Introduction to Elementary Particles (TN2811)

Theory Lecture 3

Dr Juan Rojo

VU Amsterdam and Nikhef Theory group
 j.rojo@vu.nl / www.juanrojo.com

Today’s lecture

VFermions and bosons: spin-statistics
(V) Charged leptons and the leptonic number

VNeutrinos, radioactive processes, and oscillations

Fermions and bosons

Fermions and bosons

In terms of their spin quantum number \boldsymbol{s}, particles can divided into two groups:

Composite particles

Fermions: half-integer spin

$$
s=\frac{\hbar}{2}, \frac{3 \hbar}{2}, \ldots
$$

Bosons: integer spin

$$
s=0, \hbar, 2 \hbar, \ldots
$$

Fermions and bosons

In terms of their spin quantum number \boldsymbol{s}, particles can divided into two groups:

Fermions: half-integer spin	
\qquadElementary particles	\hbar Electron, muon, tauon, neutrinos, quarks,$\frac{3 \hbar}{2}, \ldots$
Composite	
particles	

Fermions and bosons

In terms of their spin quantum number \boldsymbol{s}, particles can divided into two groups:

Fermions and bosons

In terms of their spin quantum number s, particles can divided into two groups:

Elementary particles

Composite particles

Fermions: half-integer spin

$$
s=\frac{\hbar}{2}, \frac{3 \hbar}{2}, \ldots
$$

Electron, muon, tauon, neutrinos, quarks

Protons, neutrons

$$
s=\frac{\hbar}{2}
$$

Some baryons
e.g. Δ^{++}

Bosons: integer spin

$$
s=0, \hbar, 2 \hbar, \ldots
$$

Higgs boson
$s=0$
Photon, gluon, $W, Z \quad s=\hbar$
Graviton (?)
$s=2 \hbar$

Fermions and bosons

In terms of their spin quantum number \boldsymbol{s}, particles can divided into two groups:

Elementary particles

Composite particles

Fermions: half-integer spin

$$
s=\frac{\hbar}{2}, \frac{3 \hbar}{2}, \ldots
$$

Electron, muon, tauon, neutrinos, quarks

$$
s=\frac{\hbar}{2}
$$

Protons, neutrons

$$
s=\frac{\hbar}{2}
$$

Some baryons
e.g. Δ^{++}

$$
s=\frac{3 \hbar}{2}
$$

Bosons: integer spin

$$
s=0, \hbar, 2 \hbar, \ldots
$$

Higgs boson

$$
s=0
$$

Photon, gluon, $W, Z \quad s=\hbar$
Graviton (?)
$s=2 \hbar$

Pions, kaons

$$
s=0
$$

Some mesons
$s=1$

Fermions and bosons

In terms of their spin quantum number \boldsymbol{s}, particles can divided into two groups:

Spin \& statistics

Fermions and bosons do exhibit vastly different properties due to their different spins

Consider a quantum system composed by two identical particles with position \mathbf{x}_{1} and $\mathbf{x}_{\mathbf{2}}$

$$
\psi_{\mathrm{tot}}\left(x_{1}, x_{2}\right)=\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)
$$

Now we can exchange the position of the two particles, and end up with:

$$
\widetilde{\psi}_{\mathrm{tot}}\left(x_{1}, x_{2}\right)=\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)
$$

why?
How are these two total wave functions related among them?

Spin \& statistics

Fermions and bosons do exhibit vastly different properties due to their different spins

Consider a quantum system composed by two identical particles with position \mathbf{x}_{1} and \mathbf{x}_{2}

$$
\psi_{\mathrm{tot}}\left(x_{1}, x_{2}\right)=\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)
$$

Now we can exchange the position of the two particles, and end up with:

$$
\widetilde{\psi}_{\mathrm{tot}}\left(x_{1}, x_{2}\right)=\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)
$$

Since the particles are identical, any physical measurements carried out in the system should yield exactly the same result

In other words, the probability of finding the two particles at \mathbf{x}_{1} and \mathbf{x}_{2} should not change

$$
\left|\psi_{\mathrm{tot}}\left(x_{1}, x_{2}\right)\right|^{2}=\left|\widetilde{\psi}_{\mathrm{tot}}\left(x_{1}, x_{2}\right)\right|^{2}
$$

What do we learn from this?

Spin \& statistics

$$
\begin{gathered}
\left|\psi_{\mathrm{tot}}\left(x_{1}, x_{2}\right)\right|^{2}=\left|\widetilde{\psi}_{\text {tot }}\left(x_{1}, x_{2}\right)\right|^{2} \\
\left|\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)\right|^{2}=\left|\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right|^{2}
\end{gathered}
$$

So when we interchange the position of the two identical particles, the total wave function must be unchanged up to a complex phase

$$
\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)=e^{i \phi} \psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)
$$

why?
What happens if we exchange again the position of the particles?

Spin \& statistics

$$
\begin{gathered}
\left|\psi_{\text {tot }}\left(x_{1}, x_{2}\right)\right|^{2}=\left|\widetilde{\psi}_{\text {tot }}\left(x_{1}, x_{2}\right)\right|^{2} \\
\left|\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)\right|^{2}=\left|\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right|^{2}
\end{gathered}
$$

So when we interchange the position of the two identical particles, the total wave function must be unchanged up to a complex phase

$$
\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)=e^{i \phi} \psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)
$$

What happens if we exchange again the position of the particles?

$$
\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)=e^{i \phi} \psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)=e^{i \phi}\left(e^{i \phi} \psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)\right)
$$

Which implies that the complex phase can only take two values

$$
e^{i 2 \phi}=1 \rightarrow \phi=0, \pi \rightarrow e^{i \phi}=1,-1
$$

Spin \& statistics

Therefore the basic principles of quantum mechanics tell us that there exist two kinds of particles depending on how they behave under exchanging them

Bosons: if we exchange two identical bosons, the wave function is unchanged

$$
\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)=\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)
$$

Fermions: if we exchange two identical fermions, the wave function changes sign

$$
\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)=-\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)
$$

Why this difference is so important?
What happens if two fermions occupy the same quantum state?

Spin \& statistics

Therefore the basic principles of quantum mechanics tell us that there exist two kinds of particles depending on how they behave under exchanging them

Bosons: if we exchange two identical bosons, the wave function is unchanged

$$
\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)=\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)
$$

Fermions: if we exchange two identical fermions, the wave function changes sign

$$
\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)=-\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)
$$

Why this difference is so important?
What happens if two fermions occupy the same quantum state?

$$
\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{1}\right)=-\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{1}\right)=0
$$

Two fermions cannot occupy the same quantum state

Radioactive decays

and neutrinos

Radioactive decays

Atomic nuclei are sometimes unstable: they undergo radioactive decays, transforming into a different chemical element and emitting energetic particles

α-decay (strong interactions)

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z-2}^{A-4} Y+{ }_{2}^{4} \mathrm{He}
$$

Radioactive decays

Atomic nuclei are sometimes unstable: they undergo radioactive decays, transforming into a different chemical element and emitting energetic particles

α-decay (strong interactions)

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z-2}^{A-4} Y+{ }_{2}^{4} \mathrm{He}
$$

β-decay (weak interactions)

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-}+\bar{\nu}_{e}
$$

Radioactive decays

Atomic nuclei are sometimes unstable: they undergo radioactive decays, transforming into a different chemical element and emitting energetic particles

Alpha decays

Let us evaluate the energy of the alpha particle in this type of radioactive decay

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z-2}^{A-4} Y+{ }_{2}^{4} \mathrm{He}
$$

start by writing the four-momenta in the rest frame of the decaying nucleus X

$$
p_{X}^{\mu}=\left(m_{X} c, \overrightarrow{0}\right)
$$

Alpha decays

Let us evaluate the energy of the alpha particle in this type of radioactive decay

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z-2}^{A-4} Y+{ }_{2}^{4} \mathrm{He}
$$

start by writing the four-momenta in the rest frame of the decaying nucleus X

$$
\begin{aligned}
& p_{X}^{\mu}=\left(m_{X} c, \overrightarrow{0}\right) \\
& p_{Y}^{\mu}=\left(E_{Y} / c, \vec{p}_{Y}\right) \\
& p_{\alpha}^{\mu}=\left(E_{\alpha} / c, \vec{p}_{\alpha}\right)
\end{aligned}
$$

First of all we impose conservation of four-momentum

$$
\begin{aligned}
\vec{p}_{Y} & =-\vec{p}_{\alpha} \equiv \vec{p} \\
m_{X} c & =E_{Y} / c+E_{\alpha} / c
\end{aligned}
$$

We have one equation and three unknowns - what extra info can we use?

Alpha decays

Use the mass-shell condition that relates the energy, mass, and linear momentum

$$
E_{Y} / c=\sqrt{m_{Y}^{2} c^{2}+\vec{p}^{2}} \quad E_{\alpha} / c=\sqrt{m_{\alpha}^{2} c^{2}+\vec{p}^{2}}
$$

Now we have three equations and three unknowns - we can solve the system!

$$
E_{\alpha}=\frac{m_{X}^{2}+m_{\alpha}^{2}-m_{Y}^{2}}{2 m_{X}} c^{2}
$$

For a given element \boldsymbol{X}, the value of \boldsymbol{E}_{a} is always fixed

Recall that here E is always the relativistic energy, which includes contributions both of the rest mass and of the kinetic energy

Beta decays

Experimentally beta decays were observed to take the following form:

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-}
$$

Applying the same reasoning as for alpha decays, we would for the electron energy

$$
E_{e}=\frac{m_{X}^{2}+m_{e}^{2}-m_{Y}^{2}}{2 m_{X}} c^{2} \simeq \frac{m_{X}^{2}-m_{Y}^{2}}{2 m_{X}} c^{2}
$$

So exactly the same electron energy in all beta decays!

Beta decays

Experimentally beta decays were observed to take the following form:

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-}
$$

However it was found that the electron energy had a range of possible values

Beta decays

Experimentally beta decays were observed to take the following form:

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-}+\bar{\nu}_{e}
$$

The neutrino was introduced to be able to describe the electron energy spectrum

Beta decays

Experimentally beta decays were observed to take the following form:

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-}+\bar{\nu}_{e}
$$

The neutrino was introduced to be able to describe the electron energy spectrum
It took decades to be measured, but we knew its properties from the very beginning:

- Electric charge conservation implies that the neutrino should be electrically neutral

$$
Q_{\nu}=Q_{Z X}-Q_{Z+1} Y-Q_{e^{-}}=Z-(Z+1)-(-1)=0
$$

Beta decays

Experimentally beta decays were observed to take the following form:

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-}+\bar{\nu}_{e}
$$

The neutrino was introduced to be able to describe the electron energy spectrum
It took decades to be measured, but we knew its properties from the very beginning:

- Electric charge conservation implies that the neutrino should be electrically neutral
\square It does not experience the strong interaction

Beta decays

Experimentally beta decays were observed to take the following form:

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-}+\bar{\nu}_{e}
$$

The neutrino was introduced to be able to describe the electron energy spectrum

It took decades to be measured, but we knew its properties from the very beginning:
\square Electric charge conservation implies that the neutrino should be electrically neutral
\square It does not experience the strong interaction

I Normal matter is highly transparent to neutrinos: very weak interactions, small crosssection with matter particles

Else it should have been observed as a decay product of beta decays

Beta decays

Experimentally beta decays were observed to take the following form:

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-}+\bar{\nu}_{e}
$$

The neutrino was introduced to be able to describe the electron energy spectrum
It took decades to be measured, but we knew its properties from the very beginning:
\square Electric charge conservation implies that the neutrino should be electrically neutral
\square It does not experience the strong interaction

I Normal matter is highly transparent to neutrinos: very weak interactions, small crosssection with matter particles

It should either be massless or have a tiny mass, much smaller than any other particle

$$
m_{\nu} / m_{e} \leq 5 \times 10^{-5}
$$

from the shape of the electron energy spectrum

Charged leptons \& the

leptonic quantum number

Leptons

We denote as leptons all particles that do not experience the strong force

Leptons

We denote as leptons all particles that do not experience the strong force

Leptons

We denote as leptons all particles that do not experience the strong force

Leptons

We denote as leptons all particles that do not experience the strong force
with electric charge: electron, muon, tauon (+ antiparticles)
Charged leptons

Leptons

electrically neutral: electron neutrino, muon
Neutral neutrino, tau neutrino (+ antiparticles)

$$
m_{e}=9.1 \times 10^{-31} \mathrm{~kg}=0.511 \mathrm{eV} / \mathrm{c}^{2} \quad Q_{e}=-e=-1.6 \times 10^{-19} \mathrm{C}
$$

In the world of elementary particles, convenient to measure mass in $\mathrm{MeV} / \mathrm{c}^{2}$ or $\mathrm{GeV} / \mathrm{c}^{2}$

$$
1 \mathrm{MeV} / \mathrm{c}^{2}=1.79 \times 10^{-30} \mathrm{~kg}
$$

Leptonic number

Leptons have associated a new quantum number, called the leptonic number L, which in the Standard Model is conserved by all reactions involving leptons

$$
\left(e^{-}, \mu^{-}, \tau^{-}, \nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \quad \rightarrow \quad L=+1
$$

As with other quantum numbers, antiparticles have the opposite value of L

$$
\left(e^{+}, \mu^{+}, \tau^{+}, \bar{\nu}_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}\right) \quad \rightarrow \quad L=-1
$$

What are the most important properties of the leptonic number?

Leptonic number

Leptons have associated a new quantum number, called the leptonic number L, which in the Standard Model is conserved by all reactions involving leptons

$$
\left(e^{-}, \mu^{-}, \tau^{-}, \nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \quad \rightarrow \quad L=+1
$$

As with other quantum numbers, antiparticles have the opposite value of L

$$
\left(e^{+}, \mu^{+}, \tau^{+}, \bar{\nu}_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}\right) \quad \rightarrow \quad L=-1
$$

The leptonic number is additive in a system of particles

$$
e^{-}+\mu^{-} \quad \rightarrow \quad L=?
$$

Leptonic number

Leptons have associated a new quantum number, called the leptonic number L, which in the Standard Model is conserved by all reactions involving leptons

$$
\left(e^{-}, \mu^{-}, \tau^{-}, \nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \quad \rightarrow \quad L=+1
$$

As with other quantum numbers, antiparticles have the opposite value of L

$$
\left(e^{+}, \mu^{+}, \tau^{+}, \bar{\nu}_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}\right) \quad \rightarrow \quad L=-1
$$

The leptonic number is additive in a system of particles

$$
e^{-}+\mu^{-} \quad \rightarrow \quad L=+1+1=+2
$$

Leptonic number

Leptons have associated a new quantum number, called the leptonic number L, which in the Standard Model is conserved by all reactions involving leptons

$$
\left(e^{-}, \mu^{-}, \tau^{-}, \nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \quad \rightarrow \quad L=+1
$$

As with other quantum numbers, antiparticles have the opposite value of L

$$
\left(e^{+}, \mu^{+}, \tau^{+}, \bar{\nu}_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}\right) \quad \rightarrow \quad L=-1
$$

The leptonic number is additive in a system of particles

$$
\begin{array}{rll}
e^{-}+\mu^{-} & \rightarrow & L=+1+1=+2 \\
e^{-}+e^{+}+\tau^{-}+\tau^{+} & \rightarrow & L=?
\end{array}
$$

Leptonic number

Leptons have associated a new quantum number, called the leptonic number L, which in the Standard Model is conserved by all reactions involving leptons

$$
\left(e^{-}, \mu^{-}, \tau^{-}, \nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \quad \rightarrow \quad L=+1
$$

As with other quantum numbers, antiparticles have the opposite value of L

$$
\left(e^{+}, \mu^{+}, \tau^{+}, \bar{\nu}_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}\right) \quad \rightarrow \quad L=-1
$$

The leptonic number is additive in a system of particles

$$
\begin{aligned}
& e^{-}+\mu^{-} \rightarrow \\
& e^{-}+e^{+}+\tau^{-}+\tau^{+} \rightarrow \\
& L=+1+1=+2 \\
& e^{-}+(-1)+1+(-1)=0
\end{aligned}
$$

Leptonic number

Leptons have associated a new quantum number, called the leptonic number L, which in the Standard Model is conserved by all reactions involving leptons

$$
\left(e^{-}, \mu^{-}, \tau^{-}, \nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \quad \rightarrow \quad L=+1
$$

As with other quantum numbers, antiparticles have the opposite value of L

$$
\left(e^{+}, \mu^{+}, \tau^{+}, \bar{\nu}_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}\right) \quad \rightarrow \quad L=-1
$$

The leptonic number is conserved in reactions involving leptons

$$
e^{-}+e^{+} \rightarrow e^{-}+e^{+} \quad \text { allowed } ?
$$

Leptonic number

Leptons have associated a new quantum number, called the leptonic number L, which in the Standard Model is conserved by all reactions involving leptons

$$
\left(e^{-}, \mu^{-}, \tau^{-}, \nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \quad \rightarrow \quad L=+1
$$

As with other quantum numbers, antiparticles have the opposite value of L

$$
\left(e^{+}, \mu^{+}, \tau^{+}, \bar{\nu}_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}\right) \quad \rightarrow \quad L=-1
$$

The leptonic number is conserved in reactions involving leptons

$$
e^{-}+e^{+} \rightarrow e^{-}+e^{+} \quad \text { yes }: \mathrm{L}_{\mathrm{in}}=\mathrm{L}_{\mathrm{fin}}=0
$$

Leptonic number

Leptons have associated a new quantum number, called the leptonic number L, which in the Standard Model is conserved by all reactions involving leptons

$$
\left(e^{-}, \mu^{-}, \tau^{-}, \nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \quad \rightarrow \quad L=+1
$$

As with other quantum numbers, antiparticles have the opposite value of L

$$
\left(e^{+}, \mu^{+}, \tau^{+}, \bar{\nu}_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}\right) \quad \rightarrow \quad L=-1
$$

The leptonic number is conserved in reactions involving leptons

$$
\begin{aligned}
e^{-}+e^{+} \rightarrow e^{-}+e^{+} & \text {yes: } \mathrm{L}_{\mathrm{in}}=\mathrm{L}_{\mathrm{fin}}=0 \\
\mu^{-}+\mu^{+} \rightarrow \mu^{-}+\mu^{-}+\mu^{+} & \text {allowed? }
\end{aligned}
$$

Leptonic number

Leptons have associated a new quantum number, called the leptonic number L, which in the Standard Model is conserved by all reactions involving leptons

$$
\left(e^{-}, \mu^{-}, \tau^{-}, \nu_{e}, \nu_{\mu}, \nu_{\tau}\right) \quad \rightarrow \quad L=+1
$$

As with other quantum numbers, antiparticles have the opposite value of L

$$
\left(e^{+}, \mu^{+}, \tau^{+}, \bar{\nu}_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}\right) \quad \rightarrow \quad L=-1
$$

The leptonic number is conserved in reactions involving leptons

$$
\begin{gathered}
e^{-}+e^{+} \rightarrow e^{-}+e^{+} \quad \text { yes : } \mathrm{L}_{\mathrm{in}}=\mathrm{L}_{\mathrm{fin}}=0 \\
\mu^{-}+\mu^{+} \rightarrow \mu^{-}+\mu^{-}+\mu^{+} \quad \text { no }: \mathrm{L}_{\text {in }}=0 \neq \mathrm{L}_{\mathrm{fin}}=+1
\end{gathered}
$$

Only scattering reactions that satisfy all conservation laws are allowed

Leptonic number

In the Standard Model, not only the total leptonic number L is conserved: also the individual leptonic numbers for the electron, muon, and tau are conserved

$$
\begin{aligned}
& \left(e^{-}, \nu_{e}\right) \quad \rightarrow \quad L_{e}=+1, L_{\mu}=0, L_{\tau}=0 \\
& \left(e^{+}, \bar{\nu}_{e}\right) \quad \rightarrow \quad L_{e}=-1, L_{\mu}=0, L_{\tau}=0
\end{aligned}
$$

Leptonic number

In the Standard Model, not only the total leptonic number L is conserved: also the individual leptonic numbers for the electron, muon, and tau are conserved

$$
\begin{aligned}
& \left(e^{-}, \nu_{e}\right) \quad \rightarrow \quad L_{e}=+1, L_{\mu}=0, L_{\tau}=0 \\
& \left(e^{+}, \bar{\nu}_{e}\right) \quad \rightarrow \quad L_{e}=-1, L_{\mu}=0, L_{\tau}=0 \\
& \left(\mu^{-}, \nu_{\mu}\right) \quad \rightarrow \quad L_{e}=0, L_{\mu}=+1, L_{\tau}=0 \\
& \left(\mu^{+}, \bar{\nu}_{\mu}\right) \quad \rightarrow \quad L_{e}=0, L_{\mu}=-1, L_{\tau}=0 \\
& \left(\tau^{-}, \nu_{\tau}\right) \quad \rightarrow \quad L_{e}=0, L_{\mu}=0, L_{\tau}=+1 \\
& \left(\tau^{+}, \bar{\nu}_{\tau}\right) \quad \rightarrow \quad L_{e}=0, L_{\mu}=0, L_{\tau}=-1
\end{aligned}
$$

Only reactions where L_{e}, L_{μ}, L_{τ} are separately conserved are allowed

Conservation laws

Enumerate conservation laws satisfied in scattering reactions involving leptons
[VEnergy and linear momentum conservation

$$
E_{\mathrm{in}}=E_{\mathrm{fin}} \quad \& \quad \vec{p}_{\mathrm{in}}=\vec{p}_{\mathrm{fin}}
$$

In particular energy conservation applied to particle decays requires that the sum of particle masses in the final state should be smaller than initial mass

$$
m_{\mathrm{in}} \geq \sum_{i \in \operatorname{fin}} m_{j} \quad \text { why? }
$$

Conservation laws

Enumerate conservation laws satisfied in scattering reactions involving leptons
[VEnergy and linear momentum conservation

$$
E_{\mathrm{in}}=E_{\mathrm{fin}} \quad \& \quad \vec{p}_{\mathrm{in}}=\vec{p}_{\mathrm{fin}}
$$

In particular energy conservation applied to particle decays requires that the sum of particle masses in the final state should be smaller than initial mass

$$
m_{\mathrm{in}} \geq \sum_{i \in \mathrm{fin}} m_{j}
$$

[JElectric charge conservation

$$
\sum_{i \in \mathrm{in}} Q_{i}=\sum_{i \in \mathrm{fin}} Q_{j}
$$

Conservation laws

Enumerate conservation laws satisfied in scattering reactions involving leptons
[VEnergy and linear momentum conservation

$$
E_{\mathrm{in}}=E_{\mathrm{fin}} \quad \& \quad \vec{p}_{\text {in }}=\vec{p}_{\mathrm{fin}}
$$

In particular energy conservation applied to particle decays requires that the sum of particle masses in the final state should be smaller than initial mass

$$
m_{\mathrm{in}} \geq \sum_{i \in \mathrm{fin}} m_{j}
$$

- Electric charge conservation

\square Individual lepton number conservation

exercise ${ }^{\text {Lepton scattering and decay }}$

Determine if the following scattering reactions involving leptons are allowed

$$
\begin{aligned}
& e^{-} \rightarrow \mu^{-}+\nu_{e}+\bar{\nu}_{\mu} \\
& \mu^{+} \rightarrow e^{+}+\nu_{e}+\bar{\nu}_{\mu} \\
& \mu^{-} \rightarrow e^{+}+\nu_{e} \\
& \mu^{-}+\mu^{+} \rightarrow \tau^{-}+\tau^{+} \\
& \mu^{-}+\mu^{+} \rightarrow e^{+}+e^{+}+\nu_{e}+\nu_{e}
\end{aligned}
$$

rcise Lepton scattering and decay
Determine if the following scattering reactions involving leptons are allowed

$$
\begin{aligned}
& e^{-} \rightarrow \mu^{-}+\nu_{e}+\bar{\nu}_{\mu} \quad \text { No }: m_{e}<m_{\mu}\left(E_{\mathrm{in}}<E_{\mathrm{fin}}\right) \\
& \mu^{+} \rightarrow e^{+}+\nu_{e}+\bar{\nu}_{\mu} \\
& \mu^{-} \rightarrow e^{+}+\nu_{e} \\
& \mu^{-}+\mu^{+} \rightarrow \tau^{-}+\tau^{+} \\
& \mu^{-}+\mu^{+} \rightarrow e^{+}+e^{+}+\nu_{e}+\nu_{e}
\end{aligned}
$$

rcise Lepton scattering and decay
Determine if the following scattering reactions involving leptons are allowed

$$
\begin{aligned}
& e^{-} \rightarrow \mu^{-}+\nu_{e}+\bar{\nu}_{\mu} \quad \text { No }: m_{e}<m_{\mu}\left(E_{\mathrm{in}}<E_{\mathrm{fin}}\right) \\
& \mu^{+} \rightarrow e^{+}+\nu_{e}+\bar{\nu}_{\mu} \quad \text { Yes : } Q_{\mathrm{in}}=Q_{\mathrm{fin}}, L_{\mu, \mathrm{in}}=L_{\mu, \mathrm{fin}}, \ldots \\
& \mu^{-} \rightarrow e^{+}+\nu_{e} \\
& \mu^{-}+\mu^{+} \rightarrow \tau^{-}+\tau^{+} \\
& \mu^{-}+\mu^{+} \rightarrow e^{+}+e^{+}+\nu_{e}+\nu_{e}
\end{aligned}
$$

rcise Lepton scattering and decay
Determine if the following scattering reactions involving leptons are allowed

$$
\begin{array}{ll}
e^{-} \rightarrow \mu^{-}+\nu_{e}+\bar{\nu}_{\mu} & \text { No }: m_{e}<m_{\mu}\left(E_{\mathrm{in}}<E_{\mathrm{fin}}\right) \\
\mu^{+} \rightarrow e^{+}+\nu_{e}+\bar{\nu}_{\mu} & \text { Yes }: Q_{\mathrm{in}}=Q_{\mathrm{fin}}, L_{\mu, \mathrm{in}}=L_{\mu, \mathrm{fin}}, \ldots \\
\mu^{-} \rightarrow e^{+}+\nu_{e} & \text { No }: L_{\mu, \mathrm{in}}=+1 \neq L_{\mu, \mathrm{fin}}=0 \\
\mu^{-}+\mu^{+} \rightarrow \tau^{-}+\tau^{+} & \\
\mu^{-}+\mu^{+} \rightarrow e^{+}+e^{+}+\nu_{e}+\nu_{e}
\end{array}
$$

Determine if the following scattering reactions involving leptons are allowed

$$
\begin{array}{ll}
e^{-} \rightarrow \mu^{-}+\nu_{e}+\bar{\nu}_{\mu} & \text { No }: m_{e}<m_{\mu}\left(E_{\mathrm{in}}<E_{\mathrm{fin}}\right) \\
\mu^{+} \rightarrow e^{+}+\nu_{e}+\bar{\nu}_{\mu} & \text { Yes : } Q_{\mathrm{in}}=Q_{\mathrm{fin}}, L_{\mu, \mathrm{in}}=L_{\mu, \mathrm{in}}, \ldots \\
\mu^{-} \rightarrow e^{+}+\nu_{e} & \text { No }: L_{\mu, \mathrm{in}}=+1 \neq L_{\mu, \mathrm{fin}}=0 \\
\mu^{-}+\mu^{+} \rightarrow \tau^{-}+\tau^{+} & \text {Yes : everything conserved } \\
\mu^{-}+\mu^{+} \rightarrow e^{+}+e^{+}+\nu_{e}+\nu_{e}
\end{array}
$$

Determine if the following scattering reactions involving leptons are allowed

$$
\begin{array}{ll}
e^{-} \rightarrow \mu^{-}+\nu_{e}+\bar{\nu}_{\mu} & \text { No }: m_{e}<m_{\mu}\left(E_{\mathrm{in}}<E_{\mathrm{fin}}\right) \\
\mu^{+} \rightarrow e^{+}+\nu_{e}+\bar{\nu}_{\mu} & \text { Yes }: Q_{\mathrm{in}}=Q_{\mathrm{fin}}, L_{\mu, \mathrm{in}}=L_{\mu, \mathrm{fin}}, \ldots \\
\mu^{-} \rightarrow e^{+}+\nu_{e} & \text { No }: L_{\mu, \mathrm{in}}=+1 \neq L_{\mu, \mathrm{fin}}=0 \\
\mu^{-}+\mu^{+} \rightarrow \tau^{-}+\tau^{+} & \text {Yes : everything conserved } \\
\mu^{-}+\mu^{+} \rightarrow e^{+}+e^{+}+\nu_{e}+\nu_{e} & \text { No }: Q_{\mathrm{in}}=0 \neq Q_{\mathrm{fin}}=+2
\end{array}
$$

