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Abstract

In this work is presented an extended study of Hamiltonians with
random potential of the kind involved in the Anderson and Lloyd lattice
models. Here are presented the most important results regarding the spec-
tra of this Hamiltonians and their localization. These considerations are
also accompanied by an overview of the possible measure of localization
for the states and an analysis of the effects induced by the introduction
of boundary conditions. An application of the results obtained is pro-
vided for the model of a Hamiltonian with a time-periodic delta potential
(the Quantum kicked rotor), which will be reduced to the tight binding
dynamic proper of Anderson models.
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1 Introduction

The intention of this work is to introduce the reader to the instruments that
have been utilized to solve what was initially the Hamiltonian problem describ-
ing impurities on a discrete lattice: the behaviour of electrons in a disordered
material is described with a Hamiltonian that couples the state of the electron
in a site, u(i), with the state in other positions:

(Hu)(i) = kiu(i) +
∑
n

Vniu(i− n) (1.0.1)

where the sum runs over all the other sites of the lattice. This Hamiltonian
models the in-site potential with the magnitude of ki and the coupling with other
sites through the potential Vni. In particular, the Hamiltonian that models the
impurity systems initially analyzed is the one with random variables for each
site and constant coupling factors. With the introduction of various models,
it became clear that such systems required the study of a particular kind of
matrices, which in the case of an in-site random potential and near-sites coupling
the matrices are of the form

H :=

⎛⎜⎜⎜⎝
k(1) V12 0 · · · · · · · · ·
V21 k(2) V23 0 · · · · · ·
0 V32 k(3) V34 0 · · ·
...

...
...

...
. . . · · ·

⎞⎟⎟⎟⎠ (1.0.2)

with random diagonal entries: in this regard is important the study of
random matrices. Moreover, since the Schrödinger equation arising from this
Hamiltonian is described in terms of a product of random matrices, some of the
most important achievements in this field will be introduced: we will present the
famous results of Furstenberg, Osceledesc and others regarding the behaviour
of the eigenstates, eigenvalues and of the spectrum of such products, and more
in general some of the peculiarities of random processes and product of random
matrices on probability spaces. From these analyses it will emerge how electron
states are localized on the lattice, and how the randomness is responsible for
the localization: in this regard, the Lyapunov exponents characterizing the ex-
ponentially localized states will play an important role and will be responsible
for the quantification of localization. We will focus on the models introduced
for the modelization of these systems by Anderson ([1]) and mainly by Lloyd
([16]), whose model admits an analytic solution for finding the most important
properties of the eigenstates. Particular attention will be directed toward the
measures of localization: much emphasis has been put on this characteristic
since it is also experimentally observed in systems like extrinsic semiconduc-
tors. After discussing some of the quantities that describe this characteristic, a
method introduced by Hatano and Nelson about the influence on localization
will be presented: in their work they proposed an introduction of boundary
conditions on a finite lattice to study the localization of eigenstates through the
reaction of their energy to the perturbation, in the context of the depinning of
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flux lines in superconductors; it turns out that this method is quite general and
can be utilized to probe the influence of eventual lattice boundary couplings in
an Anderson Model.

The methods provided by these theories will turn out to be important also in
a model which apparently doesn’t have any relation to the systems mentioned:
the delta kicked rotor, first studied by Chirinkov, Izrailev, Ford and Casati ([3]).
A rotor is basically an object rotating freely: if we add to this dynamic periodic
delta impulses (the kicks, as if we would kick periodically the rotor in a fixed
direction) the system shows classically a chaotic behaviour for certain values of
the parameters involved, such as the moment of inertia and the intensity of the
kicks. The study of the quantum mechanical version shows the presence of a
particular behaviour, such that for a period of the kicks which is not commensu-
rable with the intrinsic period of the rotor a localization in angular momentum
space emerges, similarly to the localization of the lattice hopping model: we
will in fact, through the so-called Maryland construction proposed by Grempel,
Fishman and Prange [9], reach a form of the Hamiltonian that resembles that
of 1.0.1 of a tight binding model. Before this analysis, an approach to the study
of time-dependent Hamiltonians will be also presented, with the introduction of
the Floquet states and the quasi-energy theory. Here we mention an experimen-
tal setting that shows the behaviour of a kicked rotor, performed by Bayfield
and Koch [2]: a Hydrogen atom with high energy quantum numbers is put in a
microwave cavity and ionization energies are measured; it has been shown that
classically ionization occurs for values of the frequency involved related to the
beginning of chaotic diffusion in action space; the quantum mechanical analysis
instead predicts a higher ionization energy than the classical one due to the
localization of electrons wave packets, which are peculiar to random potential
as the ones discussed.

2 Anderson’s Hopping Model

2.1 Hamiltonian in a lattice and random potentials

Let’s consider a discrete d-dimensional lattice, in which we indicate the location
of a point with an integer i ; let |n| := max|nj |, |n|+ :=

∑d
j=1 |nj |, n ϵ Zd; the

analog of the laplacian operator on functions of this lattice is defined as

(∆d(u))(i) :=
∑

j;|j−i|+=1

(u(j)− u(i)); u(i) : Zd → C (2.1.1)

It involes a summation running over the indices j that are a unit distance
from i in the d-lattice, mimicking the differential operation represented by the
correspondent continuous operator. It can be seen that ∆d is bounded on l2(Zd)
with an absolute continuum spectrum σac(∆d) = [−4d, 0]. Introducing a po-
tential Ṽ (i) : Zd → R, the general form for the Schrödinger equation for the
eigenvalue ε is
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H̃u(i) = −(∆d(u))(i) + Ṽ (i)u(i) = εu(i) (2.1.2)

The equation can be brought to a more convenient form by the unitary
operator (−1)N , defined through [(−1)Nu](i) = (−1)|i|+u(i), which transforms
the Hamiltonian to [(−1)N ]H̃[(−1)N ]−1 = 4d+∆d+V . If we furthermore define
H0(u)(i) =

∑
j;|j−i|+=1(u(j)) and V = Ṽ + I, we get the Hamiltonian in the

form

Hu(i) := H0(u(i)) + V (i)u(i) (2.1.3)

which up to a constant and a unitary transformation corresponds to 2.1.2.
We have thus separated the ”hopping” terms of H0 from the potential V in each
site of the lattice.

We can now consider the case in which the potential V assumes random
values at every site: to do so we first introduce a probability space represented
by the tern (Ω, F,M), where F is a σ-algebra on the set Ω, andM is a probability
measure on (Ω, F ): in the probability interpretation this measure represents the
probability density of the distribution chosen for the random set. For the case
considered we choose

Ω = IZ
d

where I is a subset of R, so that the probability set corresponds to a set of real
intervals for every site on the lattice. The corresponding F algebra is generated
by the sets {ri|ri1 ∈ I1, ..., rin ∈ In}, ij ∈ Zd, Ii subsets of R.
Of importance for the study of the probability space and for the introduction
of some properties of measures are the shift operators Si on Ω, defined by

Sir(j) = r(j − i), i, j ∈ Zd

These operators shift the lattice of random values by i in one direction.
A probability measure on Ω is said to be stationary if P (S−1

i R) = P (R), ∀R ∈
F . A stationary measure is ergodic if ∀ I such that S−1

i (I) = I ∀ i ∈ Zd P (I) =
0 or P (I) = 1.

The Anderson model refers to the case of random independent identically
distributed variables (i.i.d.): this distribution is characterized by a probability
measure of the kind dPD

0 , D ⊂ Zd, where P0 is the distribution of the random
variables r(i) on one site, so that for I ⊂ R, P0(I) = P0(r(i) ∈ I), ∀I ⊂
R, i ∈ Zd. If we consider this distribution for every point of the lattice we
get to the lattice measure dPD

0 . We can then make the identification Vr(i) = ri
such that a random potential is realized by random values on Zd, and if the
variables are i.i.d. we have the Anderson Hamiltonian

HA(u(i)) := H0(u(i)) + Vr(i)u(i) (2.1.4)

For fixed r, this is a normal equation which in principle could be solved in a
deterministic way. However, it is interesting to study the shared properties of
the spectrum of these Hamiltonians for r varying on the probability space.
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2.2 Localization of eigenstates in random potentials: Lya-
punov exponents

In the one dimensional case, d = 1, the Schrodinger equation is

u(i+ 1)− u(i− 1) + (Vr(i)− E)u(i) = 0 (2.2.1)

By introducing the vector ū(i) := (u(i+ 1), u(i))T and the matrix

Li(E, r) :=

(
E − Vr(i) −1

1 0

)
(2.2.2)

then the solutions to equation 2.2.1 satisfy also

ū(i) = Li(E)ū(i− 1), (2.2.3)

and

ū(i) = Φi(E)ū(0)

ū(−i) = Φ−i(E)ū(0) (2.2.4)

where Φi(E) = Li(E)Li−1(E)...L0(E), Φ−i(E) = L−i+1(E)−1...L0(E)−1

and ū(0) is the initial conditions vector ū(0) = (u(1), u(0))T . The above equa-
tions permit to calculate the behaviour of the solutions for big values of |i| by
studying the behaviour of the product of the matrices Li(E, r) . In this regard,
some useful theorems give information on the asymptotic behaviour of Φi(E)
and ū(i) for increasing i. Let’s start by defining the Lyapunov exponents, which
we will se characterize the asymptotic trend of ū(i) :

γ̄±(E, r) := lim sup
N→±∞

1

|N |
log ||ΦN (E, r)||

γ±(E, r) := lim inf
N→±∞

1

|N |
log ||ΦN (E, r)|| (2.2.5)

These quantities are related to the behaviour of the norm of Φi(E, r) for
fixed r and E.
We will now introduce important results regarding these quantities and their re-
lation to the spectrum of the Hamiltonian of the one dimensional lattice. In the
one dimensional case, the shift operators are such that Si = (S1)

i, so that a finite
translation is a series of one-site translations. A sequence of random variables
{Li}iϵN is a subadditive process if, for a measuring preserving transformation
S, Li+j(r) ≤ Li(r) + Lj(S

ir): this condition guarantees in some sense when
applied to translation operator S that the process doesn’t grow excessively with
i, and recalls for the definition of subadditivity given for sequences of numbers.
For these processes we have the important theorem found in [14]

Theorem 1.1 (Kingman, without proof). If {Li}iϵN is a subadditive process,
for which the expected value over Ω < |Li| > < +∞ ∀i and Γ(L) := inf <Li>

i >
−∞, then Li(r)/i converges for almost all r in Ω. If moreover the traslation
operator S is ergodic then for almost all r we have that limi→+∞

1
iLi(r) = Γ(L).
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What the theorem says is that if a process satisfies the subadditivity limita-

tion and S is ergodic then we have a convergence for Li(r)
i which doesn’t depend

on r, namely on the instance of the randomness. This result is used to prove
one important theorem about 2.2.5

Theorem 1.2 (Furstenberg, Kesten ([7])). For fixed E and almost all r in Ω

γ±(E) := lim
N→±∞

1

|N |
log ||ΦN (E, r)|| (2.2.6)

exists indipendently of r and γ+(E) = γ−(E).

Proof, only sketched. Defyning the process as LN = ||ΦN (E, r)||, it can be
shown that L is subadditive, < |LN | > < ∞ and inf(< LN > /N) > −∞, so
for theorem 1.1 we have that

lim
N→+∞

1

|N |
log ||ΦN (E, r)|| = inf

N>0

1

|N |
< log ||ΦN (E, r)|| > for a.e. r

(2.2.7)

lim
N→−∞

1

|N |
log ||ΦN (E, r)|| = inf

N<0

1

|N |
< log ||ΦN (E, r)|| > for a.e. r

(2.2.8)
Moreover for the stationarity we have that< log ||Φ−1

N || >=< log ||Φ−N+1|| >
and for

J :=

(
0 −1
1 0

)
,

we have both (JΦNJ
−1)t = Φ−1

N and ||Jū|| = ||J−1ū|| = ||u||, so that
γ+ = γ−.

The next result due to Osceledets ([17]) gives information about the asymp-
totic behaviour of the solution of the Schrodinger equation with the potential.

Theorem 1.3 (Osceledets). Given a sequence of 2× 2 matrices {Li}i∈N such
that limn→+∞(1/n) log ||Ln|| = 0 and detLn = 1, then if γ := limn→+∞(1/n) log ||Ln.
..L1|| > 0 there exist a one dimensional vector subspace V ⊂ R2 such that

lim
n→+∞

(1/n) log ||Ln...L1ū|| = −γ for ū ∈ V, ū ̸= 0 (2.2.9)

and
lim

n→+∞
(1/n) log ||Ln...L1ū|| = γ for ū /∈ V, ū ̸= 0 (2.2.10)

This important theorem tells us that for a process satisfying the condition
stated the corresponding Hamiltonian admits exponentially decaying and grow-
ing solutions: since the theorem admits similar results for the behaviour at
n → −∞, we can say that the solutions in which we are interested are the
exponentially decaying ones with solutions for n → −∞ and n → ∞ coin-
cident. Another aspect to note is that theorem 1.3, along with theorem 1.2,
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guarantees that at fixed energy E for almost all r in the probability space Ω the
solutions has the same exponential behaviour at large n, with a Lyapunov ex-

ponent γ(E) := limN→±∞
1

|N |
log ||ΦN (E, r)||; we can’t conclude immediately

from this that for every E such condition is met since at varying E, the sets of
r for which the condition is not true could add to a set of measure non-zero,
thus invalidating the conclusions we reached from theorem 1.3 (the existence of
only exponentially decreasing and increasing solutions). However, the following
theorem proved initially by Ishii ([13]) will characterize at least the continuous
spectrum of the Hamiltonian in terms of the Lyapunov exponents.

Before we need to introduce some definitions: given a Lebesque measure µ
on R and its absolutety continuous part µac, a set A is an essential support
of µac if there is a set B with µ(B) = 0 such that µ(R\(A ∪ B)) = 0 and for
C such that µ(C) = 0 then µ(A ∩ C) = 0. The essential closure is defined as
Āess := {λ|µ(A ∪ (λ − ϵ, λ + ϵ)) > 0 ∀ ϵ}: we can see the similarity with the
definition of the closure of a set. We can now state without proof:

Theorem 1.4 (Ishii, Pastur, Kotani). If {Vi} is a bounded ergodic process, then

σac(H) = Āass

where σac(H) is the Hamiltonian with potential associated to the process and
A = {E|γ(E) = 0}.

Thus we have at least partially obtained information about the measure of
the spectrum of H. Another theorem, stated without proof and initially proposed
by Ruelle ([19]) and then expanded by Andrein, Georgescu and Enss (thus the
name RAGE), strongly characterizes the continuous spectrum of an Hamiltonian
in terms of the localization of continuous eigenstates.

Theorem 1.5 (RAGE). Consider the self-adjoint operator H and the bounded
operator χ(|i| ≤ R), namely the characteristic function of the set {i ∈ Zd||i|+ ≤
R}. If ψc belongs to the continuous spectrum of H then

lim
t→+∞

1

t

∫ t

0

dt′|χ(|i| ≤ R)e−
i
h̄Ht′ψc|2 = 0 ∀R (2.2.11)

What the theorem says is that for every distance R the eigenstate will eventu-
ally leave the region included in that distance, as it should be for a non-localized
state, thus relating the continuum spectrum with the non-localizability of states.
The last theorem of the section finally guarantees the presence of a point spec-
trum for Hamiltonians of the kind 2.1.3 with random potentials Vr(i) of our
interest:

Theorem 1.6 (Kunz, Souillard ([15])). Suppose that the Vr in a d-dimensional
lattice Hamiltonian are random distributed variables with a common distribution
ρ(x)dx: if ρ ∈ L∞ and has compact support, then the corresponding Hamiltonian
as a pure point spectrum for almost every r in Ω, and the eigenfunctions are
exponentially localized for almost every r.
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This important theorem thus characterizes completely the eigenstates of the
Hamiltonian we have introduced, with distribution in the space of l∞ function.

With the help of the theorem discussed we have been able to characterize
strongly the spectrum of our random Hamiltonian: the spectrum is characterized
by localized eigenstates for almost all the instances of the randomness.

2.3 Thouless Formula

Until now we have studied the property of the spectrum of a Hamiltonian with a
general random potential V related to a random process on a probability space:
the mentioned theorems give information on the behaviour of the eigenstates
and their localization, described by the Lyapunov exponent; these results don’t
apply only to a single instance of the randomness but refer to almost all of
the probability space. Nonetheless, even if we have ascertained the existence
of these exponents, we haven’t yet provided a method to calculate them. In
this regard, we will introduce a very important formula, the Thouless formula
(introduced by Thouless in [21]), which connects the density of states to the
Lyapunov exponents. This formula descends from some property of the function
γ(E) encountered in the previous theorems. The route to this formula is a bit
long so we will not go through it: however, it is interesting to state at least that
it derives from properties of subharmonicity of γ(E). However, we can present
a qualitative demonstration on why the formula holds in the one-dimensional
finite case: consider the Green function relative to the Hamiltonian of the finite
Lloyd model:

Gnm :=
1

N

(
1

E −H

)
nm

=
1

N
(−1)m−n detnm(E −H)

det(E −H)
(2.3.1)

and its spectral representation:

G(E) =
1

N

∑
λ

⏐⏐uλ⟩ ⟨uλ⏐⏐
E − Eλ

(2.3.2)

From the tridiagonality of the matrix Hamiltonian results that

G1N (E) =
1

N

1∏N
ν=1(E − Eν)

(2.3.3)

Where Eν are the eigenvalues of the corresponding Hamiltonian. On the
other hand, from 2.3.2 we have that

G1N =
1

n

∑
ν

uν(1)uν(N)

E − Eν
(2.3.4)

Whit uν eigenstate relative to the eigenvalue Eν . Confronting the two prece-
dent expressions we get by evaluation of the residual pole at E = Eν :

uν(1)uν(N) =
1∏

µ̸=ν(Eν − Eµ)
(2.3.5)

8



If the state is exponentially localized, then we have that u(1)u(N) = Ae−γνN

with A normalization factor and γν corresponding Lyapunov exponent. Com-
paring this expression with 2.3.4 we obtain

γν =
1

N

∑
µ ̸=ν

log |Eν − Eµ| (2.3.6)

In switching to the limit N → +∞ we have to substitute the sum with an
integral and consider also the density of eigenstates. In the general case, we
have thus

Theorem 1.7 (Thouless formula). The Lyapunov exponent is such that

γ(E) =

∫
log |E − E

′
|ρ(E

′
)dE

′
(2.3.7)

where ρ(E
′
) is the density of state of the Hamiltonian (2.1.4).

The interesting aspect of this result is that it connects the density of state
to their localization: we see that the presence of other eigenstates influences
the exponential behaviour of the localization, and from 1.7 we see that biggest
contribute comes from the region of highest density of states.
This formula gives the possibility of calculating the Lyapunov exponent of a
random system: it is however quite difficult to compute analytically 2.3.7 in
most of the cases, and one of the few solvable models is Lloyd model.

Since we are interested in the Lloyd model we don’t execute the calculations
for determining γ(E) and ρ(E) for the Anderson model, anyway it may be
insightful to see some practical results: in figures 1 and 2 are shown the outputs
of a simulation which models an Anderson random potential in a finite lattice
(with a finite number of sites), with random variables distributed in a symmetric
interval on the real line centered around 0. It’s clearly visible, expecially in the
logarithmic scale, the exponential decay of the eigenstates. The simulation is
held for 700 lattice sites and an interval [−6, 6].

In Figure 1 the linear trend of the eigenstate is clearly evident. In Figure
2 the function γ(E) from (1.20) is plotted: even if it is broadened by the high
number of states, a parabolic-like trend is visible.

3 Lloyd’s Model

3.1 Adding a Lorentzian random potential

As stated in the previous section, one of the cases in which the expression for
the Lyapunov exponent can be calculated analytically through 2.3.7 is Lloyd’s
model proposed initially by Lloyd ([16]). In addition to that, this model is
essential for the description of the eigenstates of the kicked pendulum. In this
section, we will introduce the model and calculate both the Lyapunov exponent
and the density of states.
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Figure 1: Plot of three eigenstates of an Anderson model with uniform dis-
tributed random potential: natural logarithm of the amplitude modulus of states
versus site position.

Consider a Schrödinger equation for a one dimensional lattice of the type:

k

2
(u(i− 1) + u(i+ 1)) + V (i)u(i) = Eu(i) (3.1.1)

Where we have introduced the factor k
2 to quantify the hopping probability

to neighboring sites. The Hamiltonian has the matrix form:

H :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

V (1)
k

2
0 · · · · · · · · ·

k

2
V (2)

k

2
0 · · · · · ·

0
k

2
V (3)

k

2
0 · · ·

...
...

...
...

. . . · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.1.2)

It’s a tridiagonal matrix with random entries on the diagonal. In the case
of the Lloyd’s model, the random potential follows the Cauchy distribution
centered in zero and caracterized by the width δ:

ρ(V (i)) =
δ

π(δ2 + V (i)2)
(3.1.3)

We start by recalling the Green function of the finite Hamiltonian with N
sites:

Gnm :=
1

N

(
1

E −H

)
nm

=
1

N
(−1)m−n detnm(E −H)

det(E −H)
(3.1.4)
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Figure 2: Trend of Lyapunov exponent as a function of E for the Anderson
model of i.i.d. variables

Where detnm(E −H) is the nm minor of (E −H).
Deriving 2.3.7 with respect to the energy E one obtains the useful formula

γ
′
(E) = P

∫
dE

′ ρ(E
′
)

E − E′ (3.1.5)

where the principal part of the integral appears.
From the representation of the Green function in the finite case in term of

eigenstates uλ with eigenvalues Eλ:

G(E) =
1

N

∑
λ

⏐⏐uλ⟩ ⟨uλ⏐⏐
E − Eλ

we get that

Tr(G(E)) =
1

N

∑
λ

1

E − Eλ
(3.1.6)

which in the continuous case, N → +∞, turns to

Tr(G(E)) =

∫
dE

′ ρ(E
′
)

E − E′ (3.1.7)

The denominator of 3.1.7 is the cause of a cut on the complex plane along
the real axis, which in turn generates a jump of the function through this axis;
for this reason above and below the real axis we have that

Tr(G(E ± i0)) = P
∫
dE

′ ρ(E
′
)

E − E′ ∓ iπρ(E) (3.1.8)
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Where i0 represents an arbitrary small imaginary value. The real part of
this expression gives the derivative of the Lyapunov exponent and is thus used
to calculate the asymptotic behaviour of eigenstates; the imaginary part is di-
rectly connected to the density of states ρ(E) and will be used to calculate this
quantity.

3.2 Lyapunov Exponents and Density of States

It is to be noted that all the precedent discussion holds true for a realization of
the randomness: to obtain information common to all the probability state we
need to take the averages of the quantities involved. In the case of a Lorentzian
distribution of independent variables, the average of a quantity Q is calculated
with

< Q >=

(∏
i

∫ +∞

−∞
dV (i)

δ

π(δ2 + V (i)2)

)
Q(V (i)) (3.2.1)

In the case of γ(E), the average is to be carried out on Ḡ(E) in the trace
expression. The way in which the integral 3.2.1 is calculated is via the replica
trick, which is usually employed for calculation in spin glass theories ([6]).
In order to calculate the integral involved, we can employ the theory of Grassman
variables and superymmetric integrals. We introduce n anticommuting variables
θi, θiθj + θjθi = 0, and their independent products:

(1 + θ1)(1 + θ2)...(1 + θn) = Θ1 +Θ2 + ...Θ2n

The linear combinations F = f0+
∑

i fiΘi span a vector space of dimension
2n which is also an algebra.
The properties of the integrals of these variables are such that:

1)

∫
dθkF =

∑
fi

∫
dθkΘi linearity

2)

∫
dθkΘi = 0 if Θi doesn

′t contain θk

3)

∫
dθk(θr...)θk(θm..) = (−1)l(θr...)(θm..) where l is the number of variables before θk

It can be seen that the integral operation behaves as a derivation on Grassman
variables. We can also introduce a conjugation operation, such that for variables

Ψi we have Ψk = Ψk and ΨkΨm = Ψ̄kΨ̄m. It can be shown that, given a n×n
matrix M , we have the useful formula∫

dθ1dθ̄1...dθndθ̄ne
−θ̄Mθ = detM

Where θ represents the vector with components the Grassman variables θi. This
formula can be used to calculate the trace of the Green function through 3.1.4

12



and the corresponding formula for the inverse of the determinant:

det(E′ −H)

det(E −H − i0+)
=

∫ n∏
k=1

dθkdθ̄k
d2φk
π

e−iθ̄(E′−H)θ−iφ†(E−H−i0+)φ (3.2.2)

The average of the diagonal terms is then evaluated as in 3.2.1:∏
i

∫ +∞

−∞
dV (i)

δ

π(δ2 + V (i)2)
exp
[
iV (i)(θ̄iθi + |φi|2)

]
= e−δ

∑
(θ̄iθi+|φi|2)

So that we get a final expression for the average of the determinant fraction:⟨
det(E′ −H)

det(E −H − i0+)

⟩
=

∫ n∏
k=1

dθkdθ̄k
d2φk
π

e−iθ̄(E−H0−iδ)θ−iφ†(E−H0−iδ)φ

=
det(E′ −H0 − iδ)

det(E −H0 − iδ)
(3.2.3)

Where H0 is the adiacent matrix of the lattice.
We can obtain the same result with the expression deduced from the Gaussian
integral: start by expressing the finite lattice Green function 3.1.4 as a multiple
gaussian integral:

(
N∏
i=1

n∏
α=1

∫ +∞

−∞
dSα

i

)
S1
pS

1
q exp

⎡⎣−i∑
ijα

(E −H − i0+)ijS
α
i S

α
j

⎤⎦ =

N

2
Gpq(E − i0+)

[
π

det(E −H − i0+)

]n (3.2.4)

The trick consists in letting the parameter n vary in a continuous way and
getting the limit of the integral for n→ 0; we get thus

NG(E − i0+)pq = 2 lim
n→0

(
N∏
i=1

n∏
α=1

∫ +∞

−∞
dSα

i

)

S1
pS

1
q exp

⎡⎣−i∑
kjα

(E −H − i0+)ijS
α
k S

α
j

⎤⎦ (3.2.5)

Then in the average for G(E + i0+)pq the Hamiltonian is the one at 3.1.2:
the random diagonal terms get an average of the form:

⟨
exp

⎡⎣−i∑
j

V (j)Sα
j S

α
j

⎤⎦⟩ =

N∏
j=1

∫
dV (j)

δ exp
[
−iV (j)(Sα

j )
2
]

π(δ2 + V (j)2)
= exp

⎡⎣−iδ∑
j

(Sα
j )

2

⎤⎦
Thus getting an average for the Green function:
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N
⟨
G(E − i0+)pq

⟩
= 2 lim

n→0

(
N∏
i=1

n∏
α=1

∫ +∞

−∞
dSα

i

)
S1
pS

1
q

exp

⎡⎣−i∑
ijα

(E − H̃ − i0+)ijS
α
i S

α
j

⎤⎦ (3.2.6)

Where H̃pq = iδδpq +
k
2 (δp,q+1 + δp,q−1). Now the new integral involves an

Hamiltonian with a diagonal term i instead of a random potential. This means
that formaly as Gpq is related to the original Hamiltonian so < Gpq > is related

to H̃. Notice how the method involving the supersymmetric integral is more
direct and elegant.

We can write then

(N < G >)−1
pq = (E − iδ)δpq −

k

2
(δp,q+1 + δp,q−1)

To calculate Tr(N < G >), which is the final objective of all these calcu-
lations, we have to invert H̃. Exploy for the average the form of the Green
function 3.1.4 and write the trace as

Tr(N < G >) =
∑
m

detmm(E − H̃)

det
(
E − H̃

) =
∂

∂E
log
(
det
(
E − H̃

))
(3.2.7)

The evaluation of the determinant in 3.2.7 procedes by induction: denoting
by detN the determinant in the finite case of a N ×N matrix, we have that

det1 = E − iδ

det2 = (E − iδ)2 − k2

4

detn = (E − 1) detn−1 −
k2

4
detn−2 (3.2.8)

Given the form of the ricurrence equations, and given the fact that the
coefficients in 3.2.8 do not depend on n, one can guess a solution of the form

detn = xn, getting the equation x2−(E−iδ)x− k2

4
; the solutions to the equation

are then

x± =
1

2

[
E − iδ ±

√
(E − iδ)2 − k2

]
(3.2.9)

Using the initial conditions det0 = 1 and det1 = E − i we have that det1 =
(x+ + x−) and so the determinant is

14



detN = det
(
E − H̃

)
=
xN+1
+ − xN+1

−
x+ − x−

We get finally an expression for the average of the Lyapunov exponent

< γ
′
(E) >=

∂

∂E
Re

[
1

N
log

(
xN+1
+ − xN+1

−
x+ − x−

)]
From 3.2.9 we can see that |x+| > |x−| thus in the limit of an infinite lattice,

N → +∞, we get

< γ
′
(E) >=

∂

∂E
log |x+|

So that

< γ(E) >= log

⏐⏐⏐⏐⏐⏐E − iδ

k
+

√(
E − iδ

k

)2

− 1

⏐⏐⏐⏐⏐⏐ (3.2.10)

Which can be rewritten as

cosh(< γ(E) >) =
1

2k
(
√

(E − k)2 + δ2 +
√
(E + k)2 + δ2) (3.2.11)

For the spectral density we have seen in 3.1.8 that

ρ(E) =
1

π
Im{Tr(G(E − i0))}

which also need to be averaged over the disorder. We have seen that this
average brings the result

< ρ(E) >=
1

π
Im{Tr

(
G̃(E − i0)

)
} (3.2.12)

Where G̃ is the Green function associated to the Hamiltonian H̃ found in
3.2.6: we have thus reduced the density of states to the one relative to the
Hamiltonian found in 3.2.6. If we indicate with Ẽk the eigenvalues of H0, the
adjacency Hamiltonian with only the hopping components of 2.1.3, the spectral
density of H averaged on the chaos is given by a sum of Lorentzian distributions
(as one find from explicit calculations of 3.2), so for the finite case

< ρ(E) >=
δ

N

∑
k=1...N

1

π

1

(E − Ẽk)2 + δ2
(3.2.13)

ForH0 the density of eigenvalues is given by a sum on the possible periodicity
on the lattice in the finite case:
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ρ0(E) =
1

L

∑
1≤l≤L

δ(E − 2 cos

(
2πl

L

)
) =

∫
R

dl

2π
δ(E − 2 cos l)

=

∫ +∞

0

ds

π
J0(2s) cos(Es) (3.2.14)

where L is the lattice distance, J0 the Bessel function and we have gone to
the continuous case. The spectral density for the original Hamiltonian can then
be evaluated as

< ρ(E) >=

∫
R

dE
′ δρ0(E

′
)

π[(E − E′)2 + δ2]
=

∫ +∞

0

ds

π
J0(2s) cos(Es)e

−δs

The integral gives the complicated formula

< ρ(E) >=
1

π
√
2

√
4 + δ2 − E2 +

√
(4 + δ2 − E2)2 + 4E2δ2√

(4 + δ2 − E2)2 + 4E2δ2
(3.2.15)

We have thus obtained two important facts about the spectrum of the Lloyd’s
Hamiltonian: we have the exponential behaviour of eigenstates thanks to 3.2.10
and the density of eigenstates thanks to 3.2.15.

Similarly to Anderson’s model case, a simulation with a finite lattice and a
certain degree of Lorentzian disorder gives some interesting results: in particular
eigenstates shows a similar behaviour as in the Anderson Hamiltonian, with an
exponential decay which is directly computable from the graphs; moreover the
plot of the Lyapunov exponent resembles the logarithmic trend obtained in the
formula. Figures 3 and 4 refer to a simulation of an 700×700 Hamiltonian with
Cauchy disorder of 2.5.

4 Measures of localization of states

Until now we have obtained insights on the characteristics of tridiagonal Hamil-
tonian with random diagonal elements: we have seen how the eigenstates of
such Hamiltonian behave at distant sites from their localization center, and
have focused on the quantitative properties of the localization obtaining even
analytical results about the so-called Lyapunov exponents. What we have is
thus a spectrum of exponentially decaying states that we have defined as lo-
calized. However, it is worth noticing that there are other means to qualify
the localization of states, without limiting oneself to the value of the decadence
exponents. In this section other quantities that characterize localized states will
be presented and confronted; moreover, it will be shown how an introduction
of a certain kind of ”boundary conditions” can change the eigenstates so to
highlight their localization in the un-conditioned case.
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Figure 3: Plot of the natural logarithm of eigenstates site amplute for the Lloyd
model. The exponential trend is clearly visible as in the Anderson case.

4.1 Quantities related to localization

For all this section the vectors labeled ū ∈ l2(R) will represent states of the
random one dimensional Hamiltonian and u(i) will be the eigenstate’s amplitude
at site i ∈ Z. The state will be taken normalized, so that

∑
i |u(i)|2 = 1.

The first quantity to be introduced is the classical root mean square, which
gives information about the width of the probability distribution of states. It is
defined as

∆2ū =
∑
i

[(i− < p >)2|u(i)|2] =< p2 > − < p >2 (4.1.1)

Where < p > is the mean position of the eigenstates, < p >=
∑

i[i|u(i)|2],
and < p2 > is the mean value of i2, < p2 >=

∑
i[i

2|u(i)|2]. Obviously, the
more this value is large the more the states is unlocalized as the distribution
gets wider and thus is less localized. It is interesting how a pertubation of the
Hamiltonian can give information about the terms in 4.1.1: introducing a linear
perturbative term of the kind Hϵ

ij = ϵδijj the perturbation theory affirms that
the first order change in the eigenvalue for a state ū is

∆E = ϵ
∑
i

i|u(i)|2 = ϵ < p > (4.1.2)

Essentially, introducing a ”V-shaped discrete” potential will affect the fur-
thest eigenstates, changing their energy proportionally to their barycenter. Re-
peating the same argument with a ”parabolic discrete” perturbative potential
Hϵ

ij = ϵδijj
2 one obtains that
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Figure 4: Plot of the Lloyd model Lyapunov exponents as function of the energy.
From the distribution of points in the graph one can also infer the density of
state, which is bigger near the origin.

∆E = ϵ
∑
i

i2|u(i)|2 = ϵ < p2 > (4.1.3)

Thus obtaining the two quantities in 4.1.1: this is a first example of how
a slight modification of the potential can alter the eigenstates. The root mean
square, as in the classical case, gives information about the width of the distri-
bution of the eigenstates and is thus related directly to its localization.

The next quantity for localization measure is the participation ratio: its
inverse is defined as

Pr(ū)
−1 =

∑
i

|u(i)|4 (4.1.4)

Its meaning is related to the probability of a state to return in the inizial
position under an Hamiltonian time evolution: given the Hamiltonian 2.1.3 and

its time propagator U(t) = e
−i
h̄ Ht, the probability, being the state initially at a

lattice position i, to be after a time t at a lattice position j is given by:

Pi→j =
1

t

∫ t

0

dt
′
| ⟨j|U(t

′
) |i⟩ |2 (4.1.5)

Taking the limit for t → +∞ and inserting two identity relations in 4.1.5
involving eigenstates of the Hamiltonian one obtains
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∑
λω

⟨j|Eλ⟩ ⟨Eλ|i⟩ ⟨i|Eω⟩ ⟨Eω|j⟩ lim
t→+∞

1

t

∫ t

0

dt
′
exp

[
−it′(Eλ − Eω)

h̄

]
=
∑
λ

| ⟨j|Eλ⟩ |2| ⟨i|Eλ⟩ |2

Calculating the probability of return to the initial position i one obtains

Pi→i =
∑
λ

| ⟨i|Eλ⟩ |4 =
∑
λ

|uλ(i)|4 (4.1.6)

The sum of 4.1.6 over all sites gives the ”average” of the participation num-
bers 4.1.4 over all eigenstates. This average reflects the probability for the sys-
tem of returning to a site: if the eigenstates are non localized, then for everyone
of them the participation number will be infinite, as this probability is zero: the
unlocalized state, in fact, will leave the initial position and will probably not
return to it.

Another function that measures the level of localization of a states is it’s
entropy, defined as in statistical physics:

S(ū) = −
∑
i

|u(i)|2 log
(
|u(i)|2

)
(4.1.7)

With associated entropy length

lS(ū) = exp(S(ū)) (4.1.8)

Its interpretation comes from the thermodynamic theory: as the entropy
of the system describes its disorder, the entropy of an eigenstates 4.1.7 retains
information about the localization, seen as a grade of disorder; it is in fact
known that if for example we have a site-localized state, for which |u(i′)|2 = 1
for a certain i′ and |u(i)|2 = 0 for i ̸= i′, then the quantity 4.1.7 is zero, so that
the case of maximal localization has null entropy or disorder; instead for a state
of maximal disorder, which has the same probability amplitude |u(i)|2 for every
position i, the function S(ū) has a maximum, to which thus correspond the state
of highest disorder. In conclusion, to states of high localization corresponds low
disorder, and states with high delocalization have high disorder quantified by
the entropy.

In the case of exponentially decaying states, we can suppose that the eigen-
states, once normalized, have the form

u(i) = tanh(γ)e−γ|i| if centered in zero (4.1.9)

For these eigenstates, explicit calculations of the quantities introduced before
give the values
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∆2(ū) =
1√

2 sinh(γ)

Pr(ū)
−1 =

tanh(2γ)

tanh2(γ)

lS(ū) =
exp
(

2γ
sinh(γ)

)
tanh(γ)

(4.1.10)
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Figure 5: Graphs representing the behaviour of the localization of eigenstates
for a Lloyd model: simulation of a 700 sites lattice with disorder 2.5.
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(a) Participation number on Lyapunov exponent
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Figure 6: Here are plotted the graphs of participation numbers for the LLoyd
model; the graphs are taken from the same simulation as before
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It’s visible from figures 5 and 6 how Lyapunov localized eigenstates are also
localized in terms of the distribution width and their participation number.

4.2 Influence of boundary conditions on localization

The last method introduced involves a little modification of the initial Hamilto-
nian: in particular, it will be shown how an introduction of a factor in the hop-
ping coefficients and the modification of boundary conditions in 2.1.3 changes
the localization of the eigenstates. This method was initially introduced by
Hatano and Nelson ([11]) for the study of the depinning of flux lines in super-
conductors in presence of a magnetic field. Here is presented the resolution due
to Goldsheid (for details refer to [8]).

Consider the Schrödinger equation

− eai−1u(i− 1)− ebiu(i+ 1) + qiu(i) = zu(i) 1 ≤ i ≤ n

u(0) = u(n), u(1) = u(n+ 1) (4.2.1)

with {ai, bi, qi} randomly distributed. To this equation corresponds a matrix
Hamiltonian:

H :=

⎛⎜⎜⎜⎜⎜⎝
q1 −eb1 0 · · · · · · −ean

−ea1 q2 −eb2 0 · · · · · ·
0 −ea2 q3 −eb3 0 · · ·
...

...
...

...
. . . · · ·

−ebn · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎠ (4.2.2)

We can make some transformation to express this Hamiltonian in a more
familiar and symmetric way: let’s put u(i) = wiv(i), with the coefficients wi

given by

w0 = 1, wi = e
1
2

∑i−1
k=0(ak−bk) if i ≥ 1

If moreover we put ci = e[(ai+bi)/2] then 4.2.1 becomes

− ci−1v(i− 1)− civ(i+ 1) + qiv(i) = zv(i)

v(n+ 1) = w−1
n+1w1v(1), v(n) = w−1

n v(0) (4.2.3)

which is a form that resembles more closely an Anderson-like model. Along
with this equation, we will refer also to the same problem with the boundary
conditions

v(n+ 1) = v(0) = 0 (4.2.4)

These conditions in a sense cancel the presence of the boundary terms in
4.2.1 and produce the unperturbed hopping system.
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The values ai and bi if fixed to 0 produce the unperturbed Hamiltonian 2.1.3
with unitary boundary conditions. The objective is to retrieve the distribution
dρn(x, y) of the eigenvalues of 4.2.1, that, since the Hamiltonian is no more a
self-adjoint operator, could be complex numbers

dρn(z) = dρn(x, y) =
1

n

n∑
j=1

δ(x− xj)δ(y − yj)

It can be shown that the limit distribution for n → +∞ is found by calcu-
lating the limit of a ”potential”

Fn(z) =

∫
C

log|z − z′|dρn(z′) =
1

n
log|det(H − zI)| (4.2.5)

Which can be see as generated by the ”charge distribution” dρn(z
′) on the

complex plane. The existence of the limit of 4.2.5 implies also the existence of
the limit of dρn through Poisson equation dρ(x, y) = 1

2π∆F (x, y). The results
is that the limit potential assumes the form

F (z) =

{
a if Φ(z) < a
Φ(z) if Φ(z) > a

In which a = max(< a0 >,< b0 >) and Φ(z) is the limit potential of

Φn(z) =
1

n
log |det(H0 − zI)| =

∫ +∞

−∞
log |z − λ|dρ̃(λ) (4.2.6)

Here H0 is the Hamiltonian associated to 4.2.3 with boundary conditions
given by 4.2.4, namely the same Hamiltonian without any effective boundary
conditions; dρ̃ is the corresponding distribution of eigenvalues.

The limit function Φ(z) = limn→+∞ Φn(z) is harmonic on the whole complex
plane except on the support of dρ̃; for this reason the complex part of the limit
spectrum is determined by the equation Φ(z) = a: this equation defines a curve
C on which the density of the eigenvalues respect to the measure of the arc-
length ds is related to the jump of the normal derivative of the potential F (z)
across the same curve

dv

ds
=

1

2π

⏐⏐⏐⏐∫ +∞

−∞

dρ0(λ)

λ− z

⏐⏐⏐⏐ , z ∈ C

From equation 4.2.6 one sees that Φ(z) must be equal, up to an additive
constant, to the Lyapunov exponent thanks to the Thouless formula. It can be
proven that Φ(z) = γ(z) + 1

2 (< a0 > + < b0 >) ([8]).
The equation that defines the curve C is equivalent to the implicit equation

γ(z) =
1

2
| < a0 > − < b0 > | (4.2.7)

This form highlights the fact that if < a0 >=< b0 > then the spectrum
doesn’t have a complex part.
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There is a way to determine the form of such curve: consider the following
disequation for the average over disorder of the real Lyapunov exponent for the
initial Hamiltonian:

γ̄(E) ≤ 1

2
| < a0 > − < b0 > | (4.2.8)

Since γ̄(E) is a continuous function, the solution is an union of disjoint
intervals ∪j [xj , x

′
j ]. For every x in one of these intervals, there’s a solution to

the equation in 4.2.7 for a y(x) since γ(x+iy) is monotonous continuous in y and
limy→+∞ = +∞; thus the curve C is an union of disconnected curves C = ∪jCj ,
for every one of which there are two symmetric arcs for y(x) and −y(x), for
x belonging to one of the previous intervals. Moreover, from the property of
upper-semi continuity of γ̄(E) follows that for every ϵ > 0 the spectrum of 4.2.1
for n large enough lies outside a region of the complex plane surrounded by

Bj,ϵ = {z ∈ C : dist(|z|,Lj) ≤ ϵ}

This means that the spectrum is wiped away from the interior of the curve
C.

The case of the Lloyd model is covered by choosing the diagonal elements of
4.2.1 within a Cauchy distribution. If one chose the other parameters so that
for every i ai = −bi, for example choosing ai = g and consequentely bi = −g,
then the transormed Hamiltonian 4.2.3 assumes the form of the Lloyd model
with ci = 1 ∀i. One obtains for the equation of the curve

y(x) = ±

[√
(K2 − 4)(K2 − x2)

K2
− δ

]
, −xb ≤ x ≤ xb

With K = 2 cosh(< b0 >) and xb determined by the condition y(xb) = 0.
It’s interesting to note how the behaviour of the eigenvalues depends on

the disorder: if δ = 0 then the two arcs form an ellipse; as the disorder in-
creases, these two arcs come closer and the complex spectrum shrinks, until
δ =

√
K2 − 4, when the arcs disappear and the spectrum is completely real:

the critical value of g for which this happens is such that Kcr =
√
4 + δ2, and

when K < Kcr only a real spectrum is present. From the construction starting
at 4.2.8 it is also possible to infer that the eigenvalues for which the divergence
of the branches occurs are the one corresponding to an energy near zero, so that
the curve starts to form from these values: from the relation between the Lya-
punov exponent and the energy of the eigenstates 3.2.11 one sees that these are
the lowest values for the exponents, thus belonging to the less localized states;
these particular states are the ones that feel the most the boundary conditions
introduced as are more expanded in the lattice.

We have seen how other means of localizations agree with the definition of
localized states through Lyapunov exponents and how these states can, in virtue
of their localization, feel a ”perturbation” at the boundaries of the lattice. The
considerations introduced help to further quantify the principal property of
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Figure 7: Real and Imaginary part of eigenvalues of an Hamiltonian of the
kind 4.2.2 with ai = −bi = g ∀i and diagonal values distributed according to
a Lorentzian, for a single instance of the randomness. The initial figure (a)
corresponds to the unperturbed case with boundary counditions equal to 1. As
the perturbation increases, the curve described in section 4.2 starts to appear
and delocalization of the eigenstates occurs. It is interesting to note that the
eigenstates that first delocalize are the one with minor energies, and thus are
less localized (3.2.11).

Lloyd eigenstates, namely the one of localizability, through other properties of
the distribution of the eigenstate on the lattice.

5 Delta Kicked Rotor

The previous discussion about localization in lattice Hamiltonians and in par-
ticular about Lloyd model served as a preliminary preparation for the following
argument: the study of the so-called delta kicked rotor. In classical terms, the
kicked rotor is a system driven by the Hamiltonian ([4])
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H =
J2

2I
+G cos θ

+∞∑
n=−∞

δ(t− nT ) (5.0.1)

Where J is the angular momentum, I the moment of inertia, K the intensity
of the ”kicks” and T period of the kicks. This system can be interpreted as a
rotor (a spinning object) subject to periodic impulses imposed in one direction
on it (thus the presence of cos(θ)). The Hamiltonian can also be written in the
form

H =
J2

2I
+
G

T

+∞∑
n=−∞

cos

(
θ − 2πnT

T

)
(5.0.2)

So that the system can be seen as subject to cosine wave potentials travelling
at the same speed.

From a classical viewpoint the system is chaotic, and without giving a rig-
orous characterizations it can be seen why: the influence of the periodic kicks
on the rotor depends widely on the initial phase space point, since different
points receive at different instants of the motion the kicks and thus propagate
in a quite various way, producing positive maximum Lyapunov exponent for the
phase-space trajectories. Just for the sake of curiosity, the classical Hamiltonian
written in terms of the momentum and the associated position (angle)

H =
p2

2m
+G cos(x)

n=+∞∑
n=−∞

δ(nT − t) (5.0.3)

produces a relation between phase space points before and after the n + 1
kick: {

pn+1 = pn + G
T sin(xn)

xn+1 = xn + T
I pn

(5.0.4)

The quantum version of the problem, with the operators substituted for
the variables in equations 5.0.1 and 5.0.2, produce eigenstates with a peculiar
property of localization that is directly connected to the type of localization
discussed in previous sections.

The discussion will start from the theory of time-dependent Hamiltonians
so that we can reformulate the problem presented by the quantum version.

5.1 Time-Dependent Hamiltonians and Floquet Opera-
tors

Consider a time-dependent Hamiltonian Ĥ(t) with Schrödinger equation for a
state Ψ(t)

Ĥ(t)Ψ(t) = ih̄
∂Ψ(t)

∂t
(5.1.1)
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The state evolves via the Unitary propagator Û(t, s) such that

Ψ(t) = Û(t, s)Ψ(s)

The form of the propagator can be derived iteratively through the infinites-
imal time evolution given by 5.1.1

Û(t, s) = I − i

h̄

∫ t

s

dτĤ(τ)Û(τ, s)

The solution of which is given by the Dyson expansion with time ordering
due to the non-commutativity of Hamiltonians at different times

Û(t, s) = T exp

[
− i

h̄

∫ t

s

Ĥ(τ)dτ

]
(5.1.2)

It is possible to resolve the time dependence in another way, derived from
the classical formulation of time-dependent Hamiltonians.

Consider a classical time-dependent Hamiltonian H(q, p, t): it is possible to
reduce the problem to a time independent Hamiltonian introducing a fictitious
parameter that accounts for the time evolution. This introduction permits to
consider both the energy of the system and the motion time as phase space
variables and treat them as such. In this way, we introduce the new parameter
η and the new phase space coordinates t and E: the new Hamiltonian is

K(p, q;E, t) = H(q, p, t) + E (5.1.3)

With corresponding equations of motion

dt

dη
=
∂K

∂E
= 1

dE

dη
= −∂K

∂t
= −∂H

∂t
(5.1.4)

From these equations emerges that E acts like Lagrangian multiplier and
forces the parameter η to ”flow” at the same rate as the time t, thus providing
the same equation of motion in η for q and p. In addition to that, the second
equation expresses how the energy missing from the Hamiltonian ”enters” into
the energy parameter E, as if it would be the energy exchanged by the system
with an external universe or field.

From this construction one proceeds to implement the quantum mechanical
case ([12]): consider the Hilbert space H and its norm || − ||H, and define an
extended Hilbert space L2(R,H) of time-dependent functions Ψ(t) with the
normalizability condition in time∫ +∞

−∞
dt||Ψ(t)||2H ≤ +∞
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The transition to quantum mechanics consists in considering the variables
E and t as operators acting on the introduced Hilbert space: these operators
act respectively as a derivative operator and a multiplication operator, in cor-
respondence to the behaviour of the quantum variables p and q:

(T̂Ψ)(t) = tΨ(t)

(ÊΨ)(t) = −ih̄∂Ψ(t)

∂t

[T̂ , Ê] = ih̄

The corresponding Hamiltonian is

K̂ = Ĥ(t)− ih̄
∂

∂t
(5.1.5)

with Schrödinger equation with respect to the parameter η

K̂Ψ = ih̄
∂Ψ

∂η
(5.1.6)

The solution to this equation can be obtained, as in the time-independent
case, through the action of a one-parameter unitary group on the initial condi-
tion φ0 in the Hilbert space

Ψ(η) = e−iηK̂/h̄Ψ0

This can be the case if φ(η) is an eigenstate of the operator K̂ as seen from
5.1.6. By substituing the function Û(t, t−η)φ0(t−η), which is a time evolution
to the time t starting from time t − η of the state φ0, into 5.1.6 one can see
that this same function is also a solution of the Schrödinger equation with same
initial conditions Ψ0, so that we can relate the Dyson integral time evolution
with the ”parametric” time evolution scheme with

(e−iηK̂/h̄Ψ)(t) = Û(t, t− η)Ψ(t− η) (5.1.7)

for any function Ψ in the Hilbert space. This time evolution connects the
function at time t−η to the function at time t. One can also verify the commu-
tation relation [T̂ , K̂] = ih̄, thus the von Neumann theorem asserts the existence
of a unitary operator Ŷ which performs the transformations

K̂ = Ŷ †ÊŶ

T̂ = Ŷ †T̂ Ŷ

The corresponding relation of the groups operators generated by K̂ and Ê
is then

e−iηK̂/h̄ = Ŷ †e−iηÊ/h̄Ŷ

(e−iηK̂/h̄φ)(t) = Ŷ †(t)V̂ (t− η)φ(t− η)
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From which can be deduced the relation

Û(t, s) = Ŷ †(t)Ŷ (s)

Let’s now consider the periodic case: a time periodic Hamiltonian has the
property Ĥ(t + T ) = Ĥ(t) for a T ∈ R (the period) and the corresponding
group property

Û(t+ T, s+ T ) = Û(t, s) (5.1.8)

that permits to limit the study of the time evolution to a set Û(s+ τ, s) for
τ ≤ T . The Floquet operator is defined as the time propagator over one period,
F̂t = Û(t + T, t). Notice that the spectral properties of this operator don’t
depend on the time t, since holds the unitary relation F̂τ = Û(τ, t)F̂tÛ(τ, t)†.
This equivalence of spectra permits to focus only on the operator at initial time
F̂0 = Û(T, 0). From this also follows that Û(nT, 0) = F̂n.

Another interesting aspect of 5.1.5 is to be analyzed: since the Hamiltonian
is periodic in time and the kinetic term is time-invariant, one has that

[K̂, P̂ ] = 0, P̂ = exp

(
i

h̄
T Ê

)
(5.1.9)

Namely, the operator K̂ is invariant for time-translations of one period.
This property allows one to choose the eigenfunctions of the operator among
the periodic functions on the interval [0, T ], or L2([0, T ],H) with boundary
conditions Ψ(T ) = Ψ(0). The restriction of the operator to this subset of the
original Hilbert space, indicated with K̂T , is called quasi-energy operator, and
for periodic systems this has the same role as the Hamiltonian in the time-
independent case, that is governs the time evolution.

The eigenvectors of the period-translation operator have the form

Ψλ(t) = eiλtφλ(t), φλ(t+ T ) = φλ(t) (5.1.10)

A function Ψ(t) in the original Hilbert space L2(R,H) can then be written
as a superposition of these eigenstates

Ψ(t) =

∫
dλc(λ)Ψλ(t)

where c(λ) stands for the coefficients of the linear combination. This is
a decomposition of the original Hilbert space in terms of periodic-translations
invariant function subspaces. On one of these subspaces the eigenvalue equation
of K̂ is

(Ĥ − ih̄
∂

∂t
)eiλtφλ(t) = ϵeiλtφλ(t)

=> K̂φλ = (ϵ− h̄λ)φλ (5.1.11)
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Restricted to the space of periodic functions on [0, T ], the quasi-energy equa-
tion is

K̂Tφ = ϵφ (5.1.12)

The solutions to 5.1.12 have an interesting property: from the periodicity of
the functions involved, one notices that if φ(t) is a solution to 5.1.12 then also
e−i2πnt/h̄Tφ(t) is a solution with eigenvalue ϵ+2πnT : as in the case of electron
in crystals, the spectrum is constituted of bands of energy produced by replicas
of the continuum spectrum.

Another possible approach is to solve the original time-dependent Hamilto-
nian equation 5.1.1 supposing a solution of the form Ψ(t) = e−iEt/h̄φ(t), with
φ(t) = φ(t+ T ). Moreover, from the time evolution relation 5.1.7 one sees that
for periodic functions the Floquet operator of period-time traslations is unitary

equivalent to the operator e−iT K̂T /h̄: the eigenvalues can then be found, up to
a multiple of 2π/T , through the equation

F̂ φ(t) = e−iET/h̄φ(t) (5.1.13)

Since Floquet eigenstates are eigenvectors of a Hermitian operator, K̂T , then
we can write eigenstates of equation 5.1.1 as a linear combination of them

Ψ(t) =
∑
λ

Aλe
−itEλ/h̄φλ(t) (5.1.14)

Where the sum is now discrete and Eλ is the eigenvalue relative to φλ through
5.1.12.

The coefficients Aλ can be determined by the initial conditions of the states,
Ψ(0):

Aλ = ⟨φλ(0)|Ψ(0)⟩

since Floquet eigenstates are orthonormal. It results in

Ψ(t) =
∑
λ

⟨φλ(0)|Ψ(0)⟩ e−itEλφλ(t)

From this, the state after one period is simply

Ψ(T ) =
∑
λ

⟨φλ(0)|Ψ(0)⟩ e−iTEλφλ(0) (5.1.15)

from the T periodicity of φλ(t). We are thus able to obtain the state after a
period knowing only the initial conditions on the state.

If we now consider the time-dependent Hamiltonian Ĥ(t) as a sum of a
time-independent Hamiltonian and a time-periodic contribute

Ĥ = Ĥ0 + ϵV̂ (t), V (t) = V (t+ T )

we can write 5.1.1 in terms of eigenstates of Ĥ0, Ĥ0 |n⟩ = En |n⟩:
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ih̄
∂

∂t
⟨n|Ψ(t)⟩ =

∑
m

⟨n| Ĥ(t) |m⟩ ⟨m|Ψ(t)⟩ (5.1.16)

The expression of 5.1.15 is in this way

⟨n|Ψ(T )⟩ =
∑
m

Ûnm(T ) ⟨m|Ψ(T )⟩

where has been introduced the Floquet Matrix

Ûnm(T ) =
∑
λ

⟨n|φλ(0)⟩ ⟨φλ(0)|m⟩ e−iTE (5.1.17)

This is an unitary matrix with eigenvalues e−iEλT/h̄ and eigenvectors the
Floquet states φλ(0). Once this matrix is known, the state at time NT is
simply given by

⟨n|Ψ(NT )⟩ =
∑
m

ÛN
nm(T ) ⟨m|Ψ(0)⟩

5.2 Delta Kicked Rotor Hamiltonian and Dynamics

We now apply what has been previously introduced to the case of the quan-
tum kicked rotor. Take the corresponding Hamiltonian 5.0.1: the Schrödinger
equation in the one-dimensional Schrödinger representation is

ih̄
∂Ψ(θ, t)

∂t
=

−h̄2

2I

∂2Ψ(θ, t)

∂θ2
+G cos(θ)δT (t)Ψ(θ, t) (5.2.1)

Where θ is the variable associated to the angle position of the rotor and
Ψ(θ, t) is the wavefunction of the position of the rotor at time t. In this particular
case, the time independent Hamiltonian Ĥ0 is given by the angular dynamics
of the system, namely

Ĥ0 =
J2

2I
=

−h̄2

2I

∂2

∂θ2

which has as eigenstates in one dimension the angular eigenfunctions e−inθ

with eigenvalues h̄2n2/2I. Indicating these eigenstates with |n⟩, we can write
any state Ψ(θ, t) as

Ψ(θ, t) =
∑
n

⟨n|Ψ(θ, t)⟩ e−inθ (5.2.2)

For brevity from now we will refer to ⟨n|Ψ(θ, t)⟩ with Ψn(t). In this decom-
position equation 5.2.1 can be written as

ih̄
∂Ψn(t)

∂t
=
h̄2n2

2I
Ψn(t) +

G

2
δT (t)(Ψn+1(t) + Ψn−1(t)) (5.2.3)

Rewriting the equation from the form of 5.0.2 one obtains
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ih̄
∂Ψn(t)

∂t
=
h̄2n2

2I
Ψn(t) +

G

2T

k=+∞∑
k=−∞

(e−ikωtΨn−1(t) + eikωtΨn+1(t)) (5.2.4)

Where ω = 2π
T is the angular velocity.

We now proceed to study the dynamics of the system: the periodicity of the
kicks is such that at every time mT , m integer, the system receive an impulse
that modifies its ”motion”; between these kicks the Hamiltonian acts like the
Hamiltonian of a free rotor: right after the initial kick at t = 0, the system is
in a state indicated by the wave function Ψ(θ, 0+). Decomposing this state on
the basis of angular momentum eigenfunctions, the free-rotor time evolution is
given by

Ψ(θ, t) =
∑
n

Ψn(0
+)einθe−

ih̄n2t
2I , for 0+ ≤ t < T (5.2.5)

After the time t = T the system receives the kick: from 5.2.1 one sees that
because of the presence of the delta function, Ψ(t) is a discontinuous function
of time, with a jump at every time nT . Such discontinuity can be analyzed by
integrating the Schrödinger equation across a time T at which the kick occurs

ih̄

∫ T+ϵ

T−ϵ

dt
∂Ψ

∂t
+
h̄2

2I

∫ T+ϵ

T−ϵ

dt
∂2Ψ

∂θ2
−G

∫ T+ϵ

T−ϵ

dt cos(θ)δT (t)Ψ = 0

Supposing the regularity of Ψ in θ, when ϵ tends to zero the term with the
double derivative in the angular variable gives no contribution, and the jump in
the function is given by

ih̄
∂Ψ

∂t
= G cos(θ)δT (t)Ψ T − ϵ < t < T + ϵ (5.2.6)

This equation has the solution

Ψ(θ, T+) = e−iG
h̄ cos(θ)Ψ(θ, T−)

where T+ and T− stand for moments of time right after and before the time
T . If we then take in consideration the free-rotor evolution 5.2.5 and the kick
the states has the function

Ψ(θ, T+) = e−iG
h̄ cos(θ)

∑
n

Ψn(0
+)einθe−

ih̄n2T
2I (5.2.7)

From this equation one can see that the system has a kind of periodicity
determined by the system parameter I that emerges from the free evolution
exponential: this periodicity is such that the motion does not change from a time
T to a time T+ 4πI

h̄ , so that we can consider a period such that 0 < T ≤ 4πI
h̄ . The

discontinuity equation 5.2.6 can also be written in the operator form considering
the states relative to the functions,
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|Ψ(t+ T )⟩ = e
−i
h̄ V̂ e

−i
h̄ Ĥ0T |Ψ(t)⟩ (5.2.8)

Where the operators V̂ and Ĥ0 are the potential and kicketic terms, with

⟨θ| V̂ |θ′⟩ = G cos(θ)δ(θ − θ′) and ⟨n| Ĥ0 |n′⟩ = n2h̄2

2I δnn′ .
Considering the identity involving Bessel functions Jn(z)

e−iz cos(θ) =
∑
n

(−i)nJn(z)einθ

we can project 5.2.7 on eigenstates of the angular momentum operator and
obtain the useful equation

Ψm(θ, T+) =

+∞∑
n=−∞

(−i)m−nJm−n

(
G

h̄

)
e−

ih̄n2T
2I Ψn(0

+) =

+∞∑
n=−∞

Ûmn(T )Ψn(0
+) (5.2.9)

We have thus obtained the Floquet matrix for the propagation over one time
period, and this operator mixes at each kick different momentum eigenstates:
thinking about the classical model for one moment only for the sake of analogy,
this behaviour can be interpreted as if some angular eingestates are ”pushed”
while others are ”damped” by the kicks, in dependence in some sense of the
verse of rotation of the states at the moment of the kick. We will see in the next
section how this same alternation of angular momentum eigenstate is connected
to the Lloyd model.

Lastly, something can be said about the qualitative property of the energy
spectrum of the kicked delta rotor, as shown in [3]: if T = 4π I

h̄α, with α a
rational positive number less than one and different from 1

2 , then the spectrum
has a continuum part as well as some discrete components, with energy growing
quadratically after some time in which it undergoes a diffusive behaviour; if
α = 1 then the energy has only a continuum part and grows quadratically with
time; for α = 1

2 the energy oscillates with time. When α is irrational, then the
energy grows linearly in a diffusive way for a period of time and then stops, due
to the discreteness of the spectrum. We will specify this phenomenon later.

5.3 Tight Binding Model for the Kicked Rotor

We proceed to write the Hamiltonian in a different manner: let t = τT , so that
time is written as a multiple of the period, and let ξ = h̄T

I and κ = G
h̄ be two

dimensionless parameters; the Schrödinger 5.2.1 equation now reads

ih̄
∂Ψ(θ, τ)

∂τ
= −ξ

2

2

∂2Ψ(θ, τ)

∂θ2
+ κ cos(θ)δT (τ)Ψ(θ, τ) (5.3.1)

or in an operator form
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ih̄
∂ |Ψ(τ)⟩
∂τ

= (Ĥ0 + V̂ δT (τ)) |Ψ(τ)⟩ (5.3.2)

with ⟨n| Ĥ0 |n′⟩ = ξ2/2n2δnn′ and ⟨θ| V̂ |θ′⟩ = κ cos(θ)δ(θ − θ′).
As found in 5.2.8 the time evolution in an interval right before the Nth kick

and right before the (N+1)th kick, characterized by the impulse and the free
rotor dynamics, is now

|Ψ(N + 1)⟩− = e−iĤ0e−iV̂ |Ψ(N)⟩− (5.3.3)

with |Ψ(N)⟩− indicating the state before the Nth kick.
Let’s now introduce Floquet theory: suppose the solution to 5.3.3 is of the

form

|Ψ(N)⟩− = e−iωλN |φλ(N)⟩

where ωλ = EλT
h̄ and Eλ is the eigenvalue for |φλ⟩ in the Floquet equation

5.1.12. For the Floquet states, the time evolution equation takes the form

|φλ(N)⟩− = e−i(Ĥ0−ωλ)e−iV̂ |φλ(N)⟩−

since Floquet states are periodic, so that |φλ(N + 1)⟩ = |φλ(N)⟩.
We now introduce two operators, Ẑλ and Ŵ , defined by the following

e−i(Ĥ0−ωλ) =
1− iẐλ

1 + iẐλ

e−iV̂ =
1− iŴ

1 + iŴ
(5.3.4)

With inverse relations

Ẑλ = tan

(
1

2
(Ĥ0 − ωλ)

)
Ŵ = tan

(
1

2
V̂

)
(5.3.5)

This is the Maryland construction, proposed by Grempel, Fishman and
Prange in [9], that permits to map the quantum delta kicked rotor problem
on a tight binding Hamiltonian which resembles the Lloyd model. If we now set
the state |νλ(N)⟩− := (1 + iŴ )−1 |φλ(N)⟩− the equation for this state has the
simple form

(Ẑλ + Ŵ ) |νλ(N)⟩− = 0

Indicating ⟨n|νλ(N)⟩ (projection over n angular momentum eigenstate) with
the notation νn(λ), the equation becomes
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Zn(λ)νn(λ) +

+∞∑
m=−∞,m ̸=n

Wnmνm(λ) = ϵνn(λ) (5.3.6)

with Zn(λ) = ⟨n| Ẑλ |n⟩ = tan
(
1
4ξn

2 − 2ωλ

)
,Wnm = ⟨n| Ŵ |m⟩, ϵ = −⟨n| Ŵ |n⟩.

We have just written the equation for the delta Kicked rotor as an equation
consisting of a discrete kinetic term Ẑ and a ”hopping” potential term Ŵ as
in the lattice Hamiltonian: in this case, the one dimensional lattice consists
in the angular momentum space and the points are represented by angular
momentum eigenstates. It is also interesting to note that the ”random” term
is due to the free rotor dynamic of the system, while the hopping term is due
to the periodic kicks. Taking into account the translation invariance in angular
momentum functions space for the operator Wnm, namely Wn+r.m+r = Wnm

and expanding in Fourier series Ŵ , since it is a periodic operator

Ŵ =
∑
q

Wqe
iqθ

=⇒ Wnm =
∑
q

Wq ⟨n| eiqθ |m⟩ =
∑
q

Wqδn−q,m

5.3.6 can be rewritten as

Zn(λ)νn(λ) +
∑
q ̸=0

Wqνq−n(λ) = ϵνn(λ) (5.3.7)

Which emphasize the interaction between sites.
Let’s now consider the operator Ẑλ, which plays the role of the on-site po-

tential: in the case ωλ = 0 we have Zn(0) = tan
(
1
4ξn

2
)
= tan

(
πn2β

)
, with

β = ξ/4π: it is known that if β is irrational, as in the analyzed case, then
x = βn2( mod 1) is uniformly distributed in the interval [0, 1] as n spans the
relative number space; its probability distribution is

P (x) =

{
1 if 0 ≤ x ≤ 1
0 otherwise

This probability distribution, in turn, produces a distribution of the operator
Ẑ(0) of the kind

P (Z) =

∫ 1

0

dxδ(Z − tan(πx)) =
1

π

1

1 + Z2
(5.3.8)

or alternatively

P (Z(x)) = P (x)
dx

dZ
=

1

π

1

1 + Z2
(5.3.9)

The values of the operator projected on eigenstates of the angular momentum
follow a Cauchy distribution: as it runs on the angular momentum eigenstates
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the distribution is the same as in the case of the Lloyd model for the diagonal
part of the operator. It nevertheless can’t be considered a total random opera-
tor, since the distribution is not random but fixed: the Cauchy distribution is
followed by the diagonal elements.

In respect to the values of Wnm, for κ < π it can be shown analytically that

Wnm =
1

2π

∫ 2π

0

dθe−iθ(n−m) tan
(κ
2
cos(θ)

)
=

2

κ

[π
κ
(1− S(κ))

]|n−m|−1
(
2π2S(κ) + κ2 − 2π2

π2S(κ) + κ2 − π2

)
for |m− n| odd

Wnm = 0 for |n−m| even (5.3.10)

with S(κ) =
√
1− κ2

π2 . For κ > π the elements Wnm are singular due to

the transformation introduced in 5.3.4: this singularity is however mathemat-
ical and doesn’t affect the localization of the Floquet states. This operator is
the source of the difference from the Lloyd model introduced in previous sec-
tions: while that model has only a coupling between neighbouring sites, and
thus a tridiagonal matrix, the kicked rotor tight binding model presents a cor-
relation of sites with even distant angular momentum states; nonetheless a plot
of 5.3.10 (Fig 9) shows that this correlation fall of exponentially for increasing
site distance |n −m| and thus influences only slightly the interaction between
momentum states.

20 40 60 80 100
n

-6

-4

-2

2

4

6

Z(n)

Figure 8: Graph of the in-site operator Z(λ) as n increases: it is possible to se
a random behaviour with n. In this case the plot is made for tan

(
π
√
2n2
)
.
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k = 1.9
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Figure 9: Plot of the behaviour of the hopping potential Wmn as |n − m| in-
creases: as seen from the graphic, even for small distance sites (of the order of
3) the influence is small.

5.4 Comparison with Lloyd model

Given the form of the tight binding equation for the delta kicked rotor 5.3.6 we
notice immediately similarities with the Lloyd one dimensional lattice equation
for states 3.1.1: both have a lattice-like form, with operators connecting different
sites, and an in-site potential which is randomly distributed through the lattice
with a Cauchy distribution; the differences lay in the more extended interaction
of the delta kicked rotor, in which not only neighbouring sites are connected
but all sites interact with each other through Wnm; moreover the interaction
potential is not constant but varies from site to site according to 5.3.10, which
is nonetheless symmetric with respect to the position considered due to the
presence of |n − m|. We can despite everything make some assumptions: the
matrix form of the operator involved in 5.3.6 is

Hδ(λ) :=

⎛⎜⎜⎜⎜⎜⎜⎝

Z1(λ) W12 W13 W14 · · · · · ·
W21 Z2(λ) W23 W24 · · · · · ·
W31 W32 Z3(λ) W34 · · · · · ·
...

...
...

...
. . . · · ·

... · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎠ (5.4.1)

considering only the positive n angular momentum states. Having seen the
trend of the quantities Wnm (fig. 9) we can consider this matrix as a sum of a
tridiagonal matrix and a perturbation matrix: the triagonal matrix has diagonal
elements Cauchy distributed and the off-diagonal matrix with elements Wn,n−1

and Wn,n+1 which are symmetric with respect to the diagonal and are of the
same magnitude; the off-tridiagonal matrix can be considered as a perturbation.
What we have obtained is thus a Lloyd-like matrix with a perturbation: we
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can then suppose that the eigenstates are a perturbed version of the discrete
localized states of the Lloyd model; since the perturbation is weak as we go
far off from the centre of the states and the unperturbed state themselves are
localized, we can also suppose that these states have an exponential-like decay
for large |n|. A numerical simulation of the finite case (restricted to a limited
number of angular momentum eigenstates) shows indeed this kind of behaviour
(fig. 10).

50 100 150 200 250 300 350
n

10-14

10-11

10-8

10-5

10-2

Ln(|v(n)|)

Figure 10: Plot of two states νλ: there are plotted in logarithmic scale the moduli
of the projection onto angular eigenstates of νn(λ), for λ = 0; similarly that in
the Lloyd case, the states present a localization and the trend is exponential for
large |n| away from the center of localization. Here ξ =

√
2 and κ = 2.2.

5.5 Diffusion and localization lenght

As already mentioned, the evolution of the energy when α in T = 4π I
h̄α is an

irrational number shows a temporary diffusive behaviour: it grows linearly in
time and then stops at a certain moment.

Let’s investigate the classical case before: the equations of motion from one
period to the next are given by 5.0.4. If the kicks are particularly strong, then
the angle variable xn may cycle many times 2π in one period, so that we can
suppose that ideally xn fills uniformly the interval [0, 2π] during the motion. As
a consequence, the term sin(xn) in the momentum equation shows no correlation
between kicks and brings p to undergo a random motion in phase space. The
equation for the momentum can then be approximated by
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pn = p0 +

n∑
k=0

G sin(xk)

Then, the average carried out on initial conditions of the momentum after
n periods is given by

p̄n = p̄0 +G

n∑
k=0

sin(xk) = p̄0 (5.5.1)

since the average of the periodic function sin(x) over one period is zero. The
average for the square of the momentum is instead

p̄2n = p̄20 +

n∑
k,m

G2sin(xk) sin(xm)

= p̄20 +

(
G2

2π

∫ 2π

0

dx sin(x)
2

)
nT (5.5.2)

where the last part is due to the uncorrelatedness of the kicks: sin(xk) sin(xm) =
δkmsin(x)2. Thus the momentum shows a diffusive behaviour with diffusion
constant

D =
G2

2π

∫ 2π

0

dx sin(x)
2
=
G2

2

The quantum mechanical system shows a different trend, and the diffusion
stops at a moment instead of continuing in time as suggested by 5.5.2. This
aspect can be explained in a qualitative manner taking into account the dis-
creteness of the spectrum ([20]). Lets indicate with ts the time at which the
growth of the momentum stops: we can assume that at time ts the mean value

of the energy of a state is < E >= p2

2I ≈ Dts. Let’s also suppose that initially
the rotor is in the 0th angular momentum state |0⟩, so that p0 = 0: at time
ts the rotor will be in an angular momentum state |ns⟩ and will have thus an
energy

< E >≈ h̄2n2s
2I

≈ Dts (5.5.3)

In turn, the angular momentum cutoff is determined by the localization
length of the states γ and thus we have ns ≈ γ: this is due to the fact that
the Floquet eigenstates which are near the initial state |0⟩ and can significantly
influence it are in a number proportional to their localization length, so that
these states are in number N ≈ ns ≈ γ. The mean spacing between two Floquet
States is thus ∆l = γ−1; since the evolution of the initial state |0⟩ continues
until this state can feel the presence of the others, we have that the time at
which diffusion stops is ts ≈ ∆l−1 ≈ γ. Combining these relations, we reach

38



D = aγ (5.5.4)

This relation permits to obtain prevision for the value of the localization
length of state without carrying out an analytic calculation on the Hamiltonian.
Numerical calculations for a carried out by Shepelyanksy have provided a value
for a of 1

2 .

6 Conclusion

What has been showed in this work are the most important results in the field
of Anderson model and the study of lattice Hamiltonian with random in site
potential: the peculiar characteristic of these systems is the existence of expo-
nentially localized states; to arrive to this result, various important theorem
have been exploited: first of all the Kingman, Furstenberg and Osceledesc theo-
rem are essential to determine the existence of such localized state and introduce
the definition of the Lyapunov exponent, then the Ishii and Kunz-Souillard the-
orems guarantee the discreteness of the spectrum. Through Thouless formula
we were able to obtain a general expression for the Lyapunov exponent that is
directly connected to the density of eigenvalues: it is interesting to notice how
the presence of eigenstates influence the localization of other states. An analyti-
cal result for the Lyapunov exponent and the density of state has been obtained
for the Lloyd model with a Lorentzian disorder for the in-site potentials. Given
the importance of the localization of such states, a particular attention has been
given to the concept of localization, and various quantities that define this be-
haviour have been introduced and confronted. What stands out is the method
of Nelson-Hatano: we have seen how the presence of boundary condition on the
finite chain of lattice points influenced the localization of the states and even
delocalized some of them: the curve in the complex plane traced out by the
eigenvalues (some of which become complex) well describes this behaviour of
delocalization, which turns out to affect the state with the smaller Lyapunov
exponent and thus the less localized ones.

The delta kicked rotor is a peculiar system with a classical chaotic behaviour.
The quantum mechanical study of the delta kicked rotor needed a propaedeutic
analysis of time-dependent Hamiltonian: the restriction to time-periodic po-
tentials then introduced the concepts of Floquet states, Floquet matrix and
quasi-energy. With these instruments and with the help of the particular Mary-
land construction we were able to map the delta kicked rotor Hamiltonian to a
tight-binding Anderson model on the space of angular momentum eigenstates,
with hopping and in-site potentials: the results previously obtained permitted
us to characterized the rotor states as localized (not in space, but in angular
momentum space) for certain values of the intensities of the kicks. As in the
Anderson model, the important result of this analysis is the localization of state,
which we can say characterizes the research of the entire work.
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