# UNIVERSITÀ DEGLI STUDI DI MILANO 

 FACOLTÀ DI SCIENZE E TECNOLOGIECorso di Laurea triennale in Fisica

## On Codazzi tensors and their application in Einstein and Cotton Gravity

Relatore:<br>Prof. Luca Guido Molinari<br>Correlatore:<br>Dr. Carlo Mantica

Tesi di Laurea di:<br>Giovanni Pellegrini<br>matr. n. 953548

Alla nonna Cenzi, che mi ha sempre voluto un bene gigantesco, questa laurea, anche se non in matematica, è anche tua Al nonno Vito, che è stata una delle persone più buone e genuine che abbia mai conosciuto Al nonno Alberto, che più di chiunque altro mi mostra ogni giorno il valore della conoscenza e la passione del lavoro Alla nonna Angela, che non smette mai in nessun istante di pensare $e$ pregare per me
Ai miei nonni Anna e Piero, che siete sempre un porto sicuro a cui posso tornare

## Contents

Introduction ..... 1
Codazzi tensors theory and properties ..... 2
1.1 Embedding Manifolds and Hypersurfaces ..... 2
1.2 Gauss-Codazzi equations ..... 3
1.3 Codazzi tensors theorems and properties ..... 5
1.3.1 Examples of Codazzi Tensors ..... 5
1.3.2 Goenner's theorem ..... 6
1.3.3 Extension of the Derdzinski-Shen theorem ..... 6
Stephani exact solutions ..... 9
2.1 Segre type $(0,2)$ symmetric tensors ..... 9
2.1.1 Segre Type 1 ..... 10
2.1.2 Segre Type 2 ..... 11
2.1.3 Segre Type 3 and 4 ..... 11
2.2 Stephani solutions to
General Relativity equations ..... 11
2.2.1 Perfect fluid ..... 12
2.2.2 Codazzi tensor- imperfect fluid ..... 14
Codazzi tensors in General relativity ..... 18
3.1 Perfect fluid tensor ..... 18
3.1.1 Ricci and Energy-momentum tensors ..... 20
3.1.2 Metric of the space-time ..... 22
3.2 Current flow Codazzi tensor ..... 24
3.2.1 Metric of the space-time ..... 26
3.2.2 Static space-time ..... 27
3.2.3 Spherically symmetrical static space ..... 29
3.3 Yang Pure space-times ..... 31
Cotton gravity ..... 33
4.1 Harada's Theory ..... 33
4.2 Codazzi tensor describing Cotton Gravity ..... 36
A Relativistic fluid tensors ..... 39
B Expansion of unit time-like vector ..... 40
Bibliography ..... 41

## Introduction

Harada[12], in 2021, formulated a new theory of gravity: the Cotton gravity. This theory extends Einstein's equations, adding a term to the gravitational potential that becomes relevant at great distances, thus describing the rotational motion of several galaxies without the dark matter contribution.

In this new paper, the energy-momentum tensor is expressed as a function of a Codazzi tensor. It is a ( 0,2 )-symmetric tensor with the covariant property $\nabla_{i} C_{j k}=\nabla_{j} C_{i k}$. In this work the properties and applications of Codazzi tensors, both in the theory of general relativity and in Cotton's gravity, are therefore explored.

In the first chapter, their definition and application in the differential geometry, in particular in embedding theory, is presented. In fact, by using the Gauss-Codazzi equations, they describe the curvature tensor of a hypersurface (class 1 embedding) as a function of a Codazzi tensor. Examples are then given in peculiar manifolds, and two theorems are demonstrated, the Goenner theorem and the extension of the DerdzinskiShen theorem.

In the second chapter, the work of Stephani[32] is presented. He utilizes the embedding class 1 equations to find exact solutions to Einstein's equations. Imposing the Codazzi condition to a perfect and imperfect fluid tensor, he characterizes the embedded spaces-times and makes their metrics explicit.

In the third chapter, we weaken Stephani's assumptions by no longer considering the immersion of space-time. Just using Codazzi equation applied to the perfect fluid tensor, and the current flow tensor, we determine wider solutions than Stephani's, finding a more general metric.

In the last chapter, Harada's theory is presented, together with one of its solution and application. Using the same method as in the previous chapter, solutions of Cotton's gravity are found, explicating the new field source as a function of a Codazzi perfect fluid and Codazzi imperfect fluid tensor.

## Chapter 1

## Codazzi tensors theory and proprieties

### 1.1 Embedding Manifolds and Hypersurfaces

Let $V_{n}$ and $V_{m}$ be two different manifolds and $\phi: V_{m} \rightarrow V_{n}$ a map between these two manifolds. If $\phi_{* p}: T_{p} V_{m} \rightarrow T_{\phi(p)} V_{n}$ is injective for all $x$ in $V_{n}$, then $\phi$ is called an immersion, where $T_{p} V_{m}$ is the tangent space to p .

Moreover, if $\phi$ is also homeomorphic, it is more accurately called an embedding. Obviously, to admit the existence of an embedding $\phi$ we must have $n \geq m$.

Let $x^{a}$ and $y^{\alpha}$ be two coordinate systems of $V_{m}$ and $V_{n}$ respectively ( $a=0,1 \ldots m \alpha=0,1 \ldots n$ ), then each point $p$ in $V_{m}$ is described by the parametric equations:

$$
\begin{equation*}
y^{\alpha}=y^{\alpha}\left(x^{a}\right) \tag{1.1}
\end{equation*}
$$

Thus it is possible to define the $m$ tangent vectors which span the tangent space to $V_{m}$ at x:

$$
\begin{equation*}
B_{a}^{\alpha}=\frac{\partial y^{\alpha}}{\partial x^{a}} \tag{1.2}
\end{equation*}
$$

From this relation, it is possible to define the metric and metric tensor of the space $V_{m}$ starting from those of $V_{n}$, as follows:

$$
\begin{gather*}
d s^{2}=\tilde{g}_{\alpha \beta} d y^{\alpha} d y^{\beta}=\tilde{g}_{\alpha \beta} B_{i}^{\alpha} B_{j}^{\beta} d x^{i} d x^{j}  \tag{1.3}\\
g_{i j}=\tilde{g}_{\alpha \beta} B_{i}^{\alpha} B_{j}^{\beta} \tag{1.4}
\end{gather*}
$$

where $\tilde{g}$ is the metric tensor of $V_{n}$.
The minimum number of extra-dimensions required for embedding is called embedding class p. Later on, a Euclidean space will be used as the embedding space, making it useful to state the following:

Theorem 1.1.1. Let $V_{m}(s, t)$ be a Riemannian space with $s$-spacelike and $t$-timelike directions, and $E_{n}(S, T)$ the pseudo-Euclidean embedding space. Then $V_{m}(s, t)$ can be embedded in $E_{n}(S, T)$ with $s+t=m$, $S+T=n, m \leq n \leq m(m+1) / 2, s \leq S, t \leq T$. Therefore, the embedding class $p$ in a 4-dimensional space-time is between $0 \leq p \leq 6$.

Definition 1.1.2. When the embedding class $p$ is equal to one, namely $\operatorname{dim} V_{n}=m+1$, the manifold $V_{m}$ is a hypersurface.

### 1.2 Gauss-Codazzi equations

From this point going forward, let us restrict to hypersurfaces. We can thus define $N$ as the only vector orthogonal to the hypersurface, so that

$$
\begin{equation*}
\tilde{g}_{\alpha \beta} B_{a}^{\alpha} N^{\beta}=0 \tag{1.5}
\end{equation*}
$$

By imposing the condition that the metric be covariantly constant, and using the equation (1.4):

$$
\begin{equation*}
\nabla_{k} g_{i j}=\nabla_{k}\left(\tilde{g}_{\alpha \beta} B_{i}^{\alpha} B_{j}^{\beta}\right)=\tilde{g}_{\alpha \beta}\left[\left(\nabla_{k} B_{i}^{\alpha}\right) B_{j}^{\beta}+B_{i}^{\alpha}\left(\nabla_{k} B_{j}^{\beta}\right)\right]=0 \tag{1.6}
\end{equation*}
$$

Now subtracting the above with all three indices rotated (from (kij) to $(i j k)$ and $(j i k))$ from (1.6) gives:

$$
\begin{equation*}
\tilde{g}_{\alpha \beta} B_{k}^{\alpha} \nabla_{j} B_{i}^{\beta}=0 \tag{1.7}
\end{equation*}
$$

By comparing with (1.5), it can be seen that $\nabla_{j} B_{i}^{\beta}$ is proportional to $N$, i.e. it can be written as:

$$
\begin{equation*}
\nabla_{j} B_{i}^{\beta}= \pm N^{\beta} C_{i j} \tag{1.8}
\end{equation*}
$$

where the coefficients $C_{i j}$ are a ( 0,2 )-symmetric tensor.
In order to meet the integrability conditions of the system and using the equations on $B$ as defined above, starting from the definition of the Riemann tensor, in [16](pag. 279) we read:

$$
\begin{gather*}
R_{i j k l}=\tilde{R}_{\alpha \beta \gamma \delta} B_{i}^{\alpha} B_{j}^{\beta} B_{k}^{\gamma} B_{l}^{\delta} \pm\left(C_{i k} C_{j l}-C_{i l} C_{j k}\right)  \tag{1.9}\\
\nabla_{i} C_{j k}-\nabla_{j} C_{i k}=N^{\beta} \tilde{R}_{\alpha \beta \gamma \delta} B_{j}^{\alpha} B_{k}^{\gamma} B_{i}^{\delta} \tag{1.10}
\end{gather*}
$$

where $\tilde{R}_{\alpha \beta \gamma \delta}$ is the Riemann tensor of $V_{m+1}$ and $R_{i j k l}$ is the Riemann of $V_{m}$. These are referred to as Gauss equation and Codazzi equation respectively.

The two equations are the fundamental equations of embedding theory. They indeed allow the definition of the curvature tensor of the embedded manifold $V_{m}$ using the curvature tensor of the embedding manifold $V_{m+1}$. As can be noted, the equations are not completely independent. In fact considering Bianchi's second identity ${ }^{1}$ we can find restrictions on $C_{j k}$ (a particular case is treated in section 1.3.2).

If the manifold has constant curvature, then the equation (1.9) can be simplified as :

$$
\begin{equation*}
R_{i j k l}=\frac{\tilde{R}}{m(m+1)}\left(g_{i k} g_{j l}-g_{i l} g_{j k}\right) \pm\left(C_{i k} C_{j l}-C_{i l} C_{j k}\right) \tag{1.11}
\end{equation*}
$$

Furthermore, if the embedding manifold is pseudo-Euclidean, the term containing $\tilde{R}$ disappears, thus obtaining:

$$
\begin{gather*}
R_{i j k l}=C_{i k} C_{j l}-C_{i l} C_{j k}  \tag{1.12}\\
\nabla_{i} C_{j k}-\nabla_{j} C_{i k}=0 \tag{1.13}
\end{gather*}
$$

Definition 1.2.1. Every (0,2)-symmetric tensor which satisfies (1.13) is called Codazzi tensor.

Using embedding theory, Hans Stephani derived the metrics of certain space-times [32] by comparing Einstein's equation of general relativity with the equation (1.12):

$$
\begin{equation*}
R_{i j}=T_{i j}-\frac{1}{2} g_{i j} T=C_{i j} C_{k}^{k}-C_{i k} C_{j}^{k} \tag{1.14}
\end{equation*}
$$

where $T_{i j}$ is the energy-momentum tensor and $R_{i j}$ is the Ricci tensor. Ricci is a $(0,2)$ symmetric tensor, derived from the contraction of two indices of the Riemann tensor $R_{j i l}^{i}=R_{j l}$, which describes the curvature of a space-time

Throughout the discussion, Stephani proves the following theorem, which states that the Gauss-Codazzi equations, written in the form (1.12) and (1.13), guarantee class one immersion:

Theorem 1.2.2. If there exists a symmetric tensor $C_{i j}$ which satisfies (1.12), then the embedding is of class one.

[^0]
### 1.3 Codazzi tensors theorems and properties

This section briefly summarizes some specific theorems and properties of Codazzi tensors. With the birth of General Relativity (1915) and the subsequent surge of interest in the field of differential geometry, such tensors were given attention for their connection with the curvature tensor. An excellent compilation of all the results obtained throughout the twentieth century is found in Besse's book [4].

### 1.3.1 Examples of Codazzi Tensors

Some brief examples of Codazzi's tensors emerging from the study of manifolds are summarized here. The following tensors are non-trivial, i.e. not constant multiples of the metric.
(i) Let $V_{n}$ be a conformally flat manifold (Weyl tensor ${ }^{2}=0$ ) with $n \geq 4$. Then the tensor

$$
C_{i j}=R_{i j}-\frac{R}{2 n-2} g_{i j}
$$

is a Codazzi tensor, since the divergence of the Weyl tensor is given by the formula:

$$
\nabla_{l} C_{i j k}^{l}=\frac{n-3}{n-2}\left(\nabla_{i} C_{j k}-\nabla_{j} C_{i k}\right)
$$

(ii) A Riemannian manifold has harmonic curvature if $\nabla_{l} R_{i j k}{ }^{l}=0$. This occurs if and only if the Ricci tensor is a Codazzi tensor.
(iii) Let $V_{n}$ be a manifold with constant sectional curvature ${ }^{3} K$ and a smooth function $f: V_{m} \rightarrow \mathbf{R}$. Then the tensor

$$
C_{i j}=\nabla_{i} \partial_{j} f+K f g_{i j}
$$

is Codazzi. Furthermore, in 1981 Ferus [8] showed how in any space with constant sectional curvature every Codazzi tensor is, at least locally, of this type.

[^1]
### 1.3.2 Goenner's theorem

As mentioned in section (1.2), the Gauss and Codazzi equations describing the embedded hypersurface are not completely independent. In his book, Hans Stephani states how the properties of the Riemann tensor impose specific conditions on the Codazzi tensors.

Reconsidering equations (1.12) and (1.13), Goenner [9] shows that by adding the hypothesis of the invertibility of the symmetric tensor $C_{i j}$, it results to be Codazzi. This is achieved by narrowing down the discussion to the particular case in which $V_{m+1}$ is pseudo-Euclidean. Thus the equation (1.13) is a direct implication, under those assumptions, of (1.12) [24].

Theorem 1.3.1. Let $R_{i j k l}$ be a Riemann tensor of the form (1.12) and $C_{i j}$ be invertible, then $C_{i j}$ is a Codazzi tensor.

Proof. Using Bianchi's second identity, we obtain:

$$
\begin{aligned}
& \nabla_{m}\left(C_{i k} C_{j l}-C_{i l} C_{j k}\right)+\nabla_{l}\left(C_{i m} C_{j k}-C_{i k} C_{j k}\right)+\nabla_{k}\left(C_{i l} C_{j m}-C_{i m} C_{j l}\right)= \\
& =C_{i k}\left(\nabla_{m} C_{j l}-\nabla_{l} C_{j m}\right)+C_{j l}\left(\nabla_{m} C_{i k}-\nabla_{k} C_{i m}\right)+C_{i l}\left(\nabla_{k} C_{j m}-\nabla_{m} C_{j k}\right)+ \\
& C_{j k}\left(\nabla_{l} C_{i m}-\nabla_{m} C_{i l}\right)+C_{i m}\left(\nabla_{l} C_{j k}-\nabla_{k} C_{j l}\right)+ \\
& C_{j m}\left(\nabla_{k} C i l-\nabla_{l} C i k\right)=0
\end{aligned}
$$

Multiplying by $\left(C^{-1}\right)^{j l}$ and knowing that $\left(C^{-1}\right)^{l j} C_{j k}=\delta_{k}^{j}$,
$(n-3)\left(\nabla_{m} C_{i k}-\nabla_{k} C_{i m}\right)+\left(C^{-1}\right)^{j l}\left(C_{i k}\left(\nabla_{m} C_{j l}-\nabla_{l} C_{j m}\right)++C_{i m}\left(\nabla_{l} C_{j k}-\right.\right.$ $\left.\nabla_{k} C_{j l}\right)=0$
Multiplying once again by $\left(C^{-1}\right)^{j l}$ :
$2(n-2)\left(C^{-1}\right)^{i k}\left(\nabla_{m} C_{i k}-\nabla_{k} C_{i m}\right)=0$
And finally plugging this result into the previous expression we actually find Codazzi's definition: $\nabla_{m} C_{i k}-\nabla_{k} C_{i m}=0$

### 1.3.3 Extension of the Derdzinski-Shen theorem

One of the most interesting developments on the relationship between Codazzi tensors and the curvature tensor of their manifold is certainly the Derdzinski-Shen Theorem [6]. It exposes which conditions are imposed by the existence of non-trivial Codazzi tensors on the structure of the curvature tensor. The theorem states that

Theorem 1.3.2. Let $C_{i}^{; j}$ be a Codazzi tensor defined on a Riemannian manifold $\left(V_{m}, g\right)$. Let $\lambda$ and $\mu$ be two eigenvalues of that tensor, with
eigenspaces $V_{\lambda}$ and $V_{\mu}$ in $T_{x} V$ respectively. Then the subspace $V_{\lambda} \wedge V_{\mu}$ is invariant under the curvature operator $R_{x}$.

The previous theorem leverages Codazzi condition to prove the thesis. In 2012 Mantica and Molinari [21] showed that this condition is sufficient but not necessary, in fact it can be replaced by a weaker algebraic condition, and despite this, the theorem holds.

Proposition 1.3.3. Any Codazzi tensors is Riemann-compatible:

$$
\begin{equation*}
R_{j k l}{ }^{m} C_{i m}+R_{k i l}{ }^{m} C_{j m}+R_{i j l}{ }^{m} C_{k m}=0 \tag{1.15}
\end{equation*}
$$

Proof. Using (1.13), it can be stated:

$$
\begin{equation*}
\left[\nabla_{j}, \nabla_{k}\right] C_{i j}+\left[\nabla_{k}, \nabla_{i}\right] C_{l j}+\left[\nabla_{i}, \nabla_{j}\right] C_{k l}=0 \tag{1.16}
\end{equation*}
$$

where each commutator, expressing the definition of the Riemann tensor, is:

$$
\begin{equation*}
\left[\nabla_{i}, \nabla_{j}\right] C_{k l}=R_{i j k}^{m} C_{m l}+R_{i j l}{ }^{m} C_{m k} \tag{1.17}
\end{equation*}
$$

Substituting (1.16) and through Bianchi's first identity we obtain (1.15)

The Derdzinski-Shen theorem can be extended, replacing the Codazzi tensor with a generic tensor $B_{i j}$ that is Riemann-compatible.

To prove this we must first define the generalized curvature tensor:
Definition 1.3.4. A generalized curvature tensor is a tensor $W$ which satisfies the Riemann proprieties:
(i) $W_{i j k l}=-W_{i j l k}=-W_{j i k l}$
(ii) $W_{i j k l}=W_{l k j i}$
(iii) $W_{i j k l}+W_{k i j l}+W_{j k i l}=0$ ( Bianchi's first identity)

Proposition 1.3.5. If $B_{i j}$ is Riemann compatible, then $W_{i j k l}=R_{i j m n} B_{k}{ }^{m} B_{l}{ }^{n}$ is a generalized curvature tensor.

Then the extended version of the theorem for the Riemann curvature follows:

Theorem 1.3.6. Let a symmetric tensor $B_{i j}$ satisfying (1.15) be defined on a Riemannian manifold $V_{m}$. Let $X, Y$ and $Z$ be three eigenvectors with $\lambda, \mu$ and $\nu$ their eigenvalues respectively, with $\lambda$ and $\mu$ necessarily different from $\nu$. Then we can declare that

$$
\begin{equation*}
R_{i j k l} X^{i} Y^{j} Z^{k}=0 \tag{1.18}
\end{equation*}
$$

Proof. The following matrix equation :

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
\lambda & \mu & \nu \\
\lambda \mu & \lambda \nu & \mu \nu
\end{array}\right]\left[\begin{array}{l}
R_{l i j k} X^{i} Y^{j} Z^{k} \\
R_{l j k i} X^{i} Y^{j} Z^{k} \\
R_{l k i j} X^{i} Y^{j} Z^{k}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

expresses, respectively, Bianchi's first identity for the Riemann tensor, the (1.15) for the symmetric tensor $B_{i j}$, and Bianchi's first identity for the tensor $W_{l i j k}=R_{l i m n} B_{j}^{m} B_{k}^{n}$, being a generalized curvature tensor.
Since the determinant is $(\lambda-\mu)(\lambda-\nu)(\mu-\nu)$, if the eigenvalues are all distinct, it is immediate to see that $R_{l i j k} X^{i} Y^{j} Z^{k}=0$. If on the other hand $\lambda=\mu \neq \nu$, unwinding the system again we find $R_{l i j k} X^{i} Y^{j} Z^{k}=$ 0 . Due to all the symmetries of the Riemann tensor, it can be stated that the theorem is true for any contraction of three indices out of the four.

Concluding the extension, Mantica and Molinari showed, by a similar procedure, that this theorem can be applied to a generalized curvature tensor $W$, defining the tensor $B_{i j}$ as $W$-compatible.

Definition 1.3.7. Let $W$ be a generalized curvature tensor, a symmetric (0-2) tensor $B_{i j}$ is called $W$-compatible if

$$
\begin{equation*}
W_{j k l}^{m} B_{i m}+W_{k i l}^{m} B_{j m}+W_{i j l}^{m} B_{k m}=0 \tag{1.19}
\end{equation*}
$$

Theorem 1.3.8. Let $W$ be a generalized curvature tensor and a symmetric tensor $B_{i j}$ satisfying (1.19) be defined on a Riemannian manifold $V_{m}$. Let $X, Y$ and $Z$ be three eigenvectors and $\lambda, \mu$ and $\nu$ their eigenvalues respectively, with $\lambda$ and $\mu$ necessarily different from $\nu$. Then we can declare that

$$
\begin{equation*}
W_{i j k l} X^{i} Y^{j} Z^{k}=0 \tag{1.20}
\end{equation*}
$$

Proof. Equivalent to proof (1.3.6).

## Chapter 2

## Stephani exact solutions

This chapter discusses various forms of Codazzi tensors applied to the theory of general relativity. Indeed, certain forms of tensors, such as perfect fluid or current flow, arise from geometrical considerations. These were utilised by Hans Stephani, using embedding formulas, to solve Einstein's equations and calculate their metrics.

From now on we set ourselves in an n-dimensional Lorentzian manifold, with signature $(-,+\ldots+)$. The Greek indices range over the $(n-1)$ spatial components, the Latin ones over all $n$ components.

### 2.1 Segre type $(0,2)$ symmetric tensors

Given a n-manifold Lorentzian with signature (1, n-1), let

$$
A=\left(u_{i}, a_{i}(2), a_{i}(3), \ldots a_{i}(n)\right)
$$

be the orthonormal frame, where $u_{i}$ is an unit time-like vector, i.e. $u^{i} u_{i}=$ -1 , orthogonal to the unit space-like vectors $a(m)_{i}$, which satisfy the condition $a(m)_{i} a(j)^{i}=\delta_{m j}$.

Thus the metric can be described as follows:

$$
\begin{equation*}
g_{i j}=-u_{i} u_{j}+\sum_{m=2}^{n} a_{i}(m) a_{j}(m) \tag{2.1}
\end{equation*}
$$

or, by changing variables:

$$
l_{i}=\frac{u_{i}+a(2)_{i}}{\sqrt{2}} \quad k_{i}=\frac{u_{i}-a(2)_{i}}{\sqrt{2}}
$$

where $l_{i}$ and $k_{i}$ are null vector, i.e. $l_{i} l^{i}=k_{i} k^{i}=0$, orthogonal to the vectors $a(m)_{i}$. Furthermore, it can be easily found that $l_{i} k^{i}=-1$. So the metric comes to be:

$$
\begin{equation*}
g_{i j}=l_{i} k_{j}+k_{i} l_{j}+\sum_{m=3}^{n} a_{i}(m) a_{j}(m) \tag{2.2}
\end{equation*}
$$

A $(0,2)$-tensor $S_{a b}$ always defines a linear map which takes a vector $a$ to another vector $b$. To classify $S$ it is useful to start with the eigenvalues
equation

$$
\begin{equation*}
S_{a}^{b} v^{a}=\lambda v^{b} \tag{2.3}
\end{equation*}
$$

Indeed every matrix can be rewritten as a block matrix in the canonical form of Jordan(JCF), i.e. as a quasi-diagonal matrix[28]. Thus, in general, a complex matrix $A$ is similar to:

$$
\begin{aligned}
& J=\left[\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{n}
\end{array}\right] \\
& J_{i}=\left[\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \lambda_{i} & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right]
\end{aligned}
$$

where $J_{i}$ is called Jordan block of $A$.
Classifying the Ricci-like tensor by applying the equation to the eigenvalues and Jordan's theorem in a 4-dimensional space, Petrov fixed 4 different forms, called Segre Type:

1. $S_{i j}=-\lambda u_{i} u_{j}+\sum_{m=2}^{n} \rho_{m} a_{i}(m) a_{j}(m)$
2. $S_{i j}=\alpha\left(u_{i} a_{j}(2)+u_{j} a_{i}(2)\right)+\beta\left(u_{i} u_{j}-a_{i}(2) a_{j}(2)\right)+\sum_{m=3}^{n} \rho_{m} a_{i}(m) a_{j}(m) \quad \alpha \neq$ 0
3. $S_{i j}=\alpha\left(l_{i} k_{j}+l_{j} k_{b}\right) \pm l_{i} l_{j}+\sum_{m=3}^{n} \rho_{m} a_{i}(m) a_{j}(m)$
4. $S_{a b}=\alpha\left(l_{i} k_{j}+l_{j} k_{i}+a_{i}(3) a_{j}(3)\right)+\left(l_{i} a_{j}(3)+l_{j} a_{i}(3)\right)+\sum_{m=4}^{n} \rho_{m} a_{i}(m) a_{j}(m)$

We analyze which ones are the simplest tensor forms that emerge from the study of individual Segre Type

### 2.1.1 Segre Type 1

Three cases are distinguished.
a) Complete degeneration: $\lambda=\rho_{m} \quad \forall m=2, \ldots n$. The Ricci-like tensor can be described as $S_{i j}=\lambda g_{i j}$. So, for example, if $S_{i j}=R_{i j}$, it is an Einstein space.
If $S_{i j}$ satisfies the Codazzi condition, then it is a trivial Codazzi tensor with $\nabla_{i} \lambda=0$.
b) Degeneration (1,n-1): $\rho_{m}=\rho_{k}=\rho \quad \forall m, k=2, \ldots n$. It is locally invertible if $\rho \neq 0$. Using the metric again yields $S_{i j}=(\rho-\lambda) u_{i} u_{j}+$ $\rho g_{i j}$. This expression carries interesting implications, indeed if $S_{i j}=$ $R_{i j}$ it is a quasi-Einstein space. If $S_{i j}=T_{i j}$ it is the well-known perfect fluid source $T_{i j}=(\mu+p) u_{i} u_{j}+p g_{i j}$ (see Appendix A).
If $S_{i j}$ satisfies the Codazzi condition, then it is the perfect fluid Codazzi tensor, and is revealed as the simplest form of a Codazzi for a Segre Type 1 tensor.
c) Degeneration (1,1,n-2): $\rho_{2} \neq \rho_{3}=\rho_{4}=\ldots=\rho_{n}=\rho$. Analogously, using the metric $S_{i j}=(\rho-\lambda) u_{i} u_{j}+\left(\rho-\rho_{2}\right) a_{i}(2) a_{j}(2)+\rho g_{i j}$. If $S_{i j}=T_{i j}=\left(\mu+p_{\perp}\right) u_{i} u_{j}-p_{\perp} g_{i j}+\left(p_{r}-p_{\perp}\right) a_{i}(2) a_{j}(2)$ (see Appendix A).

If $S_{i j}=C_{i j}$, and $a_{i}(2)=\frac{\dot{u}_{i}}{\sqrt{\eta}}$, where $\dot{u}_{i}=u^{k} \nabla_{k} u_{i}$ and $\eta=\dot{u}^{k} \dot{u}_{k}$, the Codazzi tensor becomes the imperfect fluid tensor:

$$
C_{i j}=(\rho-\lambda) u_{i} u_{j}+\frac{\left(\rho-\rho_{2}\right)}{\eta} a_{i}(2) a_{j}(2)+\rho g_{i j} .
$$

### 2.1.2 Segre Type 2

The simplest non-trivial tensor of this form is $S_{i j}=\alpha\left(u_{i} a_{j}(2)+u_{j} a_{i}(2)\right)$, where $\alpha \neq 0$. Again, if $S_{i j}$ fulfills the Codazzi condition, and choosing $m_{i}(2)=\frac{\dot{u}_{i}}{\sqrt{\eta}}$, we come to: $S_{i j}=\frac{\alpha}{\sqrt{\eta}}\left(u_{i} \dot{u}_{j}+u_{j} \dot{u}_{i}\right)$, which is the relativistic expression of current flow.

### 2.1.3 Segre Type 3 and 4

The straightforward form of class 3 is

$$
S_{i j}= \pm l_{i} l_{j}+\rho a_{i}(2) a_{j}(2)
$$

while, for the 4 class, is

$$
S_{i j}=l_{i} a_{j}(2)+l_{j} a_{i}(2)
$$

Both of them describe, in the theory of relativity, a pure radiation source. They are two analogous forms.

### 2.2 Stephani solutions to General Relativity equations

In this section, we will analyse how Stephani[32] in his work uses the formulas of embedding and immersion theory to solve Einstein's problem. Stephani starts from the simplest forms of the Segre Type, those listed
above, and considering the equation (1.14), finds the metrics that solve the Einstein equation.
This section will be conducted entirely in 4 dimensions.

### 2.2.1 Perfect fluid

The first example makes use of a Codazzi Segre Type 1 tensor. If $C_{i j}=$ $A u_{i} u_{j}+B g_{i j}$, where A and B are scalar fields, then, following from (1.12), we can obtain the Riemann and the Ricci tensors and the scalar curvature:

$$
\begin{gather*}
R_{i j k l}=B^{2}\left(g_{i k} g_{j l}-g_{i l} g_{j k}\right)+A B\left(g_{i k} u_{j} u_{l}+g_{j l} u_{i} u_{k}-g_{i l} u_{j} u_{k}-g_{j k} u_{i} u_{l}\right)  \tag{2.4}\\
R_{i j}=B(3 B-A) g_{i j}+2 A B u_{i} u_{j}  \tag{2.5}\\
R=12 B^{2}-6 A B \tag{2.6}
\end{gather*}
$$

Thanks to these results, we can affirm that the source of this space-time will be a perfect fluid:

$$
\begin{gathered}
T_{i j}=(\mu+p) u_{i} u_{j}+p g_{i j} \\
\mu=3 B^{2} \quad p=B(2 A-3 B)
\end{gathered}
$$

Proposition 2.2.1. The space-time with the Riemann (2.4) and the Ricci tensor (2.5) is conformally flat, i.e. the Weyl tensor $C_{i j k l}=0$

Proof. The Weyl tensor is

$$
C_{i j k l}=R_{i j k l}+\frac{g_{i l} R_{j k}-g_{j l} R_{i k}+g_{j k} R_{i l}-g_{i k} R_{j l}}{2}-R \frac{g_{i l} g_{j k}-g_{j l} g_{i k}}{6}
$$

Considering only the last two terms, we get that:

$$
\begin{aligned}
& \frac{g_{i l} R_{j k}-g_{j l} R_{i k}+g_{j k} R_{i l}-g_{i k} R_{j l}}{2}-R \frac{g_{i l} g_{j k}-g_{j l} g_{i k}}{6} \\
& =\left(3 B^{2}-A B\right)\left(g_{i l} g_{j k}-g_{j l} g_{i k}\right)+A B\left(u_{j} u_{k} g_{i l}-u_{i} u_{k} g_{j l}+u_{i} u_{l} g_{j k}-u_{j} u_{l} g_{i k}\right) \\
& -\left(2 B^{2}-A B\right)\left(g_{i l} g_{j k}-g_{j l} g_{i k}\right) \\
& =B^{2}\left(g_{i l} g_{j k}-g_{j l} g_{i k}\right)+A B\left(u_{j} u_{k} g_{i l}-u_{i} u_{k} g_{j l}+u_{i} u_{l} g_{j k}-u_{j} u_{l} g_{i k}\right) \\
& =-R_{i j k l}
\end{aligned}
$$

If the tensor $C_{i j}$ is invertible, namely $A \neq B$, thanks to (1.2.2) and Goenner theorem, then $C_{i j}$ is also Codazzi. If $B=0$, the space-time is flat.

The first solution is almost trivial; by imposing

$$
A=0 \quad T_{i j}=3 B^{2} g_{i j} \quad B^{2}=\mathrm{cost} .
$$

we find a space with constant curvature, which corresponds to the de Sitter space.

From this point going forward, we will make use of the standard decomposition for a time-like unit vector, discussed in Appendix B:

$$
\begin{equation*}
\nabla_{i} u_{j}=\phi\left(g_{i j}-u_{i} u_{j}\right)+\omega_{i j}+\sigma_{i j}-u_{i} \dot{u}_{j} \tag{2.7}
\end{equation*}
$$

Starting from (2.4), applying to the expression Bianchi's identities, we find:

$$
\begin{gather*}
\nabla_{i} u_{j}=-u_{i} \dot{u}_{j}+\phi\left(g_{i j}-u_{i} u_{j}\right)  \tag{2.8}\\
B=B(t) \quad \nabla_{t} B=\phi A u_{0}  \tag{2.9}\\
\phi=\phi(t)  \tag{2.10}\\
\nabla_{i} A=-u_{i} \dot{A}-\dot{u}_{i} A \tag{2.11}
\end{gather*}
$$

which means that the velocity field is shear-free and vorticity-free. Furthermore, B and $\phi$ depend solely on time.

Now we need to distinguish two cases: if the speed is expansion-free or not.

## Expansion-free solution

Being expansion-free means that $\phi=0$. Moreover, the three dimensional space, defined by the orthogonal projector $g_{\mu \nu}+u_{\mu} u_{\nu}$, is a space on constant curvature. The final result is the metric[31]:

$$
\begin{gathered}
d s^{2}=\frac{d r^{2}}{1-B^{2} r^{2}}+r^{2} d \Omega^{2}-\left(u_{0}\right)^{2} d t^{2} \\
u_{0}=r f_{1}(t) \sin \theta \sin \phi+r f_{2}(t) \sin \theta \cos \phi+r f_{3}(t) \cos \theta+f_{4}(t) \sqrt{1-(B r)^{2}}-\frac{1}{B}
\end{gathered}
$$

where $f_{i}(t)$ are four arbitrary functions of time.
We can notice that the expansion-free solution of the conformally flat space-time is a generalization of the interior Schwarzschild solution $\left(f_{1}=\right.$ $f_{2}=f_{3}=0$ and $f_{4}=$ const). ${ }^{4}$

[^2]Cosmologically, this space-time does not allow dust solutions $p=0$ : this implies that the vector field $u$ is covariantly constant, which is compatible with the curvature tensor if and only if $A=B=0$, i.e. the space-time is flat.

If $A=B$, we obtain the Einstein universe:

$$
\begin{equation*}
d s^{2}=\frac{d r^{2}}{1-B^{2} r^{2}}+r^{2} d \Omega^{2}-d t^{2} \tag{2.13}
\end{equation*}
$$

## Non-vanishing expansion solution

In this case, where $\phi \neq 0$, the spatial part $g_{\mu \nu}+u_{\mu} u_{\nu}$ of the metric tensor is not time independent, so, using the equation derived from Bianchi's identities and the Riemann (2.4), we get that the hypersurface $t=$ const has constant curvature, but the metric is time-dependent. Thus, after a rescaling, the metric is obtained[31]:

$$
\begin{gather*}
d s^{2}=V^{-2}\left(d x^{2}+d y^{2}+d z^{2}\right)-\left(\frac{1}{\phi(t)} \frac{\partial_{t} V}{V}\right)^{2} d t^{2}  \tag{2.14}\\
V(x, y, z, t)=V_{0}(t)+\frac{B^{2}(t)-\phi^{2}(t)}{4 V_{0}}\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right) \tag{2.15}
\end{gather*}
$$

where $V_{0}$ and $x_{0}, y_{0}, z_{0}$ are arbitrary functions of time.
This metric express the generalizations of the Robertson-Walker cosmological models, and describes the well-known Stephani Universe.

The characterisation of Stephani universes is that, unlike RW universes, they consider space-time to be anisotropic, due to a spatial variation of the Hubble constant.

Dust solutions can be obtained considering $2 A=3 C$; this implies the Friedmann dust models.

### 2.2.2 Codazzi tensor- imperfect fluid

The second type of solutions gathered by Stephani are calculated from Segre type 1 of the form $C_{i j}=A g_{i j}+2 A u_{i} u_{j}+B z_{i} z_{j}$, where $z_{i} z^{i}=1$, $z_{i} u^{i}=0$ and $A C \neq 0$.
The Riemann and the Ricci tensors and the scalar curvature are:

$$
\begin{gather*}
R_{i j k l}=C_{i k} C_{j l}-C_{i l} C_{j k}  \tag{2.16}\\
R_{i j}=\left(A^{2}+A B\right) g_{i j}+\left(4 A^{2}+2 A B\right) u_{j} u_{l} \tag{2.17}
\end{gather*}
$$

$$
\begin{equation*}
R=2 A B \tag{2.18}
\end{equation*}
$$

The energy-momentum tensor will be:

$$
\begin{gather*}
T_{i j}=(\mu+p) u_{i} u_{j}+p g_{i j}  \tag{2.19}\\
\mu=2 A(B+2 A) \quad p=A^{2}
\end{gather*}
$$

It is interesting to note, although we initially have an imperfect fluid Codazzi tensor, via the equation (1.14), the source of the gravitational field turns out to be a perfect fluid tensor.

We now demonstrate that Weyl tensor is different to 0 .
Proposition 2.2.2. The Weyl tensor is:

$$
\begin{align*}
C_{i j k l} & =C_{i k} C_{j l}-C_{i l} C_{j k}+\left(A^{2}-A B\right)\left(g_{i l} g_{j k}-g_{j l} g_{i k}\right) \\
& +\left(4 A^{2}+2 A B\right)\left(g_{i l} u_{j} u_{k}-g_{j l} u_{i} u_{k}+g_{j k} u_{i} u_{l}-g_{i k} u_{j} u_{k}\right) \tag{2.20}
\end{align*}
$$

Proof. We start again with the Weyl tensor equation and calculate its different terms:

$$
\begin{aligned}
& \frac{g_{i l} R_{j k}-g_{j l} R_{i k}+g_{j k} R_{i l}-g_{i k} R_{j l}}{2}= \\
& =\left(g_{j k} g_{i l}-g_{i k} g_{j l}\right)\left(A^{2}+A B\right) \\
& +\left(4 A^{2}+2 A B\right)\left(g_{i l} u_{j} u_{k}-g_{j l} u_{i} u_{k}+g_{j k} u_{i} u_{l}-g_{i k} u_{j} u_{k}\right) \\
& R \frac{g_{i l} g_{j k}-g_{j l} g_{i k}}{6}=3 A B\left(g_{i l} g_{j k}-g_{j l} g_{i k}\right)
\end{aligned}
$$

Therefore, adding up all the various addends, we find Weyl in the form(2.20)

If $A=-2 C$, the Codazzi condition (1.13) implies:

$$
\begin{align*}
\nabla_{i} u_{j} & =z_{j} p_{i}  \tag{2.21}\\
\nabla_{i} z_{j} & =u_{j} p_{i} \tag{2.22}
\end{align*}
$$

where $p$ is a generic vector orthogonal both at $u$ and at $z$
The Ricci identity $\nabla_{k} \nabla_{l} u_{j}-\nabla_{l} \nabla_{k} u_{j}=u^{i} R_{i j k l}$, and the Gauss equation (1.12) imply $C=0$, i.e. the space-time has null curvature. So we can single out when $A \neq-2 C$.

As above, two cases must be separated: when the acceleration vector field vanishes or not (we recall that $\dot{u}_{i}=u^{j} \nabla_{j} u_{i}$ ).

## Vanishing acceleration solution

Adding this further hypothesis, the calculations lead to:

$$
\begin{gather*}
\nabla_{i} u_{j}=a_{1} z_{i} z_{j}+a_{2}\left(g_{i j}+u_{i} u_{j}-z_{i} z_{j}\right)  \tag{2.23}\\
\nabla_{i} z_{j}=a_{1} u_{i} z_{j}+p_{j} z_{i} \quad p_{i} u^{i}=p_{i} z^{i}=0  \tag{2.24}\\
\nabla_{i} A=u_{i}\left((2 B+A) a_{1}-2 B a_{2}\right)+a_{3} z_{i}+A p_{i}  \tag{2.25}\\
\nabla_{i} B=2 B a_{2} u_{i} \tag{2.26}
\end{gather*}
$$

Proposition 2.2.3. The velocity field $u$ is vorticity-free, but not shearfree

Proof. We utilise the definitions of vorticity and shear given in Appendix B

$$
\omega_{i j}=u_{[i ; j]}+\dot{u}_{[i} u_{j]}=0
$$

thus the acceleration vanishes.

$$
\begin{aligned}
\sigma_{i j} & =u_{(i ; j)}+\dot{u}_{(i} u_{j)}-\phi\left(g_{i j}+u_{i} u_{j}\right) \\
& =a_{1} z_{i} z_{j}+a_{2}\left(g_{i j}+u_{i} u_{j}-z_{i} z_{j}\right)-\frac{\nabla_{m} u^{m}}{3}\left(g_{i j}+u_{i} u_{j}\right) \\
& =a_{1} z_{i} z_{j}+a_{2}\left(g_{i j}+u_{i} u_{j}-z_{i} z_{j}\right)-\frac{a_{1}+2 a_{2}}{3}\left(g_{i j}+u_{i} u_{j}\right) \\
& =z_{i} z_{j}\left(a_{1}-a_{2}\right)+\frac{1}{3}\left(a_{1}+a_{2}\right)\left(g_{i j}+u_{i} u_{j}\right)
\end{aligned}
$$

It turns out that the metric depends on two further cases, namely if the two dimensional subspace $\mathrm{x}-\mathrm{y}$, which turns out to have constant curvature, is flat or not.

The two metrics are presented here[30]. They describe flat space and non-flat space, respectively.

$$
\begin{gathered}
d s^{2}=t\left(d r^{2}+r^{2} d \phi^{2}\right)+V^{2} d z^{2}-d t^{2} \\
V(r, \phi, z, t)=t \sqrt{t} G_{1}(z)+\sqrt{t}\left(G_{2}(z) r \cos \phi+G_{3}(z) r \sin \phi+\frac{3}{4} G_{1}(z) r^{2}\right. \\
\left.+G_{4}(z)\right)+G_{5}(z)
\end{gathered}
$$

Again $G_{i}(z)$ are arbitrary functions, dependent on z this time.

$$
\begin{gather*}
d s^{2}=F^{2}(t)\left(\frac{d r^{2}}{1 \pm r^{2}}+r^{2} d \phi^{2}\right)+V^{2} d z^{2}-d t^{2}  \tag{2.28}\\
V(r, \phi, z, t)=G_{1}(z) \int F^{-1} d t+G_{2}(z)+F\left(G_{3}(z) r \cos \phi+G_{4}(z) r \sin \phi\right. \\
\left. \pm G_{5}(z) \sqrt{1 \pm r^{2}}\right)
\end{gather*}
$$

## Non-vanishing acceleration solution

instead, in this case the equations are:

$$
\begin{gather*}
\nabla_{i} u_{j}=a_{1} z_{j} u_{i}+a_{2} z_{i} z_{j}+a_{3}\left(g_{i j}+u_{i} u_{j}-z_{i} z_{j}\right)  \tag{2.29}\\
\nabla_{i} z_{j}=a_{1} u_{j} u_{i}+a_{2} u_{j} z_{i}+\frac{B+2 A}{B} a_{1}\left(g_{i j}-z_{j} z_{i}+u_{i} u_{j}\right)  \tag{2.30}\\
\nabla_{i} A=2 A a_{3} u_{i}+(2 A+C) a_{1} z_{i}  \tag{2.31}\\
\nabla_{i} B=(2 A+B) a_{2}-2 A a_{3} u_{i}+a_{4} z_{i} \tag{2.32}
\end{gather*}
$$

Proposition 2.2.4. The vorticity is:

$$
\begin{equation*}
\omega=a_{1}\left(u_{i} z_{j}-u_{j} z_{i}\right) \tag{2.33}
\end{equation*}
$$

and the shear is:

$$
\begin{equation*}
\sigma_{i j}=a_{1}\left(u_{i} z_{j}+u_{j} z_{i}\right)+z_{i} z_{j}\left(a_{2}-a_{3}\right)+\frac{1}{3}\left(a_{2}+a_{3}\right)\left(g_{i j}+u_{i} u_{j}\right) \tag{2.34}
\end{equation*}
$$

Proof. Following the same calculations as in the above proof, the two equations of the proposition are obtained.

Not in all conditions are general solutions found: indeed, in this case the solution is only known when the $u$-field is shear-free: if it vanishes, the metric is static, and in this setting, spherically symmetric[31]. For the purpose of completeness it is given here but will be of little interest in our discussion:

$$
\begin{equation*}
d s^{2}=k \frac{\left(a+2 b r^{2}\right)}{a+b r^{2}} d r^{2}+r^{2}\left(\frac{d \rho^{2}}{1-k \rho^{2}}+\rho^{2} d \phi^{2}\right)-\left(a+b r^{2}\right) d t^{2} \tag{2.35}
\end{equation*}
$$

These were the two Codazzi tensors mainly studied by Stephani: they give rise via the embedding equations to an energy-momentum tensor $T_{i j}$ of perfect fluid type. This is the reason why he does not investigate a Codazzi tensor of the Segre Type 2 (current flow), since the source of the space-time cannot be traced back to a perfect fluid.

## Chapter 3

## Codazzi tensors in General relativity

In opposition to Hans Stephani, who related a Codazzi tensor to the geometry of space-time through the hypersurfaces equations, Mantica and Molinari's work[19] shows that even just the fulfilment of the Codazzi condition (1.13) imposes restrictions on the Ricci tensor.

In fact, as proposition (1.15) states, any Codazzi tensor is Riemanncompatible, and therefore, contracting with the metric tensor $g^{i l}$, we obtain:

$$
\begin{equation*}
C_{i j} R_{k}^{j}=C_{k j} R_{i}^{j} \tag{3.1}
\end{equation*}
$$

namely it commutes with the Ricci tensor.
By investigating two forms of tensors (perfect fluid and current flow), we find out which are the conditions for these tensors to be Codazzi. Then we will derive the Ricci tensor, without imposing any conditions on the Riemann tensor, such as the equation (1.9). This tensor will then determine which space-time hosts this Codazzi tensor.

### 3.1 Perfect fluid tensor

The most immediate tensor to study is obviously the perfect fluid $C_{i j}=$ $A u_{i} u_{j}+B g_{i j}$ with $u_{i}$, as always, an unit time-like vector field, and $A \neq 0$ and B two scalar fields.

Theorem 3.1.1. The perfect fluid tensor $C_{i j}=A u_{i} u_{j}+B g_{i j}$ is Codazzi if and only if:

$$
\begin{gather*}
\nabla_{i} u_{j}=\phi\left(g_{i j}+u_{i} u_{j}\right)-u_{i} \dot{u}_{j}  \tag{3.2}\\
\nabla_{i} \phi=-u_{i} \dot{\phi}  \tag{3.3}\\
\nabla_{i} A=-u_{i} \dot{A}-\dot{u}_{i} A  \tag{3.4}\\
\nabla_{i} B=-u_{i} \dot{B} \tag{3.5}
\end{gather*}
$$

$$
\begin{equation*}
\phi=-\frac{\dot{B}}{A} \tag{3.6}
\end{equation*}
$$

$\dot{u}_{i}$ is the acceleration vector field, which is space-like and orthogonal to the velocity.Its module is the scalar function $\eta=\dot{u}_{i} \dot{u}^{i}$.

Proof. We have to demonstrate that $\nabla_{i} C_{j k}-\nabla_{j} C_{i k}=0$
We start by explicating Codazzi condition:

$$
\begin{align*}
0 & =u_{k}\left(u_{j} \nabla_{i} A-u_{i} \nabla_{j} A\right)+\left(g_{j k} \nabla_{i} B-g_{i k} \nabla_{j} B\right)  \tag{3.7}\\
& +A u_{k}\left(\nabla_{i} u_{j}-\nabla_{j} u_{i}\right)+A\left(u_{j} \nabla_{i} u_{k}-u_{i} \nabla_{j} u_{k}\right)
\end{align*}
$$

Contracting with $u^{k}$, and remembering that $u^{i} \nabla_{j} u_{i}=0$ (acceleration is orthogonal to velocity):

$$
\begin{equation*}
0=-u_{j} \nabla_{i}(A-B)+u_{i} \nabla_{j}(A-B)-A\left(\nabla_{i} u_{j}-\nabla_{j} u_{i}\right) \tag{3.8}
\end{equation*}
$$

Contracting again with $u^{j}$ :

$$
\begin{equation*}
0=\nabla_{i}(A-B)+u_{i}(\dot{A}-\dot{B})+A \dot{u}_{i} \tag{3.9}
\end{equation*}
$$

and, putting it inside the (3.8), being $A \neq 0$ :

$$
0=u_{j} \dot{u}_{i}-u_{i} \dot{u}_{j}-\nabla_{i} u_{j}+\nabla_{j} u_{i}
$$

By considering the standard decomposition (see Appendix B), we find that the perfect fluid is vorticity-free $\omega_{i j}=0$
Then, by multiplying by the metric tensor $g^{j k}$ the equation (3.7), we get:

$$
\begin{equation*}
0=-\nabla_{i} A-u_{i} \dot{A}+(n-1) \nabla_{i} B-A \dot{u}_{i}-A u_{i} \nabla_{k} u^{k} \tag{3.10}
\end{equation*}
$$

Contraction with $u^{i}:(n-1) \dot{B}+A \nabla_{k} u^{k}=0$, by explicating $A \dot{u}_{i}$ from (3.9) reduces the previous equation to:

$$
\begin{align*}
0 & =-\nabla_{i}(A-(n-1) B)-u_{i}(\dot{A}-(n-1) \dot{B})+\nabla_{i}(A-B)+u_{i}(\dot{A}-\dot{B}) \\
& =\nabla_{i} B+u_{i} \dot{B} \tag{3.11}
\end{align*}
$$

Using this result in (3.9) we find the (3.4).
Contraction with $u^{i}$ of (3.10), and expressing the decomposition, gives:

$$
\begin{equation*}
\phi=-\frac{\dot{B}}{A} \tag{3.12}
\end{equation*}
$$

Using the results we have just come up with, the expression of Codazzi condition (3.7) simply reduces to:

$$
\begin{equation*}
u_{j} \sigma_{i k}=u_{i} \sigma_{j k} \tag{3.13}
\end{equation*}
$$

which means that the vector field $u$ is also shear-free (3.2).
In order to find the last equation of the theorem, we evaluate the covariant derivative of $\phi$ :

$$
\begin{align*}
\nabla_{i} \phi & =-\frac{\nabla_{i} \dot{B}}{A}+\dot{B} \frac{\nabla_{i} A}{A^{2}} \\
& =-\frac{\nabla_{i} u^{k} \nabla_{k} B}{A}+\dot{B} \frac{-\dot{u}_{i} A-u_{i} \dot{A}}{A^{2}} \\
& =-\frac{\dot{u}_{i} B-u_{i} \ddot{B}}{A}+\dot{B} \frac{-\dot{u}_{i} A-u_{i} \dot{A}}{A^{2}} \\
& =-u_{i}\left(\frac{\dot{A} \dot{B}}{A^{2}}-\frac{\ddot{B}}{A}\right) \\
& =-u_{i} \dot{\phi} \tag{3.14}
\end{align*}
$$

We have derived all the equations of the theorem; the opposite implication also holds, i.e. if a perfect fluid tensor solves the equations (3.2-3.6), then it is Codazzi.

A remarkable result to point out is that these equations are the same as those found by Stephani (2.8-2.11), but without imposing the Gauss equation on the Riemann tensor. This leads us to think that we will find ourselves in a more general space-time than the universe of Stephani; this statement will be confirmed when we derive the metric.

### 3.1.1 Ricci and Energy-momentum tensors

We now deduce the Ricci tensor by means of some propositions.
Proposition 3.1.2. If $C_{i k}$ perfect fluid tensor is Codazzi, then $u_{i}$ is Riemann-compatible, and it is an eigenvector of the Ricci tensor $R_{i j} u^{j}=$ $\gamma u_{i}$ with $\gamma=(n-1)\left(\dot{\phi}+\phi^{2}\right)-\nabla_{k} \dot{u}^{k}$

Proof. The Riemann compatibility is a directly consequence of (1.15) and Bianchi's identities.

$$
\begin{aligned}
R_{j k l m} u^{m} & =\nabla_{j} \nabla_{k} u_{l}-\nabla_{k} \nabla_{j} u_{l} \\
& =\nabla_{j}\left[\phi\left(g_{k l}+u_{k} u_{l}\right)-u_{k} \dot{u}_{l}\right]-\nabla_{k}\left[\phi\left(g_{j l}+u_{j} u_{l}\right)-u_{j} \dot{u}_{l}\right] \\
& =-\left(\dot{\phi}+\phi^{2}\right)\left(g_{k l} u_{j}-g_{j l} u_{k}\right)-2 u_{[j} \dot{u}_{k]}\left(\phi u_{l}-\dot{u}_{l}\right)-2 u_{[k} \nabla_{j]} \dot{u}_{l}
\end{aligned}
$$

Contraction with $g_{j l}$ gives:

$$
\begin{aligned}
R_{k m} u^{m} & =(n-1)\left(\dot{\phi}+\phi^{2}\right) u_{k}+\phi \dot{u}_{k}-u_{k} \eta-2 u_{[k} \nabla_{j]} \dot{u}_{j} \\
& =\left[(n-1)\left(\dot{\phi}+\phi^{2}\right)-\nabla_{j} \dot{u}^{j}\right] u_{k} \\
& =\gamma u_{k}
\end{aligned}
$$

having replaced through the equation (3.2) $-\dot{u}^{j} \nabla_{k} u_{j}=-\phi \dot{u}_{k}+u_{k} \eta$.
One can also obtain a useful identity regarding acceleration: subtracting the same expression from the symmetric tensor

$$
\begin{equation*}
u^{j} R_{j k l m} u^{m}=\left(g_{k l}+u_{l} u_{k}\right)\left(\dot{\phi}+\phi^{2}\right)+\dot{u}_{k}\left(\phi u_{l}-\dot{u}_{l}\right)-u_{k} \ddot{u}_{l}-\nabla_{k} \dot{u}_{l} \tag{3.15}
\end{equation*}
$$

with the indices $\mathrm{k}, \mathrm{l}$ exchanged gives:

$$
\begin{equation*}
2 \nabla_{[k} \dot{u}_{l]}=\left(\phi \dot{u}_{k}+\ddot{u}_{k}\right) u_{l}-u_{k}\left(\phi \dot{u}_{l}+\ddot{u}_{l}\right) \tag{3.16}
\end{equation*}
$$

It is now possible to obtain the Ricci tensor of the space-time which hosts a perfect fluid Codazzi tensor.

Theorem 3.1.3. The Ricci tensor is:

$$
\begin{align*}
R_{k l}= & \frac{R-n \gamma}{n-1} u_{k} u_{l}+\frac{R-\gamma}{n-1} g_{k l}+\Pi_{k l}  \tag{3.17}\\
\Pi_{k l}= & \frac{1}{2}(n-2)\left[u_{k}\left(\phi \dot{u}_{l}-\ddot{u}_{l}\right)+u_{l}\left(\phi \dot{u}_{k}-\ddot{u}_{k}\right)-\left(\nabla_{k} \dot{u}_{l}+\nabla_{l} \dot{u}_{k}\right)\right.  \tag{3.18}\\
& +(n-2)\left[\dot{u}_{k} \dot{u}_{l}+E_{k l}\right]+\frac{n-2}{n-1}\left(g_{k l}+u_{k} u_{l}\right) \nabla_{p} \dot{u}^{p}
\end{align*}
$$

$\Pi_{k l}$ is symmetric and traceless and $\Pi_{k l} u^{l}=0$.
$E_{k l}=u^{j} u^{m} C_{j k l m}$ is the electric tensor, which is symmetric, traceless and $E_{k l} u^{l}=0$.

Proof. Recalling the generic expression on the Weyl tensor:
$C_{j k l m}=R_{j k l m}+\frac{g_{j m} R_{k l}-g_{k m} R_{j l}+g_{k l} R_{j m}-g_{j l} R_{k m}}{n-2}-R \frac{g_{j m} g_{k l}-g_{k, g_{j l}}}{(n-1)(n-2)}$
the double contraction with $u^{j}$ and $u^{m}$ yields, substituting (3.15):

$$
\begin{aligned}
E_{k l}= & \left(g_{k l}+u_{l} u_{k}\right)\left(\dot{\phi}+\phi^{2}\right)+\dot{u}_{k}\left(\phi u_{l}-\dot{u}_{l}\right)-u_{k} \ddot{u}_{l}-\nabla_{k} \dot{u}_{l} \\
& -\frac{R_{k l}+2 \gamma u_{k} u_{l}+\gamma g_{k l}}{n-2}+R \frac{g_{k l}+u_{k} u_{l}}{(n-1)(n-2)}
\end{aligned}
$$

Thus it is found, as the thesis states, that Ricci tensor is:

$$
R_{k l}=\frac{R-n \gamma}{n-1} u_{k} u_{l}+\frac{R-\gamma}{n-1} g_{k l}+\Pi_{k l}
$$

where we use the identity (3.16).
To fully describe a space-time, the energy-momentum tensor must be made explicit. It is linked to the Ricci tensor via the Einstein equation.

Proposition 3.1.4. The energy-momentum tensor is:

$$
\begin{equation*}
T_{k l}=\frac{R-n \gamma}{n-1} u_{k} u_{l}+\frac{(3-n) R-2 \gamma}{2(n-1)} g_{k l}+\Pi_{k l} \tag{3.19}
\end{equation*}
$$

The field source is therefore an imperfect fluid, with $\Pi_{k l}$ being the dispersion and anistotropy term, while perpendicular pressure and density are:

$$
\begin{align*}
& p_{\perp}=\left(\frac{(3-n) R-2 \gamma}{2(n-1)}\right)  \tag{3.20}\\
& \mu=\left(\frac{R-n \gamma}{n-1}\right)-p_{\perp} \tag{3.21}
\end{align*}
$$

### 3.1.2 Metric of the space-time

From the above equations, in particular from (3.2), which describes the derivative of the velocity vector field, we have restrictions on space-time. In fact, since the velocity is vorticity-free, we know that it will be doubly twisted, i.e. the metric is[20]:

$$
\begin{equation*}
d s^{2}=-b^{2}(t, \mathbf{x}) d t^{2}+a^{2}(t, \mathbf{x}) \tilde{g}_{\mu \nu} d x^{\mu} d x^{\nu} \tag{3.22}
\end{equation*}
$$

The vector $\mathbf{x}$ denotes the spatial coordinates, e $\tilde{g}_{\mu \nu}$ is a Riemann metric tensor.

The Christoffels symbols are:

$$
\Gamma_{00}^{0}=\frac{\partial_{t} b}{b} \quad \Gamma_{\mu 0}^{0}=\frac{\partial_{\mu} b}{b} \quad \Gamma_{\mu \nu}^{0}=\frac{\partial_{t} a}{a b^{2}} g_{\mu \nu} \quad \Gamma_{0 \mu}^{\nu}=\frac{\partial_{t} a}{a} \delta_{\mu}^{\nu}
$$

Comparing with the equations (3.2):

$$
\dot{u}_{0}=-b(t, \mathbf{x}) \quad \dot{u}_{0}=0 \quad u_{\mu}=0 \quad \dot{u}_{\mu}=\frac{\partial_{\mu} b(t, \mathbf{x})}{b(t, \mathbf{x})} \quad \phi=\frac{\partial_{t} a(t, \mathbf{x})}{b(t, \mathbf{x}) a(t, \mathbf{x})}
$$

We can state that the scalar function $\phi$ only depends on time; defining $a=\frac{1}{V(t, \mathbf{x})}$, the metric becomes:

$$
\begin{equation*}
d s^{2}=-\left(\frac{\partial_{t} V}{\phi V}\right)^{2} d t^{2}+\frac{\tilde{g}_{\mu \nu}(\mathbf{x}) d x^{\mu} d x^{\nu}}{V^{2}} \tag{3.23}
\end{equation*}
$$

As we can observe, this metric is a general case of the metric found by Stephani and describes in equation (2.14). This space-time is denominated Generalized Stephani universe.

Proposition 3.1.5. If the acceleration field is close $\left(\nabla_{i} \dot{u}_{j}-\nabla_{j} \dot{u}_{i}\right)=0$, then $b(t, \mathbf{x})$ can be factorized in $b(t, \mathbf{x})=b(t) b(\mathbf{x})$. It also holds that $\ddot{u}_{k}=\eta u_{k}-\phi \dot{u}_{k}$

Proof. If $\dot{u}$ is closed, then

$$
\begin{aligned}
0 & =\nabla_{0} \dot{u}_{\mu}-\nabla_{\mu} \dot{u}_{0} \\
& =\partial_{t} \dot{u}_{\mu}-\Gamma_{o \mu}^{\nu} \dot{u}_{n} u+\Gamma_{\mu 0}^{\nu} \dot{u}_{\nu} \\
& =\partial_{t}\left(\partial_{\mu} \log b\right)
\end{aligned}
$$

i.e. it is independent on time, thus it can be factorized. Furthermore, equation (3.16) reduces to $\left(\phi \dot{u}_{k}+\ddot{u}_{k}\right) u_{l}-u_{k}\left(\phi \dot{u}_{l}+\ddot{u}_{l}\right)=0$. Contraction with $u^{l}$ gives $\ddot{u}_{k}=\eta u_{k}-\phi \dot{u}_{k}$.

By setting additional conditions on the variables, two special cases can be obtained, which are interesting to investigate:

- If $\dot{u}_{k}=0, \nabla_{i} A=-u_{k} \dot{A}$, then $b(t, \mathbf{x})$ depends only on time. Condition (3.3) state that $\partial_{\mu} \phi=0$, so $a$ is only a function of time. It suggests a warped metric, which describes an Generalized RobertsonWalker space-time[22]:

$$
\begin{equation*}
d s^{2}=-d t^{2}+a^{2}(t) \tilde{g}_{\mu \nu} d x^{\mu} d x^{\nu} \tag{3.24}
\end{equation*}
$$

The theorem proved by Merton[26], which states that a perfect fluid Codazzi tensor such that $h^{i j} \nabla_{j} C_{m}^{m}=0$ is a necessary and sufficient condition for the metric to be warped, is in total agreement with the results obtained.

- If $B=0, \nabla_{i} u_{j}=-u_{i} \dot{u}_{j}$. The function a is not dependent on time since $\phi=0$ (3.6), so it can be absorbed in the Riemann metric:

$$
\begin{equation*}
d s^{2}=-b^{2}(t, \mathbf{x}) d t^{2}+\tilde{g}_{\mu \nu} d x^{\mu} d x^{\nu} \tag{3.25}
\end{equation*}
$$

It is the same of (2.12), the generalization of the interior Schwarzschild solution. Also here, we can obtain a static universe, as in (2.13), imposing the acceleration to be closed:

$$
\begin{equation*}
d s^{2}=-b(\mathbf{x}) d t^{2}+\tilde{g}_{\mu \nu} d x^{\mu} d x^{\nu} \tag{3.26}
\end{equation*}
$$

### 3.2 Current flow Codazzi tensor

In this section we investigate, by analogy with the previous section, a particular form of the symmetric tensor $C_{j k}=\lambda\left(u_{j} \dot{u}_{k}+u_{k} \dot{u}_{j}\right)$ and impose the Codazzi condition on it. We then study which space-time hosts such a tensor, and some special examples, also known from literature.

The tensor $C_{j k}=\lambda\left(u_{j} \dot{u}_{k}+u_{k} \dot{u}_{j}\right)$ is the relativistic expression of the current-flow, $\lambda$ is a scalar vector field, $u_{j}$ is the velocity vector field, and $\dot{u}_{j}$ is the acceleration, which is closed.

Theorem 3.2.1. The current fluid tensor $C_{j k}$ is Codazzi if and only if:

$$
\begin{align*}
& \nabla_{j} u_{k}=-\frac{\dot{\lambda} \dot{u}_{j} \dot{u}_{k}}{\lambda \eta}-u_{j} \dot{u}_{k}  \tag{3.27}\\
& \nabla_{j} \dot{u}_{k}=-\eta u_{j} u_{k}-\frac{\dot{\lambda}}{\lambda}\left(\dot{u}_{k} u_{j}+\dot{u}_{j} u_{k}\right)+\dot{u}_{j} \dot{u}_{k} \frac{\dot{u}^{m} \nabla_{m} \eta}{2 \eta^{2}}  \tag{3.28}\\
& \nabla_{j} \lambda=-u_{j} \dot{\lambda}-\lambda \dot{u}_{j}\left(2+\frac{\dot{u}^{m} \lambda_{m} \eta}{2 \eta^{2}}\right) \tag{3.29}
\end{align*}
$$

Proof. As above, we explicit the Codazzi condition $\nabla_{i} C_{j k}-\nabla_{j} C_{i k}=0$, and then we contract with $g^{j k}$ :

$$
\begin{aligned}
0 & =\nabla^{k}\left[\lambda\left(u_{i} \dot{u}_{k}+u_{k} \dot{u}_{i}\right)\right] \\
& =u_{i}\left(\dot{u}^{m} \nabla_{m} \lambda+\lambda \nabla_{k} \dot{u}^{k}\right)+\dot{u}_{i}\left(\dot{\lambda}+\lambda \nabla_{k} u^{k}\right)+\lambda \ddot{u}_{i}+\lambda \dot{u}^{k} \nabla_{k} u_{i}
\end{aligned}
$$

Contraction with $u^{i}$ gives:

$$
\dot{u}^{m} \nabla_{m} \lambda+\lambda \nabla_{k} \dot{u}^{k}+\lambda \eta=0
$$

Contraction with $\dot{u}^{i}$ gives:

$$
\dot{\lambda}+\lambda \nabla_{k} u^{k}=0
$$

Using these two relations in the previous equation:

$$
\begin{equation*}
-\eta u_{i}+\ddot{u}_{i}+\dot{u}^{k} \nabla_{k} u_{i}=0 \tag{3.30}
\end{equation*}
$$

Contracting the Codazzi condition with $u^{k}$ :

$$
\begin{aligned}
0 & =\nabla_{i}\left(u^{k} C_{j k}\right)-C_{j k} \nabla_{i} u^{k}-\nabla_{j}\left(u^{k} C_{i k}\right)+C_{i k} \nabla_{j} u^{k} \\
& =\nabla_{i}\left(-\lambda \dot{u}_{j}\right)-\lambda u_{j} \dot{u}_{k} \nabla_{i} u^{k}-\nabla_{j}\left(-\lambda \dot{u}_{i}\right)-\lambda u_{i} \dot{u}_{k} \nabla_{j} u^{k} \\
& =-\left(\nabla_{i} \lambda\right) \dot{u}_{j}+\lambda u_{j} \ddot{u}_{i}+\left(\nabla_{j} \lambda\right) \dot{u}_{i}-\lambda u_{i} \ddot{u}_{j}
\end{aligned}
$$

Contracting again with $u^{i}$ :

$$
\lambda \ddot{u}_{j}=\dot{\lambda} \dot{u}_{j}+\lambda \eta u_{j}
$$

Using this in the preceding expression, it gives:

$$
\begin{equation*}
\nabla_{i} \lambda=-\dot{\lambda} u_{i}+\dot{u}_{i} \frac{\dot{u}^{m} \nabla_{m} \lambda}{\eta} \tag{3.31}
\end{equation*}
$$

We are now rewriting Codazzi condition, including the equations found so far:

$$
\begin{align*}
0 & =\left(\dot{u}_{i} u_{j}-u_{i} \dot{u}_{j}\right)\left(\dot{\lambda} u_{k}+\dot{u}_{k} \frac{\dot{u}^{m} \nabla_{m} \lambda}{\eta}\right)+2 \lambda\left(\nabla_{[i} u_{j]}\right) \dot{u}_{k} \\
& +\lambda\left(u_{j} \nabla_{i} \dot{u}_{k}-u_{i} \nabla_{j} \dot{u}_{k}\right)+\lambda\left(\dot{u}_{j} \nabla_{i} u_{k}-\dot{u}_{i} \nabla_{j} u_{k}\right) \tag{3.32}
\end{align*}
$$

Contracting with $u^{i}$ :

$$
\begin{align*}
& 0=\dot{u}_{j}\left(\dot{\lambda} u_{k}+\dot{u}_{k} \frac{\dot{u}^{m} \nabla_{m} \lambda}{\eta}\right)+2 \lambda \dot{u}_{j} \dot{u}_{k}+\lambda \eta u_{j} u_{k}+\dot{\lambda} \dot{u}_{k} u_{j}+\lambda \nabla_{j} \dot{u}_{k} \\
& \lambda \nabla_{j} \dot{u}_{k}=-\dot{u}_{j} \dot{u}_{k}\left(\frac{\dot{u}^{m} \nabla_{m} \lambda}{\eta}+2 \lambda\right)-\lambda \eta u_{j} u_{k}-\dot{\lambda}\left(\dot{u}_{j} u_{k}+u_{j} \dot{u}_{k}\right) \tag{3.33}
\end{align*}
$$

Then, contracting first with $\dot{u}^{k}$, and then with $\dot{u}^{j}$, we obtain:

$$
\begin{equation*}
\frac{\dot{u}^{m} \nabla_{m} \lambda}{\eta}=-2 \lambda-\lambda \frac{\dot{u}^{j} \nabla_{j} \eta}{2 \eta^{2}} \tag{3.34}
\end{equation*}
$$

Utilizing this relation in (3.31) and (3.33), we achieve the (3.28) and (3.29).

In order to find out the last equation of the theorem we contract with $\dot{u}^{k}$ the (3.32), specifying then $\ddot{u}_{k}$ and $\nabla_{k} \eta$ :

$$
\begin{aligned}
0 & =\left(\dot{u}_{i} u_{j}-u_{i} \dot{u}_{j}\right)\left(\dot{u}^{m} \nabla_{m} \lambda\right)+2 \lambda \eta \nabla_{[i} u_{j]} \\
& +\frac{\lambda}{2}\left(u_{j} \nabla_{i} \eta-u_{i} \nabla_{j} \eta\right)+\lambda\left(\dot{u}_{j} \ddot{u}_{i}-\dot{u}_{i} \ddot{u}_{j}\right) \\
& =-\left(\dot{u}_{i} u_{j}-u_{i} \dot{u}_{j}\right)+\left(\nabla_{i} u_{j}-\nabla_{j} u_{i}\right)
\end{aligned}
$$

This relation means that the velocity is vorticity-free, i.e. $\omega_{i j}=0$

We still contract the (3.32), but this time with $\dot{u}^{i}$.

$$
\begin{aligned}
0 & =u_{j}\left(\dot{\lambda} \eta u_{k}+\dot{u}_{k} \dot{u}^{m} \nabla_{m} \lambda\right)+\lambda \eta u_{j} \dot{u}_{k} \\
& +\lambda\left(u_{j} \dot{u}^{i} \nabla_{i} \dot{u}^{k}+\dot{u}_{j} \dot{u}^{i} \nabla_{i} u_{k}-\eta \nabla_{j} u_{k}\right)
\end{aligned}
$$

Knowing that $\dot{u}^{i} \nabla_{k} \dot{u}^{i}=\frac{\nabla_{k} \eta}{2}=-\frac{\dot{\lambda}}{\lambda} \eta \dot{u}_{k}-\dot{u}_{k}\left(2 \eta+\frac{\dot{u}^{m} \nabla_{m \lambda}}{\lambda}\right)$ and (3.30):

$$
\begin{align*}
& \lambda \eta \nabla_{j} u_{k}=u_{j}\left(\dot{u}_{k} \dot{u}^{m} \nabla_{m} \lambda+\lambda \eta \dot{u}_{k}\right)-u_{j} \dot{u}_{k}\left(2 \eta \lambda+u^{m} \nabla_{m} \lambda\right)+\dot{\lambda} \dot{u}_{j} \dot{u}_{k} \\
& \dot{\lambda} \dot{u}_{j} \dot{u}_{k}=-\lambda \eta u_{j} \dot{u}_{k} \\
& \nabla_{j} u_{k}=-\frac{\dot{\lambda} \dot{u}_{j} \dot{u}_{k}}{\lambda \eta}-u_{j} \dot{u}_{k} \tag{3.35}
\end{align*}
$$

We have obtained all the equations presented in the theorem. By simply carrying out the calculations, it is easy to prove the way back.

Even if Stephani did not study the current flow tensor, there are many examples in literature to compare it with. To begin with, we find the metric of such a space-time.

### 3.2.1 Metric of the space-time

Since the velocity is not shear-free

$$
\begin{equation*}
\sigma_{j k}=\frac{\dot{\lambda}}{\lambda}\left(\frac{g_{j k}+u_{j} u_{k}}{n-1}-\frac{\dot{u}_{j} \dot{u}_{k}}{\eta}\right) \tag{3.36}
\end{equation*}
$$

the metric structure is as follows[7]:

$$
\begin{equation*}
d s^{2}=-b(t, \mathbf{x}) d t^{2}+\tilde{g}_{\mu \nu}(t, \mathbf{x}) d x^{\mu} d x^{\nu} \tag{3.37}
\end{equation*}
$$

The Christoffel symbols are:

$$
\begin{gathered}
\Gamma_{00}^{0}=\frac{\partial_{t} b}{b} \quad \Gamma_{\mu 0}^{0}=\frac{\partial_{\mu} b}{b} \quad \Gamma_{00}^{\mu}=\tilde{g}^{\mu \nu} b \partial_{\nu} b \\
\Gamma_{\mu \nu}^{0}=\frac{\partial_{t} \tilde{g}_{\mu \nu}}{2 b^{2}} \quad \Gamma_{0 \nu}^{\mu}=\frac{\tilde{g}^{\mu \rho} \partial_{t} \tilde{g}_{\nu \rho}}{2} \quad \Gamma_{\mu \nu}^{\rho}=\tilde{\Gamma}_{\mu \nu}^{\rho}
\end{gathered}
$$

Comparing the Christoffel symbols with the theorem (3.2.1), the equations for $u$ and $\dot{u}$ becomes:

$$
\begin{equation*}
u_{0}=-b(t, \mathbf{x}) \quad u_{\mu}=0 \quad \dot{u}_{0}=0 \quad \dot{u}_{\mu}=\frac{\partial_{\mu} b}{b} \tag{3.38}
\end{equation*}
$$

Furthermore, explicating these relations $\nabla_{\mu} u_{\nu}=-\frac{\dot{\lambda} \dot{u}_{\mu} \dot{u}_{\nu}}{\lambda \eta}$ and $\nabla_{0} u_{\mu}=$ $-\frac{\dot{\lambda} u_{0} \dot{u}_{\mu}}{\lambda}$, we obtain important results, as a starting point for analysing specific cases:

$$
\begin{equation*}
-b \partial_{t} \tilde{g}_{\mu \nu}=\frac{\dot{\lambda} b \partial_{\mu} b \partial_{n} u}{\lambda \eta} \quad \partial_{t} \dot{u}_{\mu}-\dot{u}_{\nu} \frac{\tilde{g}^{\nu \rho} \partial_{t} \tilde{g}_{\mu \rho}}{2}=-\frac{\dot{\lambda} b \dot{u}_{\mu}}{\lambda} \tag{3.39}
\end{equation*}
$$

### 3.2.2 Static space-time

We impose an important condition: $\dot{\lambda}=0$. The equation (3.39) tells us that both $\tilde{g}_{\mu \nu}$ and $\dot{u}_{\mu}$ are time independent. Thus, we can factorize the function $b(t, \mathbf{x})=b_{1}(t) b_{2}(\mathbf{x})$; we obtain again the static metric (3.26) and the new Codazzi equations for the current flow tensor are:

$$
\begin{gather*}
\nabla_{j} u_{k}=-u_{j} \dot{u}_{k}  \tag{3.40}\\
\nabla_{j} \dot{u}_{k}=-\eta u_{j} u_{k}+\dot{u}_{j} \dot{u}_{k} \frac{\dot{u}^{m} \nabla_{m} \eta}{2 \eta^{2}}  \tag{3.41}\\
\nabla_{j} \lambda=-\lambda \dot{u}_{j}\left(2+\frac{\dot{u}^{m} \nabla_{m} \eta}{2 \eta^{2}}\right) \tag{3.42}
\end{gather*}
$$

## Ricci and energy-momentum tensor

In this situation, the Ricci tensor can be easily derived, as the vector fields $u$ and $\dot{u}$ are bound to it by the following statement:

Proposition 3.2.2. In a static space-times, the vector fields $u$ and $\dot{u}$, with $\dot{u}$ closed, are eigenvectors of the Ricci tensor with the same eigenvalue

Proof. For convenience we call $\epsilon=\dot{u}^{m} \nabla_{m} \eta$.
In the proof of theorem (3.2.1), we have obtained an useful relation $\nabla_{i} \eta=-2 \frac{\dot{\lambda} \eta u_{i}}{\lambda}+\frac{\dot{u}_{i} \epsilon}{\eta}$. In the static metric, it becomes $\nabla_{i} \eta^{2}=2 \epsilon \dot{u}_{i}$.

$$
\begin{align*}
0 & =\nabla_{k} \nabla_{j} \eta^{2}-\nabla_{j} \nabla_{k} \eta^{2} \\
& =2 \dot{u}_{j} \nabla_{k} \epsilon+2 \epsilon \nabla_{k} \dot{u}_{j}-\left(2 \dot{u}_{k} \nabla_{j} \epsilon+2 \epsilon \nabla_{j} \dot{u}_{k}\right) \\
& =\dot{u}_{j} \nabla_{k} \epsilon-\dot{u}_{k} \nabla_{j} \epsilon \\
& =\nabla_{k} \epsilon-\dot{u}_{k} \frac{\dot{u}^{m} \nabla_{m} \epsilon}{\eta} \tag{3.43}
\end{align*}
$$

Now, utilizing the definition of Riemann tensor and the equation (3.40) and (3.41), it gives:

$$
\begin{aligned}
R_{j k l m} u^{m} & =\nabla_{j} \nabla_{k} u_{l}-\nabla_{k} \nabla_{j} u_{l} \\
& =\left(u_{j} \dot{u}_{k}-u_{k} \dot{u}_{j}\right) \dot{u}_{l}-u_{k} \nabla_{j} \dot{u}_{l}+u_{j} \nabla_{k} \dot{u}_{l} \\
& =\dot{u}_{l}\left(u_{j} \dot{u}_{k}-u_{k} \dot{u}_{j}\right)\left(1+\frac{\epsilon}{2 \eta^{2}}\right)
\end{aligned}
$$

Contracting with $g^{j l}$ :

$$
\begin{equation*}
R_{k m} u^{m}=\left(\eta+\frac{\epsilon}{2 \eta}\right) u_{k} \tag{3.44}
\end{equation*}
$$

Then we find the eigenvalue of $\dot{u}$ :

$$
\begin{aligned}
R_{j k l m} u^{m} & =\nabla_{j} \nabla_{k} \dot{u}_{l}-\nabla_{k} \nabla_{j} \dot{u}_{l} \\
& =\nabla_{j}\left(-\eta u_{l} u_{k}+\dot{u}_{l} \dot{u}_{k} \frac{\epsilon}{2 \eta^{2}}\right)-\nabla_{k}\left(-\eta u_{j} u_{l}+\dot{u}_{j} \dot{u}_{l} \frac{\epsilon}{2 \eta^{2}}\right) \\
& =-u_{l}\left(u_{k} \nabla_{j} \eta-u_{j} \nabla_{k} \eta\right)+\eta u_{l}\left(u_{j} \dot{u}_{k}-u_{k} \dot{u}_{j}\right) \\
& +\frac{\epsilon}{2 \eta^{2}}\left(\dot{u}_{k} \nabla_{j} \dot{u}_{l}-\dot{u}_{j} \nabla_{k} \dot{u}_{l}\right)+\dot{u}_{l}\left(\dot{u}_{k} \nabla_{j} \frac{\epsilon}{2 \eta^{2}}-\dot{u}_{j} \nabla_{k} \frac{\epsilon}{2 \eta^{2}}\right) \\
& =u_{l}\left(u_{j} \dot{u}_{k}-u_{k} \dot{u}_{j}\right)\left(\eta+\frac{\epsilon}{\eta}\right)+\frac{\epsilon}{2 \eta^{2}}\left(\dot{u}_{k} \nabla_{j} \dot{u}_{l}-\dot{u}_{j} \nabla_{k} \dot{u}_{l}\right)
\end{aligned}
$$

Contracting with $g^{j l}$ :

$$
\begin{equation*}
R_{k m} \dot{u}^{m}=\left(\eta+\frac{\epsilon}{2 \eta}\right) \dot{u}_{k} \tag{3.45}
\end{equation*}
$$

Theorem 3.2.3. The Ricci tensor is:

$$
\begin{align*}
R_{k l} & =\left(\frac{R}{n-1}+2 \epsilon+\frac{\epsilon}{\eta}\right) u_{k} u_{l}+\left(\frac{R}{n-1}+\epsilon+\frac{\epsilon}{2 \eta}\right) g_{k l} \\
& -(n-2)\left(E_{k l}+\dot{u}_{k} \dot{u}_{l}\left(1+\frac{\epsilon}{2 \eta^{2}}\right)\right) \tag{3.46}
\end{align*}
$$

where $E_{k l}$ is the electric tensor, and it holds

$$
\begin{equation*}
E_{k l} \dot{u}^{l}=\left(\frac{R}{n-1}-(n-4)\left(\eta+\frac{\epsilon}{2 \eta}\right)\right) \dot{u}^{k} \tag{3.47}
\end{equation*}
$$

Proof. In (3.2.2) we found that $R_{j k l m} u^{m}=\dot{u}_{l}\left(u_{j} \dot{u}_{k}-u_{k} \dot{u}_{j}\right)\left(1+\frac{\epsilon}{2 \eta^{2}}\right)$.
Since $u^{j} u^{m} R_{i j k l}=-\dot{u}_{k} \dot{u}_{l}\left(1+\frac{\epsilon}{2 \eta^{2}}\right)$, contracting the Weyl expression with $u^{j} u^{l}$, we get:

$$
\begin{aligned}
u^{j} u^{m} C_{j k l m}=E_{k l} & =-\dot{u}_{k} \dot{u}_{l}\left(1+\frac{\epsilon}{2 \eta^{2}}\right)-\frac{R_{k l}-\left(g_{k l}+2 u_{k} u_{l}\right)(\eta+\epsilon /(2 \eta))}{n-2} \\
& +R \frac{g_{k l}+u_{k} u_{l}}{(n-1)(n-2)}
\end{aligned}
$$

Therefore, as we aimed to prove, we have found such a Ricci tensor. Utilizing the Ricci eigenvalue equation (3.45) with $\dot{u}^{l}$, we find the eigenvalue of $\dot{u}^{l}$ with respect to $E_{k l}$.

As in the previous section, we intend to fully describe the Einstein equation, so we calculate the momentum-energy tensor below.

Proposition 3.2.4. The energy-momentum tensor is:

$$
\begin{align*}
T_{k l} & =\left(\frac{R}{n-1}+2 \epsilon+\frac{\epsilon}{\eta}\right) u_{k} u_{l}+\left(\frac{(3-n) R}{2(n-1)}+\epsilon+\frac{\epsilon}{2 \eta}\right) g_{k l} \\
& -(n-2)\left(E_{k l}+\dot{u}_{k} \dot{u}_{l}\left(1+\frac{\epsilon}{2 \eta^{2}}\right)\right) \tag{3.48}
\end{align*}
$$

The third Codazzi condition (3.42) with $\epsilon=0$ was obtained by Rao and Rao[29] in order to describe the relativistic generalisation of the uniform Newton force onto a spatial hypersurface in a static universe.

### 3.2.3 Spherically symmetrical static space

We analyze the static space with the condition of spherical symmetry and then list some examples of this space-time. The metric is:

$$
\begin{equation*}
d s^{2}=-b^{2}(r) d t^{2}+f_{1}^{2}(r) d r^{2}+f_{2}^{2}(r) d \Omega_{n-2} \tag{3.49}
\end{equation*}
$$

Due to symmetry, $\dot{u}$ is radial and $\dot{u}_{r}=\frac{b^{\prime}(r)}{b(r)}$ (prime indicates a derivative in $r$ ).

$$
\begin{equation*}
\eta(r)=\frac{b^{\prime 2}(r)}{f_{1}^{2}(r) b^{2}(r)} \tag{3.50}
\end{equation*}
$$

$$
\begin{equation*}
\lambda(r)=\frac{k f_{1}(r)}{b^{\prime}(r) b(r)} \tag{3.51}
\end{equation*}
$$

k is a constant.
Since $\dot{u}$ is radial vector. the angular component are $\nabla_{a_{i}} \dot{u}_{a_{j}}=0$, where $a_{i}, a_{j}$ enumerate the n-2 angles. Thus $\Gamma_{a_{i} a_{j}}^{r} \dot{u}_{r}=0$.
Therefore, the metric of a static, spherically symmetric space-time, which hosts a Codazzi current flow tensor, is reduced by the condition given in the appendix in [23] $\frac{d f_{2}}{d r}=0$ :

$$
\begin{equation*}
d s^{2}=-b^{2}(r) d t^{2}+f_{1}^{2}(r) d r^{2}+K^{2}(r) d \Omega_{n-2} \tag{3.52}
\end{equation*}
$$

where $K$ is a positive constant.
Again, in [23] the electric tensor and the scalar curvature of the space manifold are found:

$$
\begin{gather*}
E_{j k}=\frac{n-3}{(n-2) f_{1}^{2}}\left(\frac{f_{1}^{2}}{K^{2}}+\frac{b^{\prime} f_{1}^{\prime}}{b f_{1}}-\frac{b^{\prime \prime}}{b}\right)\left(\frac{\dot{u}_{j} \dot{u}_{k}}{\eta}-\frac{g_{j k}+u_{j} u_{k}}{n-1}\right)  \tag{3.53}\\
R^{*}=\frac{(n-2)(n-3)}{K^{2}} \tag{3.54}
\end{gather*}
$$

Below are some examples of such metrics. They have the same Ricci tensor (3.46) and electric tensor (3.53) and a current flow Codazzi tensor with non-zero components $C_{0 r}=k \frac{f_{1}(r)}{b}$
(i) Bertotti-Robinson space-times are conformally flat of the source-free Einstein-Maxwell equations with non null e.m. fields. The metric and the Ricci tensor are:

$$
\begin{gather*}
d s^{2}=\frac{r_{0}^{2}}{r^{2}}\left(-d t^{2}+d r^{2}+r^{2} d \Omega_{n-2}\right)  \tag{3.55}\\
R_{j k}=\frac{2 u_{j} u_{k}+g_{j k}}{r_{0}^{2}}-2 \dot{u}_{k} \dot{u}_{j} \tag{3.56}
\end{gather*}
$$

Equations (3.40) and (3.41) imply that Ricci is also Codazzi. Hence, in the Bertotti-Robinson space-time exist two Codazzi tensor: the Ricci tensor and

$$
C_{j k}=-k \frac{r^{2}}{r_{0}^{2}}\left(u_{j} \dot{u}_{k}+u_{k} \dot{u}_{j}\right)
$$

In [25], through to a coordinate change, the metric becomes, with $b(\rho)=1+\rho^{2} / r_{0}^{2}$

$$
d s^{2}=-b d \tau^{2}+\frac{1}{b} d \rho^{2}+r_{0}^{2} d \Omega_{2}
$$

(ii) Metin Gurses, in 1992, calculated[11] the metric of black holes their outer horizons, using a string correction. It describes an non-singular and homogeneous space-time. It is also solution of Einstein-Maxwell equations.

$$
\begin{equation*}
d s^{2}=-\left(a r^{2}+b r+c\right) d t^{2}+\frac{d r^{2}}{a r^{2}+b r+c}+K^{2} d \Omega_{2} \tag{3.57}
\end{equation*}
$$

(iii) In [17] the Bertotti-Robinson black holes, namely black hole static and homogeneous, in which the curvature is uniform, are described by the metric

$$
\begin{equation*}
d s^{2}=-\left(\frac{r^{2}}{l^{2}}+\frac{J^{2}}{r^{2}}-M\right) d t^{2}+\left(\frac{r^{2}}{l^{2}}+\frac{J^{2}}{r^{2}}-M\right)^{-1} d r^{2}+K^{2} d \Omega_{n-2} \tag{3.58}
\end{equation*}
$$

M is the mass, J the angular momentum and $l^{2}$ is proportional to cosmological constant.

### 3.3 Yang Pure space-times

We conclude the chapter by describing a brief example known in literature where Codazzi condition has a great deal of relevance: Yang Pure space-times[10].

The Yang Pure space-time (YPS) must satisfy the following equation

$$
\begin{equation*}
\nabla_{i} R_{j k}=\nabla_{j} R_{i k} \tag{3.59}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\nabla^{l} R_{i j k l}=0 \tag{3.60}
\end{equation*}
$$

From these last two equations, we can immediately state:
Proposition 3.3.1. Every Lorentzian manifold $(V, g)$, which is

- an Einstein space
- conformally flat with constant curvature
is a Yang Pure space-times.
Proof. The proof is a direct implication of the Weyl tensor gradient equation::

$$
\begin{equation*}
\nabla_{i} C_{j k l}^{i}=\nabla_{[k} R_{l] j}+\frac{1}{6}\left(g_{j[l} \nabla_{k]} R\right) \tag{3.61}
\end{equation*}
$$

The Yang equation is not a replacement of the Einstein equation, but rather an additional condition that determines peculiar solutions. Thus combining $T_{i j}=R_{i j}-\frac{1}{2} g_{i j} R$ with the equation (3.59):

$$
\begin{equation*}
\nabla_{[i} T_{j] k}=0 \tag{3.62}
\end{equation*}
$$

Applying the conservation law $\nabla^{i} T_{i j}=0$, the scalar tensor $T=g^{i j} T_{i j}$ will be constant.

Considering again the perfect fluid as source $T_{i j}=(\mu+\rho) u_{i} u_{j}+p g_{i j}$ with $u_{i} u^{i}=-1$, straightforwards calculations give:

$$
\begin{gather*}
p=\frac{1}{3} \mu+c  \tag{3.63}\\
\nabla_{j} u_{i}=\phi\left(g_{i j}+u_{i} u_{j}\right)  \tag{3.64}\\
\dot{u}_{i}=0  \tag{3.65}\\
\nabla_{j} \mu=3 \phi(\mu+p) u_{j} \tag{3.66}
\end{gather*}
$$

assuming $\mu+p \neq 0$ ( c is a constant). In fact, if $\mu+p=0$, then $\mu$ and $p$ are constant, giving a Einstein space.

Conditions (3.64) and (3.65) mean that the velocity is geodesic, vorticityfree and shear-free. As already pointed out, these are necessary and sufficient conditions for Robertson-Walker geometry [15].

The result can be summarized by the following theorem:
Theorem 3.3.2. A perfect fluid space-time $(V, g)$ with $\mu+p \neq 0$ is a YPS if and only if $(V, g)$ is a Robertson-Walker space-time with $p=\frac{1}{3} \mu+c$.

## Chapter 4

## Cotton gravity

### 4.1 Harada's Theory

Recently, Harada published an article[12] in which he outlined a new theory of gravity, extending Einstein's. He denominated it Cotton Gravity since the Einstein tensor $G_{j k}=R_{j k}-\frac{1}{2} R g_{j k}$ is replaced by the Cotton tensor.

The Cotton tensor $\mathcal{C}_{j k l}$ is a (0-3) tensor [5] describing the curvature of a manifold, in particular $\mathcal{C}_{j k l}=0$ is a necessary condition for a space with more than 4 dimensions to be conformally flat (but not sufficient).

The general expression of the Cotton tensor is:

$$
\begin{equation*}
\mathcal{C}_{j k l}=\nabla_{j} R_{k l}-\nabla_{k} R_{j l}-\frac{g_{k l} \nabla_{j} R-g_{j l} \nabla_{k} R}{2(n-1)} \tag{4.1}
\end{equation*}
$$

Furthermore, three proprieties of Cotton tensor are:

- $\mathcal{C}_{j k l}=-\mathcal{C}_{i k j}$ and therefore, $\mathcal{C}_{[j k l]}=0$
- $g^{j k} \mathcal{C}_{j k l}=0$
- It is related to the Weyl tensor $\mathcal{C}_{j k l}=-\frac{n-2}{n-3} \nabla^{m} C_{j k l m}$

The fundamental equation of Cotton gravity, replacing Einstein's is:

$$
\begin{equation*}
\mathcal{C}_{j k l}=16 \pi G \nabla_{i} T_{j k l}^{i} \tag{4.2}
\end{equation*}
$$

where the tensor $T_{j k l m}$ is

$$
\begin{equation*}
T_{j k l m}=\frac{1}{2}\left(g_{j l} T_{k m}-g_{k l} T_{j m}-g_{j m} T_{k l}+g_{k m} T_{j l}\right)-\frac{1}{2}\left(g_{j l} g_{k m}-g_{k l} g_{j m}\right) T \tag{4.3}
\end{equation*}
$$

It can be easily shown that every solution that satisfies Einstein equation, also with cosmological constant, $G_{j k}+\Lambda g_{j k}=T_{j k}$ satisfies also the

The equation (4.2) can be derived from Einstein equations. Indeed, this is a criticism that has been raised against Harada's theory, as it would
make it merely a different formulation, rather than an extension of the theory of relativity [2].

We consider the well-known decomposition of the Riemann tensor

$$
R_{j k l m}=C_{j k l m}+E_{j k l m}+\frac{R}{12} g_{j k l m}
$$

where $C_{j k l m}$ is the Weyl tensor, $E_{j k l m}=g_{j k p l} \left\lvert\, S^{p}{ }_{m]} S^{p}{ }_{m}=R^{p}{ }_{m}-\frac{R}{4} \delta^{p}{ }_{m}\right.$ and $g_{j k l m}=2 g_{i k} g_{m \mid j}$ Applying the Bianchi identities $\nabla^{m} R_{j k l m}=0$ and using Einstein's field equations, it gives:

$$
\begin{aligned}
& \nabla^{m} C_{j k l m}=E_{j k l m}+g_{j k l m} \frac{\nabla^{m} R}{12} \\
& \mathcal{C}_{j k l}=\left(T_{j[k ; l]}-\frac{1}{3} g_{j[k} T_{, l]}\right)
\end{aligned}
$$

which is exactly the (4.2).
Actually, Harada demonstrated how his equations are not a derived identity of the equations of general relativity, but rather they are a new class of equations obtained from a variational principle of action[12][14]. This specific action is composed by Weyl's action and the analogue of the source term of Maxwell's theory.:

$$
\begin{equation*}
\mathcal{I}=\mathcal{I}_{w}+\mathcal{I}_{s}=\frac{1}{2} \int d^{4} x \sqrt{-g} C^{j k l m} C_{j k l m}-\int d^{4} x \sqrt{-g} T^{j k l m} R_{j k l m} \tag{4.4}
\end{equation*}
$$

We now explicate the variational principle, emphasising that we vary the action with respect to the derivative of the metric, namely the connection, keeping the metric itself fixed.

$$
0=\delta \mathcal{I}=\delta \mathcal{I}_{w}+\delta \mathcal{I}_{s}=\int d^{4} x \sqrt{-g} \mathcal{C}^{j k l} \delta \Gamma_{j k l}-\int d^{4} x \sqrt{-g} \nabla_{m} T^{j k l m} \delta \Gamma_{j k l}
$$

Thus we obtain exactly the equation of Cotton gravity.
In the same paper, Harada finds exact solutions in vacuum, described by $\mathcal{C}_{j k l}=0$, a generalisation of $R_{j k}=0$ of general relativity; every solution in Einstein's vacuum will also be a solution for Harada, as is obvious from (4.1).

The resulting metric is:
$d s^{2}=-\left(1-\frac{2 M}{r}+\gamma r-\frac{1}{3} \Lambda r^{2}\right) d t^{2}+\left(1-\frac{2 M}{r}+\gamma r-\frac{1}{3} \Lambda r^{2}\right)^{-1} d r^{2}+r^{2} d \Omega_{2}^{2}$

It adds the term $\gamma r$ to the Schwarzschild metric.
It is remarkable the similarity of this metric with another result, again of vacuum solution, obtained in conformal gravity[18] [27]:

$$
\begin{align*}
d s^{2} & =\left(1-3 \beta \gamma-\frac{-\beta(2-3 \beta \gamma)}{r}+\gamma r-K r^{2}\right) d t^{2} \\
& +\left(1-3 \beta \gamma-\frac{-\beta(2-3 \beta \gamma)}{r}+\gamma r-K r^{2}\right)^{-1} d r^{2}+r^{2} d \Omega_{2}^{2} \tag{4.6}
\end{align*}
$$

The conformal gravity is an alternative theory of gravitation, an alternative to Einstein's theory. It refers to those theories which are invariant under conformal transformations of the type $\tilde{g}_{i j} \rightarrow \Omega^{2}(x) g_{i j}$, where $\Omega(x)$ is a function on space-time. Its action is the same action used by Harada, the Weyl action (4.4), with the distinction that the variation is made with respect to the metric, thus leading to the equations:

$$
\begin{equation*}
T_{k l}=-4\left(2 \nabla^{j} \nabla^{m} C_{j k l m}+R^{j m} C_{j k l m}\right) \tag{4.7}
\end{equation*}
$$

$B_{k l}=2 \nabla^{j} \nabla^{m} C_{j k l m}+R^{j m} C_{j k l m}$ is the Bach tensor [1]. It is symmetric, traceless, its divergence is $\nabla^{k} B_{k l}=0$, thus the conservation of energy is geometrically respected $\nabla^{l} T_{k l}=0$. Furthermore, most relevantly, under conformal transformation, it is proportional to

$$
\begin{equation*}
\tilde{B}_{k l}=\Omega^{-2} B_{k l} \tag{4.8}
\end{equation*}
$$

Therefore it is called conformal gravity, because the Bach tensor does not depend on further terms under conformal transformation [3].

While the Cotton tensor, as shown in [12] (equation 36), under conformal transformation depends on:

$$
\begin{equation*}
\tilde{\mathcal{C}}_{j k l}=\mathcal{C}_{j k l}+\Omega^{-1} \partial_{m} W_{j k l}^{m} \tag{4.9}
\end{equation*}
$$

Thus, the Cotton tensor is conformally invariant if and only if the Weyl tensor vanishes. This is one of the main differences between the two alternative theories of gravity, even though they derive from the same action.

The first application of the Cotton gravity developed by Harada was the description of the rotational motion of 84 galaxies: using the new gravitational potential derived from the vacuum metric (4.5), the rotation curves were fitted with good results, and with an interesting development: in fact, the $\gamma r$ term allowed an accurate description without having to use dark matter[13].

The utilized potential is $\phi=-G \frac{M}{r}+\frac{\gamma}{2} r^{2}$, where the factor $\frac{\gamma}{2} r^{2}$ cannot be obtain from general relativity, and becomes very relevant at large distances: it is this additional term that replaces the contribution of dark matter.This is one of the reasons why Harada's theory is so intriguing. $M$ and $\gamma$ are two physical integration constants that are determined for each specific galaxy.

### 4.2 Codazzi tensor describing Cotton Gravity

In the development of the Cotton gravity, Codazzi tensors naturally emerge. They characterise space-time, as shown in the previous section, and allow us to derive the Ricci tensor and thus obtain the energymomentum tensor.

By expressing the equation (4.2) through the (4.3):

$$
\begin{equation*}
\mathcal{C}_{j k l}=\nabla_{j} T_{k l}-\nabla_{k} T_{j l}-\frac{g_{k l} \nabla_{j} T-g_{j l} \nabla_{k} T}{(n-1)} \tag{4.10}
\end{equation*}
$$

and subtracting the (4.1) gives the following system:

$$
\begin{gather*}
C_{j k}=R_{j k}-T_{j k}-g_{j k} \frac{R-2 T}{2(n-1)}  \tag{4.11}\\
\nabla_{i} C_{j k}=\nabla_{j} C_{i k} \tag{4.12}
\end{gather*}
$$

These two equations are equivalent to the Harada's descriptions of Cotton gravity (4.2). The third-order character in Cotton's tensor is replaced in this new formulation, reducing it to second order, by an additional tensor $C_{j k}$, which can be interpreted as either a modification of space-time or a modification of the source of the gravitational field. If it is equal to 0 , or $C_{j k}=B g_{j k}$, the equations of general relativity are re-established, with the addition of a cosmological constant. If instead $C_{j k} \neq B g_{j k}$, we obtain a new expression of the Ricci tensor (or momentum energy tensor):

$$
\begin{align*}
& R_{j k}=T_{j k}+C_{j k}-g_{j k} C_{m}^{m}+\frac{1}{2} g_{j k} R  \tag{4.13}\\
& T_{j k}=R_{j k}-C_{j k}+g_{j k} C_{m}^{m}-\frac{1}{2} g_{j k} R \tag{4.14}
\end{align*}
$$

These two new equations can be interpreted as a generalization of Einstein's equations, with a new formulation of the energy-momentum tensor (or Ricci tensor) adding the Codazzi term $C_{i j}$.

Based on the study of hypersurfaces, and having analysed Stephani's solution methods, we can state the theorem:

Theorem 4.2.1. Every solution of embedding class 1 is also solution of Cotton gravity

Proof. A solution of embedding class 1 satisfies the Gauss-Codazzi equation (1.12) and (1.13). Thus, constructing the energy-momentum tensor of the form (4.14), and substituting the Gauss equation:

$$
\begin{aligned}
T_{j k} & =R_{j k}-C_{j k}+g_{j k} C_{m}^{m}-\frac{1}{2} R-C_{j m} C_{k}^{m} \\
& =C_{j k}\left(C_{m}^{m}-1\right)+g_{j k}\left(C_{m}^{m}-\frac{1}{2} R\right)-C_{j m} C_{k}^{m}
\end{aligned}
$$

and the condition (4.12) is precisely the Codazzi condition (1.13).

## Perfect Fluid

The process is similar to the one shown in the previous section. We impose the Codazzi condition on the symmetric tensor $C_{j k}$ in the formula (4.14). It imposes certain restrictions on space-time, from which we can then derive the Ricci tensor. Finally, the Harada energy-momentum tensor (4.14) is made explicit.

We shall start with the perfect fluid $C_{j k}=A u_{j} u_{k}+B g_{j k}$. Obviously, Codazzi condition is satisfied by the same equations (3.2-3.6). The metric of the space-time and the Ricci tensor are respectively (3.22) and (3.17).

Proposition 4.2.2. The energy-momentum tensor, considering the Cotton gravity, is:
$T_{j k}=\left(\frac{R-n \gamma}{n-1}-A\right) u_{k} u_{j}+\left(\frac{(3-n) R-2 \gamma}{2(n-1)}+(n-1) B-A\right) g_{j k}+\Pi_{j k}$

The term $\Pi_{j k}$ denotes dissipation and anisotropy and is the same as in the analogous case (3.19), while the pressure terms $p_{\perp}$ and energy density $\mu$ are:

$$
\begin{align*}
& p_{\perp}=\left(\frac{(3-n) R-2 \gamma}{2(n-1)}+(n-1) B-A\right)  \tag{4.16}\\
& \mu=\left(\frac{R-n \gamma}{n-1}-A\right)-p_{\perp} \tag{4.17}
\end{align*}
$$

Harada's theory in this case simply leads to a modification of the characteristic terms of the field source, but without substantially changing its nature.

## Imperfect fluid

The last case studied is the imperfect fluid $C_{j k}=A g_{j k}+2 A u_{j} u_{k}+B z_{j} z_{k}$. We compare the results with Stephani's solutions (section 2.2.2.).

The Ricci tensor and the curvature scalar, since they express the curvature of space-time, will still be of the form (2.17) and (2.18).

Proposition 4.2.3. The energy-momentum tensor, considering the Cotton gravity, is:

$$
\begin{equation*}
T_{j k}=\left(A^{2}+A+B\right) g_{j k}+\left(4 A^{2}+2 A B-2 A\right) u_{j} u_{k}-B z_{j} z_{k} \tag{4.18}
\end{equation*}
$$

The pressure and energy density terms are:

$$
\begin{align*}
& p_{\perp}=A^{2}+A+B  \tag{4.19}\\
& \mu=3 A^{2}+2 A B-3 A-B \tag{4.20}
\end{align*}
$$

It is very interesting to compare this solution with Stephani's solution (2.19): not only do the pressure and energy density terms change, as in the previous case of perfect fluid, but the nature of the field source itself is different. In fact, in Stephani the field source is a perfect fluid, while with Harada's solutions, the field source has an anisotropy term $-B z_{j} z_{k}$. Therefore we can conclude that in the two cases the geometry of the universe itself will change: in one case it will be isotropic, in the other it will not.

## Appendix A

## Relativistic fluid tensors

Fluids are frequently used models in relativity and cosmology because they allow the radiation-matter contribution in the universe to be described. Assuming the universe to be homogeneous and isotropic, the energy-momentum tensor is described as a perfect fluid, i.e. a continuous distribution of matter of the form:

$$
\begin{equation*}
T_{i j}=(p+\mu) u_{i} u_{j}+p g_{i j} \tag{A.1}
\end{equation*}
$$

where $\mu$ is the mass-energy density, $p$ is the pressure. These two physical quantities are often related to each other by an equation of state (the most well-known is $\left.p(\mu)=\frac{\mu}{3}\right)$. The fluid is called perfect because is viscosity-free.

When we add a term of viscosity, we obtain the so-called imperfect fluid. it is written in the form:

$$
\begin{equation*}
T_{i j}=\left(\mu+p_{\perp}\right) u_{i} u_{j}+p_{\perp} g_{i j}+u_{i} q_{j}+u_{j} q_{i}+\left(p_{r}-p_{\perp}\right) \chi_{j} \chi_{i} \tag{A.2}
\end{equation*}
$$

The different terms express:

- $\mu$ is the mass-energy density
- $p_{\perp}$ is the pressure perpendicular to the direction of fluid propagation
- $p_{r}$ is the pressure along the radial direction
- $\chi_{i}$ is a space-like vector, perpendicular to $u$
- $u_{i} z_{j}+u_{j} z_{i}$ expresses the current flow of the fluid in motion.

If $T_{j k}$ is the field source, then since it has anistotropy terms, the assumption of isotropy of the FW universe will fall.

## Appendix B

## Expansion of unit time-like vector

In differential geometry and General relativity, a congruence is a family of integral curves, defined by a vector field. A congruence can be timelike, null-like or space-like: it depends on whether the tangent vectors to such curves are everywhere time-type, light-type or space-type.

We focus ourselves on time-like unit vector field $u_{i}, u^{i} u_{i}=-1$; it can be physically interpreted as a family of particles having a time-like velocity field $u$.

On a Lorentzian manifold, given the vector field $u$, we can define the orthogonal projector $h_{i j}=g_{i j}+u_{i} u_{j}$, or rather the metric tensor of the hypersurface spanned by tangent vectors orthognonal to $u$. Thus, any vector can be separated into its parallel and orthogonal part to the vector $u$; this definition can also be applied to the covariant derivative, decomposing in irreducible parts:

$$
\begin{equation*}
\nabla_{i} u_{j}=\phi\left(g_{i j}+u_{i} u_{j}\right)+\omega_{i j}+\sigma_{i j}-u_{i} \dot{u}_{j} \tag{B.1}
\end{equation*}
$$

Now we explain each component:

- $\dot{u}_{j}=u^{m} \nabla_{m} u_{j}$ is the acceleration: it represents the rate of variation of velocity in unit of time.
- $\phi$ is the expansion parameter: it represents the rate of variation of volume on the hypersurface, for unit volume.

$$
\phi=(n-1) \frac{1}{\delta V} \frac{d(\delta V)}{d t}
$$

- $\omega_{i j}=u_{[i ; j]}+\dot{u}_{[i} u_{j]}$ is the vorticity: it is the relativistic extension of classical vorticity, which express the rotation of fluid streamlines.
- $\sigma_{i j}=u_{(i, j)}+\dot{u}_{(i} u_{j)}-\phi\left(g_{i j}+u_{i} u_{j}\right)$ is the shear It represents the deformation of spatial hypersurfaces, or rather the tendency of a sphere to become an ellipsoid of the same measure.


## Bibliography

[1] Rudolf Bach. "Zur weylschen relativitätstheorie und der weylschen erweiterung des krümmungstensorbegriffs". In: Mathematische Zeitschrift 9.1-2 (1921), pp. 110-135 (cit. on p. 35).
[2] Pedro Bargueño. "Comment on "Emergence of the Cotton tensor for describing gravity"". In: Physical Review D 104.8 (2021), p. 088501 (cit. on p. 34).
[3] Jonas Bergman Ärlebäck. "Conformal Einstein spaces and Bach tensor generalization in $n$ dimensions". PhD thesis. Linköpings universitet, 2004 (cit. on p. 35).
[4] A.L. Besse. Einstein Manifolds. Springer, 1987 (cit. on p. 5).
[5] Émile Cotton. "Sur les variétés à trois dimensions". In: Annales de la Faculté des sciences de Toulouse: Mathématiques. Vol. 1. 4. 1899, pp. 385-438 (cit. on p. 33).
[6] Andrzej Derdzinski and C-L Shen. "Codazzi Tensor Fields, Curvature and Potryagin Forms". In: (1983) (cit. on p. 6).
[7] Joan Josep Ferrando, Juan Antonio Morales, and Miquel Portilla. "Inhomogeneous space-times admitting isotropic radiation: vorticityfree case". In: Physical Review D 46.2 (1992), p. 578 (cit. on p. 26).
[8] Dirk Ferus. "A remark on Codazzi tensors in constant curvature spaces". In: Global differential geometry and global analysis. Springer, 1981, pp. 257-257 (cit. on p. 5).
[9] Hubert F Goenner. "On the interdependency of the Gauss-CodazziRicci equations of local isometric embedding". In: General Relativity and Gravitation 8.2 (1977) (cit. on p. 6).
[10] Brendan S Guilfoyle and Brien C Nolan. "Yang's gravitational theory". In: arXiv preprint gr-qc/9801023 (1998) (cit. on p. 31).
[11] Metin Gürses. "Signatures of black holes in string theory". In: Physical Review D 46.6 (1992), p. 2522 (cit. on p. 31).
[12] J Harada. Emergence of the Cotton tensor for describing gravity." Phys. Rev. D 103 (2021) L121502, 2021 (cit. on pp. 1, 33-35).
[13] Junpei Harada. "Cotton gravity and 84 galaxy rotation curves". In: Physical Review D 106.6 (2022), p. 064044 (cit. on p. 35).
[14] Junpei Harada. "Reply to "Comment on 'Emergence of the Cotton tensor for describing gravity"'". In: Physical Review D 104.8 (2021), p. 088502 (cit. on p. 34).
[15] A Krasinski. "Inhomogeneous cosmological models". In: Cambridge University Press (1997) (cit. on p. 32).
[16] David Lovelock and Hanno Rund. Tensors, differential forms, and variational principles. Courier Corporation, 1989 (cit. on p. 3).
[17] David A Lowe and Andrew Strominger. "Exact four-dimensional dyonic black holes and Bertotti-Robinson spacetimes in string theory". In: Physical review letters 73.11 (1994), p. 1468 (cit. on p. 31).
[18] Philip D Mannheim and Demosthenes Kazanas. "Exact vacuum solution to conformal Weyl gravity and galactic rotation curves". In: The Astrophysical Journal 342 (1989), pp. 635-638 (cit. on p. 35).
[19] Carlo Alberto Mantica and Luca Guido Molinari. "Codazzi tensors and their spacetimes, and Cotton gravity". In: arXiv preprint arXiv:2210.06173 (2022) (cit. on p. 18).
[20] Carlo Alberto Mantica and Luca Guido Molinari. "Doubly torqued vectors and a classification of doubly twisted and Kundt spacetimes". In: General Relativity and Gravitation 53.4 (2021), p. 48 (cit. on p. 22).
[21] Carlo Alberto Mantica and Luca Guido Molinari. "Extended DerdzinskiShen theorem for the Riemann tensor". In: arXiv preprint arXiv:1101.4157 (2011) (cit. on p. 7).
[22] Carlo Alberto Mantica and Luca Guido Molinari. "Generalized Robertson-Walker spacetimes-a survey". In: International Journal of Geometric Methods in Modern Physics 14.03 (2017), p. 1730001 (cit. on p. 23).
[23] Carlo Alberto Mantica and Luca Guido Molinari. "Spherical doubly warped spacetimes for radiating stars and cosmology". In: General Relativity and Gravitation 54.9 (2022), p. 98 (cit. on p. 30).
[24] Carlo Alberto Mantica and Luca Guido Molinari. "Weyl compatible tensors". In: International Journal of Geometric Methods in Modern Physics 11.08 (2014) (cit. on p. 6).
[25] S Habib Mazharimousavi and M Halilsoy. "n+ 1-Dimensional BertottiRobinson solutions in gravity coupled with nonlinear electrodynamics". In: Classical and Quantum Gravity 37.17 (2020), p. 177001 (cit. on p. 30).
[26] Gabe Merton. "Codazzi tensors with two eigenvalue functions". In: Proceedings of the American Mathematical Society 141.9 (2013), pp. 3265-3273 (cit. on p. 23).
[27] Ronald J Riegert. "Birkhoff's theorem in conformal gravity". In: Physical review letters 53.4 (1984), p. 315 (cit. on p. 35).
[28] J Santos, MJ Rebouças, and AFF Teixeira. "Segre types of symmetric two-tensors in n-dimensional spacetimes". In: General Relativity and Gravitation 27 (1995), pp. 989-999 (cit. on p. 10).
[29] KN Srinivasa Rao and AV Gopala Rao. "Some electrovac models of homogeneous gravitational force fields in general relativity". In:

Journal of mathematical physics 21.8 (1980), pp. 2261-2268 (cit. on p. 29).
[30] H Stephani. "Einige Lösungen der Einsteinschen Feldgleichungen mit idealer Flüssigkeit, die sich in einen fünfdimensionalen flachen Raum einbetten lassen". In: Communications in Mathematical Physics 9 (1968), pp. 53-54 (cit. on p. 16).
[31] Hans Stephani. "Über Lösungen der Einsteinschen Feldgleichungen, die sich in einen fünfdimensionalen flachen Raum einbetten lassen". In: Communications in Mathematical Physics 4.2 (1967), pp. 137142 (cit. on pp. 13, 14, 17).
[32] Hans Stephani et al. Exact solutions of Einstein's field equations. Cambridge university press, 2009 (cit. on pp. 1, 4).

## Ringraziamenti

Al termine di questo lavoro di tesi mi preme ringraziare sinceramente tutti quelli che mi hanno accompagnato in questo periodo. Innanzitutto, voglio ringraziare il professore Luca Guido Molinari, non solo per avermi seguito pazientemente durante questi quattro mesi, ma anche per l'inaspettata proposta di tesi su un argomento che mi appassiona così tanto. Mai mi sarei immaginato che da quel colloquio, chiesto così, quasi per caso, di ricevere un'occasione del genere. E allo stesso modo ci tengo a ringraziare il dott. Carlo Mantica, che mi ha guardato con attenzione in questi mesi, con cui mi sono potuto confrontare anche sulle questioni più piccole, o banali. Ogni volta che mi sfidava personalmente a svolgere dei calcoli, o approfondire delle questioni, ero spronato a dare il meglio di me, a impegnarmi personalmente nel lavoro, per godermelo appieno.

Vorrei poi ringraziare con tutto il mio cuore la mia famiglia. Mamma e papà, ci sarebbero troppe le cose per cui ringraziarvi, la possibilità dello studio e di vivere a Milano è solo un accenno della vostra intera vita spesa a donarvi gratuitamente per i vostri cinque figli. Bea, Ale, Benny e Anna, ci saranno pure diversità, ma alla fine siete e rimarrete sempre per me un dono di Dio incredibile. Ringrazio i miei nonni, per il bene che mi date e che accompagna nelle mie giornate, in particolare il nonno Alberto, perché in questi tre anni di università mi hai accompagnato e consigliato con la cura, la sapienza e l'intelligenza che ti contraddistinguono. Ringrazio poi tutti i miei zii, in modo particolare lo zio Furio: ogni volta che ti vedo mi ricordi perché studiare fisica è una fortuna incredibile, che non va sprecata o sottovalutata; vorrei continuare i prossimi due anni con la stessa passione che mi mosti. Infine ringrazio tutti i cugini, siete troppi da elencare, ma vi assicuro che ognuno di voi mi accompagna da sempre, e spero che potremo continuare a esserci, l'uno per l'altro.

Infine, per tutti voi amici, ho preparato questo, nulla di serio, perché i veri ringraziamenti si fanno in magistrale.



[^0]:    ${ }^{1} \nabla_{m} R_{i j k l}+\nabla_{l} R_{i j m k}+\nabla_{k} R_{i j l m}=0$

[^1]:    ${ }^{2}$ Weyl tensor is the traceless component of the Riemann tensor. If it vanishes, then metric is locally conformally flat: for each point of the space-time has a neighborhood that can be mapped to flat space by a conformal transformation.
    ${ }^{3}$ Sectional curvature is one of the ways to describe the curvature of a manifold, in particular it depends on a 2-dimensional subspace of the space tangent to a point of the manifold.

[^2]:    ${ }^{4}$ The Schwarzschild metric describes space-time where the source is a massive, nonrotating, spherically symmetric object. The metric is:

    $$
    d s^{2}=r^{2} d \Omega^{2}+d r^{2}\left(1-\frac{r^{2}}{R^{2}}\right)^{-1}-\left(a-b \sqrt{1-\left(\frac{r}{R}\right)^{2}}\right)^{2} d t^{2}
    $$

