mixing? }
\end{gathered}
$$

Neutrino mass implies mixing between mass and flavour eigenstates, and in turn this leads to the phenomenon of neutrino oscillations

Neutrino oscillations

What is the probability that an electron neutrino produced at $\boldsymbol{t}=\mathbf{0}$ changes flavour and becomes a muon neutrino at time t?

First of all express electron and muon neutrinos in terms of mass eigenstates

$$
\begin{aligned}
& \left|\psi_{\nu_{e}}\right\rangle=\cos \theta\left|\psi_{\nu_{1}}\right\rangle+\sin \theta\left|\psi_{\nu_{2}}\right\rangle \\
& \left|\psi_{\nu_{\mu}}\right\rangle=-\sin \theta\left|\psi_{\nu_{1}}\right\rangle+\cos \theta\left|\psi_{\nu_{2}}\right\rangle
\end{aligned}
$$

You can check that as expected electron and muon neutrinos are orthonormal

$$
\begin{aligned}
& \left\langle\psi_{\nu_{e}} \mid \psi_{\nu_{e}}\right\rangle=\cos ^{2} \theta+\sin ^{2} \theta=1 \\
& \left\langle\psi_{\nu_{e}} \mid \psi_{\nu_{\mu}}\right\rangle=-\cos \theta \sin \theta+\cos \theta \sin \theta=0
\end{aligned}
$$

So how can an electro neutrino turn into an electron neutrino?
Via quantum-mechanical time-evolution effects!

Neutrino oscillations

Compute the time evolution of an electron neutrino

$$
\begin{gathered}
\left|\psi_{\nu_{e}}(t=0)\right\rangle=\cos \theta\left|\psi_{\nu_{1}}\right\rangle+\sin \theta\left|\psi_{\nu_{2}}\right\rangle \\
\left|\psi_{\nu_{e}}(t)\right\rangle=\cos \theta \exp \left(-i t / \hbar\left(E+m_{\nu_{1}}^{2} / 2 E\right)\right)\left|\psi_{\nu_{1}}\right\rangle \\
+\sin \theta \exp \left(-i t / \hbar\left(E+m_{\nu_{2}}^{2} / 2 E\right)\right)\left|\psi_{\nu_{2}}\right\rangle
\end{gathered}
$$

Now compute the probability that at the time \boldsymbol{t} the original electron neutrino has turned into a muon neutrino

$$
\begin{aligned}
\left\langle\psi_{\nu_{\mu}} \mid \psi_{\nu_{e}}(t)\right\rangle & =\left(-\sin \theta\left\langle\psi_{\nu_{1}}\right|+\cos \theta\left\langle\psi_{\nu_{2}}\right|\right) \cos \theta \exp \left(-i t / \hbar\left(E+m_{\nu_{1}}^{2} / 2 E\right)\right)\left|\psi_{\nu_{1}}\right\rangle \\
& +\left(-\sin \theta\left\langle\psi_{\nu_{1}}\right|+\cos \theta\left\langle\psi_{\nu_{2}}\right|\right) \sin \theta \exp \left(-i t / \hbar\left(E+m_{\nu_{2}}^{2} / 2 E\right)\right)\left|\psi_{\nu_{2}}\right\rangle
\end{aligned}
$$

We can simply this matrix element by recalling that mass eigenstates are orthonormal

Neutrino oscillations

$$
\begin{aligned}
\left\langle\psi_{\nu_{\mu}} \mid \psi_{\nu_{c}}(t)\right\rangle & =\left(-\sin \theta\left\langle\psi_{\nu_{1}}\right|+\cos \theta\left\langle\psi_{\nu_{2}}\right|\right) \cos \theta \exp \left(-i t / \hbar\left(E+m_{\nu_{1}}^{2} / 2 E\right)\right)\left|\psi_{\nu_{1}}\right\rangle \\
& +\left(-\sin \theta\left\langle\psi_{\nu_{1}}\right|+\cos \theta\left\langle\psi_{\nu_{2}}\right|\right) \sin \theta \exp \left(-i t \mid \hbar\left(E+m_{\nu_{2}}^{2} / 2 E\right)\right)\left|\psi_{\nu_{2}}\right\rangle \\
\left\langle\psi_{\nu_{\mu}} \mid \psi_{\nu_{e}}(t)\right\rangle & =(-\sin \theta \cos \theta) \exp \left(-i t \mid \hbar\left(E+m_{\nu_{1}}^{2} / 2 E\right)\right) \\
& +(-\sin \theta \cos \theta) \exp \left(-i t / \hbar\left(E+m_{\nu_{2}}^{2} 2 E\right)\right)
\end{aligned}
$$

Now we square to compute the sought-for probability, and after some algebra

$$
P_{\nu_{e} \rightarrow \nu_{\mu}}(t)=\left|\left\langle\psi_{\nu_{\mu}} \mid \psi_{\nu_{e}}(t)\right\rangle\right|^{2}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{t c^{4}}{4 \hbar E} \Delta m_{12}^{2}\right)
$$

In terms of the neutrino mixing angle and their mass-square difference

$$
\Delta m_{12}^{2} \equiv m_{\nu_{1}}^{2}-m_{\nu_{2}}^{2}
$$

Neutrino oscillations

Finally since neutrino travel at almost the speed of light $\boldsymbol{L}=\boldsymbol{c} \boldsymbol{t}$ and the final result is:

$$
P_{\nu_{e} \rightarrow \nu_{\mu}}(L)=\left|\left\langle\psi_{\nu_{\mu}} \mid \psi_{\nu_{e}}(t)\right\rangle\right|^{2}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{L c^{3}}{4 \hbar E} \Delta m_{12}^{2}\right)
$$

Neutrino oscillations

Finally since neutrino travel at almost the speed of light $\boldsymbol{L}=\boldsymbol{c} \boldsymbol{t}$ and the final result is:

$$
P_{\nu_{e} \rightarrow \nu_{\mu}}(L)=\left|\left\langle\psi_{\nu_{\mu}} \mid \psi_{\nu_{e}}(t)\right\rangle\right|^{2}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{L c^{3}}{4 \hbar E} \Delta m_{12}^{2}\right)
$$

If neutrinos do not $\boldsymbol{m i x}(\theta=0)$ then they do not oscillate

Neutrino oscillations

Finally since neutrino travel at almost the speed of light $\boldsymbol{L}=\boldsymbol{c} \boldsymbol{t}$ and the final result is:

$$
\begin{aligned}
& P_{\nu_{e} \rightarrow \nu_{\mu}}(L)=\left|\left\langle\psi_{\nu_{\mu}} \mid \psi_{\nu_{e}}(t)\right\rangle\right|^{2}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{L c^{3}}{4 \hbar E} \Delta m_{12}^{2}\right) \\
& \text { neutrinos do not mix }(\theta=0) \text { then they do not oscillate }
\end{aligned}
$$

If neutrinos have the same mass then they do not oscillate

Neutrino oscillations

Finally since neutrino travel at almost the speed of light $\boldsymbol{L}=\boldsymbol{c} \boldsymbol{t}$ and the final result is:

$$
\begin{aligned}
& P_{\nu_{e} \rightarrow \nu_{\mu}}(L)=\left|\left\langle\psi_{\nu_{\mu}} \mid \psi_{\nu_{e}}(t)\right\rangle\right|^{2}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{L c^{3}}{4 \hbar E} \Delta m_{12}^{2}\right) \\
& \text { neutrinos do not mix }(\theta=0) \text { then they do not oscillate }
\end{aligned}
$$

If neutrinos have the same mass then they do not oscillate
\square More energetic neutrinos oscillate more frequently that low-energy neutrinos

I To measure neutrino oscillations, the baseline lenght L needs to account for both the neutrino energy and the mass difference

Neutrino oscillations

Finally since neutrino travel at almost the speed of light $\boldsymbol{L}=\boldsymbol{c} \boldsymbol{t}$ and the final result is:

Neutrino oscillations summary

https://www.youtube.com/watch?v=7fgKBJDMO54

Application to neutrino detectors

exercise

$$
P_{\nu_{e} \rightarrow \nu_{\mu}}(L)=\left|\left\langle\psi_{\nu_{\mu}} \mid \psi_{\nu_{e}}(t)\right\rangle\right|^{2}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{L c^{3}}{4 \hbar E} \Delta m_{12}^{2}\right)
$$

Assume we have a muon neutrino beam, and determine the smallest value of L for which the probability of conversion to electron neutrinos is bigger than $P=0.75$

$$
\begin{aligned}
& \theta_{12}=33.62^{\circ} \quad \Delta m_{12}^{2}=7.4 \times 10^{-5} \mathrm{eV}^{2} \quad E=1 \mathrm{GeV} \\
& 1 \mathrm{GeV}=5.1 \times 10^{15} \mathrm{~m}^{-1}
\end{aligned}
$$

Application to neutrino detectors

exercise

$$
P_{\nu_{e} \rightarrow \nu_{\mu}}(L)=\left|\left\langle\psi_{\nu_{\mu}} \mid \psi_{\nu_{e}}(t)\right\rangle\right|^{2}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{L c^{3}}{4 \hbar E} \Delta m_{12}^{2}\right)
$$

Assume we have a muon neutrino beam, and determine the smallest value of L for which the probability of conversion to electron neutrinos is bigger than $P=0.75$

$$
\begin{array}{r}
\theta_{12}=33.62^{\circ} \quad \Delta m_{12}^{2}=7.4 \times 10^{-5} \mathrm{eV}^{2} \quad E=1 \mathrm{GeV} \\
1 \mathrm{GeV}=5.1 \times 10^{15} \mathrm{~m}^{-1} \\
0.75=0.85 \sin \left(\frac{L c^{3}}{4 \hbar E} \Delta m_{12}^{2}\right) \quad L=1.22\left(\frac{4 \hbar E}{c^{3} \Delta m_{12}^{2}}\right)
\end{array}
$$

using natural units to simplify the calculation

$$
L=1.22\left(\frac{4 E}{\Delta m_{12}^{2}}\right)=6.5 \times 10^{22} \mathrm{GeV}^{-1}=1.3 \times 10^{4} \mathrm{~km}
$$

Quarks and hadrons

Quarks and protons

I Scattering of a particles (He nuclei) off atoms lead in 1911 Rutherford to discovery of internal structure of atoms: a point-like nucleus and layers of electrons

J 70 years later, the scattering of energetic electrons off protons lead to equally surprising result: the internal structure of protons, composed by point-like quarks

Rutherford experiment:
Atoms have internal structure!

Electron-proton collisions at Stanford Linear Accelerator:
Protons have internal structure!

The hadron zoo

name	symbol	$m\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$s(\hbar)$
Pion	π^{+}	139.6	0
	π^{0}	135.0	0
Kaon	K^{+}	493.7	0
	K^{0}	497.7	0
Phi	Φ	1019.5	1
D-meson	D^{+}	1869.4	0
	D^{0}	1864.5	0
	D_{s}^{+}	1968	0
J/psi	J / ψ	3097	1
B-meson	B^{+}	5279	0
	B^{0}	5279	0
	B_{s}^{0}	5366	0
Upsilon	B_{c}^{+}	6277	0
	Υ	9460	1
Proton			
Neutron	p	938.3	$1 / 2$
Delta	Δ^{+}	939.6	$1 / 2$
	Δ^{++}	1232	$3 / 2$
Lambda	Λ^{0}	1232	$3 / 2$
Sigma	Σ^{+}	1116	$1 / 2$
		1189	$1 / 2$

There exists a very large number of particles that experience the strong
interaction

We denote as hadrons all particles that are affected by the strong force

What determines their properties, such as mass and spin?

The hadron zoo

name	symbol	$m\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$s(\hbar)$
Pion	π^{+}	139.6	0
Kaon	π^{0}	135.0	0
	K^{+}	493.7	0
Phi	K^{0}	497.7	0
D-meson	Φ	1019.5	1
	D^{+}	1869.4	0
	D^{0}	1864.5	0
J/psi	D_{s}^{+}	1968	0
B-meson	J / ψ	3097	1
	B^{+}	5279	0
	B^{0}	5279	0
Upsilon	B_{s}^{0}	5366	0
	B_{c}^{+}	6277	0
Proton	Υ	9460	1
Neutron	p		
Delta	n	938.3	$1 / 2$
	Δ^{+}	939.6	$1 / 2$
Lambda	Δ^{++}	1232	$3 / 2$
Sigma	Λ^{0}	1232	$3 / 2$
	Σ^{+}	1116	$1 / 2$
		1189	$1 / 2$

Why the proton and the neutron have almost identical masses?

The hadron zoo

name	symbol	$m\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$s(\hbar)$
Pion	π^{+}	139.6	0
	π^{0}	135.0	0
Kaon	K^{+}	493.7	0
	K^{0}	497.7	0
Phi	Φ	1019.5	1
D-meson	D^{+}	1869.4	0
	D^{0}	1864.5	0
	D_{s}^{+}	1968	0
J/psi	J / ψ	3097	1
B-meson	B^{+}	5279	0
	B^{0}	5279	0
	B_{s}^{0}	5366	0
Upsilon	B_{c}^{+}	6277	0
	Υ	9460	1
Proton	p		
Neutron	n	938.3	$1 / 2$
Delta	Δ^{+}	939.6	$1 / 2$
	Δ^{++}	1232	$3 / 2$
Lambda	Λ^{0}	1232	$3 / 2$
Sigma	Σ^{+}	1116	$1 / 2$
		1189	$1 / 2$

Why some hadrons are much heavier than others?

The hadron zoo

name	symbol	$m\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$s(\hbar)$
Pion	π^{+}	139.6	0
	π^{0}	135.0	0
Kaon	K^{+}	493.7	0
	K^{0}	497.7	0
Phi	Φ	1019.5	1
D-meson	D^{+}	1869.4	0
	D^{0}	1864.5	0
	D_{s}^{+}	1968	0
J/psi	J / ψ	3097	1
B-meson	B^{+}	5279	0
	B^{0}	5279	0
	B_{s}^{0}	5366	0
Upsilon	B_{c}^{+}	6277	0
	Υ	9460	1
Proton			
Neutron	p	938.3	$1 / 2$
Delta	Δ^{+}	939.6	$1 / 2$
	Δ^{++}	1232	$3 / 2$
Lambda	Λ^{0}	1232	$3 / 2$
Sigma	Σ^{+}	1116	$1 / 2$
		1189	$1 / 2$

Why some hadrons have a higher spin than others?

The quark model of hadrons

Hadrons are not elementary particles: they are composed by quarks
The properties of hadrons become transparent once we identify their quark substructure
To describe hundreds of hadrons, we need to know only the properties of 5 quarks

	Flavour	Mass m	Electric charge Q
First family	up	$\sim 5 \mathrm{MeV}$	$+2 / 3$
	down	$\sim 10 \mathrm{MeV}$	$-1 / 3$
Second family	strange	$\sim 100 \mathrm{MeV}$	$-1 / 3$
	charm	1.3 GeV	$+2 / 3$
Third family	bottom/beauty	4.5 GeV	$-1 / 3$

Moreover all quarks have the same spin: $s=\hbar / 2$

Quarks vs leptons

Mesons and baryons

Depending on the number of quarks they contain, we can divide hadrons as follows:

Mesons: composed by a quark-antiquark pair (can be different flavours) Mesons have integer spin (0 or 1) and are thus bosons

Mesons and baryons

Depending on the number of quarks they contain, we can divide hadrons as follows:

Mesons: composed by a quark-antiquark pair (can be different flavours) Mesons have integer spin (0 or 1) and are thus bosons
e.g.: the positively charged pion is composed by an up quark and a down antiquark

$$
\pi^{+}=(u \bar{d})
$$

Note how the constituent quark electric charges add up to that of the hadron

$$
Q_{\pi^{+}}=+1=Q_{u}+Q_{\bar{d}}=+\frac{2}{3}+\frac{1}{3}
$$

Mesons and baryons

Depending on the number of quarks they contain, we can divide hadrons as follows:

Mesons: composed by a quark-antiquark pair (can be different flavours) Mesons have integer spin (0 or 1) and are thus bosons
e.g.: the positively charged pion is composed by an up quark and a down antiquark

$$
\pi^{+}=(u \bar{d})
$$

Note how the constituent quark electric charges add up to that of the hadron

$$
s_{\pi^{+}}=0
$$

$$
Q_{\pi^{+}}=+1=Q_{u}+Q_{\bar{d}}=+\frac{2}{3}+\frac{1}{3}
$$

The pion has zero spin since the two constituent quarks are aligned along opposite directions

Mesons and baryons

Depending on the number of quarks they contain, we can divide hadrons as follows:

Mesons: composed by a quark-antiquark pair (can be different flavours) Mesons have integer spin (0 or 1) and are thus bosons

Baryons: composed by three quarks or three antiquarks (can be different flavours). Baryons have half-integer spin ($1 / 2$ or $3 / 2$) and are thus fermions

Mesons and baryons

Depending on the number of quarks they contain, we can divide hadrons as follows:
e.g.: the proton is composed by two up quarks and one down quark

$$
p=(u u d)
$$

Baryons: composed by three quarks or three antiquarks (can be different flavours). Baryons have half-integer spin (1/2 or $3 / 2$) and are thus fermions

Note how the constituent quark electric charges add up to that of the hadron

$$
Q_{p}=+1=2 Q_{u}+Q_{d}=+2 \times \frac{2}{3}-\frac{1}{3}
$$

Mesons and baryons

Depending on the number of quarks they contain, we can divide hadrons as follows:
e.g.: the proton is composed by two up quarks and one down quark

$$
p=(u u d)
$$

Baryons: composed by three quarks or three antiquarks (can be different flavours). Baryons have half-integer spin (1/2 or $3 / 2$) and are thus fermions

$$
s_{p}=1 / 2
$$

The proton has spin one-half because two constituent quarks are aligned along the opposite directions than the other quark

Mesons and baryons

Depending on the number of quarks they contain, we can divide hadrons as follows:

Mesons: composed by a quark-antiquark pair (can be different flavours) Mesons have integer spin (0 or 1) and are thus bosons

Baryons: composed by three quarks or three antiquarks (can be different flavours). Baryons have half-integer spin ($1 / 2$ or $3 / 2$) and are thus fermions

Tetraquarks / pentaquarks: composed by four / five quarks or antiquarks

The baryonic number

Strongly interacting particles carry a new quantum number: the baryonic number

As for the leptonic number, this baryonic quantum number \boldsymbol{B} is conserved in all reactions involving hadrons and the strong interaction

For quarks we have that $\boldsymbol{B}_{q}=\boldsymbol{+ 1} / \mathbf{3}$

Work out the values of \boldsymbol{B} for the proton and the pion

The baryonic number

Strongly interacting particles carry a new quantum number: the baryonic number

As for the leptonic number, this baryonic quantum number B is conserved in all reactions involving hadrons and the strong interaction

For quarks we have that $\boldsymbol{B}_{q}=\boldsymbol{+ 1} / \mathbf{3}$

Work out the values of \boldsymbol{B} for the proton and the pion

$$
\pi^{+}=(u \bar{d}) \quad B_{\pi^{+}}=B_{u}+B_{\bar{d}}=+\frac{1}{3}+\left(-\frac{1}{3}\right)=0
$$

As for other quantum charges, \boldsymbol{B} for antiquarks is the opposite that for quarks
Same pattern for all other mesons: B=0

