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Introduction

Harada[12], in 2021, formulated a new theory of gravity: the Cotton
gravity. This theory extends Einstein’s equations, adding a term to the
gravitational potential that becomes relevant at great distances, thus
describing the rotational motion of several galaxies without the dark
matter contribution.

In this new paper, the energy-momentum tensor is expressed as a func-
tion of a Codazzi tensor. It is a (0,2)-symmetric tensor with the covariant
property ∇iCjk = ∇jCik. In this work the properties and applications of
Codazzi tensors, both in the theory of general relativity and in Cotton’s
gravity, are therefore explored.

In the first chapter, their definition and application in the differential
geometry, in particular in embedding theory, is presented. In fact, by
using the Gauss-Codazzi equations, they describe the curvature tensor
of a hypersurface (class 1 embedding) as a function of a Codazzi tensor.
Examples are then given in peculiar manifolds, and two theorems are
demonstrated, the Goenner theorem and the extension of the Derdzinski-
Shen theorem.

In the second chapter, the work of Stephani[32] is presented. He utilizes
the embedding class 1 equations to find exact solutions to Einstein’s
equations. Imposing the Codazzi condition to a perfect and imperfect
fluid tensor, he characterizes the embedded spaces-times and makes their
metrics explicit.

In the third chapter, we weaken Stephani’s assumptions by no longer
considering the immersion of space-time. Just using Codazzi equation
applied to the perfect fluid tensor, and the current flow tensor, we de-
termine wider solutions than Stephani’s, finding a more general met-
ric.

In the last chapter, Harada’s theory is presented, together with one of
its solution and application. Using the same method as in the previous
chapter, solutions of Cotton’s gravity are found, explicating the new field
source as a function of a Codazzi perfect fluid and Codazzi imperfect fluid
tensor.
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Chapter 1

Codazzi tensors theory
and proprieties

1.1 Embedding Manifolds
and Hypersurfaces

Let Vn and Vm be two different manifolds and ϕ : Vm → Vn a map
between these two manifolds. If ϕ∗p : TpVm → Tϕ(p)Vn is injective for all
x in Vn, then ϕ is called an immersion, where TpVm is the tangent space
to p.

Moreover, if ϕ is also homeomorphic, it is more accurately called an
embedding. Obviously, to admit the existence of an embedding ϕ we
must have n ≥ m.

Let xa and yα be two coordinate systems of Vm and Vn respectively
(a = 0, 1...m α = 0, 1...n), then each point p in Vm is described by the
parametric equations:

yα = yα(xa) (1.1)

Thus it is possible to define the m tangent vectors which span the tangent
space to Vm at x:

Bα
a = ∂yα

∂xa
(1.2)

From this relation, it is possible to define the metric and metric tensor
of the space Vm starting from those of Vn, as follows:

ds2 = g̃αβdyαdyβ = g̃αβBα
i Bβ

j dxidxj (1.3)

gij = g̃αβBα
i Bβ

j (1.4)
where g̃ is the metric tensor of Vn.

The minimum number of extra-dimensions required for embedding is
called embedding class p. Later on, a Euclidean space will be used as the
embedding space, making it useful to state the following:
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Theorem 1.1.1. Let Vm(s, t) be a Riemannian space with s-spacelike
and t-timelike directions, and En (S, T) the pseudo-Euclidean embedding
space. Then Vm(s, t) can be embedded in En (S, T) with s + t = m,
S + T = n, m ≤ n ≤ m(m + 1)/2, s ≤ S, t ≤ T. Therefore, the
embedding class p in a 4-dimensional space-time is between 0 ≤ p ≤ 6.

Definition 1.1.2. When the embedding class p is equal to one, namely
dimVn = m + 1, the manifold Vm is a hypersurface.

1.2 Gauss-Codazzi equations
From this point going forward, let us restrict to hypersurfaces. We can
thus define N as the only vector orthogonal to the hypersurface, so
that

g̃αβBα
a Nβ = 0. (1.5)

By imposing the condition that the metric be covariantly constant, and
using the equation (1.4):

∇kgij = ∇k(g̃αβBα
i Bβ

j ) = g̃αβ[(∇kBα
i )Bβ

j + Bα
i (∇kBβ

j )] = 0 (1.6)

Now subtracting the above with all three indices rotated (from (kij) to
(ijk) and (jik)) from (1.6) gives:

g̃αβBα
k ∇jB

β
i = 0 (1.7)

By comparing with (1.5), it can be seen that ∇jB
β
i is proportional to

N , i.e. it can be written as:

∇jB
β
i = ±NβCij (1.8)

where the coefficients Cij are a (0,2)-symmetric tensor.

In order to meet the integrability conditions of the system and using
the equations on B as defined above, starting from the definition of the
Riemann tensor, in [16](pag. 279) we read:

Rijkl = R̃αβγδB
α
i Bβ

j Bγ
k Bδ

l ± (CikCjl − CilCjk) (1.9)

∇iCjk − ∇jCik = NβR̃αβγδB
α
j Bγ

k Bδ
i (1.10)

where R̃αβγδ is the Riemann tensor of Vm+1 and Rijkl is the Riemann
of Vm. These are referred to as Gauss equation and Codazzi equation
respectively.
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The two equations are the fundamental equations of embedding theory.
They indeed allow the definition of the curvature tensor of the embedded
manifold Vm using the curvature tensor of the embedding manifold Vm+1.
As can be noted, the equations are not completely independent. In fact
considering Bianchi’s second identity1 we can find restrictions on Cjk (a
particular case is treated in section 1.3.2).

If the manifold has constant curvature, then the equation (1.9) can be
simplified as :

Rijkl = R̃

m(m + 1)(gikgjl − gilgjk) ± (CikCjl − CilCjk) (1.11)

Furthermore, if the embedding manifold is pseudo-Euclidean, the term
containing R̃ disappears, thus obtaining:

Rijkl = CikCjl − CilCjk (1.12)

∇iCjk − ∇jCik = 0 (1.13)

Definition 1.2.1. Every (0,2)-symmetric tensor which satisfies (1.13)
is called Codazzi tensor.

Using embedding theory, Hans Stephani derived the metrics of certain
space-times [32] by comparing Einstein’s equation of general relativity
with the equation (1.12):

Rij = Tij − 1
2gijT = CijC

k
k − CikCk

j (1.14)

where Tij is the energy-momentum tensor and Rij is the Ricci tensor.
Ricci is a (0,2) symmetric tensor, derived from the contraction of two
indices of the Riemann tensor Ri

jil = Rjl, which describes the curvature
of a space-time

Throughout the discussion, Stephani proves the following theorem, which
states that the Gauss-Codazzi equations, written in the form (1.12) and
(1.13), guarantee class one immersion:

Theorem 1.2.2. If there exists a symmetric tensor Cij which satisfies
(1.12), then the embedding is of class one.

1∇mRijkl + ∇lRijmk + ∇kRijlm = 0
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1.3 Codazzi tensors theorems and proper-
ties

This section briefly summarizes some specific theorems and properties
of Codazzi tensors. With the birth of General Relativity (1915) and the
subsequent surge of interest in the field of differential geometry, such
tensors were given attention for their connection with the curvature ten-
sor. An excellent compilation of all the results obtained throughout the
twentieth century is found in Besse’s book [4].

1.3.1 Examples of Codazzi Tensors
Some brief examples of Codazzi’s tensors emerging from the study of
manifolds are summarized here. The following tensors are non-trivial,
i.e. not constant multiples of the metric.

(i) Let Vn be a conformally flat manifold (Weyl tensor2 = 0) with n ≥ 4.
Then the tensor

Cij = Rij − R
2n−2gij

is a Codazzi tensor, since the divergence of the Weyl tensor is given
by the formula:

∇lC
l

ijk = n−3
n−2(∇iCjk − ∇jCik)

(ii) A Riemannian manifold has harmonic curvature if ∇lR
l

ijk = 0. This
occurs if and only if the Ricci tensor is a Codazzi tensor.

(iii) Let Vn be a manifold with constant sectional curvature3 K and a
smooth function f : Vm → R. Then the tensor

Cij = ∇i∂jf + Kfgij

is Codazzi. Furthermore, in 1981 Ferus [8] showed how in any space
with constant sectional curvature every Codazzi tensor is, at least
locally, of this type.

2Weyl tensor is the traceless component of the Riemann tensor. If it vanishes, then
metric is locally conformally flat: for each point of the space-time has a neighborhood
that can be mapped to flat space by a conformal transformation.

3Sectional curvature is one of the ways to describe the curvature of a manifold, in
particular it depends on a 2-dimensional subspace of the space tangent to a point of
the manifold.
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1.3.2 Goenner’s theorem
As mentioned in section (1.2), the Gauss and Codazzi equations describ-
ing the embedded hypersurface are not completely independent. In his
book, Hans Stephani states how the properties of the Riemann tensor
impose specific conditions on the Codazzi tensors.

Reconsidering equations (1.12) and (1.13), Goenner [9] shows that by
adding the hypothesis of the invertibility of the symmetric tensor Cij, it
results to be Codazzi. This is achieved by narrowing down the discussion
to the particular case in which Vm+1 is pseudo-Euclidean. Thus the
equation (1.13) is a direct implication, under those assumptions, of (1.12)
[24].

Theorem 1.3.1. Let Rijkl be a Riemann tensor of the form (1.12) and
Cij be invertible, then Cij is a Codazzi tensor.

Proof. Using Bianchi’s second identity, we obtain:

∇m(CikCjl − CilCjk) + ∇l(CimCjk − CikCjk) + ∇k(CilCjm − CimCjl) =

= Cik(∇mCjl −∇lCjm)+Cjl(∇mCik −∇kCim)+Cil(∇kCjm −∇mCjk)+
Cjk(∇lCim − ∇mCil) + Cim(∇lCjk − ∇kCjl) +
Cjm(∇kCil − ∇lCik) = 0

Multiplying by (C−1)jl and knowing that (C−1)ljCjk = δj
k,

(n−3)(∇mCik −∇kCim)+(C−1)jl(Cik(∇mCjl −∇lCjm)++Cim(∇lCjk −
∇kCjl) = 0

Multiplying once again by (C−1)jl:

2(n − 2)(C−1)ik(∇mCik − ∇kCim) = 0

And finally plugging this result into the previous expression we actually
find Codazzi’s definition: ∇mCik − ∇kCim = 0

1.3.3 Extension of the Derdzinski-Shen theorem
One of the most interesting developments on the relationship between
Codazzi tensors and the curvature tensor of their manifold is certainly
the Derdzinski-Shen Theorem [6]. It exposes which conditions are im-
posed by the existence of non-trivial Codazzi tensors on the structure of
the curvature tensor. The theorem states that

Theorem 1.3.2. Let C ;j
i be a Codazzi tensor defined on a Riemannian

manifold (Vm,g). Let λ and µ be two eigenvalues of that tensor, with
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eigenspaces Vλ and Vµ in TxV respectively. Then the subspace Vλ ∧ Vµ is
invariant under the curvature operator Rx.

The previous theorem leverages Codazzi condition to prove the thesis.
In 2012 Mantica and Molinari [21] showed that this condition is suffi-
cient but not necessary, in fact it can be replaced by a weaker algebraic
condition, and despite this, the theorem holds.

Proposition 1.3.3. Any Codazzi tensors is Riemann-compatible:

R m
jkl Cim + R m

kil Cjm + R m
ijl Ckm = 0 (1.15)

Proof. Using (1.13), it can be stated:

[∇j, ∇k]Cij + [∇k, ∇i]Clj + [∇i, ∇j]Ckl = 0 (1.16)

where each commutator, expressing the definition of the Riemann tensor,
is:

[∇i, ∇j]Ckl = R m
ijk Cml + R m

ijl Cmk (1.17)

Substituting (1.16) and through Bianchi’s first identity we obtain (1.15)

The Derdzinski-Shen theorem can be extended, replacing the Codazzi
tensor with a generic tensor Bij that is Riemann-compatible.

To prove this we must first define the generalized curvature tensor:

Definition 1.3.4. A generalized curvature tensor is a tensor W which
satisfies the Riemann proprieties:

(i) Wijkl = −Wijlk = −Wjikl

(ii) Wijkl = Wlkji

(iii) Wijkl + Wkijl + Wjkil = 0 ( Bianchi’s first identity)

Proposition 1.3.5. If Bij is Riemann compatible, then Wijkl = RijmnB m
k B n

l

is a generalized curvature tensor.

Then the extended version of the theorem for the Riemann curvature
follows:

Theorem 1.3.6. Let a symmetric tensor Bij satisfying (1.15) be defined
on a Riemannian manifold Vm. Let X, Y and Z be three eigenvectors
with λ, µ and ν their eigenvalues respectively, with λ and µ necessarily
different from ν. Then we can declare that
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RijklX
iY jZk = 0 (1.18)

Proof. The following matrix equation :
1 1 1
λ µ ν

λµ λν µν



RlijkX iY jZk

RljkiX
iY jZk

RlkijX
iY jZk

 =


0
0
0


expresses, respectively, Bianchi’s first identity for the Riemann tensor,
the (1.15) for the symmetric tensor Bij, and Bianchi’s first identity for
the tensor Wlijk = RlimnBm

j Bn
k , being a generalized curvature tensor.

Since the determinant is (λ − µ)(λ − ν)(µ − ν), if the eigenvalues are all
distinct, it is immediate to see that RlijkX iY jZk = 0. If on the other
hand λ = µ ̸= ν, unwinding the system again we find RlijkX iY jZk =
0. Due to all the symmetries of the Riemann tensor, it can be stated
that the theorem is true for any contraction of three indices out of the
four.

Concluding the extension, Mantica and Molinari showed, by a similar
procedure, that this theorem can be applied to a generalized curvature
tensor W , defining the tensor Bij as W -compatible.

Definition 1.3.7. Let W be a generalized curvature tensor, a symmetric
(0-2) tensor Bij is called W -compatible if

W m
jkl Bim + W m

kil Bjm + W m
ijl Bkm = 0 (1.19)

Theorem 1.3.8. Let W be a generalized curvature tensor and a sym-
metric tensor Bij satisfying (1.19) be defined on a Riemannian manifold
Vm. Let X, Y and Z be three eigenvectors and λ, µ and ν their eigenval-
ues respectively, with λ and µ necessarily different from ν. Then we can
declare that

WijklX
iY jZk = 0 (1.20)

Proof. Equivalent to proof (1.3.6).
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Chapter 2

Stephani exact solutions

This chapter discusses various forms of Codazzi tensors applied to the
theory of general relativity. Indeed, certain forms of tensors, such as per-
fect fluid or current flow, arise from geometrical considerations. These
were utilised by Hans Stephani, using embedding formulas, to solve Ein-
stein’s equations and calculate their metrics.

From now on we set ourselves in an n-dimensional Lorentzian manifold,
with signature (-,+...+). The Greek indices range over the (n−1) spatial
components, the Latin ones over all n components.

2.1 Segre type (0,2) symmetric tensors
Given a n-manifold Lorentzian with signature (1, n-1), let

A = (ui, ai(2), ai(3), ...ai(n))

be the orthonormal frame, where ui is an unit time-like vector, i.e. uiui =
−1, orthogonal to the unit space-like vectors a(m)i, which satisfy the
condition a(m)ia(j)i = δmj.

Thus the metric can be described as follows:

gij = −uiuj +
n∑

m=2
ai(m)aj(m) (2.1)

or, by changing variables:

li = ui+a(2)i√
2 ki = ui−a(2)i√

2

where li and ki are null vector, i.e. lil
i = kik

i = 0, orthogonal to the
vectors a(m)i. Furthermore, it can be easily found that lik

i = −1. So
the metric comes to be:

gij = likj + kilj +
n∑

m=3
ai(m)aj(m) (2.2)

A (0,2)-tensor Sab always defines a linear map which takes a vector a to
another vector b. To classify S it is useful to start with the eigenvalues
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equation
Sb

ava = λvb (2.3)

Indeed every matrix can be rewritten as a block matrix in the canoni-
cal form of Jordan(JCF), i.e. as a quasi-diagonal matrix[28]. Thus, in
general, a complex matrix A is similar to:

J =


J1

J2
. . .

Jn



Ji =


λi 1

λi
. . .
. . . 1

λi



where Ji is called Jordan block of A.

Classifying the Ricci-like tensor by applying the equation to the eigen-
values and Jordan’s theorem in a 4-dimensional space, Petrov fixed 4
different forms, called Segre Type:

1. Sij = −λuiuj + ∑n
m=2 ρmai(m)aj(m)

2. Sij = α(uiaj(2)+ujai(2))+β(uiuj−ai(2)aj(2))+∑n
m=3 ρmai(m)aj(m) α ̸=

0

3. Sij = α(likj + ljkb) ± lilj + ∑n
m=3 ρmai(m)aj(m)

4. Sab = α(likj+ljki+ai(3)aj(3))+(liaj(3)+ljai(3))+∑n
m=4 ρmai(m)aj(m)

We analyze which ones are the simplest tensor forms that emerge from
the study of individual Segre Type

2.1.1 Segre Type 1
Three cases are distinguished.

a) Complete degeneration: λ = ρm ∀m = 2, ...n. The Ricci-like tensor
can be described as Sij = λgij. So, for example, if Sij = Rij, it is
an Einstein space.
If Sij satisfies the Codazzi condition , then it is a trivial Codazzi
tensor with ∇iλ = 0.
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b) Degeneration (1,n-1): ρm = ρk = ρ ∀m, k = 2, ...n. It is locally
invertible if ρ ̸= 0. Using the metric again yields Sij = (ρ−λ)uiuj +
ρgij. This expression carries interesting implications, indeed if Sij =
Rij it is a quasi-Einstein space. If Sij = Tij it is the well-known
perfect fluid source Tij = (µ + p)uiuj + pgij(see Appendix A).
If Sij satisfies the Codazzi condition, then it is the perfect fluid
Codazzi tensor, and is revealed as the simplest form of a Codazzi
for a Segre Type 1 tensor.

c) Degeneration (1,1,n-2): ρ2 ̸= ρ3 = ρ4 = ... = ρn = ρ. Analogously,
using the metric Sij = (ρ − λ)uiuj + (ρ − ρ2)ai(2)aj(2) + ρgij. If
Sij = Tij = (µ+p⊥)uiuj −p⊥gij +(pr −p⊥)ai(2)aj(2) (see Appendix
A).
If Sij = Cij, and ai(2) = u̇i√

η , where u̇i = uk∇kui and η = u̇ku̇k, the
Codazzi tensor becomes the imperfect fluid tensor:
Cij = (ρ − λ)uiuj + (ρ−ρ2)

η ai(2)aj(2) + ρgij.

2.1.2 Segre Type 2
The simplest non-trivial tensor of this form is Sij = α(uiaj(2)+ujai(2)),
where α ̸= 0. Again, if Sij fulfills the Codazzi condition, and choosing
mi(2) = u̇i√

η , we come to: Sij = α√
η (uiu̇j + uju̇i), which is the relativistic

expression of current flow.

2.1.3 Segre Type 3 and 4
The straightforward form of class 3 is

Sij = ±lilj + ρai(2)aj(2)

while, for the 4 class, is

Sij = liaj(2) + ljai(2)

Both of them describe, in the theory of relativity, a pure radiation source.
They are two analogous forms.

2.2 Stephani solutions to
General Relativity equations

In this section, we will analyse how Stephani[32] in his work uses the
formulas of embedding and immersion theory to solve Einstein’s problem.
Stephani starts from the simplest forms of the Segre Type, those listed
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above, and considering the equation (1.14), finds the metrics that solve
the Einstein equation.

This section will be conducted entirely in 4 dimensions.

2.2.1 Perfect fluid
The first example makes use of a Codazzi Segre Type 1 tensor. If Cij =
Auiuj + Bgij, where A and B are scalar fields, then, following from
(1.12), we can obtain the Riemann and the Ricci tensors and the scalar
curvature:

Rijkl = B2(gikgjl−gilgjk)+AB(gikujul+gjluiuk−gilujuk−gjkuiul) (2.4)

Rij = B(3B − A)gij + 2ABuiuj (2.5)
R = 12B2 − 6AB (2.6)

Thanks to these results, we can affirm that the source of this space-time
will be a perfect fluid:

Tij = (µ + p)uiuj + pgij

µ = 3B2 p = B(2A − 3B)

Proposition 2.2.1. The space-time with the Riemann (2.4) and the
Ricci tensor (2.5) is conformally flat, i.e. the Weyl tensor Cijkl = 0

Proof. The Weyl tensor is

Cijkl = Rijkl + gilRjk−gjlRik+gjkRil−gikRjl

2 − Rgilgjk−gjlgik

6

Considering only the last two terms, we get that:
gilRjk − gjlRik + gjkRil − gikRjl

2 − R
gilgjk − gjlgik

6
= (3B2 − AB)(gilgjk − gjlgik) + AB(ujukgil − uiukgjl + uiulgjk − ujulgik)
− (2B2 − AB)(gilgjk − gjlgik)
= B2(gilgjk − gjlgik) + AB(ujukgil − uiukgjl + uiulgjk − ujulgik)
= −Rijkl

If the tensor Cij is invertible, namely A ̸= B, thanks to (1.2.2) and
Goenner theorem, then Cij is also Codazzi. If B = 0, the space-time is
flat.

The first solution is almost trivial; by imposing
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A = 0 Tij = 3B2gij B2 =cost.

we find a space with constant curvature, which corresponds to the de
Sitter space.

From this point going forward, we will make use of the standard decom-
position for a time-like unit vector, discussed in Appendix B:

∇iuj = ϕ(gij − uiuj) + ωij + σij − uiu̇j (2.7)

Starting from (2.4), applying to the expression Bianchi’s identities, we
find:

∇iuj = −uiu̇j + ϕ(gij − uiuj) (2.8)
B = B(t) ∇tB = ϕAu0 (2.9)

ϕ = ϕ(t) (2.10)
∇iA = −uiȦ − u̇iA (2.11)

which means that the velocity field is shear-free and vorticity-free. Fur-
thermore, B and ϕ depend solely on time.

Now we need to distinguish two cases: if the speed is expansion-free or
not.

Expansion-free solution

Being expansion-free means that ϕ = 0. Moreover, the three dimensional
space, defined by the orthogonal projector gµν + uµuν , is a space on
constant curvature. The final result is the metric[31]:

ds2 = dr2

1 − B2r2 + r2dΩ2 − (u0)2dt2 (2.12)

u0 = rf1(t)sinθsinϕ+rf2(t)sinθcosϕ+rf3(t)cosθ+f4(t)
√

1 − (Br)2− 1
B

where fi(t) are four arbitrary functions of time.

We can notice that the expansion-free solution of the conformally flat
space-time is a generalization of the interior Schwarzschild solution (f1 =
f2 = f3 = 0 and f4 =const).4

4The Schwarzschild metric describes space-time where the source is a massive, non-
rotating, spherically symmetric object. The metric is:

ds2 = r2dΩ2 + dr2(1 − r2

R2 )−1 − (a − b
√

1 − ( r
R)2)2dt2
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Cosmologically, this space-time does not allow dust solutions p = 0: this
implies that the vector field u is covariantly constant, which is compatible
with the curvature tensor if and only if A = B = 0, i.e. the space-time
is flat.

If A = B, we obtain the Einstein universe:

ds2 = dr2

1 − B2r2 + r2dΩ2 − dt2 (2.13)

Non-vanishing expansion solution

In this case, where ϕ ̸= 0, the spatial part gµν +uµuν of the metric tensor
is not time independent, so, using the equation derived from Bianchi’s
identities and the Riemann (2.4), we get that the hypersurface t =const
has constant curvature, but the metric is time-dependent. Thus, after a
rescaling, the metric is obtained[31]:

ds2 = V −2(dx2 + dy2 + dz2) −
( 1

ϕ(t)
∂tV

V

)2
dt2 (2.14)

V (x, y, z, t) = V0(t) + B2(t) − ϕ2(t)
4V0

(
(x − x0)2 + (y − y0)2 + (z − z0)2

)
(2.15)

where V0 and x0, y0, z0 are arbitrary functions of time.

This metric express the generalizations of the Robertson-Walker cosmo-
logical models, and describes the well-known Stephani Universe.

The characterisation of Stephani universes is that, unlike RW universes,
they consider space-time to be anisotropic, due to a spatial variation of
the Hubble constant.

Dust solutions can be obtained considering 2A = 3C; this implies the
Friedmann dust models.

2.2.2 Codazzi tensor- imperfect fluid
The second type of solutions gathered by Stephani are calculated from
Segre type 1 of the form Cij = Agij + 2Auiuj + Bzizj, where ziz

i = 1,
ziu

i = 0 and AC ̸= 0.

The Riemann and the Ricci tensors and the scalar curvature are:

Rijkl = CikCjl − CilCjk (2.16)

Rij = (A2 + AB)gij + (4A2 + 2AB)ujul (2.17)
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R = 2AB (2.18)

The energy-momentum tensor will be:

Tij = (µ + p)uiuj + pgij (2.19)

µ = 2A(B + 2A) p = A2

It is interesting to note, although we initially have an imperfect fluid
Codazzi tensor, via the equation (1.14), the source of the gravitational
field turns out to be a perfect fluid tensor.

We now demonstrate that Weyl tensor is different to 0.

Proposition 2.2.2. The Weyl tensor is:

Cijkl = CikCjl − CilCjk + (A2 − AB)(gilgjk − gjlgik)
+ (4A2 + 2AB)(gilujuk − gjluiuk + gjkuiul − gikujuk) (2.20)

Proof. We start again with the Weyl tensor equation and calculate its
different terms:

gilRjk − gjlRik + gjkRil − gikRjl

2 =

= (gjkgil − gikgjl)(A2 + AB)
+ (4A2 + 2AB)(gilujuk − gjluiuk + gjkuiul − gikujuk)

R
gilgjk − gjlgik

6 = 3AB(gilgjk − gjlgik)

Therefore, adding up all the various addends, we find Weyl in the form(2.20)

If A = −2C, the Codazzi condition (1.13) implies:

∇iuj = zjpi (2.21)

∇izj = ujpi (2.22)
where p is a generic vector orthogonal both at u and at z

The Ricci identity ∇k∇luj − ∇l∇kuj = uiRijkl, and the Gauss equation
(1.12) imply C = 0, i.e. the space-time has null curvature. So we can
single out when A ̸= −2C.

As above, two cases must be separated: when the acceleration vector
field vanishes or not (we recall that u̇i = uj∇jui).

15



Vanishing acceleration solution

Adding this further hypothesis, the calculations lead to:

∇iuj = a1zizj + a2(gij + uiuj − zizj) (2.23)

∇izj = a1uizj + pjzi piu
i = piz

i = 0 (2.24)

∇iA = ui((2B + A)a1 − 2Ba2) + a3zi + Api (2.25)

∇iB = 2Ba2ui (2.26)

Proposition 2.2.3. The velocity field u is vorticity-free, but not shear-
free

Proof. We utilise the definitions of vorticity and shear given in Appendix
B

ωij = u[i;j] + u̇[iuj] = 0

thus the acceleration vanishes.

σij = u(i;j) + u̇(iuj) − ϕ(gij + uiuj)

= a1zizj + a2(gij + uiuj − zizj) − ∇mum

3 (gij + uiuj)

= a1zizj + a2(gij + uiuj − zizj) − a1 + 2a2

3 (gij + uiuj)

= zizj(a1 − a2) + 1
3(a1 + a2)(gij + uiuj)

It turns out that the metric depends on two further cases, namely if
the two dimensional subspace x-y, which turns out to have constant
curvature, is flat or not.

The two metrics are presented here[30]. They describe flat space and
non-flat space, respectively.

ds2 = t(dr2 + r2dϕ2) + V 2dz2 − dt2 (2.27)

V (r, ϕ, z, t) = t
√

tG1(z) +
√

t(G2(z)rcosϕ + G3(z)rsinϕ + 3
4G1(z)r2

+ G4(z)) + G5(z)

Again Gi(z) are arbitrary functions, dependent on z this time.
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ds2 = F 2(t)
(

dr2

1 ± r2 + r2dϕ2
)

+ V 2dz2 − dt2 (2.28)

V (r, ϕ, z, t) = G1(z)
∫

F −1dt + G2(z) + F (G3(z)rcosϕ + G4(z)rsinϕ

± G5(z)
√

1 ± r2)

Non-vanishing acceleration solution

instead, in this case the equations are:

∇iuj = a1zjui + a2zizj + a3(gij + uiuj − zizj) (2.29)

∇izj = a1ujui + a2ujzi + B + 2A

B
a1(gij − zjzi + uiuj) (2.30)

∇iA = 2Aa3ui + (2A + C)a1zi (2.31)
∇iB = (2A + B)a2 − 2Aa3ui + a4zi (2.32)

Proposition 2.2.4. The vorticity is:

ω = a1(uizj − ujzi) (2.33)

and the shear is:

σij = a1(uizj + ujzi) + zizj(a2 − a3) + 1
3(a2 + a3)(gij + uiuj) (2.34)

Proof. Following the same calculations as in the above proof, the two
equations of the proposition are obtained.

Not in all conditions are general solutions found: indeed, in this case the
solution is only known when the u-field is shear-free: if it vanishes, the
metric is static, and in this setting, spherically symmetric[31]. For the
purpose of completeness it is given here but will be of little interest in
our discussion:

ds2 = k
(a + 2br2)

a + br2 dr2 + r2
(

dρ2

1 − kρ2 + ρ2dϕ2
)

− (a + br2)dt2 (2.35)

These were the two Codazzi tensors mainly studied by Stephani: they
give rise via the embedding equations to an energy-momentum tensor
Tij of perfect fluid type. This is the reason why he does not investigate
a Codazzi tensor of the Segre Type 2 (current flow), since the source of
the space-time cannot be traced back to a perfect fluid.

17



Chapter 3

Codazzi tensors
in General relativity

In opposition to Hans Stephani, who related a Codazzi tensor to the
geometry of space-time through the hypersurfaces equations, Mantica
and Molinari’s work[19] shows that even just the fulfilment of the Codazzi
condition (1.13) imposes restrictions on the Ricci tensor.

In fact, as proposition (1.15) states, any Codazzi tensor is Riemann-
compatible, and therefore, contracting with the metric tensor gil, we
obtain:

CijR
j

k = CkjR
j

i (3.1)

namely it commutes with the Ricci tensor.

By investigating two forms of tensors (perfect fluid and current flow),
we find out which are the conditions for these tensors to be Codazzi.
Then we will derive the Ricci tensor, without imposing any conditions
on the Riemann tensor, such as the equation (1.9). This tensor will then
determine which space-time hosts this Codazzi tensor.

3.1 Perfect fluid tensor
The most immediate tensor to study is obviously the perfect fluid Cij =
Auiuj +Bgij with ui, as always, an unit time-like vector field, and A ̸= 0
and B two scalar fields.

Theorem 3.1.1. The perfect fluid tensor Cij = Auiuj + Bgij is Codazzi
if and only if:

∇iuj = ϕ(gij + uiuj) − uiu̇j (3.2)

∇iϕ = −uiϕ̇ (3.3)

∇iA = −uiȦ − u̇iA (3.4)

∇iB = −uiḂ (3.5)
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ϕ = −Ḃ

A
(3.6)

u̇i is the acceleration vector field, which is space-like and orthogonal to
the velocity.Its module is the scalar function η = u̇iu̇

i.

Proof. We have to demonstrate that ∇iCjk − ∇jCik = 0

We start by explicating Codazzi condition:

0 = uk(uj∇iA − ui∇jA) + (gjk∇iB − gik∇jB) (3.7)
+ Auk(∇iuj − ∇jui) + A(uj∇iuk − ui∇juk)

Contracting with uk, and remembering that ui∇jui = 0 (acceleration is
orthogonal to velocity):

0 = −uj∇i(A − B) + ui∇j(A − B) − A(∇iuj − ∇jui) (3.8)

Contracting again with uj:

0 = ∇i(A − B) + ui(Ȧ − Ḃ) + Au̇i (3.9)

and, putting it inside the (3.8), being A ̸= 0:

0 = uju̇i − uiu̇j − ∇iuj + ∇jui

By considering the standard decomposition (see Appendix B), we find
that the perfect fluid is vorticity-free ωij = 0

Then, by multiplying by the metric tensor gjk the equation (3.7), we get:

0 = −∇iA − uiȦ + (n − 1)∇iB − Au̇i − Aui∇kuk (3.10)

Contraction with ui: (n − 1)Ḃ + A∇kuk = 0, by explicating Au̇i from
(3.9) reduces the previous equation to:

0 = −∇i(A − (n − 1)B) − ui(Ȧ − (n − 1)Ḃ) + ∇i(A − B) + ui(Ȧ − Ḃ)
= ∇iB + uiḂ (3.11)

Using this result in (3.9) we find the (3.4).

Contraction with ui of (3.10), and expressing the decomposition, gives:

ϕ = −Ḃ

A
(3.12)
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Using the results we have just come up with, the expression of Codazzi
condition (3.7) simply reduces to:

ujσik = uiσjk (3.13)

which means that the vector field u is also shear-free (3.2).

In order to find the last equation of the theorem, we evaluate the covari-
ant derivative of ϕ:

∇iϕ = −∇iḂ

A
+ Ḃ

∇iA

A2

= −∇iu
k∇kB

A
+ Ḃ

−u̇iA − uiȦ

A2

= − u̇iB − uiB̈

A
+ Ḃ

−u̇iA − uiȦ

A2

= −ui

ȦḂ

A2 − B̈

A


= −uiϕ̇ (3.14)

We have derived all the equations of the theorem; the opposite implica-
tion also holds, i.e. if a perfect fluid tensor solves the equations (3.2-3.6),
then it is Codazzi.

A remarkable result to point out is that these equations are the same
as those found by Stephani (2.8-2.11), but without imposing the Gauss
equation on the Riemann tensor. This leads us to think that we will find
ourselves in a more general space-time than the universe of Stephani;
this statement will be confirmed when we derive the metric.

3.1.1 Ricci and Energy-momentum tensors
We now deduce the Ricci tensor by means of some propositions.

Proposition 3.1.2. If Cik perfect fluid tensor is Codazzi, then ui is
Riemann-compatible, and it is an eigenvector of the Ricci tensor Riju

j =
γui with γ = (n − 1)(ϕ̇ + ϕ2) − ∇ku̇k

Proof. The Riemann compatibility is a directly consequence of (1.15)
and Bianchi’s identities.

Rjklmum = ∇j∇kul − ∇k∇jul

= ∇j[ϕ(gkl + ukul) − uku̇l] − ∇k[ϕ(gjl + ujul) − uju̇l]
= −(ϕ̇ + ϕ2)(gkluj − gjluk) − 2u[ju̇k](ϕul − u̇l) − 2u[k∇j]u̇l
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Contraction with gjl gives:

Rkmum = (n − 1)(ϕ̇ + ϕ2)uk + ϕu̇k − ukη − 2u[k∇j]u̇j

= [(n − 1)(ϕ̇ + ϕ2) − ∇ju̇
j]uk

= γuk

having replaced through the equation (3.2) −u̇j∇kuj = −ϕu̇k + ukη.

One can also obtain a useful identity regarding acceleration: subtracting
the same expression from the symmetric tensor

ujRjklmum = (gkl + uluk)(ϕ̇ + ϕ2) + u̇k(ϕul − u̇l) − ukül − ∇ku̇l (3.15)

with the indices k,l exchanged gives:

2∇[ku̇l] = (ϕu̇k + ük)ul − uk(ϕu̇l + ül) (3.16)

It is now possible to obtain the Ricci tensor of the space-time which
hosts a perfect fluid Codazzi tensor.

Theorem 3.1.3. The Ricci tensor is:

Rkl =R − nγ

n − 1 ukul + R − γ

n − 1 gkl + Πkl (3.17)

Πkl =1
2(n − 2)[uk(ϕu̇l − ül) + ul(ϕu̇k − ük) − (∇ku̇l + ∇lu̇k) (3.18)

+ (n − 2)[u̇ku̇l + Ekl] + n − 2
n − 1(gkl + ukul)∇pu̇p

Πkl is symmetric and traceless and Πklu
l = 0.

Ekl = ujumCjklm is the electric tensor, which is symmetric, traceless and
Eklu

l = 0.

Proof. Recalling the generic expression on the Weyl tensor:

Cjklm = Rjklm + gjmRkl − gkmRjl + gklRjm − gjlRkm

n − 2 − R
gjmgkl − gk,gjl

(n − 1)(n − 2)

the double contraction with uj and um yields, substituting (3.15):

Ekl =(gkl + uluk)(ϕ̇ + ϕ2) + u̇k(ϕul − u̇l) − ukül − ∇ku̇l

− Rkl + 2γukul + γgkl

n − 2 + R
gkl + ukul

(n − 1)(n − 2)
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Thus it is found, as the thesis states, that Ricci tensor is:

Rkl = R − nγ

n − 1 ukul + R − γ

n − 1 gkl + Πkl

where we use the identity (3.16).

To fully describe a space-time, the energy-momentum tensor must be
made explicit. It is linked to the Ricci tensor via the Einstein equa-
tion.

Proposition 3.1.4. The energy-momentum tensor is:

Tkl = R − nγ

n − 1 ukul + (3 − n)R − 2γ

2(n − 1) gkl + Πkl (3.19)

The field source is therefore an imperfect fluid, with Πkl being the dis-
persion and anistotropy term, while perpendicular pressure and density
are:

p⊥ =
((3 − n)R − 2γ

2(n − 1)

)
(3.20)

µ =
(

R − nγ

n − 1

)
− p⊥ (3.21)

3.1.2 Metric of the space-time
From the above equations, in particular from (3.2), which describes the
derivative of the velocity vector field, we have restrictions on space-time.
In fact, since the velocity is vorticity-free, we know that it will be doubly
twisted, i.e. the metric is[20]:

ds2 = −b2(t, x)dt2 + a2(t, x)g̃µνdxµdxν (3.22)

The vector x denotes the spatial coordinates, e g̃µν is a Riemann metric
tensor.

The Christoffels symbols are:

Γ0
00 = ∂tb

b
Γ0

µ0 = ∂µb

b
Γ0

µν = ∂ta

ab2 gµν Γν
0µ = ∂ta

a
δν

µ

Comparing with the equations (3.2):

u̇0 = −b(t, x) u̇0 = 0 uµ = 0 u̇µ = ∂µb(t, x)
b(t, x) ϕ = ∂ta(t, x)

b(t, x)a(t, x)
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We can state that the scalar function ϕ only depends on time; defining
a = 1

V (t,x) , the metric becomes:

ds2 = −
(

∂tV

ϕV

)2
dt2 + g̃µν(x)dxµdxν

V 2 (3.23)

As we can observe, this metric is a general case of the metric found by
Stephani and describes in equation (2.14). This space-time is denomi-
nated Generalized Stephani universe.

Proposition 3.1.5. If the acceleration field is close (∇iu̇j − ∇ju̇i) = 0,
then b(t, x) can be factorized in b(t, x) = b(t)b(x). It also holds that
ük = ηuk − ϕu̇k

Proof. If u̇ is closed, then
0 = ∇0u̇µ − ∇µu̇0

= ∂tu̇µ − Γν
oµu̇nu + Γν

µ0u̇ν

= ∂t(∂µlogb)
i.e. it is independent on time, thus it can be factorized. Furthermore,
equation (3.16) reduces to (ϕu̇k + ük)ul − uk(ϕu̇l + ül) = 0. Contraction
with ul gives ük = ηuk − ϕu̇k.

By setting additional conditions on the variables, two special cases can
be obtained, which are interesting to investigate:

• If u̇k = 0, ∇iA = −ukȦ, then b(t, x) depends only on time. Con-
dition (3.3) state that ∂µϕ = 0, so a is only a function of time. It
suggests a warped metric, which describes an Generalized Robertson-
Walker space-time[22]:

ds2 = −dt2 + a2(t)g̃µνdxµdxν (3.24)
The theorem proved by Merton[26], which states that a perfect fluid
Codazzi tensor such that hij∇jC

m
m = 0 is a necessary and sufficient

condition for the metric to be warped, is in total agreement with
the results obtained.

• If B = 0, ∇iuj = −uiu̇j. The function a is not dependent on time
since ϕ = 0 (3.6), so it can be absorbed in the Riemann metric:

ds2 = −b2(t, x)dt2 + g̃µνdxµdxν (3.25)
It is the same of (2.12), the generalization of the interior Schwarzschild
solution. Also here, we can obtain a static universe, as in (2.13),
imposing the acceleration to be closed:

ds2 = −b(x)dt2 + g̃µνdxµdxν (3.26)
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3.2 Current flow Codazzi tensor
In this section we investigate, by analogy with the previous section, a
particular form of the symmetric tensor Cjk = λ(uju̇k+uku̇j) and impose
the Codazzi condition on it. We then study which space-time hosts such
a tensor, and some special examples, also known from literature.

The tensor Cjk = λ(uju̇k + uku̇j) is the relativistic expression of the
current-flow, λ is a scalar vector field, uj is the velocity vector field, and
u̇j is the acceleration, which is closed.

Theorem 3.2.1. The current fluid tensor Cjk is Codazzi if and only if:

∇juk = − λ̇u̇ju̇k

λη
− uju̇k (3.27)

∇ju̇k = −ηujuk − λ̇

λ
(u̇kuj + u̇juk) + u̇ju̇k

u̇m∇mη

2η2 (3.28)

∇jλ = −ujλ̇ − λu̇j

(
2 + u̇mλmη

2η2

)
(3.29)

Proof. As above, we explicit the Codazzi condition ∇iCjk − ∇jCik = 0,
and then we contract with gjk:

0 = ∇k[λ(uiu̇k + uku̇i)]
= ui(u̇m∇mλ + λ∇ku̇k) + u̇i(λ̇ + λ∇kuk) + λüi + λu̇k∇kui

Contraction with ui gives:

u̇m∇mλ + λ∇ku̇k + λη = 0

Contraction with u̇i gives:

λ̇ + λ∇kuk = 0

Using these two relations in the previous equation:

−ηui + üi + u̇k∇kui = 0 (3.30)

Contracting the Codazzi condition with uk:

0 = ∇i(ukCjk) − Cjk∇iu
k − ∇j(ukCik) + Cik∇ju

k

= ∇i(−λu̇j) − λuju̇k∇iu
k − ∇j(−λu̇i) − λuiu̇k∇ju

k

= −(∇iλ)u̇j + λujüi + (∇jλ)u̇i − λuiüj
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Contracting again with ui:

λüj = λ̇u̇j + ληuj

Using this in the preceding expression, it gives:

∇iλ = −λ̇ui + u̇i
u̇m∇mλ

η
(3.31)

We are now rewriting Codazzi condition, including the equations found
so far:

0 = (u̇iuj − uiu̇j)(λ̇uk + u̇k
u̇m∇mλ

η
) + 2λ(∇[iuj])u̇k

+ λ(uj∇iu̇k − ui∇ju̇k) + λ(u̇j∇iuk − u̇i∇juk) (3.32)

Contracting with ui:

0 = u̇j

(
λ̇uk + u̇k

u̇m∇mλ

η

)
+ 2λu̇ju̇k + ληujuk + λ̇u̇kuj + λ∇ju̇k

λ∇ju̇k = −u̇ju̇k

(
u̇m∇mλ

η
+ 2λ

)
− ληujuk − λ̇(u̇juk + uju̇k) (3.33)

Then, contracting first with u̇k, and then with u̇j, we obtain:

u̇m∇mλ

η
= −2λ − λ

u̇j∇jη

2η2 (3.34)

Utilizing this relation in (3.31) and (3.33), we achieve the (3.28) and
(3.29).

In order to find out the last equation of the theorem we contract with
u̇k the (3.32), specifying then ük and ∇kη:

0 = (u̇iuj − uiu̇j)(u̇m∇mλ) + 2λη∇[iuj]

+ λ

2 (uj∇iη − ui∇jη) + λ(u̇jüi − u̇iüj)

= −(u̇iuj − uiu̇j) + (∇iuj − ∇jui)

This relation means that the velocity is vorticity-free, i.e. ωij = 0
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We still contract the (3.32), but this time with u̇i.

0 = uj(λ̇ηuk + u̇ku̇m∇mλ) + ληuju̇k

+ λ(uju̇
i∇iu̇

k + u̇ju̇
i∇iuk − η∇juk)

Knowing that u̇i∇ku̇i = ∇kη
2 = − λ̇

ληu̇k − u̇k

(
2η + u̇m∇mλ

λ

)
and (3.30):

λη∇juk = uj(u̇ku̇m∇mλ + ληu̇k) − uju̇k(2ηλ + um∇mλ) + λ̇u̇ju̇k

λ̇u̇ju̇k = −ληuju̇k

∇juk = − λ̇u̇ju̇k

λη
− uju̇k (3.35)

We have obtained all the equations presented in the theorem. By simply
carrying out the calculations, it is easy to prove the way back.

Even if Stephani did not study the current flow tensor, there are many
examples in literature to compare it with. To begin with, we find the
metric of such a space-time.

3.2.1 Metric of the space-time
Since the velocity is not shear-free

σjk = λ̇

λ

(
gjk + ujuk

n − 1 − u̇ju̇k

η

)
(3.36)

the metric structure is as follows[7]:

ds2 = −b(t, x)dt2 + g̃µν(t, x)dxµdxν (3.37)

The Christoffel symbols are:

Γ0
00 = ∂tb

b
Γ0

µ0 = ∂µb

b
Γµ

00 = g̃µνb∂νb

Γ0
µν = ∂tg̃µν

2b2 Γµ
0ν = g̃µρ∂tg̃νρ

2 Γρ
µν = Γ̃ρ

µν
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Comparing the Christoffel symbols with the theorem (3.2.1), the equa-
tions for u and u̇ becomes:

u0 = −b(t, x) uµ = 0 u̇0 = 0 u̇µ = ∂µb

b
(3.38)

Furthermore, explicating these relations ∇µuν = − λ̇u̇µu̇ν

λη and ∇0uµ =
− λ̇u0u̇µ

λ , we obtain important results, as a starting point for analysing
specific cases:

−b∂tg̃µν = λ̇b∂µb∂nu

λη
∂tu̇µ − u̇ν

g̃νρ∂tg̃µρ

2 = − λ̇bu̇µ

λ
(3.39)

3.2.2 Static space-time
We impose an important condition: λ̇ = 0. The equation (3.39) tells
us that both g̃µν and u̇µ are time independent. Thus, we can factorize
the function b(t, x) = b1(t)b2(x); we obtain again the static metric (3.26)
and the new Codazzi equations for the current flow tensor are:

∇juk = −uju̇k (3.40)

∇ju̇k = −ηujuk + u̇ju̇k
u̇m∇mη

2η2 (3.41)

∇jλ = −λu̇j

(
2 + u̇m∇mη

2η2

)
(3.42)

Ricci and energy-momentum tensor

In this situation, the Ricci tensor can be easily derived, as the vector
fields u and u̇ are bound to it by the following statement:

Proposition 3.2.2. In a static space-times, the vector fields u and u̇,
with u̇ closed, are eigenvectors of the Ricci tensor with the same eigen-
value

Proof. For convenience we call ϵ = u̇m∇mη.

In the proof of theorem (3.2.1), we have obtained an useful relation
∇iη = −2 λ̇ηui

λ + u̇iϵ
η . In the static metric , it becomes ∇iη

2 = 2ϵu̇i.
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0 = ∇k∇jη
2 − ∇j∇kη2

= 2u̇j∇kϵ + 2ϵ∇ku̇j − (2u̇k∇jϵ + 2ϵ∇ju̇k)
= u̇j∇kϵ − u̇k∇jϵ

= ∇kϵ − u̇k
u̇m∇mϵ

η
(3.43)

Now, utilizing the definition of Riemann tensor and the equation (3.40)
and (3.41), it gives:

Rjklmum = ∇j∇kul − ∇k∇jul

= (uju̇k − uku̇j)u̇l − uk∇ju̇l + uj∇ku̇l

= u̇l(uju̇k − uku̇j)(1 + ϵ

2η2 )

Contracting with gjl:

Rkmum =
(

η + ϵ

2η

)
uk (3.44)

Then we find the eigenvalue of u̇ :

Rjklmum = ∇j∇ku̇l − ∇k∇ju̇l

= ∇j(−ηuluk + u̇lu̇k
ϵ

2η2 ) − ∇k(−ηujul + u̇ju̇l
ϵ

2η2 )

= −ul(uk∇jη − uj∇kη) + ηul(uju̇k − uku̇j)

+ ϵ

2η2 (u̇k∇ju̇l − u̇j∇ku̇l) + u̇l(u̇k∇j
ϵ

2η2 − u̇j∇k
ϵ

2η2 )

= ul(uju̇k − uku̇j)(η + ϵ

η
) + ϵ

2η2 (u̇k∇ju̇l − u̇j∇ku̇l)

Contracting with gjl:

Rkmu̇m =
(

η + ϵ

2η

)
u̇k (3.45)

Theorem 3.2.3. The Ricci tensor is:

Rkl =
(

R

n − 1 + 2ϵ + ϵ

η

)
ukul +

(
R

n − 1 + ϵ + ϵ

2η

)
gkl

− (n − 2)
(

Ekl + u̇ku̇l

(
1 + ϵ

2η2

))
(3.46)

28



where Ekl is the electric tensor, and it holds

Eklu̇
l =

(
R

n − 1 − (n − 4)
(

η + ϵ

2η

))
u̇k (3.47)

Proof. In (3.2.2) we found that Rjklmum = u̇l(uju̇k − uku̇j)(1 + ϵ
2η2 ).

Since ujumRijkl = −u̇ku̇l(1 + ϵ
2η2 ), contracting the Weyl expression with

ujul, we get:

ujumCjklm = Ekl = −u̇ku̇l(1 + ϵ

2η2 ) − Rkl − (gkl + 2ukul)(η + ϵ/(2η))
n − 2

+ R
gkl + ukul

(n − 1)(n − 2)

Therefore, as we aimed to prove, we have found such a Ricci tensor. Uti-
lizing the Ricci eigenvalue equation (3.45) with u̇l, we find the eigenvalue
of u̇l with respect to Ekl.

As in the previous section, we intend to fully describe the Einstein equa-
tion, so we calculate the momentum-energy tensor below.

Proposition 3.2.4. The energy-momentum tensor is:

Tkl =
(

R

n − 1 + 2ϵ + ϵ

η

)
ukul +

((3 − n)R
2(n − 1) + ϵ + ϵ

2η

)
gkl

− (n − 2)
(

Ekl + u̇ku̇l

(
1 + ϵ

2η2

))
(3.48)

The third Codazzi condition (3.42) with ϵ = 0 was obtained by Rao and
Rao[29] in order to describe the relativistic generalisation of the uniform
Newton force onto a spatial hypersurface in a static universe.

3.2.3 Spherically symmetrical static space
We analyze the static space with the condition of spherical symmetry
and then list some examples of this space-time. The metric is:

ds2 = −b2(r)dt2 + f2
1 (r)dr2 + f2

2 (r)dΩn−2 (3.49)

Due to symmetry, u̇ is radial and u̇r = b′(r)
b(r) (prime indicates a derivative

in r).

η(r) = b′2(r)
f2

1 (r)b2(r) (3.50)
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λ(r) = kf1(r)
b′(r)b(r) (3.51)

k is a constant.

Since u̇ is radial vector. the angular component are ∇aiu̇aj = 0, where
ai, aj enumerate the n-2 angles. Thus Γr

aiaj
u̇r = 0.

Therefore, the metric of a static, spherically symmetric space-time, which
hosts a Codazzi current flow tensor, is reduced by the condition given in
the appendix in [23] df2

dr = 0:

ds2 = −b2(r)dt2 + f2
1 (r)dr2 + K2(r)dΩn−2 (3.52)

where K is a positive constant.

Again, in [23] the electric tensor and the scalar curvature of the space
manifold are found:

Ejk = n − 3
(n − 2)f2

1

(
f2

1
K2 + b′f ′

1
bf1

− b′′

b

)(
u̇ju̇k

η
− gjk + ujuk

n − 1

)
(3.53)

R∗ = (n − 2)(n − 3)
K2 (3.54)

Below are some examples of such metrics. They have the same Ricci
tensor (3.46) and electric tensor (3.53) and a current flow Codazzi tensor
with non-zero components C0r = k f1(r)

b

(i) Bertotti-Robinson space-times are conformally flat of the source-free
Einstein-Maxwell equations with non null e.m. fields. The metric
and the Ricci tensor are:

ds2 = r2
0

r2 (−dt2 + dr2 + r2dΩn−2) (3.55)

Rjk = 2ujuk + gjk

r2
0

− 2u̇ku̇j (3.56)

Equations (3.40) and (3.41) imply that Ricci is also Codazzi. Hence,
in the Bertotti-Robinson space-time exist two Codazzi tensor: the
Ricci tensor and

Cjk = −k
r2

r2
0
(uju̇k + uku̇j)

In [25], through to a coordinate change, the metric becomes, with
b(ρ) = 1 + ρ2/r2

0

ds2 = −bdτ 2 + 1
b
dρ2 + r2

0dΩ2
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(ii) Metin Gurses, in 1992, calculated[11] the metric of black holes their
outer horizons, using a string correction. It describes an non-singular
and homogeneous space-time. It is also solution of Einstein-Maxwell
equations.

ds2 = −(ar2 + br + c)dt2 + dr2

ar2 + br + c
+ K2dΩ2 (3.57)

(iii) In [17] the Bertotti-Robinson black holes, namely black hole static
and homogeneous, in which the curvature is uniform, are described
by the metric

ds2 = −
(

r2

l2
+ J2

r2 − M

)
dt2 +

(
r2

l2
+ J2

r2 − M

)−1

dr2 + K2dΩn−2

(3.58)
M is the mass, J the angular momentum and l2 is proportional to
cosmological constant.

3.3 Yang Pure space-times
We conclude the chapter by describing a brief example known in litera-
ture where Codazzi condition has a great deal of relevance: Yang Pure
space-times[10].

The Yang Pure space-time (YPS) must satisfy the following equation

∇iRjk = ∇jRik (3.59)

or, equivalently,
∇lRijkl = 0 (3.60)

From these last two equations, we can immediately state:

Proposition 3.3.1. Every Lorentzian manifold (V, g), which is

• an Einstein space

• conformally flat with constant curvature

is a Yang Pure space-times.

Proof. The proof is a direct implication of the Weyl tensor gradient equa-
tion::

∇iC
i
jkl = ∇[kRl]j + 1

6(gj[l∇k]R) (3.61)
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The Yang equation is not a replacement of the Einstein equation, but
rather an additional condition that determines peculiar solutions. Thus
combining Tij = Rij − 1

2gijR with the equation (3.59):

∇[iTj]k = 0 (3.62)

Applying the conservation law ∇iTij = 0, the scalar tensor T = gijTij

will be constant.

Considering again the perfect fluid as source Tij = (µ + ρ)uiuj + pgij

with uiu
i = −1, straightforwards calculations give:

p = 1
3µ + c (3.63)

∇jui = ϕ(gij + uiuj) (3.64)

u̇i = 0 (3.65)

∇jµ = 3ϕ(µ + p)uj (3.66)

assuming µ + p ̸= 0 (c is a constant). In fact, if µ + p = 0, then µ and p
are constant, giving a Einstein space.

Conditions (3.64) and (3.65) mean that the velocity is geodesic, vorticity-
free and shear-free. As already pointed out, these are necessary and
sufficient conditions for Robertson-Walker geometry [15].

The result can be summarized by the following theorem:

Theorem 3.3.2. A perfect fluid space-time (V, g) with µ+p ̸= 0 is a YPS
if and only if (V, g) is a Robertson-Walker space-time with p = 1

3µ + c.
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Chapter 4

Cotton gravity

4.1 Harada’s Theory
Recently, Harada published an article[12] in which he outlined a new the-
ory of gravity, extending Einstein’s. He denominated it Cotton Gravity
since the Einstein tensor Gjk = Rjk − 1

2Rgjk is replaced by the Cotton
tensor.

The Cotton tensor Cjkl is a (0-3) tensor [5] describing the curvature of a
manifold, in particular Cjkl = 0 is a necessary condition for a space with
more than 4 dimensions to be conformally flat (but not sufficient).

The general expression of the Cotton tensor is:

Cjkl = ∇jRkl − ∇kRjl − gkl∇jR − gjl∇kR

2(n − 1) (4.1)

Furthermore, three proprieties of Cotton tensor are:

• Cjkl = −Cikj and therefore, C[jkl] = 0

• gjkCjkl = 0

• It is related to the Weyl tensor Cjkl = −n−2
n−3∇mCjklm

The fundamental equation of Cotton gravity, replacing Einstein’s is:

Cjkl = 16πG∇iT
i
jkl (4.2)

where the tensor Tjklm is

Tjklm = 1
2(gjlTkm−gklTjm−gjmTkl+gkmTjl)− 1

2(gjlgkm−gklgjm)T (4.3)

It can be easily shown that every solution that satisfies Einstein equa-
tion, also with cosmological constant, Gjk + Λgjk = Tjk satisfies also the
(4.2)

The equation (4.2) can be derived from Einstein equations. Indeed, this
is a criticism that has been raised against Harada’s theory, as it would
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make it merely a different formulation, rather than an extension of the
theory of relativity [2].

We consider the well-known decomposition of the Riemann tensor

Rjklm = Cjklm + Ejklm + R

12gjklm

where Cjklm is the Weyl tensor, Ejklm = gjkp[lS
p
m] Sp

m = Rp
m − R

4 δp
m

and gjklm = 2gi[kgm]j Applying the Bianchi identities ∇mRjklm = 0 and
using Einstein’s field equations, it gives:

∇mCjklm = Ejklm + gjklm
∇mR

12
Cjkl = (Tj[k;l] − 1

3gj[kT,l])

which is exactly the (4.2).

Actually, Harada demonstrated how his equations are not a derived iden-
tity of the equations of general relativity, but rather they are a new class
of equations obtained from a variational principle of action[12][14]. This
specific action is composed by Weyl’s action and the analogue of the
source term of Maxwell’s theory.:

I = Iw + Is = 1
2

∫
d4x

√
−gCjklmCjklm −

∫
d4x

√
−gT jklmRjklm (4.4)

We now explicate the variational principle, emphasising that we vary the
action with respect to the derivative of the metric, namely the connec-
tion, keeping the metric itself fixed.

0 = δI = δIw + δIs =
∫

d4x
√

−gCjklδΓjkl −
∫

d4x
√

−g∇mT jklmδΓjkl

Thus we obtain exactly the equation of Cotton gravity.

In the same paper, Harada finds exact solutions in vacuum, described by
Cjkl = 0, a generalisation of Rjk = 0 of general relativity; every solution
in Einstein’s vacuum will also be a solution for Harada, as is obvious
from (4.1).

The resulting metric is:

ds2 = −
(

1 − 2M

r
+ γr − 1

3Λr2
)

dt2+
(

1 − 2M

r
+ γr − 1

3Λr2
)−1

dr2+r2dΩ2
2

(4.5)
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It adds the term γr to the Schwarzschild metric.

It is remarkable the similarity of this metric with another result, again
of vacuum solution, obtained in conformal gravity[18] [27]:

ds2 =
(

1 − 3βγ − −β(2 − 3βγ)
r

+ γr − Kr2
)

dt2

+
(

1 − 3βγ − −β(2 − 3βγ)
r

+ γr − Kr2
)−1

dr2 + r2dΩ2
2 (4.6)

The conformal gravity is an alternative theory of gravitation, an alterna-
tive to Einstein’s theory. It refers to those theories which are invariant
under conformal transformations of the type g̃ij → Ω2(x)gij, where Ω(x)
is a function on space-time. Its action is the same action used by Harada,
the Weyl action (4.4) , with the distinction that the variation is made
with respect to the metric, thus leading to the equations:

Tkl = −4(2∇j∇mCjklm + RjmCjklm) (4.7)

Bkl = 2∇j∇mCjklm + RjmCjklm is the Bach tensor [1]. It is symmetric,
traceless, its divergence is ∇kBkl = 0, thus the conservation of energy is
geometrically respected ∇lTkl = 0. Furthermore, most relevantly, under
conformal transformation, it is proportional to

B̃kl = Ω−2Bkl (4.8)

Therefore it is called conformal gravity, because the Bach tensor does
not depend on further terms under conformal transformation [3].

While the Cotton tensor, as shown in [12] (equation 36), under conformal
transformation depends on:

C̃jkl = Cjkl + Ω−1∂mW m
jkl (4.9)

Thus, the Cotton tensor is conformally invariant if and only if the Weyl
tensor vanishes. This is one of the main differences between the two
alternative theories of gravity, even though they derive from the same
action.

The first application of the Cotton gravity developed by Harada was
the description of the rotational motion of 84 galaxies: using the new
gravitational potential derived from the vacuum metric (4.5), the rota-
tion curves were fitted with good results, and with an interesting devel-
opment: in fact, the γr term allowed an accurate description without
having to use dark matter[13].
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The utilized potential is ϕ = −GM
r + γ

2r2, where the factor γ
2r2 cannot

be obtain from general relativity, and becomes very relevant at large
distances: it is this additional term that replaces the contribution of dark
matter.This is one of the reasons why Harada’s theory is so intriguing.
M and γ are two physical integration constants that are determined for
each specific galaxy.

4.2 Codazzi tensor describing
Cotton Gravity

In the development of the Cotton gravity, Codazzi tensors naturally
emerge. They characterise space-time, as shown in the previous section,
and allow us to derive the Ricci tensor and thus obtain the energy-
momentum tensor.

By expressing the equation (4.2) through the (4.3):

Cjkl = ∇jTkl − ∇kTjl − gkl∇jT − gjl∇kT

(n − 1) (4.10)

and subtracting the (4.1) gives the following system:

Cjk = Rjk − Tjk − gjk
R − 2T

2(n − 1) (4.11)

∇iCjk = ∇jCik (4.12)

These two equations are equivalent to the Harada’s descriptions of Cot-
ton gravity (4.2). The third-order character in Cotton’s tensor is replaced
in this new formulation, reducing it to second order, by an additional ten-
sor Cjk, which can be interpreted as either a modification of space-time
or a modification of the source of the gravitational field. If it is equal to
0, or Cjk = Bgjk, the equations of general relativity are re-established,
with the addition of a cosmological constant. If instead Cjk ̸= Bgjk,
we obtain a new expression of the Ricci tensor (or momentum energy
tensor):

Rjk = Tjk + Cjk − gjkCm
m + 1

2gjkR (4.13)

Tjk = Rjk − Cjk + gjkCm
m − 1

2gjkR (4.14)

These two new equations can be interpreted as a generalization of Ein-
stein’s equations, with a new formulation of the energy-momentum ten-
sor (or Ricci tensor) adding the Codazzi term Cij.
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Based on the study of hypersurfaces, and having analysed Stephani’s
solution methods, we can state the theorem:

Theorem 4.2.1. Every solution of embedding class 1 is also solution of
Cotton gravity

Proof. A solution of embedding class 1 satisfies the Gauss-Codazzi equa-
tion (1.12) and (1.13). Thus, constructing the energy-momentum tensor
of the form (4.14), and substituting the Gauss equation:

Tjk = Rjk − Cjk + gjkCm
m − 1

2R − CjmCm
k

= Cjk(Cm
m − 1) + gjk(Cm

m − 1
2R) − CjmCm

k

and the condition (4.12) is precisely the Codazzi condition (1.13).

Perfect Fluid

The process is similar to the one shown in the previous section. We
impose the Codazzi condition on the symmetric tensor Cjk in the formula
(4.14). It imposes certain restrictions on space-time, from which we can
then derive the Ricci tensor. Finally, the Harada energy-momentum
tensor (4.14) is made explicit.

We shall start with the perfect fluid Cjk = Aujuk + Bgjk. Obviously,
Codazzi condition is satisfied by the same equations (3.2-3.6). The met-
ric of the space-time and the Ricci tensor are respectively (3.22) and
(3.17).

Proposition 4.2.2. The energy-momentum tensor, considering the Cot-
ton gravity, is:

Tjk =
(

R − nγ

n − 1 − A

)
ukuj +

((3 − n)R − 2γ

2(n − 1) + (n − 1)B − A

)
gjk +Πjk

(4.15)

The term Πjk denotes dissipation and anisotropy and is the same as
in the analogous case (3.19), while the pressure terms p⊥ and energy
density µ are:

p⊥ =
((3 − n)R − 2γ

2(n − 1) + (n − 1)B − A

)
(4.16)

µ =
(

R − nγ

n − 1 − A

)
− p⊥ (4.17)

Harada’s theory in this case simply leads to a modification of the char-
acteristic terms of the field source, but without substantially changing
its nature.
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Imperfect fluid

The last case studied is the imperfect fluid Cjk = Agjk +2Aujuk +Bzjzk.
We compare the results with Stephani’s solutions (section 2.2.2.).

The Ricci tensor and the curvature scalar, since they express the curva-
ture of space-time, will still be of the form (2.17) and (2.18).

Proposition 4.2.3. The energy-momentum tensor, considering the Cot-
ton gravity, is:

Tjk = (A2 + A + B)gjk + (4A2 + 2AB − 2A)ujuk − Bzjzk (4.18)

The pressure and energy density terms are:

p⊥ = A2 + A + B (4.19)
µ = 3A2 + 2AB − 3A − B (4.20)

It is very interesting to compare this solution with Stephani’s solution
(2.19): not only do the pressure and energy density terms change, as
in the previous case of perfect fluid, but the nature of the field source
itself is different. In fact, in Stephani the field source is a perfect fluid,
while with Harada’s solutions, the field source has an anisotropy term
−Bzjzk. Therefore we can conclude that in the two cases the geometry
of the universe itself will change: in one case it will be isotropic, in the
other it will not.
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Appendix A

Relativistic fluid tensors

Fluids are frequently used models in relativity and cosmology because
they allow the radiation-matter contribution in the universe to be de-
scribed. Assuming the universe to be homogeneous and isotropic, the
energy-momentum tensor is described as a perfect fluid, i.e. a continuous
distribution of matter of the form:

Tij = (p + µ)uiuj + pgij (A.1)

where µ is the mass-energy density, p is the pressure. These two phys-
ical quantities are often related to each other by an equation of state
(the most well-known is p(µ) = µ

3 ).The fluid is called perfect because is
viscosity-free.

When we add a term of viscosity, we obtain the so-called imperfect fluid.
it is written in the form:

Tij = (µ + p⊥)uiuj + p⊥gij + uiqj + ujqi + (pr − p⊥)χjχi (A.2)

The different terms express:

• µ is the mass-energy density

• p⊥ is the pressure perpendicular to the direction of fluid propagation

• pr is the pressure along the radial direction

• χi is a space-like vector, perpendicular to u

• uizj + ujzi expresses the current flow of the fluid in motion.

If Tjk is the field source, then since it has anistotropy terms, the assump-
tion of isotropy of the FW universe will fall.
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Appendix B

Expansion of unit time-like vector

In differential geometry and General relativity, a congruence is a family
of integral curves, defined by a vector field. A congruence can be time-
like, null-like or space-like: it depends on whether the tangent vectors
to such curves are everywhere time-type, light-type or space-type.

We focus ourselves on time-like unit vector field ui, uiui = −1; it can be
physically interpreted as a family of particles having a time-like velocity
field u.

On a Lorentzian manifold, given the vector field u, we can define the
orthogonal projector hij = gij + uiuj, or rather the metric tensor of
the hypersurface spanned by tangent vectors orthognonal to u. Thus,
any vector can be separated into its parallel and orthogonal part to the
vector u; this definition can also be applied to the covariant derivative,
decomposing in irreducible parts:

∇iuj = ϕ(gij + uiuj) + ωij + σij − uiu̇j (B.1)

Now we explain each component:

• u̇j = um∇muj is the acceleration: it represents the rate of variation
of velocity in unit of time.

• ϕ is the expansion parameter: it represents the rate of variation of
volume on the hypersurface, for unit volume.

ϕ = (n − 1) 1
δV

d(δV )
dt

• ωij = u[i;j] + u̇[iuj] is the vorticity: it is the relativistic extension of
classical vorticity, which express the rotation of fluid streamlines.

• σij = u(i;j) + u̇(iuj) − ϕ(gij + uiuj) is the shear It represents the
deformation of spatial hypersurfaces, or rather the tendency of a
sphere to become an ellipsoid of the same measure.
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