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Introduction

These lecture notes contain some of the material covered by the Standard Model and LHC phenomenol-

ogy course of the Oxford Master in Mathematical Physics and the Particle (MMathPhys) and of the the

Particle Theory Graduate School. The aim is to provide a general overview of the basic framework of the

Standard Model of particle physics with emphasis on its tests and applications at the Large Hadron Collider.

Topics covered include perturbative Quantum Chromodynamics, Electroweak Theory and the Higgs sector,

among others.

These notes are intended to be used as support material for the course, rather than a proper set of lecture

notes. They have not been cross-checked or proof-read, so use at your own risk. Hopefully they will at some

point evolve into a proper set of lecture notes, in the meantime the bibliography provides detailed material

to complement the lectures.

The Standard Model: an introduction

Slides of this lecture available from

http://pcteserver.mi.infn.it/~nnpdf/MMathPhys/SM-MMathPhys-JuanRojo-introduction.pdf

Quantum Chromodynamics: historical evidence

Following this historical introduction to the Standard Model, let us now present in more detail one of its

main building blocks: Quantum Chromodynamics, the theory of the strong interactions. First of all let us

discuss the main pieces of evidence that historically were crucial to convince physicists of first of all the

existence of a new quantum number (color) and second of the real existence of quarks as components of

hadrons, the two basic ingredients of QCD.

SU(3) symmetry and evidence for color

Historically, the color quantum number was introduced to explain some puzzling features of the hadron

spectrum. In the 60s a large number of strongly interacting particles had been discovered: pions, kaons,

baryons, etc, and the question was whether they were fundamental or composite by more fundamental

degrees of freedom. Gell-Mann and Zweig introduced the quark model which allowed to organize hadrons in

terms of quarks, hypothetical particles with following peculiar properties:

• Quarks are fermions with spin 1/2

• they have fractional electric charge: +2/3 or 1/3

• Quarks exists in three flavours, called up, down and strange, which lead to the observed hadron spectrum

However, to make sense of particles like �++, composed by three up quarks with the same spin, a new

property needs be introduced:

• Quark have a new internal degree of freedom, color, with NC = 3
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Figure 1: Upper plot: properties of quarks. Lower plot: the baryon decuplet with its various quantum numbers.

• Color is confined in Nature, so all observed hadrons should be color-singlet.

making possible to avoid Pauli’s exclusion principle.

Q: Why the �++ baryon is not allowed from the Pauli exclusion principle in the absence of color?

In Fig. 1 we summarize the properties of known quarks, and illustrate the baryon decuplet with its various

quantum numbers.

Q: Why three families of quarks exists? Could there be more? What are the implications?

A: We have no explanation of why three families, but the fact that we have � 3 families of leptons has

important implications. For example, three families are needed to have CP violation through the quark

mixing matrix, which could be important for baryogenesis in the early universe.

Q: Why originally people doubted that a quantum field theory like QED could be used to describe the strong

interaction?

Deep-inelastic scattering and the R ratio: evidence for quarks

QCD and the color quantum number appeared to be a nice mathematical trick to organize the structure of

all known hadrons. The evidence for their existence of quarks as real particles, as constituents of hadrons,

was provided only in the early 70s, by a series of experiments called Deep-Inelastic Scattering (DIS).

DIS is the scattering of a highly energetic proton o↵ a proton target (see Fig. 2):

e�(k) + p(P ) ! e�(k0) +X , (1)

where in general the proton will be destroyed by the collision (hence the name inelastic). The four
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Figure 2: Left plot: the deep-inelastic scattering process. Right plot: the original SLAC DIS structure function
measurements, as a function of the four-momentum transfer between the electron and the proton.

momentum transfer between the lepton and the proton is

q ⌘ k0 � k . (2)

The kinematics of the deep-inelastic scattering process are completely specified by the following variables

xBj ⌘ Q2

2P · q , Q2 ⌘ �q2 , y ⌘ q · p
k · p . (3)

As we will see below, the so-called Bjorken-x variable is related to the momentum fraction carried by quarks,

but so far it is only defined a kinematic invariant.

To di↵erentiate from elastic scattering, the condition must be that Q2 � M2
p , else the proton would not

be destroyed. For instance, the center-of-mass energy of the proton-virtual photon collision will be

W 2 ⌘ (P + q)2 = M2
p +Q2 1� x

x
' Q2 1� x

x
' , (4)

where the proton mass can typically be neglected in the calculation. The value x = 1 is known as the elastic

limit. A nice property of DIS is that the complete kinematics of the process are fully specified by measuring

the four-momenta of the outgoing lepton.

As in the case of the Rutherford experiment that lead to the discovery of the atomic nucleus, here the

existence of quasi-free, point-like objects in the proton with fractional electric charge can be inferred from

the angular deflection of leptons after the scattering with protons. In the parton model, which we will discuss

in more detail later in the lectures, scaling is the statement that, after removing the trivial kinematic factors,

the cross-section does not depend on the four-momentum transfer in the collision, Q2, or in other words,

that the scattering centers in the proton are point-like objects, rather than some smooth charge distribution

which would lead to a form factor instead. In the parton model of QCD, the measured SLAC cross-sections
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can be written as

⌫W2(Q
2, ⌫) =

Q2

Mx
W2(Q

2, x) ⌘ F2(x,Q
2) = x

X

i

e2qqi(x) . (5)

The cross-section for DIS structure functions is proportional to the PDFs of the quarks qi(x), weighted

by the quark charge. These PDFs indicate the fraction of the proton’s momentum being carried by each

individual quark flavor. The scaling of the original SLAC data can be seen in Fig. 2. Perturbative QCD

induces logarithmic corrections in Q2 in Eq. (5), which have been observed by more recent DIS experiments.

Q: Can we test if the proton contains a gluon in a deep-inelastic scattering experiment? Draw the corre-

sponding Feynman diagram.

Another crucial piece of evidence for both color and quarks was provided by the measurement of the

ratio of �(e+e� ! hadrons) over �(e+e� ! µ+µ�), know as the R-ratio, defined as:

R(
p
s) ⌘ e+e� ! hadrons

e+e� ! µ+µ�
= Nc

X

f

Q2
f (6)

where the RHS follows from the corresponding Feynmann diagrams with quarks on the final state in the

quark parton model: as compared to leptons, we have Nc types of quarks of each flavor, and the �qq̄ vertex

is weighted by the corresponding electric charge.

The dependence of the R ratio with
p
s is also useful to determine the mass of the heavy quarks: only forp

s � 2mh can heavy quarks be produced in e+e� annihilation and thus contribute to the R ratio. In Fig. 3

we show the R ratio as a function of
p
s. In addition to the resonances, for the continuum cross-section we

see that the overall value is in good agreement with the QCD expectations based on the parton model, and

indeed we see the change of value when crossing heavy quark thresholds, in particular charm and bottom

thresholds. Above the bottom threshold the value of the R-ratio stabilizes to

R5 =
11

3
= 3

"
2

✓
2

3

◆2

+ 3

✓
1

3

◆2
#
, (7)

As can be seen from Fig. 3, the data strongly disagrees with the possibility that quarks carry no color

quantum number.

Q: Why the formation of hadronic resonances lead to a large enhancement of the �(e+e� ! hadrons)

cross-section? What are the corresponding Feynman diagrams? What this is telling us about the strong

interaction? Will we expect a peak in R when a Z boson is produced?

A: The quark pair constitute a bound state. The production cross-section is then enhanced due to strong

interaction e↵ects. The Z boson can decay both into quarks and leptons, so the peak will partially cancel.

Q: Has the top quark ever been produced in e+e� annihilation? Why not?
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Figure 3: The ratio of hadron production in electron-positron annihilation over muon-antimuon pair, as a function
of

p
s, the center-of-mass energy of the collision
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The QCD Lagrangian

After this introduction to the basic motivation to QCD as a theory of the strong interactions, let us discuss

its Lagrangian and its basic properties, in particular its symmetries.

SU(3)

As compared to QED, the main di↵erence in the QCD case is the existence of new internal quantum number,

color, which, in the language of gauge theory, leads to an invariance under a di↵erent non-abelian group.

QED is an abelian gauge theory, where the relevant gauge group is the abelian U(1). As opposed to it, the

gauge group of QCD is SU(3), the group of specially unitary transformations of degree n = 3. This group

is defined by all n⇥ n unitary matrices

UTU = 1 (8)

which have determinant equal to 1, det U = 1. The fact that the gauge invariance of QCD is under a

non-abelian group has important consequences, as we will see now.

In the fundamental representation, a suitable choice of generators for SU(3) are the Gell-Mann matrices,

which are hermitian and traceless,

tA ⌘ 1

2
�A , (9)

and which obey the commutation relations of the group’s Lie algebra

⇥
tA, tB

⇤
= ifABCtC (10)

with fABC the structure constants of SU(3), namely

f123 = 1 (11)

f147 = �f156 = f246 = f257 = f345 = �f367 =
1

2
(12)

f458 = f678 =

p
3

2
(13)

and the corresponding permutations. All other structure constants are zero. The Gell-Mann matrices for

the fundamental representation of SU(3) are summarized in Fig. 4.

Let us define the quark wave-function as follows:

 
(f) flavor
i color , (14)

which has two indices: a flavor index (like in QED) and a color index (genuinely new feature of QCD).

The color index was take any value up to Nc, the number of colors in the theory. Given that all observed

strongly-interesting particles are color-singlet, the total color charge of physical states must be zero. To see

this, consider the the wave function of a quark-antiquark bound state, constructed as

NcX

i

 
⇤(f)
i  

(f 0)
i , (15)
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Figure 4: The Gell-Mann matrices for the fundamental representation of SU(3).

which can be shown to be invariant under a and under a SU(3) transformation

NcX

i

0

@
NcX

j

U⇤ij 
⇤(f)
j

1

A
 

NcX

k

Uik 
(f)
k

!
=
X

kj

 
X

i

UT
jiUik

!
 
⇤(f)
j  

(f 0)
k =

X

k

 
⇤(f)
k  

(f 0)
k (16)

using the unitarity properties of the SU(3) matrices.

On the other hand, this property must also hold for particles such as protons and neutrons, which are

composed by three quarks. This can be achieved if the wave function of three-quark states is constructed as

follows, using the antisymmetric tensor
NcX

ijk

✏ijk 
(f)
i  

(f 0)
j  

(f 00)
k , (17)

This can be shown to be color singlet using the relation

X

ijk

✏ijkUii0Ujj0Ukk0 = [detU] ✏i
0j0k0

. (18)

and the fact that the SU(3) matrices are unitary. Therefore, baryons are also color singlet, in agreement

with empirical observations.

Q: Can we have more exotic hadrons, say tetraquarks or pentaquarks? Would they respect symmetries of

QCD? Have they been observed experimentally?

The QCD Lagrangian and symmetries

The QED Lagrangian, which was discussed in some detail in the Advanced Quantum Field Theory course

by Guido Bell, looks as follows:

LQED =  (i�µDµ �m) � 1

4
Fµ⌫F

µ⌫ (19)

where for simplicity we have assumed a single fermion of mass m. In this Lagrangian, the covariant derivative

is defined as

Dµ = @µ + ieAµ , (20)
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with e the electric charge of this fermion, and the field strength tensor is the usual definition from classical

electrodynamics

Fµ⌫ = @µA⌫ � @⌫Aµ , (21)

The basic property of this Lagrangian is the invariance over local U(1) transformation, where U(1) is the

abelian rotation group. This is know as the gauge symmetry of the theory. Under such rotation, fermions

transform as

 (x) !  0(x) = ei�(x) (x) (22)

The vector potential can always be modified by an additive derivate of the form

Aµ ! A
0µ = Aµ + @µ�(x) (23)

It is easy to see that the field strength tensor is invariant under gauge transformations (this is a result from

classical electrodynamics).

Q: Is this property specific of QED or already holds for classical electromagnetism?

A: The electromagnetic field is invariant if the potential is modified by a total derivative, as can be seen

from Maxwell’s equations.

Q: What other classical external symmetries does the QED Lagrangian have, Eq. (19)?

A: It is invariant under the Poincare group: translations, rotations and Lorentz boosts. There are also

discrete symmetries like parity invariance.

It is also clear that the QED Lagrangian will be gauge invariant if the covariant derivative transforms in

the same way as the fermion field

Dµ ! D0µ = ei�(x)Dµ (24)

which as can be seen is achieved when we choose the gauge transformation of the four-vector potential to be

the following:

�(x) = ��(x)
e

, (25)

Now, the QCD Lagrangian has formally a very simple structure as compared to the QED one, though

now the invariance is with respect to the non-abelian group SU(3), and this leads to a number of striking

di↵erences between the two theories. The QCD Lagrangian is the following:

LQCD =
X

f

 
(f)

i

�
i�µD

µ
ij �mf�ij

�
 
(f)
j � 1

4
F a
µ⌫F

µ⌫
a , (26)

where a is now a color index that runs from 1 to Nc � 1 = 8, and we are assuming Nf massive fermions

now. Unlike fermions, which transform in the fundamental representation of SU(3), gluons transform in the

adjoint representation of We have assumed a general number of massive fermions. Note that, as in QED a

mass term, for the gluon is not allowed due to gauge invariance.

Q: Why a gluon mass term of the form m2Aµ
aAµ,a is forbidden from the QCD Lagrangian?

Now, i, j are color indices from 1 to Nc = 3, since quarks transform in the fundamental representation
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of SU(3). In QCD, the covariant derivative is defined as follows:

Dµ
ij = @µ�ij + igst

a
ijA

µ
a . (27)

where now gs is the strong coupling constant, and the gluon field replaces the photon field that we had in

QED. Now, note that in QCD the covariant derivative has amatrix structure: it is a matrix acting on fermions

in the fundamental representation, unlike the case of QED. This has important physical consequences. In

QCD, the field strength tensor is defined as

F a
µ⌫ ⌘ @µA

a
⌫ � @⌫A

a
µ � gsfabcA

b
µA

c
⌫ (28)

with fabc the structure constants of SU(3). Quarks transform in the fundamental representation of SU(3)

 
(f)
i !  

(f)0

i = Uij(x) 
(f)
j (29)

which leaves the flavor degrees of freedom untouched. Note that the SU(3) transformation are given by

Uij(x) = exp
�
i✓a(x) taij

�
. (30)

Now, the fermion sector of the Lagrangian must be independently gauge invariant, since in principle there

are nf fermion fields in the theory, the covariant derivative must transform as the quark field itself

Dµ
ij j !

�
Dµ

ij j

�0
= Uik(x)D

µ
kj j (31)

With this condition, one can check explicitly the gauge transformation property of the gluon field is the

taAµ
a ! taA

0µ
a = U(x)taAµ

aU
�1(x) +

1

gs
(@µU(x))U�1(x) . (32)

Q: Is this the same transformation as in QED? What happens if the gauge group is Abelian?

An important property in order to prove that the gauge sector of the QCD Lagrangian is indeed gauge

invariant is the following

[Dµ, D⌫ ] = igS ta F a
µ⌫ (33)

which can be derived from the definition of the covariant derivative acting on a fermion field. An important

di↵erence between QED and QCD is that the field-strength tensor itself is not gauge invariant. This can

be seen as follows: the transformation law of the field strength tensor under SU(3) transformations will be

given by

taF a
µ⌫ ! taF

0a
µ⌫ = U(x) taF a

µ⌫ U
�1(x) (34)

to is it not invariant under gauge transformations.

However, the product F a
µ⌫F

µ⌫
a is invariant under SU(3) transformations, and hence the gluon sector of

the Lagrangian is also so. We can use the following property of SU(3)

Tr
⇥
tatb

⇤
=

1

2
�ab , (35)
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and therefore we can have the following

�1

4
F a
µ⌫F

µ⌫
a = �1

2
F a
µ⌫ F

µ⌫,bTr
⇥
tatb

⇤
= �1

2
Tr
⇥
F a
µ⌫ t

a Fµ⌫,b tb
⇤
. (36)

which is invariant under SU(3) transformations due to the cyclic properties of the trace. Therefore, the

purely gluonic piece of the QCD Lagrangian is gauge invariant, even if the individual field-strength tensor

is not.

Chiral symmetry

Strong interactions are found experimentally to behave very similar for particles, like protons and neutrons,

that arise in the same isospin multiplet. Isospin is an approximate global SU(2) symmetry which relates the

up and the down content of hadrons, and that arises from the fact that mu ' md. In the quark model, the

isospin content of hadrons is defined as follows

I3 =
1

2
[(nu � nū)� (nd � nd̄)] , (37)

so that we have that I3 is 1/2 for protons and -1/2 for neutrons, members of the same isospin multiplet.

Formally, an isospin transformation acts on the quark field as a unitary SU(2) matrix

 
(f)
i !

X

f 0

Uff 0
 
(f 0)
i , (38)

This looks similar to the color SU(3) transformations, but they are completely di↵erent: this is a global

transformation (not a local one as in the case of gauge symmetries) and it leaves the color indices unchanged

We want to study under which conditions the fermion sector of the QCD Lagrangian is invariant under

isospin transformations, so let’s separate the up and down fermions from all other fermions

LQCD =  
(u)

i

�
i�µD

µ
ij �mu�ij

�
 
(u)
j +  

(d)

i

�
i�µD

µ
ij �md�ij

�
 
(d)
j

+
X

f,f 6=u,d

 
(f)

i

�
i�µD

µ
ij �mf�ij

�
 
(f)
j � 1

4
F a
µ⌫F

µ⌫
a . (39)

Restricting the fermion sector to only up and down quarks, the isospin transformed QCD Lagrangian reads

X

f 0,f 00

X

f

�
UT
f 0fUff 00

�
 
(f 0)

i

�
i�µD

µ
ij �mf�ij

�
 
(f 00)
j . (40)

So the QCD Lagrangian will be invariant if mu = md, including the case md = mu = 0.

Experimentally, we know that the up and down quark masses are much smaller than the typical scale of

the QCD interactions

mu,d ⌧ ⇤S , (41)

but we need lattice calculations to extract their values from the measurements. In the limit of quark masses

vanishing, we can separate left-handed and right-handed fermion chiraliies and the Lagrangian is separately
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Figure 5: The emission of a gluon from a quark interpreted in terms of color flow.

invariant for the two components

 =  R +  L  L =
1

2
(1� �5)  R =

1

2
(1 + �5) (42)

X

f

⇣
 
(f)

R (i�µD
µ) (f)

R +  
(f)

L (i�µD
µ) (f)

L

⌘
(43)

As a result of this invariance, chiralities will be a conserved quantum number for massless fermions In

this case, the QCD Lagrangian would be chirally invariant. However, we know that QCD is not chirally

invariant, and this arises because of the spontaneous breaking of chiral symmetry. Spontaneous breaking of

a symmetry occurs when the symmetry group of the solutions of a theory is dynamically generated to be

less than the symmetry of the original Lagrangian, as for example in the case of the Higgs mechanism, In

the case of QCD, it is known that the vacuum has a non-zero expectation value of the light quark operator

h0|q̄q|0i = ⌦0|ūu+ d̄d|0↵ ' (250 MeV)3 (44)

which breaks chiral symmetry, and is responsible for most of the hadron masses.

Q: which is approximately the contribution of the Lagrangian quark masses to the hadrons masses? Can we

then conclude that the Higgs mechanism is responsible for giving most of its mass to visible matter?

Color flows and Feynman rules

The various contractions of color indices in the QCD Lagrangian can be interpreted as color flows between

the di↵erent types of fields. In this specific example of Fig. 5, an incoming quark with red color emits a

gluon and is transformed into an outgoing quark with blue color. Gluons carry both color and anti-color:

they change the color charge of quarks and of other gluons The allowed color flows are restricted by SU(3)

symmetry, as can be seen in this example with the Gell-Man matrix.

Following the same techniques as in the case of QED, it is possible to determine the Feynman rules

that QCD must obey. These Feynman rules are summarized in Fig. 6. In the left part of the plot, we

show the various propagators and vertices that are allowed in QCD, with the corresponding Feynman rules.

Note the presence of three-gluon and four-gluon vertices, which are absent in QED: this is a genuine new
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Figure 6: The Feynmann rules of QCD, for the propagation and interaction of quarks and gluons. In the right part
of the plot, we show how the Feynman rules can be also interpreted in terms of color flow between quarks and gluons.

feature of QCD, which arises from the non-abelian nature of SU(3), and that has important consequences,

like asymptotic freedom, which we will discuss below. In the three-gluon diagram of Fig. 6, pi are the

four momenta of each of the gluons, assuming they are incoming. When computing Feynman diagrams, all

possible permutations of the three and four-gluon vertices need to be included.

In order to understand where the three- and four-gluon vertices come from, if we now expand the gluonic

term of the QCD Lagrangian, keeping only the terms proportional to the strong coupling constant, we find

the following terms

Fµ⌫
a F a

µ⌫ ! . . .+ g2S fabc fade A
µ,b A⌫,c Ad

µ A
e
⌫

� gS fabc A
µ,b A⌫,c

⇥
@µ A

a
⌫ � @⌫ A

a
µ

⇤� gS fabc A
b
µ A

c
⌫ [ @

µA⌫,a � @⌫Aµ,a] (45)

which lead to the vertices shown in Fig. 6. The proportionality to pi in the three-gluon vertex arises the

derivatives in the second half of the equation above.

In Fig. 6, right part, we also show how the Feynman rules can be understood in terms of color flow. In all

the diagrams, we can see that color is conserved, a basic property of SU(3) symmetry. Therefore, in QCD
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only diagrams which conserve color will be physically allowed.
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Asymptotic freedom and confinement in QCD

One crucial property of QCD is that of asymptotic freedom: the strength of the QCD interaction decreases

when the momentum transfers involved in the interaction increase. This allows to use the basic tools of

perturbative QFT to deal with hard QCD interactions. On the other hand, it also implies that at low scales

QCD becomes non-perturbative, since the QCD coupling diverges, and the perturbative interpretation is not

valid anymore. While this suggests confinement, since the strength of the interaction between two quarks

would increase the more we try to separate them (larger distances corresponds to smaller energy scales),

confinement has never been formally derived from the QCD Lagrangian, and only partial numerical evidence

from lattice simulations has been obtained.

The running of the coupling constants in Quantum Field Theories like QED or QCD can be understood

nearly from renormalization group arguments. Let’s consider a given observable in a generic QFT with

(bare) dimensionless coupling constant ↵, and a number of kinematical invariants s1 . . . sn. In quantum

field theories we encounter ultraviolet divergences, which in renormalizable theories can be removed by a

suitable redefinition of the couplings and fields. If we denote by M the UV cut-o↵, after renormalization the

observable M will read

G = G(↵, M, s1, . . . , sn) . (46)

Now, the dependence on M can be eliminated by a suitable redefinition of the bare coupling (which does not

depend on any scale) in terms of the renormalized coupling, order by order in the perturbative expansion

↵ren = ↵+
X

l=2

cl (M/µ)↵l , (47)

where the coe�cients cl are dimensionless, and the arbitrary scale µ has been introduced for dimensional

reasons.

Now, any physical quantity in the theory can be expressed in terms of the renormalized coupling, the

finite scale µ and other kinematical invariants, without the need anymore of the UV cuto↵:

G (↵ (↵ren,M/µ) , M, s1, . . . , sn) = eG (↵ren, µ, s1, . . . , sn) , (48)

In renormalizable QFTs, a single redefinition of the coupling makes finite all physical observables. The price

to pay is the dependence of our results on the arbitrary renormalization scale µ, which could be eliminated

only by computing the theory to all perturbative orders.

The renormalization group equations (RGE) arise from the condition that if we vary ↵ren and µ, keeping

↵ and M fixed, cross-sections should be invariant (since before renormalization, physical observables depend

only on M and ↵). This leads to the conditions

@ eG (↵ren, µ, s1, . . . , sn)

@↵ren
d↵ren +

@ eG (↵ren, µ, s1, . . . , sn)

@µ
dµ = 0 (49)

@↵ (↵ren,M/µ)

@↵ren
d↵ren +

@↵ (↵ren,M/µ)

@µ2
dµ2 = 0 (50)

and from these expressions it is possible to determine that the dependence of ↵ren with the scale µ is given
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Figure 7: Feynman diagrams which contribute to the self-interactions of the gluon in QCD, and determine the
leading order coe�cient of the RGE equations for the running of ↵

ren

(µ) in Eq. (53).

by:

µ2 d↵ren

dµ2
= �(↵ren) . (51)

This is so because putting together the various equations above we find

µ2 d↵ren

dµ2
= �µ2@↵ (↵ren,M/µ) /@µ2

@↵ (↵ren,M/µ) /@↵ren
= �µ2@ eG (↵ren, µ, s1, . . . , sn) /@µ2

@ eG (↵ren, µ, s1, . . . , sn) /@↵ren

(52)

and therefore the functional dependence of the renormalized coupling with the scale µ is fixed by the following

conditions:

• It cannot depend on M , since RHS does not

• It cannot depend on the kinematical invariants, since LHS does not

• It cannot depend on µ, since we dont have other dimensionful variables available and the coupling is

dimensionless

At the first non-trivial order, the RGE equation Eq. (51) reads

d

d logµ2
↵ren = �b0↵

2
ren , (53)

which can be easily solved to give

↵ren(µ
2) =

1

b0 logµ2/⇤2
, (54)

The leading order term for the QCD beta function is given by

b0 =
33� 2nf

12⇡
(55)

While the above derivation is fully generic, the value of the coe�cient b0 of the RGE depends on the specific

theory. In the case of QCD, b0 is determined by computing the Feynman diagrams for the self-interactions

of the gluon, summarized in Fig. 7. The fact that b0 is positive arises from the gluon self-interactions, that

is from the non-abelian nature of QCD (to see this, note that the diagram with quarks in the loop leads

to the Nf -proportional piece). Looking at Eq. (54), we see that b0 > 0 implies that the theory becomes

non-interacting in the ultra-violet, hence the name asymptotically free.

Page 19 of 71



Dr Juan Rojo MMathPhys: The Standard Model and LHC Phenomenology June 5, 2015

Figure 8: Left plot: summary of recent determinations of the QCD running coupling ↵S(Q) for di↵erent scales,
together with the four-loops QCD prediction. Asymptotic freedom can be seen by the fact that ↵s(Q) decreases
when Q is increased. Right plot: calculation of the potential between a quark-antiquark pair as a function of their
separation, in lattice QCD.

In the case of QED, the first term of the beta function is negative, due to the absence of photon self-

interactions in the QED Lagrangian:

bQED
0 = �4nf

12⇡
(56)

As opposed to QCD, QED becomes strongly interacting (non-perturbative) in the ultraviolet, that is, at

very small distances and large scales. The scale where QED stops being weakly coupled is determined by

the position of the Landau pole in QED, which is

⇤ = me exp

✓
� 1

2b0↵ren(me)

◆
⇠ 1090 GeV � MPl (57)

much larger than any sensible scale, even the Plank scale where quantum gravity e↵ects become important.

In summary, asymptotic freedom is one of the central properties in QCD: it becomes a free theory

at very large energies. The renormalization group equations allows to determine the dependence of the

running coupling on the scale, in terms of ↵S(Qref) at some reference scale, which needs to be extracted

from experimental data. In Fig. 8 we summarize recent experimental determinations of the QCD running

coupling ↵S(Q) for di↵erent scales, together with the four-loops QCD prediction. Asymptotic freedom can

be seen by the fact that ↵s(Q) decreases when Q is increased.

On the other hand, we still dont understand what are the dynamics that lead to confinement. The QCD

coupling is large at low scales, but there perturbation theory breaks down. Confinement is an experimental

observation (hadrons are always color singlets) but it is a purely non-perturbative phenomenon, thus non-

perturbative methods are required, like lattice QCD. In Fig. 8 we show how in a lattice QCD calculation

the quark-antiquark potential increases linearly with the with the separation between the quark and the

antiquark, as expected in a confining theory, but still the relevant degrees of freedom are quarks and gluons,

not hadrons. The mechanism that leads to the realization of confinement remains still elusive.
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Figure 9: QCD corrections to quark-antiquark production in electron-positron annihilation. As an exercise, try to
write the color-flow version of these diagrams.

Perturbative QCD in electron-positron annihilation

After this introduction to QCD, we turn out to explore its implications for a variety of high-energy reactions:

we begin with electron-positron annihilation, then lepton-proton scattering and finally hadron-hadron colli-

sions. We begin here with electron-positron annihilation, and study the consequences of radiative corrections

in QCD. We already considered this process in Fig. 3, when we introduced the R ratio of hadron to lepton

production in e+e� collisions. The calculation of the Born diagrams involved only QED interactions, and

now we want to study what happens when we consider the first non-trivial QCD corrections.

The Born-level matrix element for this process follows from the QED Feynman rules:

M = ieū(k) ✏µ(q) �µ v(k
0) . (58)

The real emission and virtual correction to the Born diagram are illustrated in Fig. 9, which also sets the

notation for the various four-momenta that will be used in the following. For the diagram with real radiation

out of the outgoing quark (there is a similar contribution from the outgoing quark), and neglecting all fermion

masses since this is a high energy processes, we find that the corresponding matrix element is given by

M1 = �iegs ū(k)t
a✏⌫a(l) �

⌫ 1

/k + /l
✏µ(q) �µ v(k

0) , (59)

where the appearance of gs indicates that now we have activated QCD corrections.

To isolate the regions where the matrix element is enhanced, we can use a number of well-known properties

of the Dirac algebra

1

/k + /l
=

/k + /l

(k + l)2
, {�µ, �⌫} = 2⌘µ⌫14 , ū(k) /k = 0 (60)

and be able to write Eq. (59) as follows

M1 = �iegs ū(k) /✏(q) v(k
0) ·

ta✏a(l) · k

k · l � ta✏a(l) · k0
k0 · l

�
, (61)
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Figure 10: Kinematics of real gluon emission in quark-antiquark production via electron-positron annihilation.

In the above equation, and in the remaining of this lecture, we work in the soft approximation, which is

l ⌧ k, k0, that is, the gluon is much softer than any of the two quarks. This is useful since this approximation

isolates the kinematic region where the matrix element becomes divergent.

If now we square the matrix element, we note that it can be written as a factorized product of the Born

matrix element squared and a term that depends on the kinematics of the three final state particles

|M1|2 = |M|2 g2sCF
2k · k0

(k · l) (k0 · l) . (62)

To compute the cross-section for the real emission contribution, we need to add the corresponding phase

space factor and integrate over all the relevant phase space, in order to obtain:

�1 = CF g2S �born ·
Z

d3l

2l0 (2⇡)3
2k · k0

(k · l) (k0 · l) . (63)

In order to interpret this result, it is useful to express the various Lorentz invariants in the laboratory

frame, and denoting by ✓ the angle between the radiated gluon and the quark (see Fig. 10), we obtain the

following expression

�1 = CF
g2S
4⇡2

�born

Z
dl0
l0

d cos ✓

(1 + cos ✓) (1� cos ✓)
(64)

so the real emission cross-section is the Born times the QCD coupling times an integral over the energy and

the angle of the radiated gluon in the laboratory frame. The integral over energies is clearly divergent when

the gluon becomes very soft, l0 ! 0. The angular integral is also divergent, as one can see by using

Z
x

1� x2
= �1

2
log
�
1� x2

�
, (65)

so the angular integral diverges when the gluon becomes collinear to the quark (✓ = 0) or to the anti-quark

(✓ = ⇡). Therefore, the real emission cross-section is now divergent due to soft and collinear emission of

gluons. These soft and collinear divergences are a generic feature of massless gauge boson emission in QFTs,

which are only canceled in inclusive enough observables.

It is also possible to compute the virtual diagrams in the same soft approximation. Putting everything

Page 22 of 71



Dr Juan Rojo MMathPhys: The Standard Model and LHC Phenomenology June 5, 2015

Figure 11: Diagrams for the various contributions to the QCD ↵S corrections to the calculation for the cross-section
for the production of Sterman-Weinberg jets. From left to right we have the Born diagram, the virtual correction,
and real emission falling both inside and outside the jet cone.

together, we find that the QCD corrections to e+e� annihilation into hadrons are given by:

�0 = �born

�1, real = CF
g2S
⇡2

�born

Z
dl0
l0

d cos ✓

1� cos2 ✓
(66)

�1, virt = �CF
g2S
⇡2

�born

Z
dl0
l0

d cos ✓

1� cos2 ✓
,

where we see that in the soft limit the virtual corrections have the same structure, but di↵erent sign, as the

real emission corrections. Therefore, if we integrate Eq. 66 without any phase space restriction, we find a

finite result, with infrared and collinear singularities canceling between real and virtual terms. For example,

doing the full calculation, it is possible to evaluate the O (↵s) correction to the R-ratio, namely

R = Rborn ·
⇣
1 +

↵s

⇡

⌘
. (67)

The situation is however di↵erent if we try to compute the QCD corrections to less inclusive observables,

such as jets. The first definition of a QCD jet, by Sterman and Weinberg, stated that

• an event contributes to the jet cross-section if we can find two cones, with opening angle �, that contain

a fraction 1� ✏ of the total energy.

Note that in e+e� collisions the total energy of the event is fixed by the energy of the lepton beams, unlike

in an hadronic collision. As opposed to the inclusive calculation above, for the jet cross-section the phase

space for gluon emission is now limited, and this will have important consequences. In Fig. 11 we show the

diagrams for the various contributions to the QCD ↵S corrections to the calculation for the cross-section

for the production of Sterman-Weinberg jets. From left to right we have the Born diagram, the virtual

correction, and real emission falling both inside and outside the jet cone.

Let’s compute the contributions to the various diagrams in Fig. 11 to the Sterman-Weinberg jet cross-

section. The Born is unchanged by the jet definition. To see this, note that if the two partons as back to

back all the energy of the event will fall into the two cones. For the real emission, we need to start from

Eq. (64), but now with the integration restricted to the in-jet or out-jet phase space. In the case of radiation
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inside the jet cone, we have

�jet,real,d
1 = CF

g2S
⇡2

�born

Z E

✏E

dl0
l0

"Z �

0

d cos ✓

1� cos2 ✓
+

Z ⇡

⇡��

d cos ✓

1� cos2 ✓

#
, (68)

where the lower limit of the integration in the gluon energy arises because soft gluons, with l0  ✏E, do not

contribute to the jet definition. In the case of soft-gluon emission, irrespective of whether or not radiation

falls in the jet cone, the cross-section will be

�jet,real,c
1 = CF

g2S
⇡2

�born

Z ✏E

0

dl0
l0

Z ⇡

0

d cos ✓

1� cos2 ✓

�
. (69)

In order to make the jet cross-section finite, we need to compute the virtual correction. This reads

�jet,virt
1 = �CF

g2S
⇡2
�born

Z E

0

dl0
l0

Z ⇡

0

d cos ✓

1� cos2 ✓
(70)

since for virtual corrections there is no restriction on the kinematics of the gluon. Adding together the Born

cross-section, the di↵erent real emission terms, and the virtual correction, we find that the jet cross-section

is now finite:

�jet = �born

 
1� g2S

⇡2

Z E

✏E

dl0
l0

Z ⇡��

�

d cos ✓

1� cos2 ✓

!
(71)

= �born

✓
1� 4g2S

4⇡2
log ✏ log

1 + cos �

1� cos �

◆
. (72)

and that it depends on the jet definition parameters ✏ and �. The logarithmic dependence of the cross-section

with these parameters is a remnant of the cancellation of soft and collinear divergences. The QCD correction

becomes unreliable when either ✏ is too small (trying to resolve soft gluons) or the cone is too narrow (trying

to resolve collinear gluons). Using similar techniques we can compute a number of phenomenologically

relevant processes. An important example is the ratio of 3 over two jet events

R3/2 ⌘ �3 jets

�2 jets
=
�tot � �jet

�jet
=
↵s

⇡

✓
1 + 8 log ✏ log

1 + cos �

1� cos �

◆
(73)

Note that any jet observables such as Eq. (73) depend by construction on the precise jet definition used.

Jets are a fundamental aspect of QCD at colliders. QCD jets were discovered in the late 70s in electron-

positron colliders, and in the 80s and 90s they provided stringent tests of the validity of QCD at the Large

Electron-Positron collider (LEP). Now at the LHC, jets not meant to be used as QCD tests anymore, but

as essential tools for precision Standard Model measurements and for New Physics searches. Progress in

the experimental measurement of QCD jets is illustrated in Fig. 12, where we compare in the left plot the

discovery of the gluon in three-jet events from e+e� collisions at PETRA, in the late 70s with the right

plot, a high energy dijet event as measured by the CMS experiment at the LHC, for a center of mass energy

of
p
s = 7 TeV. We will discuss modern techniques for jet reconstruction and substructure later in these

lectures, but before let’s discuss the important topic of when a given observable can be computed reliably

in QCD to all orders, so that infrared and collinear divergences always cancel.
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Figure 12: Left plot: discovery of the gluon in three-jet events from e+e� collisions at PETRA, in the late 70s.
Right plot: high energy dijet event as measured by the CMS experiment at the LHC, for a center of mass energy ofp
s = 7 TeV.

Infrared and collinear safety

The formal definition of an infrared and collinear safe observable in QCD, that is, an observable insensitive

to the long distance, infrared dynamics determined by non-perturbative physics, is

On+1 (k1, k2, . . . , ki, kj , . . . , kn) ! On (k1, k2, . . . , ki + kj , . . . , kn) (74)

when either ki or kj become soft, or when ki becomes collinear to kj . In order words, QCD infrared

observables should be invariant wrt soft and collinear radiation both in the initial and in the final state. Only

for infrared safe observables the comparison of data and theory is well defined to all orders in perturbation

theory. We will come back to this important issue when discussing jets.

It is interesting to check which quantities are IRC safe

• Energy distribution of hardest particle in a event? No

• Jet cross-sections? Depends on the jet definition? Depends

• Multiplicity of gluons? No

• Cross-section for producing an additional quark or gluon with E ¿ Emin? No

For example, using the Sterman-Weinberg definition, the jet cross-section is not infrared and collinear safe

to all orders. It is finite at O (↵s), but starting from O �↵2
s

�
divergences do not cancel anymore. This can

be seen from the sketch in Fig. 13: a gluon that is just outside the SW cone, upon a collinear splitting

can contribute to enough energy so that this event now is part of the jet cross-section. Since IRC safe

observables cannot depend on collinear or soft splittings, this shows that the Sterman-Weinberg is not a

good jet definition. Any sensible jet definition should be IRC safe, in other words, it would be insensitive to

non-perturbative, long distance QCD dynamics.
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The formal definition of an infrared and collinear safe observable in QCD, that is, an observable 
insensitive to the long distance, infrared dynamics determined by non-perturbative physics, is

when either ki or kj become soft, or when ki becomes collinear to kj 

For instance, Sterman-Weinberg jets are not infrared safe!

Only for infrared safe observables the comparison of data and theory is well defined to all orders in 
perturbation theory. We will come back to this important issue when discussing jets in more detail

quark

gluon

δ

quark

gluon

δ

Does not contribute to SW xsec
After collinear splitting, Does 

contribute to SW xsec

g

Figure 13: Origin of the IRC unsafety of the Sterman-Weinberg jets starting at at O (↵s).
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Figure 14: Left plot: the deep-inelastic scattering process. Right plot: the Born contribution to the lepton-quark
scattering.

QCD in deep-inelastic scattering

After the study of the O (↵S) corrections to electron-positron annihilation, and to the concept of jets, we

now move to the study of the QCD corrections to the deep-inelastic scattering (DIS). This processes was

already discussed in order to historically motivate the existence of quarks, see Fig. 2. Now we revisit it in

more detail, and study the consequence that the QCD radiative corrections have in the naive parton model.

The QCD parton model

In the parton model, the DIS process is understood as the scattering of a virtual photon o↵ one of the quarks

in the proton, see Fig. 14. The probability to find a given quark in the proton with a fraction x of the total

proton momentum is given by the quark parton distribution function (PDF), q(x). Let’s recall that DIS is

the scattering of a highly energetic proton o↵ a proton target,

e�(k) + p(p) ! e�(k0) +X , (75)

where in general the proton will be destroyed by the collision (hence the name inelastic). The four momentum

transfer between the lepton and the proton is

q ⌘ k0 � k . (76)

The kinematics of the deep-inelastic scattering process are completely specified by the following variables

xBj ⌘ Q2

2 p · q , Q2 ⌘ �q2 , y ⌘ q · p
k · p . (77)

To di↵erentiate from elastic scattering, the condition must be that Q2 � M2
p , else the proton would not be

destroyed. For instance, the center-of-mass energy of the proton-virtual photon collision will be

W 2 ⌘ (p+ q)2 = M2
p +Q2 1� x

x
' Q2 1� x

x
, (78)
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where the proton mass can typically be neglected in the calculation. The value x = 1 is known as the elastic

limit. A nice property of DIS is that the complete kinematics of the process are fully specified by measuring

the four-momenta of the outgoing lepton.

Removing trivial kinematic factors, the DIS lepton-proton cross-section can be written in terms of a

structure function F2(x), as a convolution between the �⇤q ! X partonic cross-section and the PDFs of the

proton,
Q4x

2⇡↵2
QED (1 + (1� y)2)

d2�DIS

dxdQ2
= F2(x) =

X

q,q̄

Z 1

x

dz

z
fq(z)b�q�⇤!X

⇣x
z

⌘
. (79)

Note that Eq. (79) is so far a model, not a consequence of QCD: we take the partonic QED quark-photon

cross-section b�q�⇤!X and convolute with the quark PDF fq(z). It is possible to formally derive the same

expression in perturbative QCD to all orders using the Factorization Theorem.

In the naive parton model, the dependence of the PDFs with the momentum fraction x is a priory

unknown (since it is determined by non-perturbative QCD dynamics). However, PDFs have still to satisfy

a number of important sum rules, in particular the momentum sum rule,

X

q,q̄

Z 1

0

dx x fq(x) = 1 , (80)

which translates the fact that the total momentum of the proton is distributed among all the quarks, and

the valence sum rules

Z 1

0

dx (fu(x) � fū) = 2 , (81)

Z 1

0

dx (fd(x) � fd̄) = 1 , (82)

Z 1

0

dx (fs(x) � fs̄) = 0 (83)

which ensure that the proton has the correct flavor quantum numbers. As we will show below, these sum

rules are also satisfied in perturbative QCD, and will be valid for all scales Q2: this is a direct consequence of

the symmetries of the QCD Lagrangian. In the case of the momentum sum rule, Eq. (80), the contribution

from the gluon will also be needed.

In the naive parton model, the gluon is absent since, being neutral, it does not couple directly to the virtual

photon: in the DIS process, it can thus appear only at the level of O (↵S) corrections.

Let’s us take a closer look at the expressions for the DIS parton model. The first ingredient is the

computation of the lepton-quark scattering, see right plot of Fig. 14. Since this is a Born calculation, no

QCD corrections will be needed so far, When computing cross-sections in QCD and in QED, it is important

to remember that one needs to average over all initial colors and polarizations and helicities, and sum over

all final colors, polarizations and helicities. In this sense, there are a number useful spin sum relations of
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Dirac spinors that help us in our task. In particular we have that

X

s

u(p, s)ū(p, s) = /p+m, (84)

X

s

v(p, s)v̄(p, s) = /p�m, (85)

X

s

u(p, s)v̄(p0, s) =
X

s

ū(p, s) v(p0, s) = 0 . (86)

Note that the outer product of Dirac spinors always yields a matrix. We will also need to use the inner

product between Dirac spinors which reads

ū(p, s)u(p, s0) = 2m �ss0 (87)

There are also analogous expressions when summing over helicities that we can use to simplify scattering

amplitudes.

Now, the lepton-quark Born matrix element will be given by the following expression

M =
ieeq
q2

ū(p̂0)�µu(p̂) ū(k0)�µu(k) , (88)

which after squaring, summing over helicities and polarizations and using the various properties of the Dirac

algebra yields
1

4

X

pol

|M|2 =
e4e2q
4q4

tr
⇥
/p
0�µ/p�

⌫
⇤
tr
h
/k
0
�µ/k�⌫

i
(89)

which using the expressions for the traces of the Dirac matrices can be simplified to

1

4

X

pol

|M|2 =
8e2qe

4

q4
[(k · p) (k0 · p0) + (k0 · p) (k · p0)] . (90)

Note that the squared amplitude falls like 1/q2, due to the virtual photon propagator.

It is always useful to express the matrix element in terms of the Mandelstam variables, which are Lorentz

invariants, rather than in terms of the four-momenta in some fixed reference frame. The s, t and u Mandel-

stam variables are defined as

ŝ ⌘ (k + p̂)2 , t̂ ⌘ (k � k0)2 , û ⌘ (p̂� k0)2 , (91)

Note that we use the notation p̂ for partonic momenta, and p instead for the hadronic momenta. Note also

that with these definitions t̂ = �Q2.

In terms of the Mandelstam invariants, the squared amplitude reads

1

4

X

pol

|M|2 = 8e2qe
4 ŝ2 + û2

t̂2
, (92)

and including the appropriate phase space factors, we obtain the the partonic di↵erential cross-section for
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lepton-quark scattering is

d�̂

dt̂
=

1

16⇡ŝ2
1

4

X

pol

|M|2 = m
2⇡↵2e2q

t̂2

✓
1 +

û2

ŝ2

◆
=

2⇡↵2e2q
Q4

�
1 + (1� y)2

�
. (93)

where in the final equation we have used the expressions of the the DIS variables in terms of the Mandelstam

invariants

Q2 = �q2 = �(k � k0)2 ŷ = y =
q · p̂
k · p̂ = 1� û

ŝ
(94)

Now, the central assumption of the quark parton model is

The quark carries a fraction ⇠ of the total momentum of the proton, that is, p ⌘ ⇠ p̂.

Now recalling the definition of Bjorken-x, Eq. (77), which is a kinematical invariant, we find

Momentum Conservation ! (p̂0)
2
= 0 = (p̂+ q)2 (95)

Q2 = 2p̂ · q = 2⇠p · q = Q2⇠/xBj (96)

and therefore we obtain a very important result:

In the parton model, the Bjorken-xBj variable, which is determined purely from the lepton kinematics, can

be identified with ⇠, the momentum fraction that the struck quark carries in the proton.

This property also holds true for other processes: at Born level, we can relate final state kinematics to

the momentum fraction carried by the struck partons. However, as we will see, when perturbative QCD

corrections are introduced, the picture is di↵erent.

Combining all this ingredients, we can finally write the DIS parton-level cross-section

d�̂

dQ2dx
=

4⇡↵2

Q4

�
1 + (1� y)2

� 1
2
e2q�(x� ⇠) , (97)

where the �(x�⇠) implements the condition that x = ⇠ at Born level, and allows us to write the cross-section

as a function of both x and Q2. To obtain the corresponding hadron level cross-section, we use the parton

model prescription and convolute with the quark PDF, as specified in Eq. (79).

d�

dQ2dx
⌘
Z 1

0

dzfq (z)
d�̂

dQ2dx
(x, z) =

4⇡↵2

Q4

�
1 + (1� y)2

� 1
2
e2q fq(x) . (98)

Again, at this level this is a model assumption, rather than a robust consequence of pQCD.

If we compare with the most general parametrisation of the hadronic DIS cross-section in terms of

structure functions, constructed requiring only kinematics and Lorentz invariance, which is

d2�

dxdQ2
=

4⇡↵2

Q4

�
1 + (1� y2)

�
F1(x,Q

2) +
1� y

x
(F2(x,Q

2)� 2xF1(x,Q
2))

�
(99)
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Figure 15: Left plot: the DIS matrix element calculation at Born level. Right plot: same as before but now
accounting for the radiation of an additional gluon from the initial state quark.

we find that in the parton model, the structure functions will be given by

F1(x,Q
2) =

1

2
e2q fq(x) (100)

F2(x,Q
2) = 2xF1(x,Q

2)

Eqns. (100) are the central result of the parton model: it allow to relate observable structure functions with

the parton distribution functions of the proton. At the Born level this relation is very simple.

Note that Fi(x,Q2), which in principle can depend both on x and Q2, in the parton model depend only on

x. This is the scaling property measured by the SLAC experiments, and is a consequence that partons are

quasi-free, point-like objects within the proton.

Up to here we have ignored QCD corrections, so that PDFs and structure functions are scale-independent

quantities. As we will now how, once QCD corrections are included, we will find collinear divergences,

which will not cancel even for inclusive observables, as happened in e+e� annihilation. Fortunately, these

singularities can be absorbed into the PDFs, inducing a scale dependence but otherwise leaving the DIS

cross-sections nicely finite.

QCD radiative corrections in DIS

The calculation in the previous section neglects the e↵ects of QCD radiative corrections. We will now

compute, in a simplified way, what are the e↵ects of QCD radiation on the DIS cross-section, finding some

remarkable consequences, the most important one the evolution with the scale of the parton distribution

functions.

The calculation will be performed as follows. The matrix element at the Born level can be written (see

Fig. 15) as follows

M(p̂)u(p̂) , (101)

where M(p̂) represents the rest of the hard scattering, which is not relevant here. The Born cross-sections
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will now be written as

�born =
N

p̂0
1

2

X
M(p̂)u(p̂)ū(p̂)M†(p̂) =

N

p̂0
M(p̂)

/̂p

2
M†(p̂) . (102)

using the sum over massless quark helicities

X

s

u(p, s)ū(p, s) = /p . (103)

Now, let’s consider the e↵ect of the radiation of a gluon o↵ the quark leg, as illustrated in the right plot in

Fig. 15. The corresponding matrix element is

gs M(p̂� l)
/p� /l

(p̂� l)2
ta✏µa(l)�µ u(p̂) , (104)

where now the momentum that flows into M is a↵ected by the gluon emission. We know from the case

of e+e� annihilation that when the gluon is collinear to the quark leg there will be a collinear singularity.

Therefore it is useful to choose a parameterization of the four-momentum of the gluon that isolates the

relevant regions where the matrix element becomes enhanced

l = (1� z)p̂+ l? + ⇠⌘ , (105)

so l? is the component of the gluon momentum transverse to the quark one. In this parametrisation, we can

write the phase space factor for the gluon is

d3l

2l0(2⇡)3
=

d2l?
2 (2⇡)3

dz

1� z
, (106)

As before, we work in the soft and collinear limit, where the matrix elements are enhanced, and neglect all

terms that are regular in this limit. With some manipulations, we find for the matrix element squared for

real emission becomes

|M1|2 = g2S
2

|l2?|
(1 + z2)M(p̂� l)

/p

2
M†(p̂� l) , (107)

where the factor |l2?| is a consequence of the gluon collinear divergence. Adding now the flux factor and

integrating over all phase space, we end up with the real emission cross-section for the DIS process at the

parton level is

�̂(1) =
↵SCF

2⇡

Z
�̂(0)(zp)

1 + z2

1� z

dl2?
l2?

dz , (108)

where again we emphasize that here we are working in the collinear limit, where the transverse momentum of

l is small. A remarkable property of QCD, which holds in many other processes, can be see from Eq. (108),

which is the same observation that was made in the case of e+e� annihilation:

The real emission corrections, in the soft and collinear limits, factorize into the Born cross-section and a

universal term which governs the QCD emission in this limit and that is process independent.

Note that now the argument of the Born cross-section is modified in Eq. (108) by the gluon emission: as
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opposed to e+e� annihilation, in DIS QCD corrections modify the initial state kinematics. Including now

also the NLO virtual corrections, the total cross-section for DIS at O (↵S) will be given by:

�̂(1) =
↵SCF

2⇡

Z h
�(0)(zp̂)� �(0)(p̂)

i 1 + z2

1� z

dl2?
l2?

dz , (109)

From Eq. (109) we can derive two very important consequences:

• In the limit where the radiated gluon is soft, z ! 0, the real emission term has a soft singularity, which

is however canceled by the virtual correction,

• however, the collinear singularity of the real emission term is not canceled by virtual corrections

This result, that collinear divergences do not cancel for initial state QCD radiation, indicate the failure

of the naive parton model.

We now discuss how it is possible to improve the naive parton model and cancel the collinear divergences,

obtaining a finite cross-section for DIS at O (↵S). To do this, we introduce the so called splitting function:

�̂(1) =
↵SCF

2⇡

Z h
�(0)(zp̂)� �(0)(p̂)

i 1 + z2

1� z

dl2?
l2?

dz ⌘ ↵SCF

2⇡

Z
Pqq(z)�

(0)(zp̂)
dl2?
l2?

dz (110)

where, despite its name, the splitting function Pqq(z) is a distribution, rather than a function

Pqq(z) ⌘
✓
1 + z2

1� z

◆

+

, (111)

with the following definition when acting on test functions:

Z 1

0

✓
1 + z2

1� z

◆

+

f(z) ⌘
Z 1

0

✓
1 + z2

1� z

◆
(f(z)� f(1)) . (112)

The universal nature of collinear splittings in QCD leads to the appearance of these splitting functions in

any process where a collinear splitting occurs. It will also be useful to introduce the following notation for

convolutions

(f1(x)⌦ f2(x)⌦ . . .⌦ fn(x)) �(p) ⌘
Z nY

i=1

(dxi f(xi))� (x1 . . . xnp) (113)

where it can be shown that convolutions are commutative and that the identity operator is �(x� 1).

Let’s discuss now what the the physical mechanism for the cancellation of initial-state collinear diver-

gences. In previous lectures we showed that QCD becomes non-perturbative in the infrared, for scales

Q ⇠< ⇤QCD. This means that a collinear splitting corresponds to a kinematic region where perturbative

QCD, sensu strictu, does not apply. Physically, this means that the initial-state singularity will be regulated

by low-energy, non-perturbative e↵ects (such as quark masses for example). To account for this cancellation,

we can

Absorb the initial-state collinear divergence into a redefinition of the parton distributions functions, which

are themselves determined by non-perturbative physics.
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This can be achieved as follows. First of all, we can regulate the collinear singularity with a parameter

�, which in principle is determined by non-perturbative physics, and then write Eq. (110) as

�̂NLO =

✓
1 +

↵sCF

2⇡
ln

Q2

�2
Pqq

◆
�(0)(p̂) , (114)

Now we can introduce a new scale, the factorization scale, and expand the NLO cross-section, throwing away

NNLO terms, as follows

�̂NLO =

✓
1 +

↵sCF

2⇡
ln

µ2

�2
Pqq

◆
⌦
✓

1 +
↵sCF

2⇡
ln

Q2

µ2
Pqq

◆
�(0)(p̂) . (115)

Next I need to convolute the partonic cross-section �̂NLO with the quark PDFs to obtain the hadronic

cross-section

�DIS(p) = fq �̂
NLO(p̂) (116)

and now I can redefine the parton distributions, after absorbing the collinear divergence, as follows

�DIS(p) = fq �̂
NLO(p̂) ⌘ f̃q(µ)�̃(p, µ) , (117)

where we have defined the (now scale-dependent) PDF as

f̃(µ) ⌘ f ⌦
✓

1 +
↵sCF

2⇡
ln

µ2

�2
Pqq

◆
, (118)

and the partonic cross-section has been corrected as follows:

�̃(p, µ) ⌘
✓

1 +
↵sCF

2⇡
ln

Q2

µ2
Pqq

◆
�̂(0)(p̂) . (119)

So that now we have achieved that:

The partonic DIS cross-section Eq. (119) is now finite, since it does not depend on the IR cuto↵ � anymore.

The price to pay is the introduction of a new, non-physical scale, the factorization scale.

There are some other important consequences of this derivation:

• The PDFs become now scale-dependent, due to µ, the factorization scale

• The partonic cross-section now also depends on this factorization scale

• PDFs are still determined by non-perturbative physics (and need to be fitted from data, hence the

dependence in � has no physical consequences), but as we wills how now, the dependence of q(x, µ)

with µ is determined by perturbative QCD

It is important not to mix the renormalization scale, which arises from the subtraction of ultraviolet di-

vergences, and the factorization scale, from the regulation of collinear singularities in processes with initial

state hadrons. The two scales are unphysical and led to an inherent theoretical uncertainty in any pQCD

calculation.
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The redefinition of the PDFs in Eq. (118) is universal, process-independent, and holds to all orders in

perturbation theory.

PDF evolution equations

The original PDFs, as introduced in the parton model, are non-perturbative objects. In perturbative QCD,

Eq. (118), the dependence on the momentum fraction x is still determined by non-perturbative dynamics,

but the dependence on the factorization scale µ is purely perturbative.

Let us thus now study the scale dependence of the newly defined PDFs. If now we di↵erentiate the

DIS cross-section Eq. (117) with respect to the factorization scale µ, we find, using the fact that before the

redefinitions the cross-section was independent of µ,

µ2 @

@µ2
�DIS(p) = 0 =


µ2 @

@µ2
f̃q(µ)

�
�̃(p, µ) + f̃q(µ)


µ2 @

@µ2
�̃(p, µ)

�
, (120)

and using the fact that the PDFs are universal, so the above equation holds for any partonic process, we

find the following equation, using the definitions Eq. (118) and Eq. (119),

µ2 @

@µ2
f̃q(µ) =

↵sCF

2⇡
f̃q(µ)⌦ Pqq , (121)

where we have used that

µ2 @

@µ2
�̃(p, µ) = �↵sCF

2⇡
Pqq�̃

(0)(p) ' �↵sCF

2⇡
Pqq�̃(p, µ) +O �↵2

S

�
. (122)

Eq. (121) is known as the DGLAP evolution equations for the PDFs.1 These equations are an essential

ingredient for LHC phenomenology: once PDFs are extracted from data at some scale, say 1 GeV, the

evolution equations like Eq. 121 can be used to determine PDFs say at 5 TeV. Using the complete set of

DGLAP equations and splitting functions (see for example Ellis-Stirling-Webber [5]) one can check that

the valence and momentum sum rules are also satisfied in perturbative QCD, to all orders in perturbation

theory. In Fig. 16 we show the NNPDF2.3NNLO set of parton distribution functions, at low scales µ2 = 10

GeV2, and at a typical LHC scale µ2 = 104 GeV2. This PDF evolution is completely determined by the

perturbative DGLAP evolution equations.

A nice and illustrative exercise is to show that the integral of the di↵erence between the PDFs of the up

and anti-up quark (valence sum rule) is scale independent. To do this, start from the DGLAP non-singlet

evolution equation:

µ2 @fq(x, µ
2)

@µ2
=
↵s(µ2)

2⇡

Z 1

x

dz

z
Pqq(z)fq

⇣x
z
, µ2
⌘
, (123)

and di↵erentiate the sum rule with respect to the factorization scale µ,

µ2 @

@ µ2

Z 1

0

dx
�
fu(x, µ

2)� fū(x, µ
2)
�
=
↵s(µ2)

2⇡

Z 1

0

dx

Z 1

x

dz

z
Pqq(z)

h
fu

⇣x
z
, µ2
⌘
� fū

⇣x
z
, µ2
⌘i

(124)

1Actually, this is only part of the complete system of equations, in particular we are not considering the e↵ects of gluons
here. This is called as a non-singlet evolution equation.
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Figure 16: The NNPDF2.3NNLO set of parton distribution functions, at low scales µ2 = 10 GeV2 (left plot) and at
a typical LHC scale µ2 = 104 GeV2 (right plot). The PDF evolution is completely determined by the perturbative
DGLAP evolution equations. Note that the gluon PDF has been divided by 10 to be able to plot it using the same
scale.

=
↵s(µ2)

2⇡

Z 1

0

dz

Z 1

0

dy Pqq(z)
⇥
fu
�
y, µ2

�� fū
�
y, µ2

�⇤
= 0 (125)

where we have made the following change of variable

Z 1

0

dx

Z 1

x

dz =

Z 1

0

dz

Z z

0

dx y ⌘ x

z
(126)

and the following property of the splitting functions:

Z 1

0

dzPqq(z) = 0 (127)

Therefore, we conclude that the up quark valence sum Eq. (124) must be the same at all scales, and is thus

a constant (in this case the integral should give a value 2, which is the up quark valence quantum number of

the proton). Similar properties of the splitting functions ensure that the momentum and valence sum rules

hold at any order in the pQCD expansion. Actually, the splitting function for quarks needs to be completed

by its endpoint value, which gives

P (
qq0)(x) = CF


1 + x2

(1� x)+
+

3

2
�(1� x)

�
, (128)

This is the final result at Born level.
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QCD in hadronic collisions

In the two previous lectures we have discussed the consequences of perturbative QCD corrections for two

di↵erent processes:

• electron-positron annihilation (no hadrons in the initial state): soft and collinear singularities cancel

in inclusive enough observables (like a IRC-safe jet cross-section), and

• lepton-proton deep-inelastic scattering (one hadron in the initial state): initial-state collinear singular-

ities do not cancel even for inclusive observables, but they can be absorbed into a redefinition of the

PDFs, inducing a scale dependence determined by the DGLAP evolution equations.

Now we consider a more complicated process: hadron-hadron collisions, with two protons in the initial state.

First of all we discuss which kinematic variables are more sensible to hadron-hadron collisions. A key di↵er-

ence as compared to e+e� annihilation is that

in hadronic collisions, the total longitudinal momentum of the partonic collision is unknown (determined by

the PDFs) and is di↵erent for each event.

This implies that in general, the hadronic center of mass frame will be di↵erent to the partonic center of

mass frame, and these two frames will only coincide when the colliding partons carry the same momentum

fraction, x1 = x2. Therefore, in hadronic collisions, the most suitable event description is provided by

quantities that are either invariant or that transform in a simple way under longitudinal boosts (to decrease

sensitivity to this unknown initial state longitudinal momentum).

A suitable parameterization for four-momenta in hadronic collisions is can be constructed as follows. We

begin by

p = (E, px, py, pz) =
⇣p

~p2 +m2, |~p| sin ✓ cos�, |~p| sin ✓ sin�, |~p| cos ✓
⌘

(129)

where ✓ is the polar angle with respect to the hadron beam and � is the azimuthal angle with respect also

to the hadron beam axis, as shown in Fig. 17. It is customary to express the four-momentum p in terms of

the rapidity y and the transverse mass mT , defined as,

y ⌘ 1

2
ln

E + pz
E � pz

, mT ⌘
q

p2T +m2 , (130)

so that the parametrisation Eq. (129) can be written as follows

p = (E, px, py, pz) = (mT cosh y, |pT | cos�, |pT | sin�,mT sinh y) , (131)

In Eq. (131), the transverse mass and the pT are obviously invariant under longitudinal boosts, while the

rapidity transforms additively, facilitating going from the partonic center-of-mass the hadronic center-of-

mass. To derive Eq. (131) from Eq. (129), note that

cosh y = 0.5

 ✓
E + pz
E � pz

◆1/2

+

✓
E � pz
E + pz

◆1/2
!

=
Ep

m2 + p2T
=

E

mT
, (132)

and likewise for the other component of the four-momentum.
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Figure 17: Kinematics of an hadron-hadron collision for an azimuthal angle of � = 0. In general, the hadronic center
of mass frame will be di↵erent to the partonic center of mass frame.

It is easy to show that the rapidity y transforms additively under longitudinal boosts. To prove this, recall

that under a longitudinal boost (that is, a boost in the z direction, the beam direction), a four-momentum

transforms as

p ! p0 = � (E � � pz, px , py ,��E + pz) , (133)

in terms of the usual Lorentz boost parameters

� = v , � =
1p

1� v2
, (134)

so one can check that the rapidity transforms as

y ! y0 = y +
1

2
log

1� �

1 + �
, (135)

which has the important consequence that the di↵erence between rapidities is boost invariant:

� y0 ⌘ y01 � y02 = � y ⌘ y1 � y2 , (136)

and thus should be less sensitive to the details of the PDFs than other kinematic variables. This explains

the use of transverse variables and of the rapidity y to describe the kinematics of hadronic collisions. Given

that that partonic center of mass frame is uniquely defined while the hadronic center of mass frame depend

on the PDFs, this has the consequence that

perturbative calculations in hadron collisions are typically performed in the partonic center of mass frame,

and then boosted to the laboratory frame.

In the limit of massless particles (defined as the limit in which m ⌧ pT ), the rapidity becomes the

so-called pseudo-rapidity,

y ' ⌘ ⌘ � log tan
✓

2
, (137)

which is often used in experimental analyses since it can be directly related to the geometrical acceptance

of the detector. To check this property, note that when m ⌧ pT , then mT ' pT , and therefore the four
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Figure 18: Approximate coverage in transverse momentum pT and pseudo-rapidity ⌘ of current and future LHC
detectors. For a given

p
s and pseudo-rapidity ⌘, the kinematically maximum available pT is pmax

T ' p
se�y/2, as

will be shown below.

momentum of a massless particle becomes

p ' pT (cosh y, cos�, sin�, sinh y) , (138)

and therefore we can write the rapidity as

y ' 1

2
ln

1 + cos ✓

1� cos ✓
= � ln tan

✓

2
= ⌘ (139)

where we have used pz ' E cos ✓ for massless particles.

Achieving the maximum possible coverage in pseudo-rapidity is a very important feature of a detector

for hadron colliders, since this way one can access processes in the forward region. In Fig. 18 we show the

approximate coverage in transverse momentum pT and pseudo-rapidity ⌘ of current (and proposed) LHC

detectors. The two main purpose detectors, ATLAS and CMS, can cover up to ⌘ ⇠ 2.5, extended to ⌘ ⇠ 4

with the forward calorimeters, while LHCb is a forward experiment with acceptance 2.0  ⌘  4.5. Other,

smaller experiments like TOTEM increase the coverage of the forward region, and are important for a va-

riety of analysis like the total pp cross-section or the validation of predictions for high-energy cosmic ray

production.

Q: Explain why do you think that at the LHC the forward region is relevant for measurements of properties

of high-energy cosmic rays.

As we will show below, the maximum partonic center of mass energy is achieved for central collisions

y = 0, therefore the central region is crucial for searches of new BSM massive particles, while the forward
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Figure 19: Feynman diagram for the hadroproduction of a neutral gauge boson, followed by the decay into two
leptons, in the Born approximation. The four-momenta of the incoming quarks are labeled as p

1

and p
2

.

region is very important to keep full kinematical coverage for lighted states, in particular the Higgs boson.

Another useful relation is provided by the phase space in these new coordinates, which reads

d3p

2E(2⇡)2
=

1

2(2⇡)3
d2pT dy , (140)

as can be checked from the Jacobian of the change of variables

dpx dpy dpz =

����

✓
@(px, py, pz)

@(pT , y,�)

◆���� dpT dy d� (141)

d3p =

��������

0

BB@

pT cosh y 0 sinh y

0 �pT sin� cos�

0 pT cos� sin�

1

CCA

��������
dpT dy d� (142)

which is the expression that is used in calculations of hadronic processes. This is another useful property of

the parametrization Eq. (131) in terms of pT and y:

In terms of pT and y, the phase space factor is constant in both variables, no region is weighted more than

any other.

In the following, we explore two of the most representative processes that can take place in hadron-hadron

collisions: the Drell-Yan process, and inclusive jet production.

Drell-Yan production in hadronic collisions

Let us consider now the hadroproduction of massive vector bosons. Here we will work at the Born level only.2

The corresponding Feynman diagram can be seem in Fig. 19. Using the Feynman rules for the production

2Including radiative corrections should be easy following the techniques of the previous lectures.
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of a massive vector boson (assuming for simplicity a generic value of the electroweak coupling g), we obtain

M = g v̂(p2) �
µ u(p1) , (143)

and the partonic cross-section reads, including the phase space factor,

�̂ =
1

2ŝ

1

4

1

9

Z
d�1

X

spin,col

|M|2 (144)

where we have added the flux factor 1/2ŝ, the average over initial state polarizations 1/4 and the average

over initial state colors 1/N2
c . Using the properties of the Dirac algebra, we find that the spin averaged

matrix element squared is

X

spin,col

|M|2 = 3g2Tr
h
/p1 �

µ (�/p2) �µ
i
= 12 g2 ŝ , (145)

where we have used that

Tr
h
/p1 �

µ (�/p2) �µ
i
= 8p1 · p2 ' 4 (p1 + p2)

2 = 4ŝ , (146)

neglecting the masses of the incoming quarks. Doing the calculation, we find that that total partonic cross-

section is

�̂ =
4⇡2

3

g2

4⇡
�(ŝ�M2

V ) (147)

where we have used that the one-particle Lorentz-Invariant Phase Space factor reduces to the energy con-

servation delta function:

d�1 =

Z
d3q

2q0(2⇡)3
(2⇡)4�(4)(p1 + p2 � q) = 2⇡ �((p1 + p2)

2 �M2
V ) , (148)

as expected in the case of a 2 ! 1 process (the phase space is trivial).

For the case of W+ production, in the parton model, and keeping only the contribution from the first

two generations of quarks and anti-quarks for simplicity, assuming a diagonal CKM mixing matrix, we get

that the hadronic cross-section is given by the usual convolution over the PDFs:

�W+ =

Z
dx1 dx2 [ fu(x1)fd̄(x2) + fd̄(x1)fu(x2)] ⇥ ⇡2

3

↵QED

sin2 ✓W
�(sx1x2 �M2

W ) (149)

so in this case the partonic matrix element is trivial and the production cross-section is determined directly

by a certain convolution of PDFs, with a suitable flavor combination. Note that we select the scattering ud̄

and d̄u, where the first quark corresponds to the first proton and son on.

Let us take a closer look at the kinematics of this process. The kinematics of vector-boson production in

hadronic collisions can be written as follows:

p1 = (x1Ebeam/2, 0, 0, x1Ebeam/2) (150)

p2 = (x2Ebeam/2, 0, 0,�x2Ebeam/2) (151)

q = ((x1 + x2)Ebeam/2, 0, 0, (x1 � x2)Ebeam/2) (152)
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with q the four-momentum of the gauge boson. In this process, the kinematics are fixed once the gauge

boson rapidity is specified. Indeed, it is easy to check, using the definition of y, that

y =
1

2
log

q0 + qz
q0 � qz

=
1

2
log

x1

x2
, (153)

x1 x2 s = M2
W , (154)

with no other variables, since this is a 2 ! 1 process. Therefore the values of the PDF Bjorken-x probed in

this process are fixed once the vector-boson rapidity is specified.

x1 =
MWp

s
ey , x2 =

MWp
s
e�y , (155)

so one parton will carry a larger momentum fraction than the other.

Using Eq. (155) it is possible to determine the coverage in (x1, x2) that a given collider has access to. For

instance, at the LHC 14 TeV, for ATLAS and CMS, that have y  2.5, we find that x1(x2) = 0.07(0.0005),

while for the LHCb detector, whose acceptance goes up to y  4.5, we find instead x1(x2) = 0.5(6 10�5).

Therefore, the measurements at forward rapidity cover a wider range of Bjorken-x, which is very useful for

PDF studies.

Note also that at the Born level the W bosons are produced with vanishing transverse momentum, so it

would be impossible to detect them (they would disappear through the beam pipe). The pT of W bosons

is generated by QCD radiative corrections (emission of a hard gluon) as well as by soft QCD dynamics

(multiple emissions of soft and collinear gluons) for the small pT tail.

The pT spectrum of electroweak bosons is a central observable at hadron colliders from many points of view,

like the tuning of MC event generators.

Doing the delta function integral in Eq. (149), we end up with the following result for the total cross-

section

�W+ =

Z
dx1 dx2 [ fu(x1)fd̄(x2) + fd̄(x1)fu(x2)] ⇥ ⇡2

3

↵QED

sin2 ✓W
�(sx1x2 �M2

W )

=
⇡2

3

↵QED

sin2 ✓W

1

s

Z 1

0

dx1

x1


fu(x1)fd̄

✓
M2

W

x1s

◆
+ fd̄(x1)fu

✓
M2

W

x1s

◆�
, (156)

and di↵erentiating over the rapidity of the W boson, using dx1 = x1 dy, as can be seen from Eq. (155), we

obtain our first di↵erential cross-section for an hadron collider process:

d�W+

d yW+

=
⇡2

3

↵QED

sin2 ✓W s
[ fu(x1)fd̄ (x2) + fd̄(x1)fu (x2)] (157)

Interestingly, this di↵erential cross-section is determined entirely for the shape of the PDFs at the values of

x1,2 fixed by the kinematics, Eq. (155).

The above derivation is an oversimplification of the whole picture, to begin with because the have con-

sidered only ud̄ scattering. In Fig. 20 we show the contribution of di↵erent partonic initial states to the
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Figure 20: Left plot: the contribution of di↵erent partonic initial states to the rapidity distribution of W+ bosons
at the LHC 7 TeV. Right plot: the calculation of the rapidity distribution of Z bosons at the LHC 14 TeV, computed
at LO, NLO and NNLO accuracy. The bands represent the theoretical uncertainty in the calculation arising from
higher orders.

rapidity distribution of W+ bosons at the LHC 7 TeV. Is clear that the e↵ects of the second generation are

important and cannot be neglected.

The accuracy in the theoretical prediction of the W boson kinematic distribution is important to extract

fundamental parameters of the SM, like the W mass, that might provide indirect constraints on New Physics

beyond the SM. A permille precision in a number of distributions is required to be able to perform a

competitive measurement. See Fig. 21 for the results of the impact of the direct W mass measurement in

the global electroweak fit.

Q: Why a precision measurement of the W mass can constrain new physics? More in general, what can

we learn from radiative corrections? In the past, which information on new physics has been uncovered by

this type of precision measurements?

Another implication is that Eq. (157) includes only the Born term. Using similar techniques as in the

vase of e+e� and DIS it can be shown that soft and collinear final state divergences are canceled between

real and virtual diagrams in inclusive enough distributions, and that the initial state collinear singularity

subtraction can be performed exactly in the same was as in the vase of DIS. In the right plot of Fig. 20 we

also show the calculation of the rapidity distribution of Z bosons at the LHC 14 TeV, computed at LO, NLO

and NNLO accuracy. The bands represent the theoretical uncertainty in the calculation arising from higher

orders, estimated by varying the renormalization and factorization scales with respect to the central scale.

In hadron collider calculations, scale variations of the type 0.5  µ/muF  2 and 0.5  µ/muR  2 are

used to estimate higher-order uncertainties. The basic idea is that since in the full calculation (resuming all

orders), there is no dependence on this scales, we can estimate missing higher orders with a suitable scale

variation. This procedure is know to work reasonable well for a number of cases, but there are also important

exceptions.
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Figure 21: The impact of the direct W mass measurement in the global electroweak fit.

Jet production

Another central process of hadron collider phenomenology is the production of jets. This is the simplest

hadroproduction 2 ! 2 process, with two colored parton in the initial state and two in the final state. To

construct the jet cross-section at the Born level, we need to convolute all possible partonic cross-sections for

the scattering of quarks and gluons with the corresponding parton distributions. The fully di↵erential jet

cross-section will be given by

d�jet =
X

ijkl

dx1 dx2 fi(x1) fj(x2)
d�̂ij!kl

d�2
d�2 , (158)

where the partonic cross-section d�̂ij!kl/d�2 can be computed using the QCD Feynmann rules. In Fig. 22

we show some representative diagrams for the quark and gluon scattering processes that contribute to the

jet cross-section. Note the presence of genuine QCD vertices like three and four gluon vertices. In Fig. 22

we also show the results for the calculation of all the various partonic cross-sections for di↵erent initial and

final state combinations. The results are expressed in terms of ŝ, t̂ and û, the Mandelstam variables of the

partonic scattering.

Though here we will work in the Born approximation, final and initial state soft singularities can be dealt

as usual in pQCD, either absorbing them in PDF redefinitions or with a suitable jet algorithm.

Let us take a closer look at the kinematics of jet production. For a 2 ! 2 scattering of massless particles

the kinematics are fully specified by the pT of the back-to-back particles and by their rapidities y1 and y2.

So we can write the four-momentum of the two final-state quarks or gluons as

p1 = (pT cosh y1, pT cos�, pT sin�, pT sinh y1)

p2 = (pT cosh y2,�pT cos�,�pT sin�, pT sinh y2) (159)
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Figure 22: Left plot: a representative subset of the Feynman diagrams that contribute to the hadroproduction jet
cross-section at the Born level. Right plot: the result for the partonic cross-sections for di↵erent scattering channels.

where the rapidities y1,2 are measured in the detector (laboratory) reference frame. From momentum con-

servation, we see that the values of the Bjorken-x that jet production is probing is given by

x1 =
pTp
s
(ey1 + ey2) , x2 =

pTp
s

�
e�y1 + e�y2

�
. (160)

Therefore, to reconstruct the kinematics of the underlying partonic collision one needs to measure the

kinematics of the two jets.

Q: How is the inclusive jet cross-section defined? Can we determine the underlying partonic kinematics?

Count variables and constraints.

It is possible to show, using the above kinematics, that for a given
p
s and pseudo-rapidity ⌘, the

kinematically maximum available pT is

pmax
T ' p

se�y/2 . (161)

Assume that parton masses can be neglected here, so we have that y = ⌘. The ⌘ = 0 case is trivial: all the

energy of the proton-proton collision goes into the pT of the final state particles. For ⌘ 6= 0, one sees from

Eq. (160) that the highest pT will be produced when ⌘1 = �⌘2, which corresponds to x1 = x2, and leads to

Eq. (160).

The calculation of the matrix elements is simplified in the partonic center of mass frame, defined by the

following condition for a 2 ! 2 scattering:

y⇤1 = �y⇤2 ! y⇤1 =
1

2
(y1 � y2) = �y⇤2 (162)

and we can show that the scattering angle with respect to the beam axis ✓⇤ is determined by the di↵erence

of rapidities of the two jets

cos ✓⇤ = tanh y⇤1 = tanh

✓
y1 � y2

2

◆
. (163)

Q: what is the boost required in this transformation? From

y ! y0 = y +
1

2
log

1� �

1 + �
, (164)

Page 45 of 71



Dr Juan Rojo MMathPhys: The Standard Model and LHC Phenomenology June 5, 2015

Figure 23: Left plot: the CMS measurement of the dijet cross-section at 7 TeV, compared with NLO QCD predictions
with the NNPDF2.1 set. Right plot: the same observable, now used to search for New Physics that would appear as
bumps in the otherwise smooth distribution due to new exotic particles being produced.

we see that
1

2
log

1� �

1 + �
= �1

2
(y1 + y2) , (165)

so the boost is determined by the PDFs in this particular event.

Another important kinematic variable is the invariant mass of the dijet system

M2
12 = (p1 + p2)

2 = 4 p2T cosh2 y⇤ , M12 = 2 pT cosh y⇤ . (166)

which grows with the pT of the jets and with their separation in rapidity (which is the same in the center-

of-mass and laboratory reference frames). The fact that in dijet production we have a number of possible

scales poses an important problem in our perturbative QCD calculations:

What should be the optimal scale in dijet production? We should use µF = µR = M12, or perhaps

µF = µR = pT ? There is no unambiguous answer for this in pQCD.

At hadron colliders, inclusive and dijet production are crucial properties to look for New Physics, as well

as for the determination of fundamental strong coupling parameters such as ↵S(MZ) and the gluon PDF.

In the case of QCD measurements, such as the Mjj invariant mass spectrum of dijets measured from CMS

at 7 TeV, shown in Fig. 23, the comparison of the data with di↵erent PDFs provides direct information on

the behavior of the gluon at large-x. The very same process can also be used for searches for BSM physics,

for example, in Fig. 23 we show the dijet mass spectrum compared with the predictions for exotic scenarios

like excited quarks or string resonances, that would show up as bumps in the otherwise smoothly falling

distribution with Mjj . The absence of any noticeable bump allows them to place stringent limits in these

scenarios for New Physics.

In the early 20-th century, the Rutherford experiment found evidence for the point like structure of the
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nuclei in atoms from the scattering of energetic ↵ particles o↵ a gold foil. In the 70s, the same idea was

used in the SLAC deep-inelastic scattering experiments to find evidence of point-like constituents within the

protons, the quarks, as we showed in Fig. 2. It is thus reasonable to expect that maybe quarks could in

turn exhibit another layer of complexity, that could be identified in the same way, by scattering energetic

particles, in this case other quarks and gluons, against quarks, at hadron colliders such as the LHC.

To search for quark compositeness, the relevant scattering diagrams are those in the t-channel, for which

the di↵erential cross-section can be written as

d2�jet

dM12d cos ✓⇤
=
X

ij

Z 1

0

dx1dx2fi(x1)fj(x2)�(x1x2 s�M12)
d�̂

d cos ✓⇤
(167)

where the partonic cross-section is (in the center of mass frame) nothing but the Rutherford cross-section

for the scattering of point like particles from a Coulomb-like potential

d�̂

d cos ✓⇤
⇠ 1

sin4(✓⇤/2)
(168)

Q: why the Rutherford scattering formula is relevant here? Why the QCD interaction can be approximated

by a Coulomb-like interaction? What would be the relevant underlying Feynman diagrams?

Defining the variable �, to remove the Rutherford singularity, we find that if quarks are point like we

should find a flat cross-section as a function of �:

� ⌘ 1 + cos ✓⇤

1� cos ✓⇤
d�̂

d�
/ constant (169)

where we have used that

d� = 2d cos ✓⇤/(1� cos ✓⇤)2 . (170)

This naive picture is of course complicated by higher order QCD e↵ects, but in any case it remains true

that any structure in the measured � would hit towards quark substructure. A recent ATLAS search in this

channel can be seen in Fig. 24. The QCD predictions, for point-like quarks, are in good agreement with the

data showing that if quarks have substructure, this should appear at energy scales larger than ⇤ = 3 TeV.

To summarize, in this section we have studied the predictions of QCD at hadron colliders, where the QCD

factorization theorem ensures that the same PDFs that we measure in DIS can be used to make predictions

at the LHC. We have studies two of the simplest, yet at the same time richest, process at hadron colliders:

Drell-Yan and jet production, crucial both for BSM searches and for precision SM measurements. However,

with fixed-order perturbative calculations we can describe only final states of low multiplicity, while real

events involve hundreds or thousands of particles. Moreover, QCD calculations are done in terms of quarks

and gluons, while real event are composed by hadrons. Providing a realistic simulation of the hadronic final

state can be achieved by the so-called Monte Carlo parton shower event generators, which are discussed now.
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Figure 24: Measurement of the jet cross-section as a function of �, where the QCD predictions are compared to a
model with quark substructure, characterized by a scale ⇤ = 3 TeV.
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Figure 25: Left plot: Feynman diagram for the Higgs boson production in the gg channel, followed by a decay into
di-photons. Right plot: a candidate CMS event for the same process.

Parton showers and Monte Carlo event generators

Up to now we have discussed fixed order perturbative QCD calculations, where the final state looks clean

and well defined, see for example the Feynman diagram for Higgs production in gluon channel followed by a

decay to di-photons in Fig. 25. However, real events look much more messy, as the CMS display for a Higgs

candidate event, for the same underlying partonic process, shows. The connection between the fixed-order

QCD calculations in various processes, from e+e� annihilation to hadron collisions, and a realistic simulation

of the hadronic final state, is achieved by the Monte Carlo parton shower event generators.

The key idea of Monte Carlo event generators is the following:

• The starting point is the partonic configuration after the hard scattering, when all particles have

virtualities Q � ⇤qcd

• Then a parton shower follows, where quarks an gluons radiate more quarks and gluons via soft and

collinear splittings (which are dominant in the matrix elements, and resummed to all orders) until

virtualities of all partons in the event is Q0 ' ⇤qcd

• The hadronization of colored hadrons into color singlet hadrons is performed using models

• Finally, soft and semi-hard components of the process such as underlying event or multiple parton

scattering are also modeled

ending up with a realistic description of the final state in hadronic collisions. Monte Carlo generators are

based on a number of models, with parameters that need to be adjusted to experimental data.

Let’s illustrate how the parton branching process is performed. A splitting of parton a into partons b and

c, all of them massless, is depicted in Fig. 26. We will work under the assumption that the parton branching

procedure is ordered in virtually

p2b , p
2
c ⌧ p2a ⌘ t (171)

which makes sense since the (time-like) branching process moves from large virtualities (result of the hard

scattering) to small virtualities (where non-perturbative QCD kicks in). Moreover, we will work in the

small angle limit, where QCD matrix elements are enhanced due to infrared singularities.3 In this limit the

3This is the same collinear limit that we have studied in the case of DIS and e+e� annihilation processes.
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Figure 26: The collinear branching of a mother parton a into two daughter partons b and c.

virtuality t reads

t = 2Eb Ec (1� cos ✓) ' z(1� z)Ea ✓
2 , z ⌘ Eb

Ea
= 1� Ec

Ea
(172)

in terms of the energy fraction z and the branching angle ✓. In this approximation, using also the conservation

of transverse momentum in the splitting, we find the following useful relation:

✓ =
✓b

1� z
=
✓c
z
. (173)

It is an interesting exercise to compute the splitting amplitudes for various possible combinations of

quarks and gluons. In the case of the g ! gg splitting, using the QCD Feynman rules, summarized in Fig. 6,

we find that the vertex term can be written as

Vggg = igsf
def [gµ⌫ (pa + pc)

⇢ + g⌫⇢ (pc � pb)
µ � g⇢µ (pa + pb)

⌫ ] (174)

Squaring the matrix element, we end up with a factorized expression for the matrix elements with n + 1

particles |Mn+1|2

|Mn+1|2 ⇠ 4 g2

t
CA F (z; ✏a, ✏b, ✏c)|Mn|2 (175)

in terms of the matrix element with n particles |Mn|2 (computed before the splitting) and a universal factor

F which depends only on the details of the splitting, but not of the hard scattering n-body matrix element.4

Summing over polarizations, we find that the structure of infrared divergences of the soft and collinear

branchings are the same regardless of the hard scattering process: this is a consequence of the universality of

soft and collinear singularities in QCD. We can write the (n+ 1)-particle squared matrix element |Mn+1|2
after the splitting as follows

X

pol

|Mn+1|2 ⇠ 4 g2

t
CA


1� z

z
+

z

1� z
+ z(1� z)

�
|Mn|2 (176)

We again observe this important property of QCD, namely that

4See Ellis-Stirling-Webber for a more in-depth calculation of the factors F .
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The cross-section for n + 1 particles, when any pair has arisen from a soft or collinear splitting, can be

factorized into the n particle cross-section times a universal factor, a splitting function, which is process

independent.

This property of course should be more than familiar to us, since we have derived it explicitly already in a

number of di↵erent contexts, including e+e� annihilation and DIS.

From Eq. (176) we can observe the characteristic infrared divergences of the branching

• Soft singularities when z ! 1 or z ! 0: one of the partons becomes soft.

• Collinear singularity when t ! 0, see Eq. (172), when the two partons become collinear.

Finally, we can compute the cross-section for the (n+ 1)-particles final state in terms of the n-particle final

state supplemented by a collinear branching, obtaining the following result,

d�n+1 = d�n
dt

t
dz

↵s

2⇡
P̂ab(z) (177)

where P̂ab(z) is the unregularized splitting function, a very close sibling of the DIS splitting functions from

Eq. (110), and is given, in particular case of a final-state g ! gg splitting, by

P̂gg(z) = CA


1� z

z
+

z

1� z
+ z(1� z)

�
, (178)

and analogous expressions exist for other possible QCD branchings, such as g ! qq̄ or q ! qg.

By including the contribution of more and more sequential branchings, we can compute the multiple

emission of small-angle partons to all orders in the QCD perturbative expansions. This is what is done by

the Monte Carlo parton showers such as Pythia,Herwig or Sherpa, hence we say that these showers have LL

accuracy (meaning Leading Log). Therefore, parton showers are not only a method to simulate realistically

the final state of high energy collisions, they also allow to improve the perturbative accuracy of fixed order

computations.

The parton shower MC branching equations

Let us now derive the Monte Carlo equations for a generic parton shower, starting from the hard scattering

configuration. For simplicity, we will consider a space-like shower, corresponding the process schematically

represented in Fig. 27: starting from a parton with low virtuality t0 (since it is found in the proton, thus

t0 ' ⇤QCD), it emits soft and collinear radiation under reaching the hard scattering virtuality t = q2.

The initial parton carries momentum fraction x0, and the parton that enters the hard-scattering carries

momentum fraction xn.

The branching process depicted in Fig. 27 can be better represented by a path followed in the (t, x) plane,

shown in Fig. 28. The way to compute the equations that govern the multiple soft and collinear branchings

in a QCD parton shower is based on determining the number of paths that lead to a given region in the

(t, x) plane and the number of paths that leave this same region and reach the hard scattering virtuality Q.

Using the schematic diagram in Fig. 28, the variation of the PDF due to all paths that enter into the

(t, x) region is, using the result that we have derived in Eq. (177) for a soft or collinear branching, is the
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Figure 27: Schematic representation of a time-like parton shower branching, starting from a parton with low virtuality
t
0

, which emits soft and collinear radiation under reaching the hard scattering virtuality.

following:

� fin(x, t) =
� t

t

Z 1

x

dx0 dz
↵s

2⇡
P̂qq(z) f(x

0, t) �(x� x0 z) , (179)

where the PDF f(x0, t) is now inside the integral, while the contribution from the paths that leave this same

region is given by

� fout(x, t) =
� t

t
f(x, t)

Z x

0

dx0 dz
↵s

2⇡
P̂qq(z) �(x� x0 z) , (180)

where now the starting point of the PDF is fixed and thus is appears outside the integral. Therefore, putting

them together, we obtain that due to the soft and collinear branchings, the PDF should satisfy an LL

evolution equation:

t
@

@ t
f(x, t) =

Z 1

x

dz

z

↵s

2⇡
Pqq(z)f

⇣x
z
, t
⌘

(181)

which is nothing but the same splitting functions that we encountered in DIS. Indeed, the parton branching

description is an alternative way of deriving the QCD evolution equations.5

Now we can introduce an important concept for Monte Carlo event generators, known as the Sudakov

form factor. This quantity is defined as

�(t) ⌘ exp

✓
�
Z t

t0

dt0

t0

Z
dz

↵s

2⇡
P̂qq(z)

◆
. (182)

Using the Sudakov form factor, it is easy to derive the following modified evolution equations:

t
@

@ t

✓
f(x, t)

�(t)

◆
=

1

�(t)

Z
dz

z

↵s

2⇡
P̂qq(z) f

⇣x
z
, t
⌘

(183)

5The splitting functions are the same for time-like and space-like showers at LO, but di↵er starting from NLO onwards. The
parton branching description outlined above can only be used at LO accuracy though.
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Figure 28: Path in the virtuality/momentum fraction plane for a initial state parton in a space-like shower from a
low virtuality t

0

' ⇤2

QCD

to the hard scattering virtuality t ' Q2. to high virtuality. See text for more details.

which can be easily integrated to give the following result:

f(x, t) = �(t) f(x, t0) +

Z t

t0

dt0

t0
�(t)

�(t0)

Z
dz

z

↵s

2⇡
P̂qq(z) f

⇣x
z
, t0
⌘

(184)

Let’s take a closer look to this equation

• The first term of the contribution to all paths where virtuality changes from t0 to t without any

branching

• The second term is the contribution from all paths that have a branching at t0 and then evolve without

branching up to a virtuality t

So the Sudakov form factor, Eq. (182) has a clean theoretical interpretation as

The probability that, in a parton shower, a given parton evolves from t0 to t without any branching (and

then a branching takes place at t).

Eq. (182) is the basis of a Monte Carlo branching algorithm. The numerical implementation proceeds as

follows

(a) At some point in the branching chain, we have a parton with virtuality t1 and momentum fraction x1,

(b) The MC algorithm generates, probabilistically, the values of t2 using the equation

�(t2)

�(t1)
= R (185)

where R is a flat random number between 0 and 1.
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Figure 29: Schematic representation of the various ingredients that enter an hadronic collision, from the initial state
(parton distributions) to the hard scattering cross-section to the final state (parton shower, hadronization), and then
supplemented by non-perturbative soft physics for the underlying event and multiple parton interactions (Drawing
by K. Hamilton).

(c) Next the algorithm determines the value of x2 of this splitting, using the condition

Z x2/x1

✏

dz
↵s

2⇡
P̂qq(z) = R0

Z 1�✏

✏

dz
↵s

2⇡
P̂qq(z) (186)

where R0 is another flat random number between 0 and 1, and the integral is performed only over

resolvable branchings.

Using this procedure, starting from a relatively simple hard-scattering event, we can provide a realistic

simulation of the final state particles using perturbative QCD. In Fig. 29 we show the schematic representation

of the various ingredients that enter an hadronic collision, from the initial state (parton distributions) to the

hard scattering cross-section to the final state (parton shower, hadronization), and then supplemented by

non-perturbative soft physics for the underlying event and multiple parton interactions.

Once all partons in the shower have low virtualities, t ⇠ ⇤2
QCD, perturbative QCD breaks down, and it

is non-perturbative, long-distance dynamics that determine how these low-virtuality quarks and gluons are

confined into the hadrons that are observed in the detector.

Since perturbative QCD cannot be used to compute hadronization process, we need to resort to a vari-

ety of di↵erent models. The di↵erence between models is often taken as a systematic uncertainty in any

measurement that involves the use of parton showers.

The basic hypothesis is that of local quark-hadron duality: the flow of momenta and quantum numbers at

hadron level follows that of the parton level. With this assumption, and taken into account the fundamental

symmetries of QCD, various hadronization models have been proposed, and are implemented in di↵erent
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Figure 30: Left plot: schematic representation of the cluster model of hadronization, where a cluster formation
step follows the perturbative parton branching process. Right plot: schematic representation of multiple parton
interactions at an hadron collider.

shower MC programs. For example, the cluster model exploits an important property of the pre-confinement

of color in parton branching: color singlet clusters of partons form after perturbative branching and then

decay into the observed hadrons. This model is illustrated in Fig. 30, and the basic idea is to cluster the

low-virtuality partons into color-singlet clusters that are then hadronized.

Finally, let us mention that real hadron-collider events need to deal not only with a single hard scattering,

but actually in each event there can be multiple soft, semi-hard and hard collisions on top of the main one.

If these collisions arise from the same basic hadron-hadron collision, they are known as Multiple Parton

Interactions, and they are represented in Fig. 30. When collisions arise from di↵erent pp collisions within

the same bunch-crossing, as happens when the collider luminosity is high, then they are denoted as pile-

up. Taming the large pile-up present at the relatively large luminosities of the LHC is a major concern in

experimental analysis.
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Jet reconstruction and jet substructure

When discussing e+e� annihilation we found that exclusive observables exhibited infrared divergences, that

could only be canceled in inclusive enough observables by means of a jet definition. At the LHC, jets are

omnipresent, and jet reconstruction a crucial topic. In this lecture first we provide a general introduction

to the topic of jet reconstruction, with emphasis on hadron colliders, and then we explore jet substructure,

which is essential at the LHC specially in searches for massive new particles.

Jet reconstruction

As we have seen in e+e�, jets are fundamentally ambiguous concept. A sensible jet definition needs to be

introduced, that can be equally well applied to partons, hadrons and calorimeter cells. The conditions for a

robust jet algorithm were defined in 1990 in the Snowmass accord:

A crucial property of a jet definition is that it should be infrared and collinear safe, that is, provide sensible

results to all orders in the QCD perturbative expansion. As we saw in the case of the Sterman-Weinberg

jets, infrared safety can be formulated by requiring that

A cross-section, computed in pQCD, should be unchanged if any of the particles undergoes a soft or a

collinear splitting

.

An example of a IRC unsafe definition would be the following:
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since we see the emission or an arbitrarily soft parton merges the two jets that would otherwise be separated,

spoiling the cancellation of real and virtual soft divergences and producing an infinite result. The most

popular jet reconstruction algorithm at the LHC is known as the anti-kT algorithm. The is to cluster pairs

of partons sequentially following some measure of their distance. The algorithm works as follows

(a) Make a list of all final-state particles in your collision (can be partons, hadrons, calorimeter cells)

(b) Now compute the following distance between a pair of particles

dij = min
⇣
p�2T,i, p

�2
T,i

⌘ (yi � yj)2 + (�i � �j)2

R2
. (187)

where R is the jet radius, the fundamental parameter of the algorithm. We also compute the distance

of particle i with the beam

diB = p2T,i . (188)

(c) Find the minimum distance. If it is a dij , recombine the two particles by adding their four-momentum.

Else, declare particle i to be a jet and remove it from the list of particles.

(d) Continue the algorithm until the list of particles is empty

An important property of the anti-kT algorithm is that its catchment area (the area in which each each picks

up soft particles) is relatively regular, and this is a very beneficial property for jet energy calibration as well

as for the subtraction of underlying event and pileup. In Fig. 31 we show the catchment area of two jet

algorithms, with R = 1: the kT algorithm and the anti-kT algorithm. It is clear that the second produces

much more regular jets than the first of the algorithms. The kT algorithm is defined in exactly the same

way as the anti-kT algorithm but with a modified distance

dij = min
�
p2T,i, p

2
T,i

� (yi � yj)2 + (�i � �j)2

R2
. (189)

Another widely used sequential recombination algorithm is know as the Cambridge/Aachen algorithm, where

the distance is based purely on angular variables

dij =
(yi � yj)2 + (�i � �j)2

R2
, (190)

and which is specially useful in the context of jet substructure, as we discuss now.

Jet substructure

A closely related topic that has seen an impressive development recently is that of jet substructure. The

motivation to look closer to the internal structure of jets is provided by the following observation. Consider

the decays of a resonance with a mass at the electroweak scale. Typically due to the limited phase space

it will be produced with a small boost, and thus, if decays to QCD partons, the resulting jets will be well

separated. However, at the LHC a new kinematical regime becomes available: that where the EW-scale

resonance is produced with a very large boost, pT � m. In these conditions, the subsequent hadronic

decays of the resonance end up being collimated into a single jet, becoming thus indistinguishable from the

overwhelming QCD background - unless jet substructure tools are used.
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Figure 31: The catchment area of two jet algorithms, with R = 1: the kT algorithm and the anti-kT algorithm. It
is clear that the second produces much more regular jets than the first of the algorithms.

The situation is illustrated in Fig. 34. A heavy resonance, such as a W boson or a top quark, produced

with a large enough boost, pT � m, when decaying hadronically the final state becomes indistinguishable

from than of QCD jets. This seems a major problem, since it seems one would be missing many events of

important electroweak processes because of the dominance of the QCD jet backgrounds. Given that many

BSM scenarios involve the production of boosted heavy resonances, a major limitation to the LHC program

might be feared. Fortunately, we can use our understanding of QCD radiation to distinguish background

from interesting signals even in the boosted regime.

To understand which is the kinematic regime relevant for jet substructure let’s consider one of the most

paradigmatic examples, namely the decay of a boosted Higgs boson into a bb̄ pair. The processes is illustrated

schematically in Fig. 33. For simplicity, we assume that the Higgs has been produced centrally, and take the

azimuthal angle to be � = 0.

Using the parametrisation which is more suitable for hadronic collisions, we can write the four-momentum

of the Higgs boson as follows:

pH =
⇣q

m2
H + p2T,H , pT,H , 0 , 0

⌘
(191)

and that of the decay bottom quarks

pb =
⇣
z
q
m2

H + p2T,H , px,b , 0 , pz,b
⌘

(192)

pb̄ =
⇣
(1� z)

q
m2

H + p2T,H , px,b̄ , 0 ,�pz,b

⌘
(193)

where z is the fraction of the Higgs boson original energy that is being carried by the b quarks.

Now using four-momentum conservation and neglecting the small masses of the bottom quarks, we find

that the kinematics of the process is uniquely defined in terms of three variables:

• The Higgs boson mass, mH ,

• The Higgs transverse momentum, pT,H ,

• and the fraction of energy carried by the bottom quark z (which determines the asymmetry of the
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Figure 32: If a heavy resonance is produced with a large enough boost, pT � m, then when decaying hadronically
the final state becomes indistinguishable from than of QCD jets - unless one looks at the jet substructure.

decay)

It is an easy computation to show that

px,b =
pT,H

2
+ (2z � 1)

p2T,H +m2
H

2 pT,H
(194)

px,b̄ =
pT,H

2
� (2z � 1)

p2T,H +m2
H

2 pT,H
(195)

pz,b =

"
(p2T,H +m2

H)

✓
z2 � z +

1

2

◆
� p2T,H

4
� (2z � 1)2

(p2T,H +m2
H)2

4 p2T,H

#1/2
(196)

The above formulae are valid in all generality. Now let us consider the boosted regime, pT,H � mH , and

then we obtain a substantial simplification to end up with

px,b = z pT,H (197)

px,b̄ = (1� z) pT,H (198)

pz,b =
p
z (1� z)mH (199)

Therefore, in the boosted regime, the angular separation between the bottom and anti-bottom quarks will

be given by

Rbb̄ =
pz,b
px,b

� pz,b̄
px,b̄

=
1p

z (1� z)

mH

pT,H
(200)

Eq. (200) allows to determine when the boosted regime kicks in at the level of final state topology. If we

have a jet definition with jet radius R, them, if the transverse momentum of the Higgs boson is such that

R � Rbb̄, the two b quarks will end up collimated into a single jet, and there traditional Higgs reconstruction,

based on two separate b-tagged jets, becomes impossible. For R = 0.5 and z = 1/2, we find that in the case
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Figure 33: Scheme for the central production of a Higgs boson in a hadronic collision, followed by the decay into a
bb̄ pairs.

of H ! bb̄ the boosted regime is relevant when pT,H � 500 GeV. This of course is a reason of concern, since

these high pT,H events are very important for Higgs characterization studies.

To be able to find a way out, a number of jet substructure techniques have been developed in order to

e�ciently distinguish jets with non-trivial substructure from QCD jets. The basic ideas are common for all

methods:

• QCD jets arise from soft and collinear splittings, while in the decay of heavy resonances all prongs

share a similar amount of energy

• QCD jets do not show structure in the jet mass distribution, while for heavy resonances the jet mass

is peaked around the resonance mass.

• Removing soft radiation in a jet should leave signal events unchanged, while decreasing the contami-

nation from QCD events

A plethora of jet substructure techniques have been developed in the recent years. Here we will discuss

one of the most important substructure taggers, known as the BDRS mass-drop tagger.6 This tagger is

based on the Cambridge/Aachen algorithm, and it works as follows:

(a) Recluster a given jet with the C/A algorithm with a large value of R, say R = 1.0 The jet can have

been originally clustered with any other algorithm, like anti-kT , and other values of R, but before we

can use BDRS we need to recluster with C/A

(b) Recall that in the Cambridge/Aachen algorithm, particles are clustered according to their angular

distances:

�R2
ij = (yi � yj)

2 + (�i � �j)
2
. (201)

6From the 2008 paper from Butterworth, Davidson, Rubin and Salam, who showed that using jet substructure on can use
H ! bb̄ event at the LHC.
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(c) First of all undo the last step of the C/A clustering, and take a look at the properties of the resulting

subjets. If this last splitting had been a soft/collinear QCD emission, we expect that the invariant mass

of the leading subjet to be not to di↵erent from the jet mass mj . Therefore, to be tagged as a fat jet,

BDRS require a substantial mass drop, so that the subjet masses are much smaller that the original

jet mass

mj1  µmj , (202)

with mj1 the invariant mass of the hardest subjet, and the threshold µ is a parameter of the algorithm.

To see the motivation of this cut, note that in the case of a soft-collinear splitting we have

m2
j = m2

j1 + m2
j2 + 2 z(1� z)E2

j ✓
2
j1,j2 (203)

and therefore neglecting the mass of the softer subjet we find

m2
j1 ' m2

j

 
1� 2 z(1� z)E2

j

m2
j

✓2j1,j2

!
 µm2

j (204)

so the cut in µ e↵ectively discards soft and collinear splittings.

(d) A QCD splitting will be mostly collinear, so BDRS also requires that this last splitting should be

relatively symmetric, as would be the case in the decay of a heavy resonance. This is achieved by

requiring that

ymdt ⌘ min(p2T,j1, p
2
T,j2)

m2
j

�R2
j1,j2j � ycut (205)

with ycut another parameter of the algorithm. To understand where this cut comes from, we note that

in the QCD soft limit we can write:

ymdt ⌘ min(pT,j1, pT,j2)

m2
j

�R2
j1,j2j ' min

�
z2j1, z

2
j2

�

zj1 zj2
=

min (zj1, zj2)

max (zj1 , zj2)
� ycut (206)

So therefore, this cut discards kinematic configurations where the branching is too asymmetric.

(e) If the two conditions Eq. are satisfied, we can tag the fat jet as arising from the decay of a boosted

heavy resonance, rather that being a standard QCD jet. Else, we discard the softest subjet, and repeat

the procedure for the hardest subjet until the BDRS condition is satisfied or until we reach the end of

the clustering history, at which point the jet is classified as a QCD jet.

Other jet substructure tools are based on similar ideas: identify the substructure variables for which QCD

jets di↵er more from fat jets arising from decays of boosted resonance, and cutting on those to increase the

signal significance. These tools have been implemented by ATLAS and CMS in many of the Run I analysis,

and this technology will become even more important at Run II. In Fig. 34 we show two examples of boosted

resonance reconstruction. First of all, in top quark pair decays, in a large fraction of events the W bosons

decay hadronically. If the pT is large enough, the hadronic decays of the W will be collimated into a single

jet, which can then be reconstructed with substructure techniques, resulting in a nice peak around the W

mass for the the jet invariant mass. ATLAS has managed to reconstruct the Z ! bb̄ decays in events where

the Z boson carries large transverse momentum, and where jet substructure techniques allow to identify this
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Figure 34: Le↵ plot: in top quark pair decays, in a large fraction of events the W bosons decay hadronically. If the
pT is large enough, the hadronic decays of the W will be collimated into a single jet, which can then be reconstructed
with substructure techniques, resulting in a nice peak around the W mass for the the jet invariant mass. Right
plot: ATLAS has managed to reconstruct the Z ! bb̄ decays in events where the Z boson carries large transverse
momentum, and where jet substructure techniques allow to identify this decay channel over the overwhelming QCD
background.

decay channel over the overwhelming QCD background.

Of course, the ultimate hope is to be able to discover new physics in boosted final states using jet

substructure technique. in Fig. 35 we show the Feynman diagram which correspond to the pair production

of fermionic top partners (that would arise for example in models where the Higgs boson is a composite

particle) and that might contain a number of fat jets in the final state, in particular from the hadronic

decays of W bosons. In the right part of the plot we show an event display corresponding to this search,

where the C/A algorithm has been used o identify a fat jet from the decay of a boosted top quark.
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Figure 35: Feynman diagram which correspond to the pair production of fermionic top partners (that would arise
for example in models where the Higgs boson is a composite particle) and that might contain a number of fast jets
in the final state, in particular from the hadronic decays of W bosons.
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