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Introduction

Active matter regards a variety of out-of-equilibrium systems in which the
individual units are subjected to a continuous injection of energy in order to
execute self-sustained motion or work [1, 2]. Examples of such systems typically
come from biology, with populations of bacteria or cytoskeletal filaments, or may
involve robotic ensembles. In these cases, chemical or electric energy is used by the
active units to perform local movements, deformations, orientation arrangements
leading to collective flocking, synchronization or pattern formation [3–6]. Active
systems can constitute new kinds of materials, which can be studied with the tools
of condensed matter and statistical mechanics; the goal is both to understand
quantitatively the behaviour of biological systems and to design new synthetic
materials able to show phenomena inaccessible to passive matter [7]. In fact, with
the injection of energy it is possible to break fundamental and commonly-shared
properties as spatiotemporal symmetries [8–10] as well as reciprocity relations [6,
11].

This thesis consist in a development of the continuum theory for active
elasticity called odd elasticity. Such theory has been recently proposed in [12]
and consists in the classical theory of linear elasticity, enlarged with the possibility
for the system to exert non-conservative internal stresses and thus to violate
the conservation of energy. In fact, an active system in which energy is injected
by internal or external local resources, effectively does not conserve energy,
when the resources are integrated out. This condition has repercussions on the
structure of the elastic tensor—which relates the deformation of the medium
to the elastic stresses generated in response—and allows a new anti-symmetric
part of the elastic tensor; hence, the name of the theory. Typical odd-elastic
signatures consist in the existence of cycles of deformation under which the
internal non-conservative forces exert a finite amount of work, together with
wave propagation in strong drag regimes, sustained by the energy extracted
along the cycles.

Odd elasticity has recently been observed in mechanical and biological systems.
In [13], the elastic response of a metallic beam is enriched by mounting a series
of piezoelectric sensors and actuators. When the beam is deformed, each sensors
produces an electric impulse, which is modified through an external electric
circuit and sent to the adjacent actuator. In this way, energy can be injected in
the system by the external circuit, keeping the response local and proportional to
the deformation—as required by linear elasticity. A biological example is [14], in
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Chapter 0. Introduction

which a self-organized crystal of swimming starfish embryos shows self-sustained
oscillations, as predicted by the odd-elastic model.

The theory of odd elasticity has been developed for flat 2D and 3D solids [12]
(in 1D the elastic tensor is necessarily symmetric), leaving a gap for plates and
shells: thin three-dimensional systems, nearly two-dimensional. These shapes
can model biological membranes, such as cell cortex and epithelial tissues, and
they are also typical structural elements for engineered systems. In this work we
study the archetypal and simplest case of a flat plate of finite, small, thickness.
An important reference in the literature is [9], where a full covariant theory for
the elasticity of active shells of arbitrary shape is constructed. That theory is
more general than ours in considering arbitrary shapes and not only flat plates;
however, as explained in Appendix B of [9], the authors assume that “the points
along the normal to the initial surface before deformation are along the normal
to the new surface after deformation”. This restrictive assumption will not be
applied here, allowing the point along the normal to the initial surface to be
reoriented after the deformation. As we will see, it will be a crucial difference,
necessary for the results obtained on the flexural (bending) waves.

In this thesis we derive the equations of motion for an odd elastic plate and
study the structure of the non-conservative cycles of deformations. We then
focus on the bending dynamics. We find that, when the active elastic moduli
are dominant over the passive ones, the normal modes’ bands become gapped.
This allows for the definition of a topological invariant for each band, the Chern
number. We analytically compute the Chern number and identify a non-trivial
topological structure of the bulk normal modes. This is related to the existence of
exotic edge modes at the boundary of the system or at interfaces by the principle
of bulk-edge correspondence. The edge modes propagate unidirectionally along
the boundaries, without backscattering against defects or obstructions.

Our system can then be considered a classical analogue of what in quantum
condensed matter is called topological insulator. These systems have an insulating
bulk (because they have the Fermi energy in a band-gap) but host conducting edge
states at the boundaries or at interfaces [15]. Classical analogues of topological
insulators were recently discovered, with realizations that span from photonics [16]
to acoustic waves [17] and mechanical isostatic lattices [18]. Moreover, classical
topological insulators have been proposed and realized exploiting the effects
of activity; employing self-propelled particles confined to flow in lattices of
connected annuli [19] or onto curved surfaces [20]. Another interesting class
of systems that show topological protection are those fluids which display a
dissipationless transverse viscosity, called odd viscosity [21]; these comprehend
both passive rotating fluids subjected to Coriolis force [22] both active fluids
composed by self-spinning particles [10].

In the last part of the work, we show that under some circumstances our
system can be exactly mapped on an odd-viscous fluid. This allows us to visualize
the edge modes, re-adapting the simulations made for the fluid system in [21].

v



Chapter 0. Introduction

The work is structured as follows. In the first chapter we review linear elasticity
and present odd elasticity, discussing the symmetry implications and introducing
its fundamental features: non-conservative work cycles and active wave prop-
agation in strong drag regimes. The second chapter is devoted to topological
insulators; we review the mathematical tools necessary for the definition of
the Chern number and show its usage in the study of band structures. We
also present the edge modes and the principle of bulk-edge correspondence. In
the third chapter we set up our model for the odd-elastic plate; we derive the
constitutive relations, together with the equations of motion and discuss the
active work-cycles. In the fourth chapter we study the topological properties of
the flexural dynamics; we show the opening of the gap for increasing activity and
analytically compute the Chern number in a restricted case. We then show the
exact mapping on odd-viscous fluids and discuss the existence of edge modes.
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Chapter 1

Odd elasticity

Odd elasticity is the linear elastic theory of active solids that exert non conserva-
tive forces as a response to deformations [12]. A material is said to be active if
its unit components are capable of injecting energy into the system, so that the
coarse-grained dynamics effectively does not conserve energy. The mechanical
properties of a linear elastic system are encoded in the elastic tensor, which
expresses the internal stress as a linear function of the strain tensor. The absence
of a conserved energy comes together with a non-zero anti-symmetric part of the
elastic tensor, otherwise prohibited. Odd elastic systems allow for the extraction
of energy when subjected to quasistatic deformation cycles. Dynamically, the
energy extracted from the cycles can be used for the propagation of active waves
in strong drag regimes.

In the first section we review the theory of linear elasticity, also called
Cauchy elasticity, which describes solids in the continuum. We introduce the
strain tensor, which describes the deformations of the elastic medium, and the
stress tensor, which describes the elastic internal forces. We then introduce the
elastic tensor as a linear map between the strain and the stress and declare the
equations of motion. In the second section we see how symmetries and affect the
structure of the elastic tensor. Odd elasticity is introduced as an antisymmetric
contribution to the elastic tensor, equivalent to a violation of the conservation of
energy. In the third section we discuss the compatibility of odd elasticity with
the other symmetries. We show that in three dimension odd elasticity is not
compatible with isotropy, whereas it is compatible if we only require isotropy
with respect to a fixed axis (cylindrical isotropy). We then derive the most
general cylindrically isotropic elastic tensor . Later, we write the equations of
motion for the elastic medium. In the fourth section we show that the elastic
tensor of a non-conservative system has an anti-symmetric (odd) component.
The coefficients of the anti-symmetric part, the odd moduli, are directly related
to the work that can be extracted deforming the elastic medium in a cyclic
way, due to the non-conservativity of the internal forces. In the fifth section
we discuss the effects of odd elasticity in the dynamics, showing that it allows
the propagation of waves in the overdamped regime, differenlty from passive
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Chapter 1. Odd elasticity 1.1. Linear elasticity

systems.

1.1 Linear elasticity

1.1.1 Displacement field

Consider a continuum system that undergoes a small deformation. Let us call x
the position of a point of an elastic medium, with Cartesian components xi, may
it be two or three dimensional. The deformation performs the transformation
x 7→ x′. The displacement field of the deformation is the vector field defined
over the system at rest, that in each point gives the amount of displacement
undergone by the point [23]

ξ(x) = x′ − x. (1.1)

1.1.2 Strain tensor

A common assumption is that an elastic response follows a change of the internal
distances of the system. For instance, a rigid translation, described by an uniform
displacement field, does not cause any elastic behaviour.

Consider two near points x and x + dx. Their distance is dl = |dx|. The
deformation maps

x 7→ x + ξ(x)

x + dx 7→ x + dx + ξ(x + dx).
(1.2)

The distance after the deformation is

dl′2 = |dx + ξ(x + dx)− ξ(x)|2. (1.3)

Expanding the displacement field in x, at the first order we get

dl′2 = (dxi + ∂jξidxj)(dxi + ∂kξjdxk)

= dl2 + 2∂iξjdxidxj + ∂iξk∂jξkdxidxj .
(1.4)

Then, noting that the indices ij are symmetrized by the contraction with dxidxj ,
it can be rewritten as

dl′2 = dl2 + 2uijdxidxi = (δij + 2εij)dxidxj (1.5)

where εij is the strain tensor defined by

εij =
1

2
(∂iξj + ∂jξi + ∂iξk∂jξk) . (1.6)

The strain tensor captures the variation of the metric tensor under a dis-
placement and in fact it is symmetric by construction. It depends only on the
derivatives of the displacement field, reflecting the fact that rigid translations do
not change internal distances. If we consider small deformations, i.e. a weakly
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Chapter 1. Odd elasticity 1.1. Linear elasticity

φ
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Figure 1.1: An element ξ of the tangent space of φ̄ describes a vector field on φ̄(B).

varying displacement field, we are justified to neglect the nonlinear terms in
Eq. 1.6, obtaining the linear strain tensor

uij = ∂(iξj), (1.7)

where the round brackets indicate the symmetrization of the indices. In this
work we keep ourselves within the framework of linear elasticity, thus will employ
only the linear strain tensor. We will call the linear strain tensor just “strain
tensor”, for simplicity. We note that a rigid rotation, described by a vector field
that has a uniform antisymmetric gradient, has zero strain. This is as expected,
as rotations do not change internal distances.

1.1.3 A mathematical note

We would like to make a clarification on the mathematical structure of linear
elasticity and in particular on the “essence” of the displacement field.

In the mathematical literature [24], a simple body B is a sub-manifold of
R3 and a configuration of the body is a regular map φ from B to the space in
which the body moves S , thus φ : B → S , where typically S = R3. A motion
is time-dependent family of configurations φt and it is the unknown variable
of the equations of motion. We denote the space of configurations, the set of
regular maps from B to S , with C . It is a function space with the structure of
an infinite-dimensional manifold. A motion then describes a curve on C .

The linearized equations of motion around a reference configuration φ̄ will
be equations for a curve ξ(t) in the tangent space of the manifold C at point φ̄.
This vector represents the direction of an infinitesimal variation of the reference
configuration. By looking at Fig. 1.1, we can convince ourselves that such a
vector ξ (which lives in the tangent space of a function space) actually describes
a vector field that covers φ̄(B). This is precisely the vector field that enters in
the equations of linear elasticity. We call it the generator ξ of the deformation.

We now assume the ambient space S to be R3 and choose the reference
configuration φ̄ = idB. We consider a curve ε 7→ φε 3 C such that φ0 = idB and
expand it powers of ε:

φε(x) = x′ = x + εξ(x) +O(ε2), (1.8)

3



Chapter 1. Odd elasticity 1.1. Linear elasticity

where

ξ(x) =
d

dε
φε(x)

∣∣∣∣
ε=0

. (1.9)

The generator is tangent to the displacement and not a displacement itself. It
is the direction of an infinitesimal displacement but it can represent a finite
displacement if we make use (as we silently do) of the exponential map. This
means that we identify a vector field with its integral flow, evaluated when the
parameter of the flow is equal to one. Concretely, the transformation associated
to the vector ξ is φε=1. Then, looking at (1.8), we see that if the high order
terms are negligible, for ε = 1 we get

x′ − x ' ξ(x) (1.10)

and regain the classical definition of the displacement field (1.1). We stress
that the classical definition of the displacement field is imprecise and that the
equations of linear elasticity regard the generator of the deformation, as shown in
Marsden’s book [24]. The distinction between ξ(x) and x′ − x becomes relevant
when the high order terms in ε are not negligible.

When are we allowed to drop those high order terms? Recall that, using the
exponential map, the flow is evaluated at ε = 1. The second order term of (1.8)
is

1

2

d2

dε2
Φε(x)

∣∣∣∣
ε=0

,

which is a second derivative of the flow and a first derivative of the generator ξ.
Thus, if the generator is slowly varying, the physical displacement x′ − x is well
approximated by the vector ξ(x), otherwise it may be something different.

Example: rotations

An instructive example is with rotations. Suppose that the body undergoes a
rigid rotation along an axis n̂ by an angle θ. The deformation x 7→ x′ expressed
in Cartesian coordinates is

x′i = R(n̂, θ)ijxj . (1.11)

Here R(n̂, θ) = exp
(
θnkJ

(k)
)

is a rotation matrix and J (k) are the generators of
rotations (antisymmetric matrices). The rotation is already expressed as a flow,
it is then straightforward to show that the generator of R(n̂, θ) is

ξi(x) = θnkJ
(k)
ij xj . (1.12)

4



Chapter 1. Odd elasticity 1.1. Linear elasticity

This quantity is different from

x′i − xi = R(n̂, θ)ijxj − xi

=

∞∑
m=0

θm
[(
nkJ

(k)
)m]

ij

m!
xj − xi

=

∞∑
m=1

θm
[(
nkJ

(k)
)m]

ij

m!
xj

(1.13)

as long as θ is finite. The two quantities match in the limit θ → 0.
If we then calculate the gradient of the generator ∂iξj , we recover exactly

the anti-symmetric matrix that generates the rotation

∂iξj = θnkJ
(k)
ij . (1.14)

More generally, for any displacement field ξ with form

ξi(x) = Nijxj (1.15)

the integral curve x(λ) must satisfy:

d

dλ
xi = ξi(x) = Nijxj (1.16)

which means that xi(λ) = exp(λN)ijxj and

x′i = exp(N)ijxj . (1.17)

Finally, we have shown that the physical displacement x′−x and the generator
ξ are in general two different objects, related by the exponential map. These
tend to coincide if the generator is spatially slowly varying. If the deformation
is a linear map that acts on the coordinates with a matrix multiplication, the
gradient of the generator field generates the required matrix via an exponential.
As the matrix generators of rotations are antisymmetric matrices, we have learnt
that the transformation associated to a displacement field whose gradient is a
uniform antisymmetric matrix is a rigid rotation.

A geometric construction for the strain tensor

We have already said that the strain tensor describes the variation of internal
distances. Distances are measured with the Euclidean metric, thus the variation
of distances is quantified by the variation of the Euclidean metric under the
deformation. In order to compare the metric before and after the deformation,
we have to compare the Euclidean metric g with its pullback through the flow
φ∗εg. The strain tensor is then defined as infinitesimal variation of the metric
under the flow.

2u = lim
ε→0

φ∗εg − g
ε

=
d

dε
φ∗εg

∣∣∣∣
ε=0

. (1.18)
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Chapter 1. Odd elasticity 1.1. Linear elasticity

It can be shown that the right and side is precisely the Lie derivative of the
metric in the direction of ξ: 2u = £ξg. Assuming that the covariant derivative
is compatible with the metric, the Lie derivative of the metric (and thus, the
strain) can be expressed as

uij =
1

2
(∇iξj +∇jξi). (1.19)

This allows us to compute the strain tensor in arbitrary coordinates (for instance,
polar coordinates).

1.1.4 Stress tensor

The internal forces that give rise to an elastic behaviour are described by the
stress tensor. The range of the internal elastic forces is of the order of the
intra-molecular distance, thus at the scales of the continuum theory it can be
considered a zero range interaction. This implies that if we consider two adjacent
portions of the medium, their interaction involves only the contact surface. Such
forces are indeed called contact forces or surface forces. The total force exerted
on a portion A of the system is given by the sum of the forces exerted on all the
volume elements in the portion

Fi =

∫
A

d3x fi. (1.20)

But we know that the forces between the volume elements cancel each other
because of Newton’s third law. Hence, the total force on the portion is given by
the forces exerted by the surrounding portions. The total force can be written
as a surface integral, implying that the force field is the divergence of a rank two
tensor, the stress tensor

fi = ∂jσij . (1.21)

The surface integral is

Fi =

∫
∂A

d2xσijnj (1.22)

where nj are the components of the unit vector oriented outwards. We can
interpret σij as the i-th compontent fo the force per unit area applied to a
surface whose normal vector is along the j-th axis. It is important to note that
the force Fi is exerted on the portion considered by the surrounding parts of the
body. This means that the force exerted from the portion on its boundary is∫
∂A
d2xσijnj , with nj still oriented outwards, see Fig.1.2. For instance, if the

only stresses are given by an internal pressure p, the stress tensor is σij = −pδij .

1.1.5 Torque density

Often an additional condition is imposed to the stress tensor: it is required to
be symmetric. The requirement follows from this argument. The moment of the

6



Chapter 1. Odd elasticity 1.1. Linear elasticity

Figure 1.2: Stress tensor components. The first index refers to the face of the cube,
the second refers to the direction of the force applied. The forces are applied on the
cube by the surroundings.

force’s density is
m = f × x = ?(f ∧ x) (1.23)

where ? denotes the Hodge star operator. The total moment of the force is
M =

∫
A

m. Then

(?M)ij =

∫
A

(f ∧ x)ij

=

∫
A

d3x fixj − fjxi

=

∫
A

d3x (∂lσil)xj − (∂lσjl)xi

=

∫
A

d3x∂l(σilxj)− ∂l(σjlxi)− (σil∂lxj − σjl∂lxi)

(1.24)

Recognising the first two terms as boundary terms, we get

(?M)ij =

∫
∂A

d2x (σilxj − σjlxi)nl −
∫
A

d3x (σij − σji). (1.25)

If (?M)ij has to be a surface integral, then the last term must be zero and the
stress must be symmetric. An antisymmetric stress is said to carry an internal
torque density.

1.1.6 Equations of motion

If an external body force density g is applied to the elastic medium and the
system is at equilibrium, the sum of the forces on each volume element must be
zero. This means that

gi + ∂jσij = 0. (1.26)

The equations for the time-dependent dynamics are obtained by imposing
that locally, the variation of the linear momentum is equally to the force. The
linear momentum density is ρξ̇. Assuming a uniform density ρ we obtain

ρξ̈i = ∂jσij + gi (1.27)

7



Chapter 1. Odd elasticity 1.2. Symmetries and elastic tensor’s structure

If the stress is expressed as a function of the displacement field with a
constitutive relation, then Eq. 1.27 becomes a set of partial differential equations
for the displacement field. Linear elasticity assumes a linear relation between
the strain and the stress

σij = Cijklukl. (1.28)

The tensor C is called elastic tensor. The equations become ρξ̈i = Cijkl∂jukl+gi.
The strain is symmetric, thus without loss of generality the elastic tensor can be
assumed to be symmetric in the last two indices. This allows to write finally

ρξ̈i = Cijkl∂j∂kξl + gi. (1.29)

1.2 Symmetries and elastic tensor’s structure

The symmetries of the system are reflected by the structure of the elastic tensor.
We have already talked about the symmetry of the stress and of the strain. We
now want to make a unified treatment in which all the symmetries are referred to
the elastic tensor. We write the constitutive relations in a slightly more general
way, employing the gradient of displacement instead of the strain, as in [25].

σij = Cijkl∂kξl. (1.30)

We remember that the strain is the symmetrized gradient of displacements.
In what follows, we assume that the material is homogeneous, which implies

that Cijkl does not depend on the position. The components of Cijkl are known
as elastic moduli, and they are the coefficients of proportionality between stress
and strain that characterize the elastic behaviour of a solid.

The elastic tensor is a linear map between the gradient of displacement and
the stress. These two are both rank-two tensors, thus the elastic tensor maps
rank two tensors to rank-two tensors. The space of rank-two tensors is a vector
space and obviously any basis can be chosen. It it partitularly useful to choose a
basis that separates the irreducible representations of rotations. This is because
many symmetry requirements involve rotations. We’ll refer to these bases as the
geometrical bases. We make explicit choices for 2D and 3D elasticity.

2D geometrical basis In 2D the basis we employ is:

τD =

(
1 0
0 1

)
τL =

(
0 −1
1 0

)
τS1 =

(
1 0
0 −1

)
τS2 =

(
0 1
1 0

)
,

(1.31)

where τD is the identity matrix and, as always, lays in a trivial representation.
τL is antisymmetric and lays in a trivial representation too, because it is the
generator of SO(2) and thus commutes with every SO(2) matrix. τS1 , τS2 are
symmetric traceless matrices and belong to a representation of SO(2) with charge
two.

8



Chapter 1. Odd elasticity 1.2. Symmetries and elastic tensor’s structure

Both strain and stress can be decomposed onto this basis. The matrices are
orthogonal but not nomalized with respect to the trace scalar product. Their
product relations are ταijτ

β
ij = 2δαβ . Hence, the basis decomposition

(∇ξ)ij = (∇ξ)αταij , (1.32)

(with α = D,L, S1, S2) is obtained by defining

(∇ξ)α =
1

2
(∇ξ)ijτaij (1.33)

Similarly, we have

σij = σατ
α
ij , with σα =

1

2
σijτ

α
ij . (1.34)

We can give a geometric interpretation of (∇ξ)α and σα. (∇ξ)D represents a
dilation, a change in area without change in shape or orientation. (∇ξ)L is an an-
tisymmetric gradient of displacement that represents a rotation. (∇ξ)S1

, (∇ξ)S2

are shears that change shape without changing area or orientation. (∇ξ)S1
mea-

sures shear strain with extension along the x axis and contraction along the y
axis (or vice versa), (∇ξ)S2

has the axis of extension rotated 45° counterclockwise
with respect to S1. The interpretation of the stress components is analogous. σD
is an isotropic stress, thus the negative of a pressure. σL is the antisymmetric
component of the stress and thus a torque density. σS1

, σS2
are stress shears.

In this basis, the elastic tensor becomes a matrix Cαβ , where a refers to the
stress and b to the strain. The relations with Cijkl is

Cαβ =
1

2
ταijCijklτ

β
kl, (1.35)

and the constitutive relations are written as

σα = Cαβ(∇ξ)β . (1.36)

We can give a graphical representation of Eq. 1.36.

(1.37)

Here B is the bulk modulus that couples dilations to isotropic pressure, A is
a modulus that associates internal torques to dilations, H1, H2 associate shear
stresses to dilations. T, F, I1, I2 represent the four different kind of stresses that
may be generated by a rotation of the medium. D1, D2 are the contributions to
the pressure due to shear strains, G1, G2 are the contributions to the internal
torque due to shear strains, Jαβ are the shear stresses induced by shear strains.

9



Chapter 1. Odd elasticity 1.2. Symmetries and elastic tensor’s structure

3D geometrical basis In 3D we use the basis:

τDij =

√
2

3
δij τLkij = εijk

τS
1

ij =
1√
3

−1 0 0
0 −1 0
0 0 2

 τS
2

ij =

0 1 0
1 0 0
0 0 0


τS

3

ij =

1 0 0
0 −1 0
0 0 0

 τS
4

ij =

0 0 1
0 0 0
1 0 0


τS

5

ij =

0 0 0
0 0 1
0 1 0

 .

(1.38)

Here the basis elements are divided according to the irreducible representations
of SO(3): matrices proportional to the identity, antisymmetric matrices and
symmetric matrices. The identity matrix is a trivial representation (spin 0), the
the antisymmetric matrices are the generator of SO(3) and lay in the adjoint
representation, of spin 1. Finally there are five shear matrices, symmetric and
traceless; these belong to a spin 2 representation. Like in the 2D case, the trace
scalar product between the matrices is ταijτ

β
ij = 2δαβ , thus the same relations for

the projection onto the geometrical basis hold and we can write



σD
σR1

σR2

σR3

σS1

σS2

σS3

σS4

σS5


=2



3
2B T1 T2 T3 D1 D2 D3 D4 D5

A1 F11 F12 F13 G11 G12 G13 G14 G15

A2 F21 F22 F23 G21 G22 G23 G24 G25

A3 F31 F32 F33 G31 G32 G33 G34 G35

H1 I11 I12 I13 J11 J12 J13 J14 J15

H2 I21 I22 I23 J21 J22 J23 J24 J25

H3 I31 I32 I33 J31 J32 J33 J34 J35

H4 I41 I42 I43 J41 J42 J43 J44 J45

H5 I51 I52 I53 J51 J52 J53 J54 J55





uD
uR1

uR2

uR3

uS1

uS2

uS3

uS4

uS5


.

(1.39)

Or more concisely σD
σRi
σSα

 = 2

 3
2B Tj Dβ

Ai Fij Giβ
Hα Iαj Jαβ

uD
uRj
uSβ

 (1.40)

with in this case i, j = 1, 2, 3 and α, β = 1, 2, 3, 4, 5. The most general elastic
tensor has 16 independent elastic moduli in 2D and 81 in 3D.

We can now discuss how the symmetries affect the elastic tensor structure,
both for Cijkl and for Cαβ .

10
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Rotation independence As we said before, the antisymmetric part of ∂iξj
represents rotations. A system in which any rotation does not induce a state of
stress will have an elastic tensor with symmetry on the last two indices, thus
Cijkl = Cijlk. In the geometrical basis, rotations are described by uL in 2D and
by uLi in 3D. If rotations do not induce any stress, then CαL = 0 and CαLi = 0,
so

(1.41)

leaving 12 independent coefficients. In 3D we haveσD
σRi
σSα

 = 2

 3
2B 0 Dβ

Ai 0 Giβ
Hα 0 Jαβ

uD
uRj
uSβ

 (1.42)

so 81− 15 = 66 independent moduli.

Internal torque A similar argument applies to the absence of torque density,
which is described by the antisymmetric part of the stress. If the system has
no internal torques, the stress tensor must be symmetric, and this must hold
whatever deformation occurs. Necessarily, the elastic tensor is symmetric in
the first two indices, which refer to the stress: Cijkl = Cjikl. In the geometric
basis the antisymmetric stresses are represented by τL and τLi , thus we require
CRα = CRiα = 0 for every α i.e. no deformation can induce a torque density.
In this case:

(1.43)

and σD
σRi
σSα

 = 2

 3
2B Tj Dβ

0 0 0
Hα Iαj Jαβ

uD
uRj
uSβ

 . (1.44)

Under this requirement there are still 12 free coefficients in 2D and 66 in 3D.

Isotropy The aforementioned symmetries were indeed internal symmetries of
the strain and of the stress, we now consider symmetries that involve both at the
same time. Isotropy is the requirement that the elastic properties are equal in
any direction and thus that the elastic tensor is invariant under rotations. If the
vectors transform with Rij , isotropy requires that Cijkl = RipRjqRksRltCpqst.
Let’s see what is the structure of an isotropic Cαβ . The basis elements transform
with

τ ′αij = Rimτ
α
mnR

>
nj =: Rαβτβij , (1.45)

11
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for some Rαβ that represents rotations in the geometrical basis. Then the
elastic tensor transforms according to C ′αβ = RαρRρσCσβ . The elastic tensor is
isotropic if

Cαβ = RαρCρσR>σβ (1.46)

For SO(2) it is easy to show that, given

Rij =

(
cos θ sin θ
− sin θ cos θ

)
(1.47)

calculating explicitely Rαβ from Eq. 1.45 we get

Rαβ =


1 0 0 0
0 1 0 0
0 0 cos(2θ) sin(2θ)
0 0 − sin(2θ) cos(2θ)

 . (1.48)

Imposing that the 4× 4 matrix Cαβ commutes with Rαβ for every θ, we finally
get the structure of the most general isotropic elastic tensor

(1.49)

In 3D we can use Schur’s lemma, which states: Let D be a complex irreducible
representation of a group G on a finite-dimensional vector space V . If T : V → V
is a linear operator such that

T ◦ D = D ◦ T ∀g ∈ G (1.50)

then there exists λ ∈ C such that T = λIV . For our usage, the role of D would
be played by R (representation of rotations) and the role of T would be played
by the elastic tensor.

We note that Schur’s lemma can be applied to representations of SO(3)
because the irreducible representations on the real field are irreducible also on the
complex field. On the contrary, any SO(2) irreducible representation is reducible
on the complex field into the direct sum of one-dimensional representation of
U(1).

A 3D isotropic C has to be block diagonal on the irreducible representations.
Furthermore, from Schur’s lemma, the blocks must be proportional to the identity.
Thus the elastic tensor reads

Cαβ = 2

 3
2B 0 0
0 F I 0
0 0 µ I

 (1.51)
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Conservation of energy We will show in section 1.4 that if the internal
forces are conservative (and thus, an elastic potential energy exists), the elastic
tensor is symmetric under the exchange of the first two indices with the last
two indices: Cijkl = Cklij . In the geometrical basis the requirement is that
the matrix Cαβ must be symmetric, thus Ti = Ai, Dα = Hα, Giα = Hαi and
Jαβ = Jβα. In 2D under this requirement alone there remain 10 independent
elastic moduli, while in 3D there remain 36.

Since energy is a fundamentally conserved quantity, a system that violates
its conservation can not be isolated: it must be coupled to internal or external
sources of energy. Integrating out the sources, the resulting system can display
non-conservative phenomena.

Chirality A tensor is achiral if any parity operation (inversion of an odd
number of spatial coordinates) is equivalent to a rotation, otherwise it is chiral.
In 3D, the spatial inversion In of an axis n̂ is equal to −Rn(π) (a rotation of
π around the axis), while an inversion of all the three axes is equal to − id.
Any tensor with an even rank (like the elastic tensor, which has four indices) is
then achiral because the inversion of one axis acts like a rotation of π and the
inversion of all the axes acts like the identity.

In 2D we can explicitly calculate the conditions for the elastic tensor to be
achiral. Without loss of generality we consider reflections along the x-axis, which
are implemented by the matrix

τS1 =

(
1 0
0 −1

)
. (1.52)

The elements of the geometrical basis transform as ταij 7→ Iαβτ
β
ij , with

Iαβ =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 . (1.53)

The strain and stress components transform with Iαβ , too, and the elastic tensor
transforms with Cαβ 7→ IαρCρσIσβ . Achirality requires that there exists a
rotation such that its action is equivalent to that of the inversion. This is

IαρCρσIσβ = RαρCρσR>σβ . (1.54)

with Rαβ given by Eq. 1.48. Applying the inversion we get
B −T D1 −D2

−A F −G1 G2

H1 −I1 J11 −J12

−H2 I2 −J21 J22

 , (1.55)

Under a rotation, the upper left 2× 2 block remains unchanged, the elements
Di, Gi, Hi, Ii transform as vectors, Jij = RimJmnR

>
nj (with Rij a 2× 2 rotation
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matrix). We give an additional parametrization of the Jij submatrix

Jij =

(
µ+ γ β +Ko

β −Ko µ− γ

)
. (1.56)

The elastic tensor is then achiral if

A = 0 (1.57a)

T = 0 (1.57b)

~D ‖ ~H (1.57c)

~G ‖ ~I (1.57d)

~D ⊥ ~G (1.57e)

Ko = 0 (1.57f)

β(H2
1 −H2

2 )− 2γH1H2 = 0. (1.57g)

Here A and T are manifestly chiral coefficients because they couple rotations
and dilations, so, if they are non-zero, an orientation is necessarily chosen. The
others equations require that the vector of the shears that induce a pressure
must be parallel to the shear stresses induced by dilation, that the shears that
induce internal torque must be parallel to the shear stresses induced by rotations
and that these two directions must be orthogonal. Lastly, Eq. 1.57g states that
the axes that diagonalizes the symmetric shear coupling must either be parallel
or perpendicular to the axis that couples shear and dilation.

1.3 Odd elasticity and other symmetries

A linear elastic system is odd elastic if it violates energy conservation. This is
equivalent to saying that the elastic tensor has a non-vanishing antisymmetric
(odd) part: Coijkl = −Coklij . We call odd moduli or active moduli the non-
symmetric components of the elastic tensor.

We accept the common assumption of rotation independence and thus consider
systems in which only the variations of internal distances (the metric) produce
stresses, and the constitutive relations can be written using the strain tensor
instead of the gradient of the displacement.

1.3.1 Odd elasticity and isotropy

If we further assume isotropy, we need to distinguish 2D systems from the 3D
ones.
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2D In 2D we see that isotropy is compatible with odd elasticity and the most
general elastic tensor with rotation independence and isotropy is the following

Cαβ = 2


B 0 0 0
A 0 0 0
0 0 µ Ko

0 0 −Ko µ

 . (1.58)

Here have two odd elastic moduli: A and Ko. A represents the internal torques
generated by dilations, while Ko is a coupling between shear strains and shear
stresses. We can see the difference between Ko and µ, which deals with the
shears, too. µ couples the shear strains to the shear stresses acting as the identity
matrix on the shear space. Differently, Ko couples two different kinds of strains
and does it in an antisymmetric way.

The passive moduli A and Ko are independent, odd elastic systems with
A = 0 and Ko 6= 0 can exist.

3D In 3D, odd elasticity is not compatible with isotropy anymore. In fact,
from equation 1.51, we see that a 3D isotropic elastic tensor must be diagonal
in the geometrical basis, and thus it cannot have an antisymmetric part. We
can reduce the requirements and study the compatibility of odd elasticity with
cylindrical SO(2) isotropy.

3D with cylindrical symmetry Cylindrical isotropy is imposed requiring
the elastic tensor to be invariant under any rotation along the z-axis. In order
to do so, it must commute with the generator of rotations along the z axis, that,
expressed in the geometrical basis, will be a 9× 9 matrix Lαβ , the same size of
Cαβ .

We now construct Lαβ . Let lij be the generator of rotations in the vector
representation. Then rij = exp(θl)ij is a rotation matrix. An element of the
geometrical basis ταij transforms according to

τ ′αij = (rταr>)ij

= (eθlταe−θl)ij = (τα + θ [l, τα])ij +O(θ2)
(1.59)

But we can also write

τ ′αij = Rαβτ
β
ij

= (δαβ + θLαβ +O(θ2))τβij .
(1.60)

Equating the first order terms in θ we obtain

Lαβτ
β
ij = [l, τα]ij . (1.61)
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Calculating explicitly the commutators in the previous equation we obtain:

Lαβ =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 2 0 0
0 0 −2 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 . (1.62)

Finally, taking a generic elastic tensor Cαβ and imposing its commutator with
Lαβ to be zero, we get the structure of the most general isotropic elastic tensor.
Imposing further rotation independence we get:

C = 2



3
2B 0 0 0 D +H 0 0 0 0
0 0 0 0 0 0 0 G3 G2

0 0 0 0 0 0 0 G2 −G3

A 0 0 0 G1 0 0 0 0
D −H 0 0 0 µ3 0 0 0 0

0 0 0 0 0 µ1 Ko
1 0 0

0 0 0 0 0 −K0
1 µ1 0 0

0 0 0 0 0 0 0 µ2 Ko
2

0 0 0 0 0 0 0 −Ko
2 µ2


. (1.63)

1.3.2 Odd elasticity and torque density

It is easy to see that odd elasticity is compatible with internal torque density.
We can say more: if rotation independence is assumed, odd elasticity is necessary
in order to have internal torques. In fact, under rotation independence we have
Cijkl = Cijlk, if we add Cijkl = Cklij , then Cijkl = Cjikl and the torque density
is zero. Anyway, odd elasticity does not necessarily come with internal torques,
even in the isotropic case. In 2D, if A = 0 and K0 6= 0, the system is odd elastic
but with zero internal torques. Similarly, in 3D the moduli Ko

1 ,K
o
2 are odd but

not produce any internal torque.

1.3.3 Odd elasticity and chirality

As we said before, three dimensional odd elasticity is necessarily achiral. In 2D,
the system is chiral if it violates any of the equations from Eq. 1.57a to Eq. 1.57e.
If the system is additionally isotropic, and has rotation independence, then odd
elasticity necessarily comes with chirality, as the moduli A and Ko are both odd
and chiral.

If the system is anisotropic, then it may be achiral with odd elasticity, for
instance with ~D = − ~H = 6= 0 and A, T, ~G, ~I = 0.

An anisotropic system may also be chiral without odd elasticity. For instance
a solid with D1 = H1 and β 6= 0 with D2, H2, ~G, ~I, γ,A, T, F,K

o = 0. In this
case, Eq. 1.57g is violated so the solid is chiral.
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1.4 Work cycles

We now show that the elastic forces are conservative if and only if the elastic
tensor has the major symmetry Cijkl = Cklij .

Consider a volume element (it will be a surface element if the system is 2D)
of the system and suppose that it undergoes a deformation ξ(t) in time – the
spatial dependence is omitted because we are looking at a fixed position in space.
The gradient of displacement then depends on time, too, so we write (∂iξj)(t).
The forces are conservative and only if for every closed loop of deformation
(i.e. for every deformation that starts at time ti, ends at time tf and such that
ξ(ti) = ξ(tf)) the work done is zero. The work per unit volume (area) done by
the elastic forces developed inside the volume element on the surroundings when
an infinitesimal deformation dξ is performed is given by

d̄w = σijd(∂iξj). (1.64)

The d̄ symbol denotes that d̄w may not be an exact differential. In fact, the
infinitesimal work is a differential form over the space of gradient of displacements.
The space is simply connected (is Rn) so the form is exact if and only if it is
closed, but the form may not be closed.

The work per unit volume under a finite cycle of deformation is calculated as
a line integral. We consider a closed path Γ in the strain space, parametrized by
(∂iξj)(t). By applying Stokes’s theorem, we can express the work w as a surface
integral, where the surface lays in the strain space, too.

w =

∮
Γ

σijd(∂iξj)

=

∫
S

1

2

∂σij
∂(∂kξl)

d(∂iξj) ∧ d(∂kξl)

=

∫
S

1

2
Cijkld(∂iξj) ∧ d(∂kξl)

(1.65)

With S a surface in strain space such that ∂S = Γ. Since the wedge prod-
uct is antisymmetric, the contributions to the integral are only given by the
antisymmetric part of the elastic tensor

Coijkl = 1/2(Cijkl − Cklij). (1.66)

The forces are conservative if and only if

Cijkl = Cklij . (1.67)

In the geometrical bases, energy conservation requires the elastic tensor to be a
symmetric matrix, Cαβ = Cβα.

In the presence of odd elasticity, the integral is in general non-vanishing.
Let us consider an arbitrary basis in which the gradients of displacement are
identified by the coordinates (∇ξ)a, the stresses by σα and the elastic tensor,
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Figure 1.3: Two active cycles with a net amount of work injected or extracted from
the system. a, An odd elastic material is subjected to a closed cycle in strain space.
The system is first rotated by 45 degrees without doing work because there is no
internal torque. Then applying a dilation, isotropic pressure and internal torque are
generated. Due to the isotropic component, the environment does work on the system.
Then the system is rotated and a finite work is done or extracted, depending on the
sign of A. Finally, the system is allowed to contract to its original size, giving back the
energy of the dilation to the environment. b, A cycle in the plane of shears. Due to
antisymmetric coupling regulated by Ko, the works on opposite sides do not cancel
each other, giving a non-zero total work.

being a linear operator, by Cαβ . We decompose the elastic tensor in the even
and odd terms

Cαβ = Ceαβ + Coαβ . (1.68)

Where Ceαβ = Ceβα and Ceαβ = −Ceβα. The work per unit volume can now be
expressed as

w =

∮
Γ

σαd(∇ξ)α =

∫
S

1

2
Coαβd(∇ξ)α ∧ d(∇ξ)β . (1.69)

If the path Γ lies in the plane spanned by two fixed basis elements (∇ξ)ρ, (∇ξ)σ,
then the elastic tensor can be collected out of the integral and the work results
to be equal to the odd modulus times the signed area in the strain space enclosed
by the cycle: Coρσ AreaS. These paths will be called active cycles.

Active cycles in two dimensions We can now study the active cycles in
two dimensions. Consider an odd elastic isotropic system with elastic tensor
given by Eq. 1.58. The antisymmetric part of the elastic tensor is

Coαβ =


0 A 0 0
A 0 0 0
0 0 0 2Ko

0 0 −2Ko 0

 . (1.70)

This tells us that performing a cycle that involves the first two components
of the strain (dilations and rotations), the energy extracted is A times the area
enclosed in the strain plane. Here is an example, depicted in Fig. 1.3a. One first

18



Chapter 1. Odd elasticity 1.5. Active waves

applies a dilation to the system an induces an internal torque proportional to
the elastic modulus A. An isotropic pressure arises too, so that the environment
does some work on the system. Then the system is rotated of some angle. The
work of this transformation is proportional to A. Then, allowing the system
to contract to its original size, the energy spent for the original dilation is sent
back to the environment. The system has now no internal torque and can be
rotated to its original position without spending energy. Overall, a finite amount
of work proportional to A is injected into (or extracted from) the system.

1.5 Active waves

We consider the dynamics of an odd elastic system subjected to an external
substrate drag force −Γξ̇. The equations of motion are

ρξ̈i + Γξ̇i = Cijkl∂j∂kξl. (1.71)

Activity can change drastically the dynamics. We now show that odd elasticity
allows the propagation of waves even in the overdamped regime, the condition
verified when inertia is irrelevant and the dynamics is governed by the balance
the elastic forces with the drag. The overdamped equation are

Γξ̇j = Cijkl∂i∂kξl. (1.72)

We consider a generic odd elastic isotropic system in which only the variation of
internal distances induces a state of stress. The elastic tensor si

Cαβ = 2


B 0 0 0
A 0 0 0
0 0 µ Ko

0 0 −Ko µ

 , (1.73)

and expressed in the four-indices form is

Cijmn = Bδijδmn+µ (δinδjm + δimδjn − δijδmn)+KoEijmn−Aεijδmn, (1.74)

with

Eijmn :=
1

2
(εimδjn + εinδjm + εjmδin + εjnδim) . (1.75)

We study solutions in an infinite homogeneous system. The equations are
linear, so we can look for plane waves of the form ξi(x, t) = ξ̃i(q)eiq·x−iωt. The
equations in Fourier space become

− iωΓξ̃j = −qiqmCijmnξ̃n (1.76)

and, explicitly

ωΓ

(
ξ̃x
ξ̃y

)
=

(
Bq2

x + µq2 +Aqxqy Bqxqy +Koq2 +Aq2
y

Bqxqy −Koq2 −Aq2
x Bq2

y + µq2 −Aqxqy

)(
ξ̃x
ξ̃y

)
. (1.77)
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Figure 1.4: Phase diagram of the wave dynamics of an odd solid in the overdamped
limit. In the dark grey region, the eigenmodes are exponentially damped in time. As
the red line described by Eq 1.82 is crossed, active waves are able to propagate with a
damping coefficient proportional to the passive moduli. Instabilities arise for Ã greater
than the threshold of Eq. 1.83.

A further simplification is obtained if we employ the polar basis in Fourier space.
Let

ξ‖ = q̂iξ̃i ξ⊥ = εij q̂iξ̃i (1.78)

with q̂i = qi/q, q = |q| and εij the two dimensional Levi-Civita symbol. Then
the equations become

iωΓ

(
ξ‖
ξ⊥

)
= q2

(
B + µ Ko

−Ko −A µ

)(
ξ‖
ξ⊥

)
. (1.79)

The matrix on the right hand side, with the q2 prefactor is called dynamical matrix.
Diagonalizing the matrix the equations are decoupled, indeed the eigenvectors
are called eigenmodes. The eigenvalues give us the dispersion relation of each
eigenmode, i.e. the expression ω(q). We observe that due to isotropy the
spectrum depends only on q2, so the dispersion relation is ω(q). Calculating the
eigenvalues we get

ω = −i

B
2

+ µ±

√(
B

2

)2

−KoA− (Ko)
2

 q2

Γ
. (1.80)

Since the time dependence is e−iωt, as long as the quantity in square brackets
is real and positive, the eigenmodes are exponentially damped in time. On the
contrary, a real ω implies wave propagation. If we define

Ã =
A

B/2
K̃o =

Ko

B/2
µ̃ =

µ

B/2
, (1.81)
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the threshold for wave propagation is given by

Ã =
1

K̃o
− K̃o (1.82)

which is an hyperbola, represented by the red line in Fig. 1.4. If the frequency
becomes real and negative, the modes are amplified in time. This is a sign of
instability. The threshold for instabilities is given by

Ã = −

(
2µ̃+ µ̃2 +

(
K̃o
)2
)

K̃o
. (1.83)

The instability regions are coloured in light gray in Fig. 1.4.
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Chapter 2

Topological matter

In this chapter we introduce the main tools from topology that will be employed
for the study of the normal modes of odd elastic plates. As we will see in chapter
4, the eigenspaces of the dynamical matrix, associated to the normal modes of
the bulk, describe a vector bundle over the momentum space. The non-triviality
of the bundle is reflected by the appearance of edge modes confined to the
boundary of the system.

In section 1, we review the history of the use of topology in condensed matter
physics, from the quantum Hall effect up to classical wave mechanics. In section 2
we introduce the mathematical notions of vector bundle and triviality of a bundle.
In section 3 we specify the bundle structure of physical interest: the Bloch bundle,
defined over the first Brillouin zone. In section 4 we present the Chern number,
a topological invariant of the bundle that can be explicitly calculated and is
related to the edge modes. In section 5 we give a broader description of the edge
modes and express the principle of bulk-edge correspondence.

More mathematical details can be found in [26], a suggested introduction to
topological insulators is [27].

2.1 From quantum to classical

The use of topology in condensed matter physics has its origins in the studies
for the integer quantum Hall effect (IQHE).

In 1980 Von Klitzing [28] discovered that the Hall conductance of a two-
dimensional electron gas subjected to a strong magnetic field shows plateaus
for a range of the external magnetic field applied to the sample and that the
phenomenon was insensitive to the shape of the device. In 1982 Halperin [29]
showed that at the boundary of a system in the quantum Hall phase there exist
quasi-one dimensional conducting states. These states propagate unidirectionally
along the perimeter of the system—with direction (clockwise or anti-clockwise)
according to the external magnetic field—and are robust when subjected to
a moderate disordered potential. Another important result was obtained in
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1982 too by Thouless, Kohomoto, Nightingale and den Nijs (TKNN) [30]. They
studied the IQHE in the bulk and managed to relate the Hall conductance σH
to the so called “TKNN integer”, which was soon recognised to be the first
Chern number of the bundle constituted by the Bloch eigenstates of the occupied
bands [31].

In 1988 Haldane [32] proposed a model for the realization of IQHE in 2d
systems without a strong magnetic field. His model makes use of a spatially
varying magnetic field that allows for the breaking of time reversal symmetry,
still with a vanishing flux on each unit cell. There, Haldane showed that the
breaking of time-reversal symmetry was the essential element for the quantum
Hall phase. This was the first example of a topological, or Chern, insulator.

In 1993 Hatsugai [33] obtained a result that could be considered the first
rigorous statement of the bulk-edge correspondence. He defined a topological
invariant that characterises the edge problem and showed that it is equal to the
TKNN invariant for the bulk system. Thus, the twisted topology of the bulk
electron bands is related to the existence of the edge modes.

In the following decades several developments occurred, both theoretical and
experimental, leading to the discovery of new classes of topological insulator
in 2D and 3D and of topological superconductors. However, until recent years
the role of topology had been confined to quantum systems. In the 2000s,
unidirectionally optical waveguides in photonic crystals were proposed [34],
transcribing the key features of the Haldane model for topological insulators to
photonic systems. There, the normal modes of Maxwell equations played the
role of Bloch’s eigenstates and time reversal symmetry was broken exploiting the
Faraday effect. A recent review is [16]. Topological edge modes were studied for
phononic systems, too [35]. Even more recently, in the 2010s, the floppy modes
shown by isostatic lattices [36] were understood in the framework of topological
band theory. A seminal work is [37], for a wider overview see [18].

Topological modes have been predicted also in hydrodynamical models for
equatorial waves [22] in which time reversal symmetry is broken by Coriolis force.
Formal analogues of this model have been found in active fluids and plasma
physics [21], with further formal developements on the mathematical side and
on the bulk-edge correspondence for such systems [38, 39]. In this thesis, we will
show that flexural waves of odd elastic plates are described by this model, too.

2.2 Bundles

A smooth bundle is a triple (E, π,M) where E and M are smooth differentiable
manifolds, called respectively total space and base space and π : E → M is a
continuous and surjective map. We will often denote the bundle as E

π−→M .
We call the preimage under π of a point p ∈M , the fibre at that point and

denote it with Fp. The fibres are manifolds, as well. If, moreover, all the fibres
are diffeomorphic to a given manifold, called typical fibre F , then the bundle
is said to be a fibre bundle. We can think of the bundle as composed by the
base manifold with a fibre attached to each point. A map σ : M → E is called a

23



Chapter 2. Topological matter 2.2. Bundles

Figure 2.1: A cylinder (left) and a Möbius strip (right) are both fibre bundles with a
circle S1 as base manifold and a segment [−1, 1] as typical fiber. However, they are
different manifolds.

(cross-)section of the bundle if π ◦ σ = idM i.e. associates to each point of the
base manifold an element of the fibre at that point.

We now consider a common example of two similar but different bundles
(Fig. 2.1. The Möbius strip is a two dimensional manifold that supports a bundle
structure that has a circle S1 as base manifold and the segment [−1, 1] as typical
fibre. The cylinder is a two dimensional bundle with the same base manifold
and the same typical fibre. However, it is a different manifold (the two are not
diffeomorphic). What are the differences between the two bundles? Intuitively,
the cylinder is “straight”, while the Möbius strip is “twisted”. The cylinder is
an example of a product bundle because its topology is the same of the product
of the base space with the fibre, while the Möbius strip is not. More generally:

Definition (Product bundle). Let M and F be two manifolds. The triple
(M × F, πt, F ) with

πt : M × F →M

(m, f) 7→ m

is a product bundle. The map πt is the trivial projection map.

Definition (Isomorphism of bundles). Two bundles E
π−→ M and E′

π′

−→ M ′

are isomorphic (as bundles) if there exist two diffeomorphism f : M →M ′ and
φ : E → E′ such that the following diagram commutes

E E′

M M ′

φ

π π′

f

So that the fiber at m ∈M is mapped to the fiber at u(m) and, furthermore,
the total space E is mapped smoothly to the total space E′.

Definition (Trivial bundle). A fibre bundle E
π−→ M with typical fibre F is

trivial if it is isomorphic to a product bundle.
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Figure 2.2: Gluing two opposite sides of a square one obtains a cylinder or a Möbius
strip, depending on the orientation (red arrows). In the former case, a smooth non
vanishing section (blue line) is allowed; in the latter, a non-vanishing global section is
necessarily discontinuous.

We can now compare the two bundles considered in the previous example.
The cylinder is trivial because it is a product bundle, while the Möbius strip is
not trivial. Indeed, we could find the diffeomorphism f for the base manifolds
(the identity, for instance) and we could also find an invertible map φ that acts
fiberwise and “rotates” the fibers in order to match the cylinder, but there is
no way this map can be a diffeomorphism between the total spaces. The fibers
should be rotated in a discontinuous way.

We could still observe that, locally, a patch of a Möbius strip looks exactly
the same as a patch of a cylinder. In fact, the Möbius strip is locally a product
bundle and thus is said to be locally trivial. Let U be an open subset of M and
φ : U × F → π−1(U) a diffeomorphism such that π ◦ φ(m, f) = p. The map φ
is called local trivialization. So we are requiring the following diagram to be
commutative

U × F π−1(U)

U

φ

πt

π

Non-triviality is a fundamental property relevant for physical applications.
We are thus interested in tools that allow us to distinguish a trivial bundle from
a non-trivial one. We now consider bundles with additional structures and give
a first characterization of trivial bundles.

Definition. A vector bundle (E, π,M,F,G) is a fibre bundle E
π−→ M with

typical fibre F endowed with a vector space structure and a left action of the
group G on F .

Theorem. A vector bundle with typical fiber of dimension n is trivial if and
only if there are n smooth sections that form a basis on each fibre.

If we consider the infinite Möbius strip with fiber F = R, we can verify the
statement of the theorem. In this case, the fibres are one dimensional, so the
requirement is to have a non vanishing smooth section. It easy to see that this
is not possible (Fig. 2.2), while it is possible for the cylinder.
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Figure 2.3: Schematic view of the open covering (UN , US). The transition map is
defined on the intersection VW ∪ VE

Transition functions Another criterion for triviality deals with the transition
functions. Consider two local trivializations φi and φj defined on Ui and Uj with
Ui ∩ Uj 6= ∅. We call transition map the function tij that at each m ∈ Ui ∩ Uj
associates the element g ∈ G that, applied to F, connects the two trivializations.
More precisely

tij : Ui ∩ Uj → G

m 7→ tij(m) = g

such that
φi(m, f) = φi(m, gf).

If the bundle can be continuously deformed such that all the transition
functions are the identity function, the bundle is trivial. Consider again the
real-line vector bundle over S1. Let UN = (−ε, π + ε) and US = (π − ε, 0 + ε)
be an open covering S1 parametrized by θ ∈ [0, 2π). The two open set overlap
at VW = (π − ε, π + ε) and VE = (−ε, ε), thus the transition funciton is defined
on UN ∪ US = VW ∪ VE (Fig. 2.3). The structure group is GL(1,R). The two
local trivializations are isomorphic to two rectangular stripes. If we choose the
transition function

tNS(θ ∈ VW ) = 1 tNS(θ ∈ VE) = 1 (2.1)

we are gluing the two stripes matching the borders with the same orientation,
and we get a cylinder. If we choose the transition function

tNS(θ ∈ VW ) = 1 tNS(θ ∈ VE) = −1 (2.2)

the borders are matched differently, we add a twist and we get a Möbius strip.

2.3 Bloch bundles

The vector bundles which we will deal with are Bloch bundles, whose theory
was initially developed for the quantum theory of electrons in periodic systems.
We consider a single particle Hamiltonian with discrete translational symmetry.
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(a) Insulator. (b) Metal.

Figure 2.4: Examples of band structures over the first Brillouin zone. An insulator
has a band gap and the Fermi energy lays in the gap. On the contrary, the bands of
a metal have an energy overlap and the Fermi energy crosses both the valence and
conducting bands.

The discrete translations form a lattice in the d-dimensional space, called the
Bravais lattice, denoted with Γ. It is an abelian group isomorphic to Zd. As
usual, the eigenstates of the Hamiltonian are classified by the unitary irreducible
representations of the symmetry group. In this case, since the group is abelian,
the irreducible representations are one dimensional and they can be expressed
in the form of eik·r for r ∈ Γ, labelled by the vector k. The set of k vectors is
usually called first Brillouin zone or simply Brillouin zone (BZ). Sometimes,
we will call it momentum space. It has an abelian group structure, by addition
of the k vectors. The topology of the BZ is that of a d-dimensional torus Td
because, for each G in the reciprocal space of Γ, k and k + G label the same
representation. The Brillouin zone, together with the topological structure and
the group structure constitutes the Pontryagin dual of the Bravais lattice. The
eigenstate labelled by k is thus

ψk(x) = eik·xuk(x), uk(x + r) = uk(x), r ∈ Γ, k ∈ BZ (2.3)

which is the statement of Bloch’s theorem.
The functions uk(x) satisfy a Schrödinger equation with another Hamiltonian

H(k), called Bloch Hamiltonian, parametrized by k ∈ BZ. The eigenstates of
H(k) at a given k are labelled by n, so that we can denote them by |un(k)〉.
The eigenvalue equation for the Bloch’s Hamiltonian is

H(k) |un(k)〉 = En(k) |un(k)〉 (2.4)

and the energies {En(k)|k ∈ Td} at fixed n constitutes the n-th band.
We know from the axioms of quantum mechanics that the physical states

are not uniquely represented of the Hilbert space: a multiplication with a
(non-zero) complex number leaves the physical state unchanged. If we consider
only normalized states, there remains the freedom of a phase multiplication.
Geometrically, the states of the n-th band constitute a vector bundle over the
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Brillouin zone, where the n-th eigenspace of H(k) is attached each k ∈ BZ
and the phase freedom sets U(1) as the structure group. The eigenspaces are
one-dimensional, so the states of a Bloch band constitute a complex line bundle
over the Brillouin zone, which we call the n-th band Bloch bundle

Ln → BZ . (2.5)

A choice of an eigenvector for each element of the momentum space constitutes
a section of the Bloch bundle

|un〉 : BZ → Ln
k 7→ |un(k)〉 .

(2.6)

We stress that this line bundle structure is well defined only for bands that do
not cross any other band. When two bands cross, the bundle of each band cannot
be defined because the eigenspace at the crossing k becomes two dimensional
and there is not an unique way to choose which part belongs to one band and
which part belongs to the other.

Topological insulators In an insulator, the filled bands and the unfilled
bands are separated by an energy gap, where the Fermi energy sits (Fig. 2.4.
Only excitations greater than the gap will produce a current in the sample. A
topological insulator is an insulator with non-trivial filled bands. It is effectively
an insulator in the bulk, but displays ungapped conducting states at the boundary.

A non-trivial bundle structure would be possible also for a metal, as long as
the bands do not intersect one another. However, the edge states connecting
different bands are more difficult to observe because the edge transport will be
hidden by the bulk transport.

2.4 Chern number

We now ask ourselves how many different Bloch bundles can be constructed
on a given momentum space? And how much do they differ from the trivial
bundle? A complete answer would require a complete classification of complex
line bundles, which is a difficult task we are not able to fulfil. However we can
give a necessary condition for two Bloch bundles to be isomorphic: they have to
be in the same first Chern class.

Chern classes are topological invariants for complex vector bundles. This
means that if two bundles are equivalent, they lay in the same Chern class; the
converse is not necessarily true. For U(1) bundles, the only relevant Chern class
is the first Chern class, which is the complex analogue of the Euler class and
measures how much “twisted” the bundle is. For line bundles over 2d manifolds,
the different first Chern classes are identified by an integer number, the first
Chern number C ∈ Z. As one may guess, the trivial bundle has a vanishing
Chern number. The number can be evaluated integrating the curvature F of
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the vector bundle over the base manifold

C =
1

2π

∫
BZ

F. (2.7)

The curvature F originates from a choice of a connection A on the vector bundle.
Different connections can be chosen, which will induce different curvatures. In
Eq. 2.7 we are using the powerful Chern-Gauss-Bonnet theorem, that allows to
evaluate a property that is topological and does not depend on the connection
(the Chern number) by using a quantity that depends on the connection (the
curvature). This is strictly analogous to what happens for real vector bundles.
There, the twisting of the bundle is identified by the Euler number. If we restrict
our attention to the tangent bundle of two dimensional manifolds, the Euler
number coincides with the Euler characteristic χ, which is a topological invariant
of the manifold. Gauss-Bonnet theorem relates the Euler characteristic to the
integral of the Gaussian curvature K of the manifold via

χ =
1

2π

∫
M

Kda. (2.8)

Here we remember that the Gaussian curvature depends on the metric of the
manifold but the Euler characteristic does not. In this sense the Chern–Gauss–
Bonnet theorem is a generalization of the Gauss–Bonnet theorem.

Let’s return to the n-th band Bloch bundle. We now denote the states of a
given band with |u(k)〉, omitting the band label. As we said, different connections
may be chosen, and they all give rise to the same Chern number. A natural
choice is the Berry connection, whose local form is given by

A(k) =
1

i
〈u(k)| d |u(k)〉 . (2.9)

In the mathematical vocabulary, the connection is the Lie-algebra valued one
form defined on the vector bundle. Given a local section of the vector bundle,
one can pull-back the connection, obtaining a Lie-algebra valued one form on the
base manifold, called the local form of the connection. In physics, the expression
Berry connection refers to the latter object. If the section |un(k)〉 is well defined
and smooth for each k ∈ BZ , then bundle is trivial. Conversely, the impossibility
to have a global section of the bundle then implies that the Berry connection is
not a single function defined globally.

Covering the Brillouin zone with open sets, a local section |u(k)〉 can be
defined on each open set. On the intersection of two open sets, the two local
sections are related by a U(1) gauge map that has the same role of the transition
map defined before. Let Ui and Uj be two open sets of BZ with non-zero
intersection and let

∣∣u(i)(k)
〉

and
∣∣u(j)(k)

〉
be the two local sections. The gauge

map function is a map
t : Ui ∩ Uj → U(1) (2.10)
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such that ∣∣∣u(i)(k)
〉

= t(k)
∣∣∣u(j)(k)

〉
(2.11)

with
t(k) = eiφ(k). (2.12)

Then from Eq. 2.9 the Berry connections obtained through the two sections are
related by

A(i) = A(j) + dφ. (2.13)

The Berry curvature is defined on each open set as the exterior derivative of
the Berry connection

F = dA. (2.14)

Since d2φ = 0, F is gauge invariant. It depends on the connection but does not
depend on the chosen section of the bundle (or gauge choice).

2.5 Edge modes

The topological structure of the bulk bands can show up in the physics at
interfaces. If a topological insulator is put in contact with a trivial insulator
or vacuum, chiral edge modes emerge at the interface between the two. An
heuristic argument is the following.

The Brillouin zone, the Bloch bundle and the Chern number are mathemati-
cally defined for infinite systems, but their concrete use is for the bulk of finite
systems. If we add an interface, we can not consider the system to be in the
bulk, as it is obvious. However, in order to have a qualitative intuition, we could
think at the interface as something that perturbs the bulk’s properties. Imagine
to parametrize the direction perpendicular to the interface with the coordinate y,
such that the interface is at y = 0. At large negative values of y the system is in
the bulk and has a defined value of the Chern number. At positive large values
of y, the system is in the bulk too and has a different value of the Chern number.
We could consider y as an external parameter, that continuously changes the
bundle structure. The only way a continuous deformation can change the bundle
structure is by closing the gap. So at the boundary we have the existence of
ungapped (conducting) states, called edge modes. The edge modes propagate
unidirectionally along the interface. Thus, for two dimensional systems, the have
a one-dimensional wave vector kx. The edge modes have frequencies in the gap
and connect consecutive gapped bands.

Bulk-edge correspondence The link between topology and the edge modes
is even more strong and goes under the name of bulk-edge correspondence. For
topological insulators placed in contact with vacuum, the principle is expressed
as follows [33]. Assume that the bands are labelled by the integer n. Let Nn,+
be the signed number of modes that leave (+1) or join (−1) the n-th band from
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Figure 2.5: In grey, the bulk bands; for a given kx, many energies can be covered,
varying ky. The red lines represent the (unidimensional) edge modes. In this case, the
Chern number of the bottom band is +1, while the Chern number of the top band is
−1.

above. Let Nn,− be the signed number of modes that join (+1) or leave (−1)
the n-th band from below. The bulk-edge correspondence states that

Cn = Nn,+ −Nn,−, (2.15)

where Cn is the Chern number of the n-th band.
For topological insulators, the relevant edge modes are those that connect

the valence band to the conducting band (the conducting modes). These are the
modes that cross the Fermi energy. In this case, the bulk-edge correspondence
can be stated as follows. Let N ] be the number of modes that cross the Fermi
energy and let v the integer label of the valence band. Then it is easy to see that

N ] = Nv,+ = Nv+1,−. (2.16)

i.e. the number of modes that cross the Fermi energy is equal to the (net)
number of modes that leave the valence band and equal to the (net) number of
modes that join the conducting band. Then, rewriting the number of modes Nv,+
with respect to the Chern number and iterating we can rephrase the bulk-edge
correspondence as

N ] =
∑
n≤v

Cn. (2.17)

While rigorous proofs of bulk-edge correspondence for quantum topological
insulators models have been obtained, the issue is still open for classical hydrod-
inamical models [38, 39], where the bulk-edge correspondence has to be taken in
its weaker form. It remains a “guiding principle” that tells us that if the bulk is
non-trivial, then there should be edge modes at the boundary of the system.
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Chapter 3

Odd plates

The goal of this chapter is to derive the equations of motion of an odd elastic
plate and identify its active cycles of deformations.

A plate is a three dimensional object that can be described as a two di-
mensional system because it is thin in one dimenson. More precisely, the three
dimensional displacement field of a plate is reparametrized involving fields that
are defined on the mid-plane of the plate, which is a two dimensional manifold.
These fields satisfy a set of differential equations, that can be obtained from the
three dimensional theory through the principle of virtual work.

In section 1 we set up the two-dimensional description of the plate, char-
acterizing the displacement field, the strain and the stress tensor. In section
2 we introduce the principle of virtual work and derive the general structure
of the equations that govern the plate’s dynamics. In section 3 we derive the
constitutive relations of a plate with cylindrical isotropy and no internal torques,
applying a reduction procedure from the constitutive relations of the material
in the three-dimensional bulk. In section 4 we use the constitutive relations to
study the active cycles of deformations and in section 5 we explicitly obtain the
equations of motion for the plate.

3.1 Plate description

3.1.1 The kinematical hypotheses

A plate is a structural object whose thickness is significantly smaller than the
other two planform dimensions. It is a three dimensional system that can be
deformed in all the three directions (Fig. 3.1). Thus, the displacement field ξ is
a three dimensional vector field, defined over the whole plate.

We consider a flat plate of uniform thickness h whose midplane lies in the
xy-plane. The plate theory is developed making a guess on the form of the
displacement field and stress field, according to some kinematical and dynamical
hypotheses. The displacement field is expanded in powers of z—the coordinate
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(a) Plate at rest. (b) Deformed plate.

Figure 3.1: A plate at rest and a deformed plate. ηx and w describe respectively the
horizontal and vertical displacement of the mid plane. φx quantifies the deviation of
the transverse normals towards the x-axis, while −∂xw quantifies the bending of the
midplane. The difference of the latter two is twice the transverse strain uxz.

that runs through the thickness of the plate. Considering a displacement field
that varies in time, we have

ξi(x, y, z, t) =

N∑
n=0

znϕ
(n)
i (x, y, t). (3.1)

The coefficients of the expansion ϕ
(n)
i are the dynamical fields, defined on the

two-dimensional horizontal mid-plane [40]. The precise expression for Eq.3.1
depends on the chosen kinematical hypotheses. In this work, we attend ourselves
to the so-called Reissner-Mindlin theory. This requires that [40]

1. Straight lines perpendicular to the mid-surface (i.e., transverse normals)
before deformation remain straight after deformation.

2. The transverse normals do not experience elongation (i.e., they are inex-
tensible).

The inextensibility of the transverse normals implies that the normal strain
uzz is identically zero. Since uzz = ∂zξz, then ξz does not depend on z and we
get

ξz(x, y, z) = w(x, y). (3.2)

Hence, the power expansion in z for the vertical displacement is truncated to
the zero-th order.

The first hypothesis is then satisfied by requiring that the horizontal displace-
ments have only a z-independent and a z-linear term, so that the transverse
normals are reoriented but not bent. Labelling the horizontal components by
α ∈ {x, y}, we have

ξα(x, y, z) = ηα(x, y) + zφα(x, y). (3.3)

We observe that ηα describes the horizontal displacement of the mid-plane
(z = 0). The field φα describes a rotation of the transverse normals. φx quantifies
the tilting towards the x-axis, while φy quantifies the tilting towards the y-axis
(Fig. 3.1b).
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3.1.2 Plate strain

The strain tensor can be calculated explicitly. We obtain

uαβ = ∂(αηβ) + z∂(αφβ) (3.4a)

uαz =
1

2
(φα + ∂αw) (3.4b)

uzz = 0 (3.4c)

Here α, β ∈ {x, y} and the round brackets indicate symmetrized indices. The
horizontal strains uαβ have both a z-independent and a z-linear term, which we
express as

uαβ = u0
αβ + zu1

αβ (3.5)

and thus we have
u0
αβ = ∂(αηβ) u1

αβ = ∂(αφβ). (3.6)

The term u0
αβ depends only on the fields ηα and describes horizontal strains

that are uniform over the thickness of the thickness. The term u1
αβ describes

horizontal strains in which the top face and the bottom face are deformed
oppositely, as they have opposite values of the coordinate z. The midplane,
originally laying horizontally, can be bent by the deformation. The tangent to
the mid-plane that points in the α-direction is rotated vertically by an amount
of ∂αw (if w grows with x, then the tangent is rotated upwards). After the
deformation, the transverse normal may not be orthogonal to the mid-plane
anymore. In fact, the re-orientation of the transverse normal is quantified by
φα, which is independent from w. The non-orthogonality between the deformed
midplane and the deformed transverse normal is quantified by the transverse
strain uαz, as shown in (3.4b) (see Fig. 3.1b).

We note that while the z-independent planar strains u0
αβ depend only on the

horizontal displacements ηα and the z-linear planar strains u1
αβ depend only on

the angular degrees of freedom, the transverse strains uαz depend on two different
kind of fields: the vertical displacement and the angular fields. This introduces
a coupling between w and φα, the fields that describe the bending deformations.
The planar deformations are described by the horizontal displacements ηα.

We choose a basis for the strains that separates the irreducible representations
of rotations around the z-axis. This basis spans the space of symmetric matrices
and will be called the geometrical basis of the plate.

Dij =

1 0 0
0 1 0
0 0 0

 Pij =

0 0 0
0 0 0
0 0 1


S1
ij =

1 0 0
0 −1 0
0 0 0

 S2
ij =

0 1 0
1 0 0
0 0 0


T xij =

0 0 1
0 0 0
1 0 0

 T yij =

0 0 0
0 0 1
0 1 0


(3.7)
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Here D and P are in the trivial representation. D represents planar dilations,
while P represents vertical elongations. S1, S2 span planar shears in which an
axis is dilated in one direction and the orthogonal in the plane is contracted.
The two matrices are in representation of charge two; intuitively, the planar
shear is identified by the axis of dilation, without information on it direction. S1

dilates the x-axis, while S2 dilates an axis that is 45◦ rotated from the x-axis.
T x and T y represent transverse shears, in the plane xz and yz. These are in a
representation of charge one, labelled by a direction in the xy-plane.

Projecting the strain onto the geometrical basis we obtain respectively
uD, uS1 , uS2 , uTx , uTy . We note that the basis elements D,S1, S2 involve the pla-
nar coordinates x, y, thus the relative strain components will have a z-independent
term and a z-linear term. The strains relative to T x and T y will only have the
z-independent term.

A visual representation is given in the following figure. Each image represents
a deformation that produces a uniform non-zero value of the strain identified by
the rows and columns and a zero value for all the other strains.

Figure 3.2: Different strains of a plate in the Reissner-Mindlin theory. Columns refer
to the basis element, rows indicate whether the z-independent or the z-linear term is
considered. We recall that uzz = 0, thus uP = 0 and that u1

Tα = 0 by construction,
thus they are not represented.

3.1.3 Plate stress

We express the stress tensor in the geometrical basis of the plate and give an
interpretation of the components.

σD represents a planar stress with cylindical symmetry, σP represents the
normal stress σzz, σS1 and σS2 are planar shear stresses, while σTx and σTy are
the transverse stresses.

As we already said, the plate is a three dimensional solid, described as a two
dimensional system. The third dimension that runs along the thickness of the
plate is literally “integrated out”, as we show in section 3.2, where we derive the
equations of motion. We will also see that the relevant dynamical quantities are
the zero-th and the first moment in z of the stress. These are the net stress
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(a) Net stress. (b) Moment.

Figure 3.3: An example of net stress and moment relative to the stress component
σzz. We show two stress distribution that produce a non-zero net stress and a non-zero
moment.

tensor Nij and the moment tensor Mij , defined by

Nij =

∫ h/2

−h/2
dz σij (3.8)

Mij =

∫ h/2

−h/2
dz zσij , (3.9)

see Fig. 3.3 for a visual intuition.
We give a visual representation of the net stresses and the moments in the

geometrical basis in the following image. The net stresses are represented by
a single arrow on each face, while the moments are represented by a couple of
opposite arrows on each face, as introduced in Fig. 3.3. We omit the components
along the basis element P and the transverse moments MTα . because they are
identically zero in our system, as we will show in section 3.3.

Figure 3.4: Irreducible components of the net stress and moment tensor. The grey
arrows are pointing towards the inside of the plate

3.2 Virtual work

3.2.1 The principle of virtual work

The equations that govern the dynamics of a continuum system can be derived
either with the Newton’s Second Law of motion or using the principle of virtual
work. The former requires the isolation of a typical volume element and the
knowledge of all the applied forces. However, for complicated systems—like
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constrained systems—the procedure might become exceedingly complicated and
unmanageable. For these cases, the principle of virtual work can be a valid
alternative.

Consider a displacement field ξ = ξ(x, t) evolving from an initial time ti
up to a final time tf . Let δξ be small variation that acts as ξ 7→ ξ + δξ. The
principle of virtual work states that: The solution of the motion is a field ξ
such that, for every allowed variation δξ, the following equation is satisfied∫ tf

ti

dt δK − δWI − δWE = 0, (3.10)

where an allowed variation has to vanish at the initial final time and must produce
a displacement field allowed by the kinematical constraints.

We now discuss each element of the equation. K is the kinetic energy, given
by

K =
1

2

∫
d3x ρξ̇iξ̇i, (3.11)

where ρ is the density. δWI is the infinitesimal work of the internal elastic forces

δWI =

∫
d3xσijδ∂iξj . (3.12)

δWE is the infinitesimal work of the external forces

δWE = −
∫
d3x fEi δξi. (3.13)

It is crucial to observe that the infinitesimal internal work is expressed as σijδ∂iξj
and not as the variation of an elastic potential energy. This allows the method
to be applied even for non-conservative systems. In fact, a non-conservative
(odd-elastic) system does not have a potential energy, but still has well defined
stresses.

A simple example

Before using it for the plates, we show that the principle of virtual work can be
used to derive the standard equations of elasticity. We consider a d-dimensional
system with no constraints. Performing the variation of K we get∫ tf

ti

dt

∫
ddx

(
ρξ̇iδξ̇i − σijδ∂iξj + fEi δξi

)
= 0. (3.14)

We then integrate by parts on the time variable for the kinetic term and in space
for the internal work. The time boundary terms are dropped because the δξ
is vanishing at ti and tf , spatial boundary terms are dropped because the the
system is infinite and the fields are assumed to be vanishing at infinite∫ tf

ti

dt

∫
ddx

(
−ρξ̈iδξi + ∂iσijδξj + fEi δξi

)
= 0. (3.15)

Finally, if the equation holds for every δξ, then

ρξ̈i = ∂jσji + fEi . (3.16)
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Chapter 3. Odd plates 3.2. Virtual work

3.2.2 Derivation of the equations of motion

We now use the principle of virtual work to derive the equations of motion of the
Reissner-Mindlin theory. We assume an external drag force given by fEi = −Γξ̇i.
We calculate each term separately. The procedure is similar for all the terms:
first we substitute the explicit parametrization in the expression of the three
dimensional displacement field, then we integrate over z, assuming a uniform
density and finally we integrate by parts, in order to isolate the variations of the
fields.

We start from the kinetic term. Substituting the expression for the displace-
ment field of Eqs. (3.2), (3.3) we get∫ tf

ti

dt δK =

∫ tf

ti

dt

∫
V

d3x ρξ̇iδξ̇i

=

∫ tf

ti

dt

∫
V

d3x ρ[ξ̇αδξ̇α + ẇδẇ]

=

∫ tf

ti

dt

∫
V

d3x ρ[(η̇α + zφ̇α)δ(η̇α + zφ̇α) + ẇδẇ]

(3.17)

Then we integrate in dz and use∫ h/2

−h/2
dz 1 = h

∫ h/2

−h/2
dz z = 0

∫ h/2

−h/2
dz z2 =

h3

12
, (3.18)

obtaining ∫ tf

ti

dt

∫
S

d2x ρ[hη̇αδη̇α + hẇδẇ +
h3

12
φ̇αδφ̇α]. (3.19)

Finally, we integrate by parts in time, dropping the boundary terms because the
variation vanishes at ti and tf∫ tf

ti

dt δK = −
∫ tf

ti

dt

∫
S

d2x ρ[hη̈αδηα + hẅδw +
h3

12
φ̈αδφα]. (3.20)

Then we consider the internal work. As before, we substitute the parametriza-
tion of the displacement field∫ tf

ti

dt δWI =

∫ tf

ti

dt

∫
V

d3xσijδuij

=

∫ tf

ti

dt

∫
V

d3xσij∂iδξj

=

∫ tf

ti

dt

∫
V

d3x [σαβ(∂αδηβ + z∂αδφβ) + σzαδφα + σαz∂αδw].

(3.21)
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Chapter 3. Odd plates 3.3. Constitutive relations

Now we have to integrate in dz. Using the definitions of the net stress and
moment tensors (3.8) and (3.9) we get∫ tf

ti

dt

∫
S

d2x [Nαβ∂αδηβ +Mαβ∂αδφβ +Nzαδφα +Nαz∂αδw]. (3.22)

Finally, we integrate by parts in the spatial coordinates. We drop the boundary
terms, assuming that the fields go to zero at infinity∫ tf

ti

dt δWI =

∫ tf

ti

dt

∫
S

d2x [−∂αNαβδηβ − ∂αMαβδφβ +Nzαδφα − ∂αNαzδw].

(3.23)
The last term is the external virtual work. In this case we just have to

substitute the parametrization of the displacement field and to integrate in dz,
no integration by parts is needed. We get∫ tf

ti

dt δWE =

∫ tf

ti

dt

∫
V

d3x − Γξ̇iδξi

=

∫ tf

ti

dt

∫
V

d3x − Γ[(ηα + zφα)(δη̇α + zδφ̇α) + wδẇ]

=

∫ tf

ti

dt

∫
S

d2x − Γ[hηαδη̇α +
h3

12
φαδφ̇α + hwδẇ]

=

∫ tf

ti

dt

∫
S

d2xΓ[hη̇αδηα + hẇδw +
h3

12
φ̇αδφα].

(3.24)

In the end, we impose (3.10) for all the variations of the plate’s fields.
Collecting the terms multiplied respectively by δηα, δw, δφα, we obtain the
equations of motion

h(ρη̈α + Γη̇α) = ∂βNβα (3.25a)

h(ρẅ + Γẇ) = ∂αNαz (3.25b)

h3

12
(ρφ̈α + Γφ̇α) = ∂βMβα −Nzα. (3.25c)

These equations of motion cannot be solved without specifying how N and
M depend on η, w, φ. This will be provided by the constitutive relations.

3.3 Constitutive relations

As we said before, uzz is identically zero. This comes directly from the kinematical
assumptions on the allowed displacements. Since uzz = 0, the transverse normal
stress σzz, though not zero identically, does not appear in the virtual work
statement and, hence, in the equations of motion. Consequently, it amounts
to neglecting the transverse normal stress [40]. We thus make the plane stress
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Chapter 3. Odd plates 3.3. Constitutive relations

assumption, in which we assume that the normal stress is identically zero, too.
So that

σzz = 0. (3.26)

We now have a set of allowed strains, that satisfy uzz = 0 and a set of allowed
stressed, that satisfy σzz = 0. The constitutive relations must match these condi-
tions. This requires a reduction procedure of the three dimensional constitutive
relations.

In this work, we consider a plate made of a three dimensional material that
displays cylindrical isotropy. Its constitutive relations, expressed in the basis
of Eq. 1.38, were written in equation 1.63. We further ask for the absence of
internal torques. Thus, omitting the basis elements relative to rotations, we have

C3D
ab = 2



3
2B D +H 0 0 0 0

D −H µ3 0 0 0 0
0 0 µ1 Ko

1 0 0
0 0 −Ko

1 µ1 0 0
0 0 0 0 µ2 Ko

2

0 0 0 0 −Ko
2 µ2

 . (3.27)

The reduction procedure is the following. We express the elastic tensor in the
geometric basis of the plate (Eq. 3.7). We employ this basis because it has an
element proportional to the zz entry of the rank-two tensors: P . Then, we invert
the matrix and obtain (C3D)−1, which maps the stresses to the strains with
u = (C3D)−1σ. Next, we remove the columns and the rows relative to the basis
element P and we get the reduced inverse matrix C−1, which is a 5× 5 matrix.
By removing the column relative to P , we consider only the strains that induce
a plane stress. Removing the row relative to P , we project these strains on the
space of the allowed strains. Finally, we re-invert the reduced matrix, ad obtain
the plate’s elastic tensor: a 5× 5 matrix that maps the allowed strains to the
allowed stresses.

A simple example We make a simple example in order to make the elastic
tensor reduction more intuitive. Consider the following system of two masses
connected by springs, anchored to two walls.

m mK KK

U1 U2

The dependence of the force F1/2 applied to the two masses depends on the
displacements U1/2 according to the relation(

F1

F2

)
= K

(
−2 1
1 −2

)(
U1

U2

)
, (3.28)
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Chapter 3. Odd plates 3.3. Constitutive relations

in a more compact form F = DU . Then U = D−1F , so(
U1

U2

)
=

1

3K

(
−2 −1
−1 −2

)(
F1

F2

)
. (3.29)

What if we make some hypothesis analogous to the elasticity. Suppose we
assume u2 = 0. Then, with the reduction procedure we obtain the reduction
− 2

3KF1 = U1, so

F1 = −3

2
KU1. (3.30)

Interestingly, this physically corresponds to the following situation.

mK K/2

U1

The weak bond K/2 arises if we send the mass of the second particle to zero.
Thus when we make the hypothesys that U2 = 0 we are actually saying that the
energy associated to U2 is negligible and we assume that U2 finds a configuration
in which the forces at it are zero.

We now apply the reduction procedure to the odd-elastic plate. We note that
the only elements of the 3D geometrical basis with a non-zero zz entry are τD

and τS
1

. These span the same space spanned by D and P of the geometrical
basis of the plate. Since that space is invariant under the action of the elastic
tensor, we can restrict the reduction procedure to that space; the action of the
elastic tensor on the other basis elements will remain unchanged.

The relevant block of the elastic tensor for our reduction procedure is

2

(
3
2B D +H

D −H µ3

)
(3.31)

We express it in the basis {D,P} and obtain(
2
3 (3B − 2

√
2D + µ3)

√
2B + 2

3 (D + 3H −
√

2µ3√
2B + 2

3 (D − 3H −
√

2µ3) B + 4
3 (
√

2D + µ3)

)
. (3.32)

Inverting the matrix and get

1

2

(
3B+4(

√
2D+µ3)

3(3Bµ3−2D2+2H2)
3
√

2B+2D+6H−2
√

2µ3

6D2−6H2−9Bµ3

3
√

2B+2D−6H−2
√

2µ3

6D2−6H2−9Bµ3
− 3B−2

√
2D+µ3

3D2−3H2−9/2Bµ3

)
. (3.33)

We noe delete the second row and column (relative to the basis element P ) and
invert the reduced matrix, which is 1× 1. We call it B̃: the renormalized bulk
modulus

B̃ =
3(3Bµ3 + 2H2 − 2D2)

3B + 4(
√

2D + µ3)
. (3.34)
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Chapter 3. Odd plates 3.4. Odd cycles

We note that the odd modulus H makes B̃ bigger, and a large value of the
passive D could make B̃ negative.

Finally, the whole reduced elastic tensor of the plate, expressed in the plate’s
geometric basis {D,S1, S2, T x, T y} is

Cab = 2


B̃ 0 0 0 0
0 µ1 Ko

1 0 0
0 −Ko

1 µ1 0 0
0 0 0 µ2 Ko

2

0 0 0 −Ko
2 µ2

 . (3.35)

All the elastic moduli are inherited from the three dimensional constitutive
relations. Here, B̃ is a renormalized bulk modulus and maps plane isotropic
dilations to the plane isotropic stress. µ1, µ2 are passive shear moduli, that map
a shear strain to the corresponding shear stress. µ1 acts on the plane shears
S1, S2, while µ2 acts on the transverse shears T x, T y. The moduli Ko

1 ,K
o
2 are

active and indeed give an antisymmetrical coupling to the shears. Ko
1 maps uS1

to σS2 and uS2 to −σS1 . Ko
2 does the same on the transverse shears T x, T y.

Once we have the constitutive relation, can express the net stress and the
moment as functions of the plate’s strains. Expressing the strain as u = u0 +zu1,
we note that in a linear system the net stress depends on the 0-order term in z
of the strain and the moment depends on the first order.

N =

∫ h/2

−h/2
dz C(u0 + zu1) = hCu0 (3.36)

M =

∫ h/2

−h/2
dz zC(u0 + zu1) =

h3

12
Cu1. (3.37)

Substituting the plate’s constitutive relations (3.35) we getNDNS1

NS2

 = 2h

B̃ 0 0
0 µ1 Ko

1

0 −Ko
1 µ1

u0
D

u0
S1

u0
S2

 (3.38a)

MD

MS1

MS2

 = 2
h3

12

B̃ 0 0
0 µ1 Ko

1

0 −Ko
1 µ1

u1
D

u1
S1

u1
S2

 (3.38b)

(
NTx

NTy

)
= 2h

(
µ2 Ko

2

−Ko
2 µ2

)(
u0
Tx

u0
Ty

)
. (3.38c)

3.4 Odd cycles

With the constitutive relations, we can look at the work of the elastic forces
under a closed deformation cycle. Assume that the local strain traces a closed
curve in the strain space Γ = ∂S in the strain space. The work per unit surface
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Chapter 3. Odd plates 3.4. Odd cycles

Figure 3.5: A cycle of deformations in the plane u1
S1–u1

S2 of the strain space.

is:

W =

∫ h/2

−h/2
dz

∮
Γ

Cabubdua

=

∫
Γ

hCabu
0
bdu

0
a +

h3

12
Cabu

1
bdu

1
a

=

∫
S

h

2
Cabdu

0
a ∧ du0

b +
h3

24
Cabdu

1
a ∧ du1

b .

(3.39)

The second line follows an integration in dz and the third line follows the
application of Stokes’ theorem.

We recall that the energy per unit volume extracted over a cycle performed
in a fixed plane of the strain space is given by the odd modulus corresponding
to the plane times the area encircled by the cycle in the strain space. Here we
are looking at the energy extracted per unit surface, which gets a multiplicative

factor h when the z-independent strain u0 is considered and a factor of h
3

12 for the
z-linear strain u1. The multiplicative factors have different dimensions because
the strain u0 is a pure number, while u1 is the inverse of a length.

Considering the constitutive relations of the plate (3.38), there are three
independent ways to extract energy with a cycle of deformations, corresponding
to the three odd moduli of the constitutive relations.

1. Cycling in the plane u0
S1–u0

S2 , the energy density extracted is equal to
2hK0

1 times the area enclosed in the strain space. This cycle involves only
planar deformations and coincides was already described in Fig. 1.3b.

2. The first “new” cycle is a bending cycle that involves u1
S1 and u1

S2 repre-

sented in Fig. 3.5. It extracts h3

6 K
o
1 times the area enclosed.

3. A cycle in the u0
Tx–u0

Ty plane, the density of work is 2hK0
1 times the area

enclosed.

We note that the cycle of Fig. 1.3a is not present here because we are considering
a system with no internal torques.
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Chapter 3. Odd plates 3.5. Equations of motion

3.5 Equations of motion

We can now obtain the explicit equations of motion. Substituting the constitutive
relations (3.38) in the general structure of the equations of motion (3.25), we
have :

ρη̈α + Γη̇α = (B∂α∂β + µ1∇2δαβ +Ko
1∇2εαβ)ηβ (3.40a)

ρẅ + Γẇ = µ2∇2w + µ2∂αφα +Ko
2εαβ∂αφβ (3.40b)

h2

12
(ρφ̈α + Γφ̇α) =

h2

12
(B∂α∂β + µ1∇2δαβ +Ko

1∇2εαβ)φβ

− (µ2δαβ +Ko
2εαβ)(∂βw + φβ)

(3.40c)

The dynamics of the horizontal displacements ηα is decoupled from the other
degrees of freedom. It describes a flat 2D odd-elastic isotropic system without
internal torques. This was studied in [12] and reported in section 1.5.

The flexural dynamics desribed by the coupled evolution of w and φα will be
studied in the following chapter.
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Chapter 4

Flexural waves

In this chapter we study the flexural dynamics of the plate, described by the
evolution of the fields φx, φy and w. It regards the deformations that change the
orientations of the transverse lines normal to the midplane and the height of the
midplane.

In section 1, we discuss the general structure of the normal modes. We show
that activity opens a gap in the dispersion relation of the normal modes, allowing
for the definition of a topological invariant for the bands. In section 2, we provide
an intuition of the effects of activity and a visualization of an an active and a
passive normal mode. The topological invariant is analytically computed in the
case of a purely active plate. In section 3, an exact mapping between odd-elastic
plates and odd-viscous fluids is presented. In section 4, we show that the system
displays topologically protected edge modes when the topological invariant is
non-zero. We calculate the dispersion profile of the edge modes and present
the results of numerical simulations, done for odd-viscous fluids and adapted to
odd-elastic plates.

4.1 Normal modes analysis

The flexural dynamics is governed by the following equations

h2

12
(ρφ̈α + Γφ̇α) =

h2

12
(B∂α∂β + µ1∇2δαβ +Ko

1∇2εαβ)φβ

− (µ2δαβ +Ko
2εαβ)(∂βw + φβ)

ρẅ + Γẇ = µ2∇2w + µ2∂αφα +Ko
2εαβ∂αφβ

The equations are linear and we consider plane waves solutions in the form

φα(x, t) = φαe
i(k·x−ωt) w(x, t) = wei(k·x−ωt). (4.1)
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Chapter 4. Flexural waves 4.1. Normal modes analysis

This gives

h2

12
(ρω2 + iΓω)φα =

h2

12
(Bkαkβ + µ1k

2δαβ +Ko
1k

2εαβ)φβ

+ (µ2δαβ +Ko
2εαβ)(ikβw + φβ)

(4.2)

(ρω2 + iΓω)w = µ2k
2w + iKo

2kα(µ2δαβ + εαβ)φβ (4.3)

We normalize the wavevector and the vertical displacement with the length scale
given by the thickness of the plate and a numerical factor for further convenience

w̄ = w

√
12

h
q =

h√
12

k (4.4)

that produces

h2

12
(ρω2 + iΓω)φα = (Bqαqβ + µ1q

2δαβ +Ko
1q

2εαβ)φβ

+ (µ2δαβ +Ko
2εαβ)(iqβw̄ + φβ)

(4.5)

h2

12
(ρω2 + iΓω)w̄ = µ2q

2w̄ + iqα(µ2δαβ +Ko
2εαβ)φβ . (4.6)

In matrix form this is

h2

12
(ρω2 + iΓω)

(
φ
w̄

)
=M(q)

(
φ
w̄

)
(4.7)

with

M(q) =

 Bq2
x + µ1q

2 + µ2 Bqxqy +Ko
1q

2 +Ko
2 i(µ2qx +Ko

2qy)
Bqxqy −Ko

1q
2 −Ko

2 Bq2
y + µ1q

2 + µ2 i(µ2qy −Ko
2qx)

−i(µ2qx −Ko
2qy) −i(µ2qy +Ko

2qx) µ2q
2


(4.8)

the matrix M is called dynamical matrix. Diagonalizing it, we uncouple the
equations of motion: the eigenvectors represent the normal modes: “directions”
of oscillation that do not change in time. The eigenvalues define a dispersion
relation between ω and q. Let λ(q) be an eigenvalue of M(q), then

h2

12
(ρω2 + iΓω) = λ(q). (4.9)

We consider a strong drag regime or overdamped regime, in which the intertial
term is neglected, then the dispersion relation is given by

iω(q) = λ(q)
12

Γh2
. (4.10)

We observe that the plate’s thickness is factored out of the dynamical matrix. It
only affects the frequency of the eigenmodes in a multiplicative way.
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Chapter 4. Flexural waves 4.1. Normal modes analysis

The dynamical matrix is simpler in the polar basis. Let

φ‖ = q̂αφα φ⊥ = εαβ q̂αφβ (4.11)

be the projections of the vector φ along and perpendicular to the wavevector q
(q̂α = qα/q). The polar basis {φ‖, φ⊥, w̄} is defined byφ‖φ⊥

w̄

 =

 q̂x q̂y 0
−q̂y qx 0

0 0 1

φxφy
w̄

 (4.12)

and the dynamical matrix in this basis is

Mpolar =

(B + µ1)q2 + µ2 Ko
1q

2 +Ko
2 iµ2q

−Ko
1q

2 −Ko
2 µ1q

2 + µ2 −iKo
2q

−iµ2q −iKo
2q µ2q

2

 . (4.13)

The matrix M is non-Hermitian due to the presence of the active moduli. This
causes an anti-hermitian coupling between φ‖ and φ⊥, proportional to Ko

1q
2 +Ko

2

and another anti-hermitian coupling between φ⊥ and w, proportional to iKo
2q.

The matrix depends only on q = |q|, and thus the spectrum too. This is a
consequence of cylindrical isotropy in the constitutive relations.

It is easy to verify that the characteristic polynomial p(λ) = det(Mpolar−λI)
of the matrix is real

p(λ) = [(B + µ1)q2 + µ2 − λ](µ1q
2 + µ2 − λ)(µ2q

2 − λ)

− 2(Ko
1q

2 +Ko
2 )µ2K

o
2q

2 + [(B + µ1)q2 + µ2 − λ]Ko
2

2q2

− (µ1q
2 + µ2 − λ)µ2

2q
2 + (Ko

1q
2 +Ko

2 )2(µ2q
2 − λ). (4.14)

Then, if λ is an eigenvalue, λ∗ is an eigenvalue, too. There are three eigenvalues,
so they are either all real or one real and two complex, related by conjugation.
Represented in the complex plane as a function of q, they constitute three bands,
symmetric under reflection with respect to the real axis.

Passive case

We consider the case of zero activity. When all the odd moduli are set to zero,
the dynamical matrix is

Mpolar =

(B + µ1)q2 + µ2 0 iµ2q
0 µ1q

2 + µ2 0
−iµ2q 0 µ1q

2 + µ2

 . (4.15)

The matrix is symmetric and has a real spectrum. We immediately recognize an
eigenmode oriented as φ⊥, with eigenvalue λ1(q) = µ1q

2 + µ2. The other two
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Chapter 4. Flexural waves 4.1. Normal modes analysis

Figure 4.1: Eigenvalues of the dynamical matrix. On the left, we plot separately
Reλ(q) and Imλ(q) for q ∈ [0, 1]; at right, the same band-structure is plotted para-
metrically in the complex plane for q ∈ [0, 3] (red/yellow is q = 0, violet/red is q = 3).
Elastic moduli and eigenvalues are in mpsi; 1mpsi = 6.895kN/m2. (a-b) Passive case,
B = 1.7, µ1 = 0.3, µ2 = 0.3,Ko

1 = Ko
2 = 0. (c-d) Active case with small odd moduli,

the spectrum is ungapped B = 1.7, µ1 = 0.3, µ2 = 0.3,Ko
1 = 0.1,Ko

2 = 0.1. (e-f)
Active case with large odd moduli, the spectrum is gapped B = 1, µ1 = 0.3, µ2 =
0.3,Ko

1 = 0.5,Ko
2 = 0.7. (g-h) Purely active case, spectrum is imaginary and gapped

B = µ1 = µ2 = 0,Ko
1 = 0.5,Ko

2 = 0.7.
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Chapter 4. Flexural waves 4.2. Manifestation of activity

eigenmodes mix the fields φ‖ and w and have the following expressions

λ2(q) =
1

2

{
µ2 + (B + µ1 + µ2)q2 +

√
[µ2 + q2(B + µ1 + µ2)]

2 − 4q4(B + µ1)µ2

}
λ3(q) =

1

2

{
µ2 + (B + µ1 + µ2)q2 −

√
[µ2 + q2(B + µ1 + µ2)]

2 − 4q4(B + µ1)µ2

}.
(4.16)

We note that λ1(0) = λ2(0) = µ2 and λ3(0) = 0. The φ⊥ mode produces a finite
frequency at infinite wavelength, together the mode identified by λ2. A plot of
λ(q) for a passive plate is shown in Fig. 4.1a,b.

Active case

When the active moduli are turned on, the spectrum acquires an imaginary part.
If the active moduli are small with respect to the passive moduli, the bands can
intersect themselves. In figure 4.1c,d we observe for q ' 0.4 an intersection of
two bands; the bands are complex-conjugated before the intersection takes place
and both real after the intersection (in panel c we see that both the imaginary
parts vanish and that the real parts bifurcate). For higher values of q two bands
re-merge, producing a complex-conjugate pair (the second intersection is visible
only in the parametric plot, Fig. 4.1d).

We empirically observe that, increasing the odd moduli and lowering the
passive moduli, the bands start to lay on different regions of the complex plane
(Fig. 4.1e,f); it is possible to draw a curve in the complex plane that does not
intersects the spectrum, yet divides the complex plane into two regions. We refer
to this situation as a gapped band-system

If the passive moduli are set to zero, the spectrum is composed by a vanishing
band and two purely imaginary bands. This is the easiest case in which the
band-system is gapped and we will study it in detail in the following section

4.2 Manifestation of activity

In this section we want to provide an intuition of the effects of activity on
the plate’s dynamics. We focus on two aspects. First, we study the infinite
wavelength behaviour of the plate, where the displacement field is homoge-
neous. Secondly, we expand the analysis to q 6= 0, providing a rendering of the
deformation and the strain of an active and passive eigenmode.

Infinite wavelength

We study spatially uniform waves setting q = 0 in the equations of motion

i
Γh2

12
ω

φxφy
w̄

 =

 µ2 Ko
2 0

−Ko
2 µ2 0

0 0 0

φxφy
w̄

 . (4.17)
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Chapter 4. Flexural waves 4.2. Manifestation of activity

The eigenvectors of the dynamical matrix are

ψ0 =

0
0
1

 ψ± =

 1
±i
0

 , (4.18)

with eigenvalues λ0 = 0, λ± = µ2 ± iKo
2 , so that

ω0 = 0 iω± =
12

Γh2
(µ2 ± iKo

2 ). (4.19)

The vertical oscillation of the plate ψ0 has zero frequency at infinite wavelength.
On the contrary, the oscillation of the angular fields ψ± has a finite frequency.
We now study the time evolution of the two angular modes. Let µ̃2 = 12

Γh2µ2

and K̃o
2 = 12

Γh2K
o
2 ,(

φx
φy

)
(x, t) = Re

[(
1
±i

)
e−(µ̃2±iK̃o

2 )t

]
= e−µ̃2t Re

[(
e∓iK̃

o
2 t

e∓iK̃
o
2 t±iπ/2

)]

= e−µ̃2t

 cos
(
K̃o

2 t
)

cos
(
∓K̃o

2 t± π/2
)

= e−µ̃2t

 cos
(
K̃o

2 t
)

cos
(
K̃o

2 t− π/2
)

= e−µ̃2t

cos
(
K̃o

2 t
)

sin
(
K̃o

2 t
) .

(4.20)

The two modes ψ± display the same behaviour: the vector φ rotates in the x-y
plane, while being exponentially damped. The attenuation rate is proportional
to the passive modulus µ2—this is the typical effect of the strong drag on
passive systems. Since the wave is spatially uniform, all the derivative terms
in the expression for the strain (3.4) are equal to zero and the only non-zero
strain component is the transverse strain, which is proportional to the vector φ,
uαz = φα/2. The rotation of the vector φ traces an active cycle that extracts
energy in order to balance the dissipation led by the drag (proportional to Γ).

Active vs. passive mode comparison In Fig. 4.2 we show two renderings
of an active and a passive eigenmodes. When q is finite, the deformation involves
both the vertical displacement and the angular fields, because the dynamical
matrix is not block diagonal anymore. The passive mode is obtained from a
dynamical matrix that has B = 1, µ1 = 0.3, µ2 = 0.3 and vanishing odd moduli
Ko

1 = Ko
2 = 0. The active mode is realized only with Ko

2 : B = 0, µ1 = 0, µ2 =
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Chapter 4. Flexural waves 4.2. Manifestation of activity

(a) Strain space.

(b) Passive mode. (c) Active mode.

Figure 4.2: Perspective and top view of bulk flexural eigenmodes.

0,Ko
1 = 0,Ko

2 = 1. We colour a slice of the plate according to the local transverse
strain. The tone of the colour depends on the direction of the strain in the plane
uxz-uyz, while the opacity is proportional to the norm

√
(uxz)2 + (uyz)2.

We observe that the passive mode oscillates along a straight line in the strain
space, passing periodically through the origin (zero opacity). On the contrary,
the active mode carries out a circle in the strain space: the slice changes colour
without loss of opacity. The energy extracted along the circle, proportional to
the area covered in the strain plane, allows the propagation of the wave in time.

The eigenmodes of a passive plate necessarily trace straight lines in the strain
space. In fact, from (4.15), any passive plate has a mode that involves only
φ⊥, in which φ oscillates in a direction orthogonal to the wavevector q. For
that eigenmode w = 0, and uαz = 1

2 (∂αw + φα) = 1
2φα. Thus, the transverse

strain uαz oscillates in the direction perpendicular to q, together with φα. The
other two modes couple φ‖ and w. The strain component perpendicular to q
is identically zero, because here φ⊥ = 0 and ∇⊥w = 0. These two modes then
oscillate parallel to q and trace a straight line in the strain space. When Ko

2

is turned on, it provides an odd coupling between φ⊥ and φ‖ and causes the
“rotation” of the eigenmodes in the strain space.
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Chapter 4. Flexural waves 4.3. The topological invariant

4.3 The topological invariant

We set ourselves to the purely active case, in which the passive moduli B,µ1, µ2

are set to zero. Then

M(q) =

 0 Ko
1q

2 +Ko
2 iKo

2qy
−Ko

1q
2 −Ko

2 0 −iKo
2qx

iKo
2qy −iKo

2qx 0

 (4.21)

and the spectrum is

λ0(q) = 0 λ±(q) = ±i
√

(Ko
2q)

2 + (Ko
1q

2 +Ko
2 )2. (4.22)

The opening of the gap is regulated by Ko
2 . We assume Ko

2 6= 0, and define

γ :=
Ko

1

Ko
2

; (4.23)

this allows us to write the dynamical matrix as

M(q) = iKo
2

 0 −i(γq2 + 1) qy
i(γq2 + 1) 0 −qx

qy −qx 0

 . (4.24)

The matrix structure is thus controlled uniquely by γ. We write the last matrix
as a linear combination of the matrices

Sx =

0 0 0
0 0 −1
0 −1 0

 Sy =

0 0 1
0 0 0
1 0 0

 Sz =

0 −i 0
i 0 0
0 0 0

 , (4.25)

so that
M(q) = iKo

2
~M(q) · ~S (4.26)

with

~M(q) =

 qx
qy

γq2 + 1

 (4.27)

and ~S = (Sx, Sy, Sz). In the end, we define the typical active frequency ωo =
12Ko

2

Γh2 so that the wave equation assumes the form of an eigenvalue problem for a
hermitian matrix

ω

(
φ
w̄

)
= ωo

(
~M(q) · ~S

)(
φ
w̄

)
. (4.28)

{Si} is a set of hermitian traceless matrices that satisfy the commutation

relations [Si, Sj ] = iεijkSk of su(2). The eigenvalues of ~M · ~S are

ω/ωo =
{

0,±
√
M2
x +M2

y +M2
z

}
= {0,±

√
q2 + (γq2 + 1)2}. (4.29)
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Chapter 4. Flexural waves 4.3. The topological invariant

Figure 4.3: Imaginary spectrum (a-c) and Berry curvature (d-f) when the passive
moduli vanish. The spectrum has an open gap if Ko

2 6= 0. In a,d, γ = −3. The
non-zero bands have a mexican-hat shape and the curvaure is concentrated along an
annulus. In b, e, γ = −0.01, thus the the bands have only one local extremum and the
Berry curvature is concentrated at q = 0. In c, f, γ = 2, the spectrum bands have one
local extremum and the curvature has no defined sign, giving a zero Chern number.
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Chapter 4. Flexural waves 4.3. The topological invariant

The bands have a Mexican-hat shape if γ < −1/2, otherwise they have a parabolic
shape, with a minimum at q = 0 (Fig. 4.3).

The hermitian matrix ~M(q) · ~S can be considered a Bloch Hamiltonian over
the space of wave-vectors, the momentum space, which is R2 . The eigenvectors
then define a vector bundle over such manifold. Since R2 is contractible, the
bundle is necessarily trivial. However, we will see that in this case R2 can
be effectively compactified to a sphere, which can be the base manifold of a
non-trivial bundle.

First of all we have to notice that a multiplicative factor does not affect the
eigenvectors so we can divide the Hamiltonian by || ~M ||, which is always non-zero,
and focus on

N (q) = n̂(q) · ~S, (4.30)

with n̂ = ~M/|| ~M ||. This Hamiltonian has the same eigenvectors of M(q).

We stress that ~M : R2 → R3, while n̂ : R2 → S2. The explicit expression for
n̂ is:

n̂(q) =
1√

q2 + (1 + γq2)2

 qx
qy

γq2 + 1

 (4.31)

Then, if γ 6= 0, which means Ko
1 6= 0, limq→∞ n̂ does not depend on the chosen

direction. Identifying all the points that lay at infinity, we compactify the
momentum space to a sphere, which we call B. In this case, the Chern number
becomes a well defined topological invariant and the eigenmodes can describe a
non-trivial bundle over the momentum space.

We now calculate the Berry curvature F of the eigenmodes. We define the
function

S : S2 → Hermit3

v̂ 7→ v̂ · ~S,
(4.32)

that is a Hamiltonian over the sphere S2. Our Hamiltonian N can be re-written
as N = S ◦ n̂, i.e.

N : R2 n̂−→ S2 S−→ Hermit3. (4.33)

We see that N is the pullback through n̂ of S . Hence, the Berry curvature
induced by the eigenmodes of N on R2 is equal to the pull-back through n̂ of
the Berry curvature FS

2

induced on the sphere by the bands of S .

F = n̂∗FS
2

(4.34)

The first Chern number can be calculated exploiting the pullback:

C =
1

2π

∫
R2

n̂∗FS
2

. (4.35)

Berry curvature on the sphere In order to calculate the Berry curvature of
the sphere induced by S , we calculate the eigenvectors of n̂·~S. We exploit the fact
that ~S is a spin 1 representation of su(2). Let n̂ = (sin θ cosφ, sin θ sinφ, cos θ)
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be an arbitrary unit vector and ẑ = (0, 0, 1) the unit vector along the z axis. Let
R be a rotation such that n̂ = Rẑ and D the representation of rotations that
satisfies

D−1SiD = RijSj . (4.36)

This allows to express n̂ · ~S as

n̂ · ~S = (Rẑ) · ~S

= ẑ · (R>~S)

= R>zjSj

= DSzD
−1.

(4.37)

Then, if ψ(ẑ) is an eigenvector of Sz, ψ(n̂) = Dψ(ẑ) is an eigenvector of n̂ · ~S.
We now use the precise rotation and the corresponding representation to

calculate the eigenvectors of n̂ · ~S. We denote Rv(α) the counterclockwise

rotation around the axis v̂ of angle α and Dv(α) = exp
(
−iα v̂ · ~S

)
is its spin

representation. We have
n̂ = Rz(φ)Ry(θ)ẑ. (4.38)

The eigenvectors of Sz are

ψ0(ẑ) =

0
0
1

 ψ±(ẑ) =
1√
2

 1
±i
0

 (4.39)

with eigenvalues {0,±1}. The eigenvectors ψ(n̂) = Dz(φ)Dy(θ)ψ(ẑ) are

ψ0(n̂) =

−i cos θ sin θ
−i sin θ sin θ

cos θ


ψ±(n̂) =

1√
2

 cos θ cosφ∓ i sin θ
±i cosφ+ cos θ sinφ

−i sin θ

. (4.40)

We calculate the expression of the Berry connection by its definition (2.9) and

obtain AS
2

± = ± cos θ dφ and AS
2

0 = 0. The Berry connection F = dA is then

FS
2

0 = 0 FS
2

± = ∓ sin θ dθ ∧ dφ. (4.41)

We notice that FS
2

− is the volume form of the sphere, so that
∫
S2 F

S2

− = 4π.

The measure of the North or South hemisphere HN/S is
∫
HN/S

FS
2

− = 2π.

Calculation of the Chern number Now we can discuss the integral of
Eq. (4.35). Depending on the behaviour of n̂, the pullback is performed differently
and gives different results.
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Chapter 4. Flexural waves 4.3. The topological invariant

(a) γ < 0. (b) γ = 0. (c) γ > 0.

Figure 4.4: A section of ~M(q) and of the unit sphere in the (x, z)-plane. In red,
the projection on the unit sphere. The behaviour of the map n̂ can be understood
visualizing the map ~M of Eq. 4.27. (a) ~M describes a paraboloid that encloses the
origin, then n̂ = ~M/|| ~M || covers the whole unit sphere. (b) ~M describes a horizontal
plane, whose projection on the unit sphere covers the North hemisphere. (c) ~M
describes a paraboloid pointing upwards. Then, n̂ covers the same portion of the unit
sphere two times, with opposite orientation.

γ < 0 The map n̂ : R2 → S2 is injective and covers the whole sphere—apart
from the South pole, which has measure zero. Then n̂(R2) = S2 and the
integral in (4.35) can be pushed to the sphere, so that

C− =
1

2π

∫
S2

FS
2

= 2 (4.42)

γ = 0 The map n̂ is injective and covers the north Hemisphere: n̂(R2) = HN .
Pushing the integral to the sphere, we obtain

C− =
1

2π

∫
HN

FS
2

= 1. (4.43)

γ > 0 The map n̂ covers the same portion U of the unit sphere two times, with
opposite orientation. The two contributions are opposite and give

C− =
1

2π

(∫
U

FS
2

−
∫
U

FS
2

)
= 0. (4.44)

The explicit form of F can be obtained noting that the Berry curvature on
the sphere can be expressed as

FS
2

± = ∓1

2
εijkni dnj ∧ dnk (4.45)

where n̂ = (sin θ cosφ, sin θ sinφ, cos θ). Then substituting ni = Mi(k)/|| ~M(k)||,
we obtain:

F±(q) = ∓
~M

| ~M |3
·

(
∂ ~M

∂qx
× ∂ ~M

∂qy

)
dqx ∧ dqy. (4.46)
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Substituting the expression for ~M(k) given by Eq. 4.27 we end up with:

F±(q) = ∓ 1− γq2

[q2 + (γq2 + 1)2]3/2
dqx ∧ dqy (4.47)

The Berry curvature has a fixed sign if γ < 0, i.e. if the odd moduli have
opposite sign. If γ < −1/4, it is concentrated along an annulus at finite q, while
for −1/4 < γ < 0 it concentrates at the origin of the momentum space q = 0.
When the odd moduli have the same sign, the Berry curvature of each band has
not a defined sign anymore, and indeed its integral gives a zero Chern number
(Fig 4.3 d-f).

4.4 Mapping to odd viscosity

The equations that govern the flexural waves in an overdamped active plate are
incredibly close to the ones that describe an odd-viscous fluid. The topological
properties of the latter have been first investigated Delplace et al. in [22] in the
context of equatorial waves and a generalization to odd viscous fluids was done
by Souslov et al. in [21]. There, the physical fields are the density ρ and the
velocity v. The parameters are the average density ρ0, a typical frequency ωB
analoguous to the cyclotron frequency, the viscosity ν, odd viscosity ν0 and the
speed of sound c. The linearized equations for a two-dimensional odd-viscous
fluid are

∂tρ(r, t) = −ρ0∇ · v(r, t)

∂tv = −c2∇ρ/ρ0 + ωBv∗ + ν∇2v + νo∇2v∗,
(4.48)

where v∗ ≡ (vy,−vx) is the velocity rotated by 90◦. Plane waves proportional
to ei(kx−ωt) are studied. The following dimensionless variables are defined:
ρ̄ = ρ/ρ0, v̄ = v/c, ω̄ = ω/ωB ,q = kc/ωB ,m = ωBν/c

2,mo = ωBν
o/c2. Then

the dimensionless equations for the waves are

ω̄

 ρ̄
v̄x
v̄y

 =

 0 qx qy
qx −imq2 −i(1−moq2)
qy i(1−moq2) −imq2

 ρ̄
v̄x
v̄y

 . (4.49)

We compare these equations with the equations of flexural waves for an
active plate with B = µ2 = 0. We define the dimensionless variables ω̄ = ω/ω0,

µ̄1 = µ1/K
o
2 . We recall the definitions of w̄ = w

√
12
h , q = k h√

12
, γo = Ko

1/K
o
2

and the typical active frequency ωo =
12Ko

2

Γh2 . Then

ω̄

φxφy
w̄

 =

 −iµ̄1q
2 −i(1 + γoq2) qy

i(1 + γoq2) −iµ̄1q
2 −qx

qy −qx 0

φxφy
w̄

 (4.50)

If we identify µ̄1 ↔ m and γo ↔ −mo, the two matrices are similar. The explicit
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Chapter 4. Flexural waves 4.5. Edge modes

mapping is given by  ρ̄
vx
vy

↔
0 0 1

0 −1 0
1 0 0

φxφy
w̄

 , (4.51)

thus
w̄ ↔ ρ̄ φx ↔ v̄y φy ↔ −v̄x. (4.52)

Hence the results obtained for odd-viscous systems can be mapped to odd-elastic
plates.

4.5 Edge modes

In this section we discuss the existence of edge modes for a purely active plate
in the overdamped regime. Following [21], we estimate the penetration depth
and the profile of the edge waves. We then present the numerical simulations
on odd viscosity done in [21], which we adapt to odd-elastic plates through the
exact mapping.

As we discussed in section 2.5, the first Chern number is related to the
existence of edge modes. The frequency bands are gapped in the bulk, meaning
that no wave with frequency in the gap can propagate there. When the first Chern
number is non-zero, chiral edge modes propagate at the boundaries of the system
with frequencies in the band gap. The principle of bulk-edge correspondence
tells us that the expected net number of edge states at an interface between two
systems L and R with invariants CL/R is N = CL

− − CR
− [21].

Profile of the edge modes We consider a purely active plate. Its frequency
bands are given by

ω± = ±ω0

√
q2 + (γq2 + 1)2. (4.53)

The edge modes can be studied from the spectrum equation (4.53). We consider
the simplified geometry of a semi-infinite plate in the upper (x, y)-half-plane,
i.e. {(x, y) ∈ R2 | y > 0} = R × R+. We look for solutions of the form
exp{i[qxx̄+ (qy + iκ)ȳ − ωt]}, where x̄ = x

√
12/h and ȳ = y

√
12/h are the

dimensionless spatial coordinates. The penetration depth is given by κ−1, and
must be positive. The wave is exponentially damped for y → +∞. We study
edge modes that propagate along the interface with a long wavelength, thus
we assume qx = 0. Since the edge modes are usually non-gapped, we impose
ω(qx = 0) = 0 in the dispersion relation, obtaining:

(qy + iκ)2 +
[
1 + γ(qy + iκ)2

]2
= 0, (4.54)

that has solutions:

qy + iκ =
±i±

√
−1− 4γ

2γ
. (4.55)

We distinguish two cases, in which the square root behaves differently
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Figure 4.5: Penetration of the edge modes. For −1/4 < γ < 0 the mode is purely
damped. For γ < −1/4 the mode oscillates while being damped. For γ > 0 there are
still edge modes, but they are not topologically protected anymore.

γ > −1/4 The acceptable solutions (with positive κ) are:

qy = 0 κ± =
±1 +

√
1 + 4γ

2γ
(4.56)

meaning that there are two edge modes, both purely damped in the y
direction.

In the limit of γ → 0 (Ko
1 → 0), κ goes to {+∞, 1}, thus κ−1

± → {0, 1}.
One mode has a vanishing penetration depth, thus it does not allow a
hydrodynamic description. Only the other mode is observable.

If γ → +∞, κ−1 decays as 1/
√
γ for both the modes. When Ko

2 vanishes
compared to Ko

1 , the penetration depth diverges and the edge modes fully
propagate in the bulk.

γ < −1/4 Both damping ad wave propagation are displayed

qy = ±
√
−1− 4γ

2γ
κ =

1

2|γ|
(4.57)

The profile of the edge mode necessarily decays and oscillates away from
the edge (blue line in Fig. 4.5)

In the limit for γ → −∞, qy → 1/
√
|γ| and κ = 1/(2|γ|). The typical

lengths of damping and oscillation both grow.

We have predicted the profile of the edge modes for all the values of γ =
Ko

1/K
o
2 . The propagation of the modes is topologically protected only when

the bulk Chern number is non-zero i.e. if γ < 0. This is shown by numerical
simulations.
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(a) γ = − 1
16

(b) γ = −9

(c) γ > 0

Figure 4.6: Simulations showing edge states adapted from [21]. A source that
produces a perturbation with frequency in the band gap is indicated by the red star.
(a) A negative small value of γ = Ko

1/K
o
2 allows the propagation of a unidirectional

edge mode that surpasses the obstacle without back-scattering. The profile of the mode
is shown in linear- and log-scale, showing agreement with theoretical predictions. (b)
A large negative value of γ allows the propagation of a topologically-protected mode
with a oscillating profile. The profile of the mode is in agreement with the predictions.
(c) When γ > 0, topological protection is loss and two modes propagate away from the
source in opposite directions. Back-scattering on the obstacle is observed.

Numerical simulations We adapt the results of the simulations made by
Souslov et al. [21] with COMSOL Multiphysics software, through the exact
mapping to odd-elasticity. To all extents, these describe an odd-elastic plate in
the overdamped regime with the passive moduli set to zero.

The plate has a keyhole shape (Fig. 4.6) and is supposed to be confined by a
hard wall. The boundary conditions are φ · n̂ = 0, where n̂ is the unit vector
normal to the boundary, in combination with zero force perpendicular to n̂. A
small source with frequency in the gap is located at a point of the boundary.

The wave originated from the source propagates along the boundaries of the
system, without diffusion in the bulk. When γ < 0, i.e. if Ko

1 and Ko
2 have

opposite signs, the Chern number is non-zero and the perturbation propagates
unidirectionally, with direction set by Ko

2 . The wave surpasses the obstacle
without back-scattering, showing topological protection (Fig. 4.6(a-b)). Vice-
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versa, if γ > 0, i.e. if the two odd moduli have the same sign, the bulk is
topologically trivial and the modes are not topologically protected. Two modes
propagate away from the source in opposite directions and when one encounters
the obstacle a portion of the wave is back-scattered (Fig. 4.6c).

The radial profiles of the edge modes are verified to be in agreement with
the theoretical predictions. For low γ, the wave is exponentially damped, with
typical length h/

√
12 (κ−1 = 1 in dimensionless units) (Fig. 4.6a). For large

(negative) values of γ, the profile of the wave oscillates while being damped. The
wavelength is 2π/qy ' 2π

√
|γ|h/

√
12, the penetration depth is 2|γ|h/

√
12.

4.5.1 Effects of the passive moduli

When the passive moduli are turned on, the dynamical matrix M obtains an
hermitian part. Vice-versa, the Hamiltonian 1

iM is Hermitian in the purely
active case and gets an anti-hermitian component when passive moduli are
present.

Small passive coefficients continuously deform the band structure, as we
showed in Fig. 4.1. There are still three-well defined bands with no crossing, so
that the spectrum remains gapped. The µ1 6= 0 corresponds to a finite ordinary
viscosity ν for the odd-viscous fluid. In [21], it has been stated that for small ν, a
first Chern number can still be assigned to the bands, equal by continuity to the
one obtained at vanishing ordinary viscosity. There are some subtleties due to
the Hamiltonian being non-Hermitian, a suggested reading is [41]. It is expected
that all the phenomenology discussed in the absence of ordinary viscosity ν = 0
will also occur when it ν is not strictly zero, up to an attenuation of all the
waves, which might depend on the wave-vector. Then, the same expectations
are addressed to the case of small passive elastic moduli B,µ1, µ2.
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Conclusions

In this work we have studied the behaviour of an active plate with odd elasticity.
We have worked within the Reissner-Mindlin theory—permitting the points
along the lines perpendicular to the midplane not to end up along the lines
perpendicular to the deformed midplane—and considered a plate made of an
odd-elastic material with cylindrical isotropy and no internal torques.

We have found that the horizontal deformations of the midplane are decou-
pled from the flexural deformations of the plate; the former are described by
2D odd elasticity, while the latter are described by three coupled differential
equations, which show new phenomena. The plate has three independent cycles
of deformation that extract energy from the system: in addition to the one
obtained deforming horizontally the midplane (already identified in 2D odd elas-
ticity), we have two cycles that regard the flexural dynamics: one is analogous
to the planar cycle, as it involves the same shear components—as well as the
same odd modulus Ko

1—but has a different distribution across the thickness of
the plate; the other consists in a rotation of the vector φ and extracts an energy
amount proportional to Ko

2 .
Then, we have focused on the flexural dynamics, discovering that the band-

system becomes gapped for increasing activity. The analytical study of the
topological properties has been performed in the simplified case of a pure active
plate, i.e. setting all the passive elastic moduli to zero. When both the active
moduli are non-zero, the momentum space can be compactified to a sphere,
allowing a well defined Chern number. We have found that the Chern number is
equal to two when the odd moduli have opposite signs, and vanishes otherwise.
We have then estimated the profile shape and the penetration depth of the edge
modes. Finally, we have provided an exact mapping of the flexural dynamics with
non-zero µ1,K

o
1 ,K

o
2 onto the odd-viscous model. This has allowed us to adapt the

simulations performed in [21] to our system. The simulations show that, as long
as the topological invariant is non-zero, the edge modes propagate unidirectionally
and do not backscatter when encounter obstacles; while they propagate in both
the directions and do backscattering when topological protection is absent.
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