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Abstract

Physics often entails beautiful mathematics, and graphene nanocones are no exception. In
this paper, the tight-binding matrices of honeycomb triangles and trapezia are investigated,
and intriguing mathematical features of their determinants are uncovered. In particular,
three identities for the Hückel determinant are conjectured, involving permanents and
Pascal matrices, or variants of them, with binomial coefficients as their elements. This
establishes connections with counting problems in statistical mechanics and has implications
in theoretical chemistry.
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Introduction

Graphene1–4 (Fig. 1c) is an allotrope of carbon consisting of a single layer of atoms bound
together in a chicken-wire pattern of hexagons, and exhibits fascinating properties arising
from its two-dimensional honeycomb lattice nanostructures. In fact, it can be considered
to be a basic block for constructing graphitic materials of all other dimensionalities:2,3 it
can be wrapped up into 0D fullerenes (Fig. 1a), rolled into 1D nanotubes (Fig. 1b) or
stacked into 3D graphite (Fig. 1d). Other noteworthy graphene structures are nanocones,
nanoflakes and nanoribbons.

(a) 0D (b) 1D (c) 2D (d) 3D

Figure 1: Structural models of graphitic nanomaterials. From left to right: C60

fullerene, a carbon nanotube, graphene and graphite (Susi,5 2015).

Brief history of graphene Graphene has likely been unconsciously produced in small
quantities for centuries, through the use of pencils and other similar applications of graphite.3

Theoretically, it has been studied for decades, and widely used to describe features of various
other carbon-based materials.
On the other hand, graphene was presumed not to exist as a free-standing material and be-
lieved to be thermodynamically unstable2 with respect to the formation of curved structures
such as fullerenes and nanotubes. But all of a sudden, the “impossible” material turned
into reality when, in 2004, it was properly isolated and characterized by Andre Geim and
Konstantin Novoselov at the University of Manchester. They pulled graphene layers from a
lump of graphite with a common adhesive tape, using a process of mechanical exfoliation
called either micromechanical cleavage or the Scotch tape technique.
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Their simple but ingenious idea resulted in the Nobel Prize in Physics in 2010 for their
«groundbreaking experiments regarding the two-dimensional material graphene».6 Their
publication, and the surprisingly easy preparation method that they provided, sparked an
actual “graphene rush”, which is still ongoing: research has expanded and split off into many
different subfields, exploring the countless extraordinary properties of the “wonder material”.

The wonder material Among the things that make graphene so special, its electronic
behaviour is definitely one of the most remarkable. Each carbon atom in a graphene sheet
is connected to its three nearest neighbours by a σ-bond,3 and contributes one electron
to a conduction band that extends over the whole sheet. These conduction bands make
graphene a zero-gap semimetal with unusual electronic qualities that are better explained
by theories for massless relativistic particles rather than the Schrödinger equation.2 In
fact, the interaction beetween the charge carriers and the periodic potential of graphene’s
honeycomb lattice gives rise to new quasiparticles that show linear, rather than quadratic,
dependence of energy on momentum, and are accurately described by the Dirac equation,
with an effective speed of light vF ≈ 106m/s.2,3 These quasiparticles, called massless Dirac
fermions ,3 can be seen either as electrons that lost their rest mass m0, or as neutrinos that
gained the electron charge e, and provide a new way to probe quantum electrodynamics
phenomena,2 by mesuring graphene’s electronic properties.
Furthermore, graphene conducts heat better than diamond and electricity better than silver,
and it is also about 200 times stronger than would be the strongest steel of the same
thickness.1,7 It strongly absorbs light of all visible wavelengths, which accounts for the black
color of graphite; yet a single graphene sheet is nearly transparent because of its extreme
thinness. The material is also impermeable, flexible and incredibly light, and exhibits several
other outstanding qualities7 on which we will not dwell.

A chicken-wire-like future All these exceptional properties make graphene a unique
material, not only from the point of view of fundamental physics, but also for its potentially
profitable applications.
Despite its short history, it has rapidly become a valuable and useful nanomaterial with a
global market worth millions of dollars.7 In fact, along with some new considerable chal-
lenges, graphene has brought great promises, including high-performance semiconductors,
more efficient electric batteries, and even a space elavator,8 which would eventually turn
out to be the most ambitious human engineering work of all time.

In this paper we investigate the matrices of graphene nanocones and nano-conical-frusta
(truncated nanocones), in a tight-binding approximation. In particular, we uncover intriguing
mathematical features regarding the Hückel determinant and conjecture identities involving
the Pascal matrix and related ones, with binomial coefficients as matrix elements.
To achieve this purpose, we consider honeycomb triangles and trapezia with n + 1 rows
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and Bloch boundary conditions at the end of each row. It is deemed convenient to replace
the phase factors e±iθ with two free parameters x and y, or by parameters (x,y) where
x = (x0, ..., xn) and y = (y0, ..., yn).
The manuscript is organized in three chapters: in the first one we introduce the preliminary
concepts, necessary to contextualize this work; the second chapter is dedicated to the
conjectures, while in the third one we discuss results and future directions.
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Chapter 1

Preliminary concepts

In this first chapter we discuss the basic elements and provide the essential definitions
that will contribute to build a coherent theoretical framework. Moreover, we include useful
examples and figures, for a better fruition by the readers. Finally, we dedicate a small
section to contextualize the present work, mentioning the circumstances and the ideas that
first encouraged it.

1.1 Graphene nanocones

In the final analysis, one might say that graphene’s greatest blessing lies in its element:
the unique ability of carbon9 in forming strong covalent bonds to construct stable and
highly symmetrical geometries, is at the basis of the entire nanotechnology industry, organic
chemistry, and eventually of life itself.
As hinted in the Introduction, a carbon atom can be thought as a basic building unit for a
vast variety of topologies: starting from a graphene sheet, one can obtain non-planar struc-
tures by introducing polygonal defects that provide the curvature. For instance, pentagonal
defects in the two-dimensional graphitic network produce fullerene, which, wrapped around
itself, looks essentially zero-dimensional.2,3, 9

Among all the countless carbon edifices, some received less attention than others:9,10 this is
the case of graphene nanocones (Fig. 1.2). Despite the fact that they have been observed11,12

just after the discovery of nanotubes in 1991, these conical constructions have just recently
started attracting a considerable interest, due to their relatively easy preparation method
and many other peculiar properties that make them a scientifically and technologically
relevant class of nanostructures.9

Consider a nearly perfect monolayer of graphite: if from the center of a graphene hexagon,
we draw six lines that bisect the sides (Fig. 1.1a), we obtain six triangles with a carbon
atom of the hexagon at the tip, and rows of 1, 2, 3, ... hexagons. If five such triangles
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are rejoined by connecting lateral bonds, a conical honeycomb surface is obtained (Figs.
1.1b and 1.1c), with a pentagon at the top and rings of 5, 10, 15, ... hexagons. The apex
angle of this infinite nanocone is about 113°, the largest possible aperture for this class of
nanostructures. In Corannulene, C20H10, the pentagon is surrounded by a single ring of five
carbon hexagons (to which, from now on, we will also refer as benzenoids), with ten hydrogen
atoms attached to. It has the shape of a bowl, that can invert concavity by thermal activation.

(a) top view (b) top view (c) side view

Figure 1.1: Rise of a graphene nanocone. The extraction of a 60° wedge from a graphene
sheet(a), leads to the formation of a conical structure (b, c) by incorporation of a single
pentagonal defect in the hexagonal network (Figs. b and c by Evangelisti,13 2021).

Finite nanocones have several rings of benzenoids, covering a conical surface. The cap may
consist of a “carbon polygon” with a number of vertices from 1 to 5, causing five different
cone apertures, according to which the nanocones are classified. Those with smallest angle,
around 19°, were synthetized for the first time by Ge and Sattler in 1994,11 in the hot vapour
phase of carbon. The other types, corresponding to cone angles of 39°, 60°, 85° and 113°
were found by accident, under pyrolysis of hydrocarbons.14,15 It can be proved10,11 that
only these five classes of cones can be obtained from a single continuous graphitic sheet.
The typical length of a graphene nanocone is some tens of nanometers, corresponding to
order 108 carbon atoms, while inter lattice spacing is of a few ångströms.
The simplest approach to such structures is the tight-binding approximation. The tight-
binding Hamiltonian is a topological matrix named after Erich Hückel. Chemists parametrize
the Hückel matrix in the following way:

Hij =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

α i = j

β i, j adjacent
0 otherwise

where α and β are tight-binding parameters that depends on the atoms involved.
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The symmetry Cn of nanocones restricts the Hamiltonian to a single triangle with Bloch
boundary conditions on two sides.15

We give the following operational definitions:

Definition 1.1.1. A graphene nanocone of size n, is the conical surface formed by n rings
of benzenoids, where n is a positive integer.

Definition 1.1.2. Given a graphene nanocone of size n, a truncated nanocone (or conical
frustum) of size n − k, is the structure obtained by removing the first k rings from the
nanocone, with 0 ≤ k ≤ n.

According to these intuitive definitions, it is trivial that a graphene truncated cone can be
seen as a generalization of a nanocone, to which the frustum is reduced in the case k = 0.

Figure 1.2: Graphene nanocones. (a) Computer model of a graphene nanocone (Ter-
rones,16 2003). (b) Scanning electron microscope images of carbon nanocones (diameter
∼ 1µm) produced in the Kvaerner Carbon Black & Hydrogen Process (Knudsen, 2010).

1.2 Graphene triangles and trapezia

For our purposes, it is convenient to deal with 2D honeycomb triangles and trapezia, rather
than 3D nanocones and conical frusta. In fact, by exploiting the discrete rotational symmetry
of nanocones, we can just obtain the information from one of the equivalent triangles in
Fig. 1.1a and then, under proper Bloch boundary conditions, merge them together to get
the original conical structure. Obviously, the same applies for truncated nanocones and
trapezia.
For the sake of generality, in this discussion we will refer, as much as possible, to triangles
and trapezia of generic size n, leaving those with specific size for purely illustrative examples.

Although graphene triangles were already introduced earlier, here we provide a more
formal characterization:
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Definition 1.2.1. A graphene triangle of size n, is a triangle of carbon atoms that consists
of n + 1 rows with 1, 3, ..., 2n + 1 atoms.

Similarly to what happened with nanocones and conical frusta, we have:

Definition 1.2.2. Given a graphene triangle of size n, a graphene trapezium of size n − k,
is a trapezium of carbon atoms obtained by removing the first k rows from the triangle,
with 0 ≤ k ≤ n. It is formed by n − k + 1 rows with 2k + 1,2k + 3, ...,2n + 1 atoms.

1.2.1 The Hückel matrix

At this point, we have all the ingredients to introduce the main subject of this dissertation:

Definition 1.2.3. The Hückel matrix (tight-binding matrix) of a graphene triangle with
n + 1 rows and Bloch parameters (x,y), is a square block tridiagonal matrix Hn of size
(n + 1)2 such that:

Hn(x,y) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T0 R⊺
1

R1 T1 R⊺
2

R2 ⋱ ⋱

⋱ R⊺
n−1

Rn−1 Tn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Example 1.2.1. Hückel matrix of a honeycomb triangle with 5 rows and associated graph:

H4(x,y) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T0 R⊺
1

R1 T1 R⊺
2

R2 T2 R⊺
3

R3 T3 R⊺
4

R4 T4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The diagonal blocks in Hn are square matrices Tm(xm, ym) of size 2m + 1 that describe
closed chains with nearest-neighbour couplings. They exhibit the following structure:

Tm(xm, ym) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 ym
1 ⋱ ⋱

⋱ 1
xm 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2m+1

2
m
+
1
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Example 1.2.2. 5 × 5 matrix T2 with its graph:

T2(x2, y2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 y2
1 0 1

1 0 1
1 0 1

x2 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Links in the graph are represented by non-zero matrix elements Ti,i+1 = Ti+1,i = 1; the
extremal dots are also connected by a (dotted) link with directional weights T2m+1,1 = xm
and T1,2m+1 = ym. It is T0(x0, y0) = x0 + y0.
Besides, for any odd size 2m + 1, the following relation holds:

detTm(xm, ym) = xm + ym

The off diagonal rectangular matrices Rm, together with their transpose R⊺
m, represent the

link between matrices Tm−1 and Tm; they have size (2m + 1) × (2m − 1) and structure:

Rm =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 . . . 0
1

0
1

⋱

1
0

1
0 0 0 0 0 . . . 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2m−1

2
m
+
1

Example 1.2.3. Matrices Rm and their transpose for m = 1,2,3 ∶

R1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

R2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
1

0
1

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

R3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
1

0
1

0
1

0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

R⊺
1 = [ 0 1 0 ] R⊺

2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0
0 0 0
0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

R⊺
3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0
0 0 0
0 1 0
0 0 0
0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

8



The unit matrix elements in Rm and R⊺
m are the vertical links in the graph of Hn, joining a

dot in row m − 1 and a dot in row m.

The size of the matrix Hn is N = 1 + 3 +⋯ + (2n − 1) + (2n + 1) = (n + 1)2.

Example 1.2.4. 9 × 9 matrix H2 and related graph:

H2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x0 + y0 0 1 0

0 0 1 y1 0 1 0
1 1 0 1 0 0 0
0 x1 1 0 0 1 0

0 0 0 0 1 y2
1 1 0 1

0 1 0 1
1 1 0 1

0 0 0 x2 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Therefore, the graph of a Hückel matrix Hn(x,y) of size N can be described as a set of
vertices 1,2, ...,N with edges that connect vertex j and vertex k whenever Hjk ≠ 0. It
displays the nonzero matrix elements Hij =Hji = 1 as a non-oriented edge among vertices
i and j. The rows, with oblique edges, are the graphs of matrices Tm(xm, ym), while the
vertical edges represent the nonzero matrix elements of Rm and R⊺

m; extremal vertices of
each row are connected by a dotted oriented edge, with weight xm from left to right and ym
from right to left (Ex. 1.2.2).
The number of vertices is N = (n + 1)2; the number of oblique and vertical edges is n(n + 1)
and n

2 (n+ 1), respectively, while that of dotted edges is n+ 1 (one edge is the loop of vertex
1 with itself); finally, the total number of edges is n+1

2 (3n + 2).

When xm = ym = 1 ∀m ∶ 0 ≤ m ≤ n, the Hückel matrix Hn is almost doubly stochas-
tic:17 the sum of rows and columns is equal to 3, with the exception of n + 1 rows and
columns, where the sum is 2. The addition of a block Jn = diag[1, 0, 1, ..., 1] to Tn makes Hn

doubly stochastic, thus a convex combination of permutation matrices (Birkhoff’s theorem).

Allow us to spend a few words on the Hückel matrices of trapezia.

Definition 1.2.4. Given a honeycomb triangle with Hückel matrix Hn, the Hückel matrix
of a honeycomb trapezium with n−k+1 rows and Bloch parameters (x,y), is a square block
tridiagonal matrix Hk,n, obtained from the matrix Hn by deleting the first k2 rows and
columns. It has size N = (2k + 1) + (2k + 3) +⋯ + (2n + 1) = (n + 1)2 − k2 and the following
structure:

9



Hk,n(x,y) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Tk R⊺
k+1

Rk+1 Tk+1 R⊺
k+2

Rk+2 ⋱ ⋱

⋱ R⊺
n−1

Rn−1 Tn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Example 1.2.5. 21 × 21 matrix H2,4 with its graph:

H2,4(x,y) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

T2 R⊺
3

R3 T3 R⊺
4

R4 T4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

From Defs. 1.2.1 and 1.2.2 it is straightforward that H0,n =Hn and Hn,n = Tn.

1.2.2 The Hückel determinant

The determinants of the first Hückel matrices, with Bloch parameters x and y, are numerically
evaluated∗, both for honeycomb triangles and trapezia:

detH0 = x + y

detH1 = x
2
+ 3xy + y2

detH2 = x
3
+ 9x2y + 9xy2 + y3

detH3 = x
4
+ 29x3y + 72x2y2 + 29xy3 + y4

detH4 = x
5
+ 99x4y + 626x3y2 + 626x2y3 + 99xy4 + y5

detH5 = x
6
+ 351x5y + 6084x4y2 + 13869x3y3 + 6084x2y4 + 351xy5 + y6

detH6 = x
7
+ 1275x6y + 64974x5y2 + 347020x4y3 + 347020x3y4 + 64974x2y5 + 1275xy6 + y7

detH7,7 = x + y

detH6,7 = x
2
+ 51xy + y2

detH5,7 = x
3
+ 529x2y + 529xy2 + y3

detH4,7 = x
4
+ 2005x3y + 23608x2y2 + 2005xy3 + y4

detH3,7 = x
5
+ 3747x4y + 203402x3y2 + 203402x2y3 + 3747xy4 + y5

detH2,7 = x
6
+ 4559x5y + 544100x4y2 + 2614205x3y3 + 544100x2y4 + 4559xy5 + y6

detH1,7 = x
7
+ 4699x6y + 719406x5y2 + 7688684x4y3 + 7688684x3y4 + 719406x2y5 + 4699xy6 + y7

∗For these and other numerical computations, a version of Wolfram Mathematica 12 Student
Edition was used.
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The evaluations show the interesting fact that all coefficients are positive, and other features
that will be proven in general.
In particular, by iterating Schur’s reduction for block matrices (see Appendix A), it was
found17 that the determinant of a Hückel matrix of size (n + 1)2 shrinks to the determinant
of a matrix of size n + 1, with binomial coefficients. Lunnon’s paper18 gave the hint that
Hückel determinants are characteristic polynomials of the symmetric Pascal matrices.
Before embarking in the study of Hückel determinants of honeycomb triangles and trapezia,
let us introduce Pascal matrices in an appropriate way.

1.3 Pascal matrices

The Pascal matrix is a square matrix containing the binomial coefficients of Pascal’s triangle
as its elements, and there is a vast literature about it.18–20 In the next chapter, we will
unveil a truly surprising relation involving these matrices, while here we limit ourselves to
recalling some relevant facts around them.

The magical patterns of Pascal’s triangle have enchanted mathematicians since the dawn
of time.21 It can be represented as a square matrix in three different ways: as either a
lower-triangular, an upper-triangular, or a full, symmetric matrix. The (n + 1) × (n + 1)
lower-triangular matrix Pn has nonzero elements given by (Pn)ij = (

i
j
), j ≤ i. Its 5 × 5

truncation is shown below:

Example 1.3.1. Lower-triangular Pascal matrix P4:

P4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
0
0
)

(
1
0
) (

1
1
)

(
2
0
) (

2
1
) (

2
2
)

(
3
0
) (

3
1
) (

3
2
) (

3
3
)

(
4
0
) (

4
1
) (

4
2
) (

4
3
) (

4
4
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Unsurprisingly, the transpose matrix of Pn is the corresponding upper-triangular Pascal
matrix, with nonzero elements (P ⊺

n )ij = (
j
i
), i ≤ j.

Example 1.3.2. 5 × 5 upper-triangular Pascal matrix P ⊺
4 :

P ⊺
4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
0
0
) (

1
0
) (

2
0
) (

3
0
) (

4
0
)

(
1
1
) (

2
1
) (

3
1
) (

4
1
)

(
2
2
) (

3
2
) (

4
2
)

(
3
3
) (

4
3
)

(
4
4
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1
1 2 3 4

1 3 6
1 4

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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The inverse matrix of Pn has the same binomial elements, but with alternating signs. This
property arises from the following inversion theorem:17

an =
n

∑
k=0

(
n

k
)bk ⇒ bn =

n

∑
k=0

(−1)k(
n

k
)ak

Example 1.3.3. Inverse matrix of P4:

P −1
4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
0
0
)

−(
1
0
) (

1
1
)

(
2
0
) −(

2
1
) (

2
2
)

−(
3
0
) (

3
1
) −(

3
2
) (

3
3
)

(
4
0
) −(

4
1
) (

4
2
) −(

4
3
) (

4
4
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−1 1
1 −2 1
−1 3 −3 1
1 −4 6 −4 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

It has been proved19 that the product PnP ⊺
n is the Cholesky factorization of the symmetric

Pascal matrix Qn, that displays binomial elements (Qn)ij = (
i+j
j
), with i, j = 0, ..., n.

Example 1.3.4. 5 × 5 symmetrical Pascal matrix Q4:

Q4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1
1 2 3 4

1 3 6
1 4

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

From the pleasing relationship Qn = PnP ⊺
n , it is trivial that the symmetric Pascal matrix is

positive definite and with unit determinant, since for triangular matrices the determinant is
simply the product of their diagonal entries, which are all 1 for both Pn and P ⊺

n . Moreover,
the eigenvalues are strictly positive and come in reciprocal pairs20,22 (q, 1/q), following from
the fact that Qn is similar to its inverse Q−1

n . Notice that if the size of the matrix is odd (n
even), one of the eigenvalues must be equal to 1, since the eigenvalues must come in pairs.
As a consequence of positive eigenvalues, the coefficients of the polynomial det[z +Qn] are
all positive.

Example 1.3.5. The eigenvalues of the 2 × 2 symmetric Pascal matrix Q1 are q1 = 3+√5
2

and q2 = 3−√5
2 , where q1q2 = 1 gives a reciprocal pair.

Let now the size be equal to 3; the eigenvalues of the symmetric Pascal matrix Q2 are
q1 = 4 +

√
15, q2 = 4 −

√
15 and q3 = 1, where q1q2 = 1 gives a reciprocal pair and q3 is a

self-reciprocal.

An alternative way to construct Pascal matrices could be that of taking the matrix exponential
of particular subdiagonal and superdiagonal matrices, as shown in the example below, valid
for any n × n matrices.
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Example 1.3.6. 5 × 5 Pascal matrices viewed as matrix exponentials:

P4 = exp

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1 0

2 0
3 0

4 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

P ⊺
4 = exp

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
0 2

0 3
0 4

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1
1 2 3 4

1 3 6
1 4

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Finally, it is interesting to quote the Carlitz matrix An = PnJn, where:

Jn =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
⋱

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

n+1

n+
1 J2

n = 1 (1.1)

Example 1.3.7. 5 × 5 Carlitz matrix A4 and its inverse:

A4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A−1
4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −4 6 −4 1
−1 3 −3 1
1 −2 1
−1 1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Therefore, we can write AnA⊺
n = PnJ

2
nP

⊺
n = Qn.

The eigenvalues of An are the numbers (−1)jφn−2j , where j = 0, ..., n and φ = 1+√5
2 is the

golden ratio.23

The Pascal matrices carry all the secrets of the homonymous triangle:21 from the Fi-
bonacci sequence to the Sierpiński triangle, passing through tetrahedral numbers and powers
of eleven, it seems that the whole Number Theory is encoded in their countless patterns.
Many of these patterns are stored in the OEIS (On-Line Encyclopedia of Integer Sequences),
e.g. the trace of Qn for various n (1, 3, 9, 29, 99, 351, 1275, ...) is represented by the
sequence A006134.
At this point, to cite Edelman and Strang,22 it would indeed be «ironic and wonderful» if it
turned out that Pascal’s triangle is actually applied mathematics.
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1.4 The Hückel rule

In this section, we provide a little context and clarify some of the main ideas underlying
this project. Standard terms from organic chemistry are used throughout this section; the
reader seeking a reference should consult Zhao24 and Evangelisti.13

Aromaticity24 is a fundamental concept in chemistry, originally introduced to rational-
ize the exceptional high stability of benzene and related molecules. The term “aromatic”
accounts for the intense smell of these compounds and dates back to 1855, when Hofmann
used it for the first time.
In 1931, the phisical chemist Erich Hückel provided a theoretical explanation for the aromatic
behaviour of benzene and other hydrocarbons, based on approximate molecular orbital (MO)
calculations on π electron systems. He showed that the aromaticity of a compound strictly
depends on the specific number of delocalized π electrons. This fact was later expressed by
Doering with the formula 4n + 2, and became well known as Hückel rule.
More specifically, the rule predicts that planar, monocyclic, completely conjugated hy-
drocarbons, known as annulenes, exhibit aromatic behaviour whenever the total number
of electrons in the π system is equal to 4n + 2, where n is a positive integer.9 On the
contrary, annulenes with 4n π electrons are said to be antiaromatic, not to be confused
with non-aromatic compounds, which occur when the number is equal to 4n + 1 or 4n + 3.
For instance, benzene (Fig. 1.3c), with six electrons (4n + 2, with n = 1), is known to be
the most stable among aromatic hydrocarbons, while cyclobutadiene (Fig. 1.3a), with four
electrons (4n, with n = 1), is the only annulene with considerable antiaromaticity.
The higher stability of aromatic systems can be explained in terms of electronic structure
properties of their ground state.9 In fact, according to Huckel’s MO theory, 4n + 2 electrons
completely fill all π bonding orbitals, leaving the antibonding ones empty, thus resulting in
a wide HOMO-LUMO gap†. On the other hand, the reason of low stability in antiaromatic
rings, lies in the fact that the Fermi level crosses two degenerate non-bonding orbitals, which
are only partially occupied by two electrons. This information can be summarized by saying
that the ground state wavefunction of aromatic and antiaromatic compounds, manifests a
closed-shell (CS) or open-shell (OS) character, respectively.

It is important to point out that Hückel rule, in its original formulation, is only valid
for monocyclic hydrocarbons. Therefore, it should not surprise that more general policyclic
aromatic hydrocarbons (PAHs), e.g. corannulene (C20H10), coronene (C24H12) and kekulene
(C48H24), do not fulfill the 4n + 2 rule.

†The acronyms HOMO and LUMO stand for highest occupied molecular orbital and lowest unoccupied
molecular orbital, respectively.
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(a) Cyclobutadiene (b) Cyclopentadiene (c) Benzene

Figure 1.3: Famous monocyclic hydrocarbons. Benzene (c) and cyclobutadiene (a) are
the most aromatic and antiaromatic annulenes, respectively. Although cyclopentadiene (b)
is a non-aromatic hydrocarbon, it is popularly used as a precursor to the cyclopentadienyl
anion Cp−, which is the most common anion in organic chemistry and shows aromatic
behaviour.

1.4.1 The generalized Hückel rule

In the last decades, many attempts have been made to properly characterize aromaticity,
often resulting in laborious calculations. Significant contributions in this direction, were
offered by Clar,25 Hirsch,26 and Zdetsis.27 However, a simple and intuitive rule for investi-
gating the stability of a vast variety of complicated structures, was still missing.

In november 2021, Evangelisti et al.,13 from the University of Toulouse, presented a novel
formula for predicting the ground state character of a wide class of hydrocarbons, that
they named graphannulenes. These structures can be seen as the result of placing a series
of concentric closed chains of benzenoids around a central carbon ring, i.e. an annulene
without hydrogens. Graphannulenes exhibit different geometries, depending on the number
n of carbon atoms in the central annulene. In particular, they are flat for n = 6, with a
saddle-like shape for n > 6 and convex for 0 < n < 6, the latter roughly coinciding with
our description of graphene nanocones. Moreover, truncated structures are taken into
account by deleting some of the innermost rings of benzenoids. Therefore, according to
their definition, graphannulenes encompass several well-known PAHs, including those which
do not satisfy the “classic” Hückel rule, e.g. the aforementioned corannulene and coronene.
Unlike annulenes, these hydrocarbons need three indices to be uniquely defined (see Fig.
1.4), and their general expression is GAn(di, do), with n ≥ 1 and 0 ≤ di ≤ do, where n is
the order of the central annulene, while di and do are its “topological distances” from the
innermost and outermost rings, respectively. Notice that for di = do = 0, a graphannulene
boils down to the corresponding [n]annulene.
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In the spirit of Hückel’s early work, the new formula was called generalized Hückel rule
(GHR), emphasizing the fact that the original 4n + 2 rule is contained as a special case, in
the same way as annulenes can be thought as a special case of a wider class of hydrocarbons.
Ab initio and tight-binding calculations have proven the GHR to be perfectly working, at
least for graphannulenes with 0 < n ≤ 6.

Figure 1.4: Topological indices of GAn(di, do). The order of the graphannulene is
represented by n, i.e. the number of carbon atoms in the cap (n < 6 for nanocones). The
indices di and do are the number of benzenoids between the central annulene and the
innermost or outermost carbon ring, respectively (Evangelisti,13 2021).

The generalized Hückel rule could turn out to be a powerful tool for organic chemistry,
allowing to quickly infer the stability of a large number of compounds without relying on
expensive computations. However, its predictions were verified only empirically, and, at the
time of writing, a full analytical demonstration of the rule does not exist yet.

This is exactly where our interest towards graphene nanocones and truncated cones come
from: guided by the desire of revealing hidden relations and the only criterion of pursuing
rationality and mathematical beauty, the present work has the precise intent to provide an
analytical proof of the GHR, or at least to take the first steps in this direction. Besides,
several connections beetwen the Hückel determinant and diverse areas of mathematics are
pointed out.
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Chapter 2

Three conjectures

The second chapter contains the main statement of this dissertation. Besides, three con-
jectures (L. Molinari,17 2021) are presented, speculating about identities that involve the
Hückel determinant. In addition, few other general results are demonstrated and connections
between Pascal matrices and combinatorics are explored.

2.1 Honeycomb triangles and binomial matrices

Before introducing the first conjecture, we deem appropriate to point out some interesting
mathematical features of the Hückel determinant of graphene triangles.

Proposition 2.1.1. The determinant of Hn(x, y) is a homogeneous palindromic polynomial
of degree n + 1 in x and y:

detHn(x, y) = (xn+1 + yn+1) + c1(xny + xyn) + c2(xn−1y2 + x2yn−1) +⋯

Proof. Consider the diagonal matrix Dn(t) = diag [(1) (1, 1t ,1) (1,
1
t ,1,

1
t ,1) ...], of size N =

1+ 3+⋯+ (2n+ 1) = (n+ 1)2. Its determinant is trivially the product of the diagonal entries:
detDn(t) = t

−n
2
(n+1). Moreover, the product Dn(t)Hn(x, y)Dn(t) is essentially the matrix

Hn, except that all 1 are substituted with 1/t. Hence we have:

tDn(t)Hn(x, y)Dn(t) =Hn(tx, ty)

In particular, t(n+1)
2
[detDn(t)]

2 detHn(x, y) = detHn(tx, ty), i.e.

tn+1 detHn(x, y) = detHn(tx, ty) (2.1)

Therefore, the nonzero terms in the expansion of detHn(x, y) are the products H1i1 ...HN,iN

that contain monomials xjyn+1−j , with j = 0, ..., n + 1. This property and the symme-
try detHn(x, y) = detHn(y, x) imply the statement. The first coefficient is 1 because
detHn(x,0) = x

n+1. ∎
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Remark 2.1.1. The result (2.1) only depends on the positions of the nonzero matrix elements
and not on their values. Therefore, each permutation H1σ1 ...HN,σN , where N = (n + 1)2 is
the size of the matrix, that does not contain a monomial xjyn+1−j , is zero because a zero
factor occurs, not because of cross cancellation.

2.1.1 First conjecture

The following conjecture for honeycomb triangles has been verified numerically on a number
of cases, and analytically through a procedure of reduction that has been fully applied17 to
matrices Hn, with n ≤ 4. The procedure is described in Appendix A.

Conjecture 1. The determinant of the Hückel matrix Hn(x,y), of size (n + 1)2, is equal
to the determinant of the following matrix with binomial coefficients, of size n + 1:

detHn(x,y) =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

xn + yn −(
n
1
)yn (

n
2
)yn −(

n
3
)yn . . . ±(

n
n
)yn

(
n
1
)xn xn−1 + yn−1 −(

n−1
1

)yn−1 (
n−1
2

)yn−1 . . . ∓(
n−1
n−1)yn−1

(
n
2
)xn (

n−1
1

)xn−1 xn−2 + yn−2 −(
n−2
1

)yn−2 . . . ±(
n−2
n−2)yn−2

⋮ ⋮ ⋮ ⋱ . . . ⋮

(
n
n−1)xn (

n−1
n−2)xn−1 (

n−2
n−3)xn−2 . . . x1 + y1 −(

1
1
)y1

(
n
n
)xn (

n−1
n−1)xn−1 (

n−2
n−2)xn−2 . . . (

1
1
)x1 x0 + y0

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
(2.2)

Example 2.1.1. Determinant of the 5 × 5 matrix H4:

detH4 =

RRRRRRRRRRRRRRRRRRRRRRRR

x4 + y4 −4y4 6y4 −4y4 y4
4x4 x3 + y3 −3y3 3y3 −y3
6x4 3x3 x2 + y2 −2y2 y2
4x4 3x3 2x2 x1 + y1 −y1
x4 x3 x2 x1 x0 + y0

RRRRRRRRRRRRRRRRRRRRRRRR

Notice that detHn−1 is obtained by removing the first row and column, or by putting xn = 1
and yn = 0.

Based on the conjecture, with xm = x and ym = y ∀m ∶ 0 ≤ m ≤ n, we obtain17 an in-
triguing identity, that establishes unexpected connections between the Hückel matrix and
the Pascal matrix:

Main statement. Let Hn be the Hückel matrix of a honeycomb triangle, with Bloch
parameters x and y. Then, the following relation holds:

detHn(x, y) = x
n+1 det(Qn +

y

x
In+1) (2.3)

where Qn is the symmetric Pascal matrix.
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Proof. Inspection of the (n + 1) × (n + 1) matrix in (2.2) shows that it is the sum of a lower
and upper triangular matrices related to the Pascal matrix Pn: they are xJnP Tn Jn and
yJnP

−1
n Jn respectively, with Jn given in (1.1). Hence we have:

detHn(x, y) = det(xJnP
T
n Jn + yJnP

−1
n Jn)

= det(xP Tn + yP−1
n )

= det(xP −1
n )det(PnP

T
n +

y

x
In+1)

= xn+1 det(Qn +
y

x
In+1)

∎

In the next section, we report the known values of (2.3) for some ratios ω = y/x. They result
from amazing counting problems, which we quote for the delight of the reader.

2.1.2 Pascal matrices, partitions and lozenge tilings

Allow us to make a brief digression about the characteristic polynomial of the Pascal matrix,
which occurs in diverse combinatorial problems, such as the enumeration of partitions and
lozenge tilings of hexagons. It appears with the following generalization:

det [(
m + j + k

k
) + ωδjk]

0≤j,k≤n
m = 0,1,2, . . . (2.4)

where n + 1 is the size of the matrix and δjk is the usual Kronecker delta.
In 1979, George Andrews,28 in proving the weak Macdonald conjecture for certain plane
partitions, obtained the closed expression for the determinant (2.4), for ω = 1. He exploited
identities for hypergeometric series. For the Pascal matrix (m = 0), the expression greatly
simplifies:

det(Qn + In+1) =
n

∏
k=0

1

3k + 1

k!(3k + 2)!

(2k)!(2k + 1)!
(2.5)

The number coincides with the determinant of a periodic Hückel matrix, i.e. detHn(1,1).

A plane partition π of N , with shape (a, b, c), is an array a × b of numbers 0 ≤ πij ≤ c
(i = 1, .., a, j = 1, .., b), with the properties that all rows and columns are weakly decreasing,
and the sum of all πij is N , i.e. ∣π∣ = N .

Example 2.1.2. Two plane partitions of 38 in (3,5,7):

5 5 3 2 2
5 5 2 1 0
4 2 1 1 0

7 6 6 6 1
5 3 2 1 0
1 0 0 0 0
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A plane partition may be represented by stacking πij cubes on each square cell (i, j) in the
rectangle a × b. A stacking of cubes defines ascending staircases that correspond to sets of
non-intersecting walks in a lattice. The beautiful Gessel–Viennot theorem29 counts them as
determinants of certain binomial matrices.∗

It was later discovered31 that the projection of the bounding box a × b × c on an oblique
plane, normal to (1,1,1), is a hexagon H (a, b, c) with side-lengths a, b, c, a, b, c (in cyclic
order) and angles π/3 in a triangular lattice. Each stacking is one-to-one with a lozenge
tiling of the hexagon. A lozenge is the union of two triangular unit cells, and has angles π/3
and 2π/3.

Figure 2.1: A Class 10 lozenge tiling of H (6,6,6). The cube stacking represents
the partition with shape (6,6,6) and rows: 6,6,6,5,4,3; 6,6,5,3,3,2; 6,5,5,3,3,1; 5,3,3,1,1,0;
4,3,3,1,1,0; 3,2,1,0,0,0.

Plane partitions were classified by Stanley into ten symmetry classes and enumerated (see
the detailed survey by Christian Krattenthaler32).
Class 1 are the unrestricted partitions. They were enumerated by Percy MacMahon (1896);
the number of all plane partitions in (a, b, c), i.e. the lozenge tilings of H (a, b, c), is:

H(a)H(b)H(c)H(a + b + c)

H(a + c)H(a + c)H(b + c)

where H(n) stands for the “hyperfactorial” ∏n−1k=0 k!.
The other extremum is Class 10, with totally symmetric self-complementary (TSSC) plane
partition in (2n, 2n, 2n). Viewed as a stack of cubes in the box of side 2n, a TSSC partition
has the property of being equal to its complement (the void in the box, see Fig. 2.1) and,

∗See also the nice presentation by Aigner and Ziegler.30
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viewed as a tiling, it is invariant under rotations by π/3 and reflections in the main diagonals
of the hexagon. The enumeration was finally obtained by Andrews:33

A(n) =
n−1
∏
k=0

(3k + 1)!

(n + k)!

A(n) is also the number of n×n matrices with elements {0,±1}, where all rows and columns
sum up to 1, and the nonzero entries alternate in sign.34

With the aid of the identity:

1 =
n

∏
k=0

k!(n + k + 1)!

(2k)!(2k + 1)!

the numbers in (2.5) can be rewritten as follows:

det(Qn + In+1) = A(n + 1)
n

∏
k=0

3k + 2

3k + 1

Ciucu, Eisenköbl, Krattenthaler and Zare enumerated the lozange tilings for the hexagon
H (a, b+m,c, a+m,b, c+m) with a central triangular hole of sides m,m,m. For this purpose,
they evaluated the determinants (2.4) for ω = ±1, ei2π/3, eiπ/3 (Eqs. 3.3, 3.4, 3.5 in their
paper35). For m = 0, Eq. 3.3 is:

det(Q2n+1 − I2n+2) = (−1)n+1 [
n

∏
k=0

k!(3k + 1)!

(2k)!(2k + 1)!
]

4

= (−1)n+1[A(n + 1)]4 (2.6)

It coincides with detH2n+1(1,−1). For an odd size det(Q2n − I2n+1) = 0.
For m = 0, Eqs. 3.4 and 3.5 have simpler expressions given in Table 1 of Mitra’s paper:36

det(Qn + e
i
2π
3 In+1) = ei

π
3
(n+1)A(n + 1) (2.7)

det(Qn + e
i
π
3 In+1) = ei

π
6
(n+1)

[AHT (n + 1)]2 ×

⎧⎪⎪
⎨
⎪⎪⎩

1 n odd
√
3 n even

(2.8)

where the numbers AHT (n) enumerate37 the half-turn symmetric alternating sign n × n
matrices:†

AHT (2n) =
n−1
∏
k=0

(3k)!(3k + 2)!

[(n + k)!]2
AHT (2n + 1) =

n!(3n)!

[(2n)!]2
AHT (2n)

†It is the subclass of alternating sign n × n matrices such that Aij = An+1−i,n+1−j . They are related to
the ice model of statistical mechanics.
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The three determinants in Eqs.(2.6), (2.7) and (2.8) are the weighted counts ∑π ω#(π) (#(π)
is the number of cubes on the main diagonal) over the cyclically symmetric partitions π
with shape (n + 1)3 (Corollary 8 in Ciucu’s paper35) or, in other words, over the tilings of
H (n + 1, n + 1, n + 1), that are invariant under rotation by π/3 around the center of the
hexagon (Class 3).
The generalized Pascal matrices also occur in the works by Mitra and Nienhuis.36,38 On an
infinite cylindric square lattice of even circumference L, they consider coverings of closed
paths that, at each vertex, make a right angle turn, with equal probability. Two paths can
have a vertex in common, but do not intersect.
The probability P (L,m) that a point (not a vertex) of the cylinder is surrounded by m
loops is guessed to be Q(L,m)/[AHT (L)]

2, where Q(L,m) has an expression in terms of
the coefficients of the characteristic polynomial of the Pascal matrix. At the same time, it is
estimated by Coulomb gas techniques. The following asymptotics is obtained for the Pascal
matrix:

det(Qn−1 + iIn) = in/2L−5/48[AHT (L)]2

× [0,81099753... −
0,028861...

L3/2 +
0,021012...

L2
+

a7

L7/2 +⋯]

The large n (i.e. L) expansion of (2.3) for any value ∣ω∣ = 1 is discussed by Mitra.36

Let us introduce the following notation for the Hückel matrices of graphene triangles:
Hn(θ) =Hn(e

−iθ, eiθ). The known results for the Pascal matrix imply the values:

detHn(0) = A(n + 1)
n

∏
k=0

3k + 2

3k + 1

detH2n+1(π/2) = [A(n + 1)]4

detHn(π/3) = A(n + 1)

detH2n(π/6) = [AHT (2n + 1)]2

detH2n+1(π/6) =
√
3[AHT (2n + 2)]2

2.2 Honeycomb trapezia and binomial matrices

An analogous theorem to Prop. 2.1.1 can be proved for honeycomb trapezia:

Proposition 2.2.1. The determinant of Hk,n(x, y) is a homogeneous palindromic polynomial
of degree n − k + 1 in x and y:

detHk,n(x, y) = (xn−k+1 + yn−k+1) + c1(xn−ky + xyn−k) + c2(xn−k−1y2 + x2yn−k−1) +⋯
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Proof. Consider the following diagonal matrix:

Dk,n(t) = diag[(1,
1

t
,1,

1

t
,1, ...,1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k+1

)(1,
1

t
,1,

1

t
,1, ...,1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k+3

)...(1,
1

t
,1,

1

t
,1, ...,1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2n+1

)]

of size N = (2k + 1) + (2k + 3) +⋯ + (2n + 1) = (n + 1)2 − k2. Its determinant is the product
of the diagonal entries: detDk,n(t) = t

1
2
[k(k−1)−n(n+1)]. Thus we have:

tDk,n(t)Hk,n(x, y)Dk,n(t) =Hk,n(tx, ty)

In particular, t(n+1)
2−k2[detDk,n(t)]

2 detHk,n(x, y) = detHk,n(tx, ty), i.e.

tn−k+1 detHk,n(x, y) = detHk,n(tx, ty)

Then the nonzero terms in the expansion of detHk,n(x, y) are the products H1i1 ...HN,iN

that contain monomials xjyn+1−k−j , with j = 0, ..., n − k + 1. This property, together with
the symmetry detHk,n(x, y) = detHk,n(y, x), implies the statement. ∎

2.2.1 Second conjecture

A similar identity to (2.2) can be conjectured for honeycomb trapezia with matrices Hk,n. As
well as for the first one, the second conjecture has been checked numerically and analytically
on a number of cases. Moreover, it has been proved in general for k = n − 1 (see the next
chapter).

Conjecture 2. The determinant of the Hückel matrix Hk,n(x,y) of size N = (n+1)2 −k2 =
(n + 1 − k)(n + 1 + k), is equal to the determinant of the following matrix of size n + 1 − k,
obtained by deleting the last k rows and columns from the matrix in (2.2):

detHk,n(x,y) =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

xn + yn −(
n
1
)yn (

n
2
)yn −(

n
3
)yn . . . ±(

n
n−k)yn

(
n
1
)xn xn−1 + yn−1 −(

n−1
1

)yn−1 (
n−1
2

)yn−1 . . . ∓(
n−1
n−k−1)yn−1

(
n
2
)xn (

n−1
1

)xn−1 xn−2 + yn−2 −(
n−2
1

)yn−2 . . . ±(
n−2
n−k−2)yn−2

⋮ ⋮ ⋮ ⋱ . . . ⋮

(
n

n−k−1)xn (
n−1
n−k−2)xn−1 (

n−2
n−k−3)xn−2 . . . xk+1 + yk+1 −(

k+1
1
)yk+1

(
n
n−k)xn (

n−1
n−k−1)xn−1 (

n−2
n−k−2)xn−2 . . . (

k+1
1
)xk+1 xk + yk

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
(2.9)
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Example 2.2.1. The determinants of the 28 × 28 matrix H6,7 and of the 51 × 51 matrix
H7,9 are evaluated as those of a 2 × 2 and 3 × 3 matrices, respectively:

detH6,7 = ∣
x7 + y7 −7y7
7x7 x6 + y6

∣ detH7,9 =

RRRRRRRRRRRRRR

x9 + y9 −9y9 36y9
9x9 x8 + y8 −8y8
36x9 8x8 x7 + y7

RRRRRRRRRRRRRR

2.3 Permanents and determinants

In this section, graph-theoretic terms are largely used; an exhaustive survey can be found in
Harary.39

We begin with a brief overview of the permanent, a function of matrices similar to the far
more known determinant. As well as the latter, it is a polynomial in the entries of the matrix,
although it is much harder to compute.40 Given a n × n matrix A, The permanent41 of A is
defined as the sum over all elements σ of the symmetric group Sn, i.e. all permutations of
the numbers 1,2, ..., n:

perm(A) = ∑
σ∈Sn

n

∏
i=1
Ai,σ(i)

while the determinant is a signed sum of the same type:

det(A) = ∑
σ∈Sn

(−1)σ
n

∏
i=1
Ai,σ(i)

Therefore, the two quantities only differ in the fact that, in the determinant, the sum is
weighted by the parity ±1 of each permutation.

Example 2.3.1. Permanent and determinant of a 3 × 3 matrix:

perm

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a b c
d e f
g h i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= aei + bfg + cdh + gec + hfa + idb

det

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a b c
d e f
g h i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= aei + bfg + cdh − gec − hfa − idb

Unlike the determinant, the permanent does not have an easy geometrical interpretation.
On the other hand, it has applications in combinatorics and graph theory, in which context
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it can be seen as the sum of the weights of all perfect matchings ‡ in a bipartite graph. §

Laplace’s expansion for computing the determinant continues to hold for the permanent, if
all signs are ignored. However the same does not apply for the multiplicative property of
the determinants, which fails for the permanents. The equality of the two polynomials is a
rare circumstance.42,43

2.3.1 Third conjecture

Numerical checks on Hückel matrices for graphene triangles and trapezia of small sizes,
support the hypothesis that only even permutations contribute to the determinant:

Conjecture 3. The permanent and the determinant of Hn(x,y) coincide. The same is
true for Hk,n(x,y).

Accordingly, detHn = ∑σH1,j1H2,j2 ...HN,jN , where σ are even permutations of 1, ...,N , with
N = (n+ 1)2. Each nonzero product (active permutation) contains n(n+ 1) unit factors and
n + 1 components of x = (x0, ..., xn) and y = (y0, ..., yn).
An active permutation σ = (j1...jN) is visualized as N arrows 1 → j1 ... N → jN along
edges of the graph. All vertices participate, with one outgoing and one incoming arrow.
The arrows, head to tail, make closed oriented self-avoiding loops and isolated dimers (two
opposite arrows on the same edge) that saturate the vertices. Such configuration is called a
covering G of the graph. There is a one-to-one correspondence between the set of coverings
and the set of permutations.
Dimers have even lengths. For Hückel graphs of triangles and trapezia, the loops that do
not contain dotted edges, or contain an even number of dotted edges, have even lengths. A
loop with 1,3,5, ... dotted edges has odd length.
The following theorem restates the determinant of a matrix in terms of the weighted coverings
of its graph:

Proposition 2.3.1 (Harary44). Consider a graph with dimers and oriented loops. Let A
and G be respectively the matrix and a covering of the graph. If εG is the number of dimers
and oriented loops of even length in G, and pG is the product of the values of the edges in G,
then we have:

detA =∑
G

(−1)εGpG

Therefore, the parity of a permutation results to be the number of dimers and oriented loops
of even lengths in G.

‡A perfect matching in a graph is a subset of edges such that every vertex of the graph is adjacent to
exactly one edge.

§It is a graph whose vertices belong to two disjoint and indipendent sets, such that every edge does
not connect two vertices from the same set. The Hückel graphs of honeycomb triangles and trapezia are
examples of bipartite graphs, whose vertices are either peaks (colored in red) or valleys (colored in blue).
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The permanent of an adjacency matrix ¶ is the number of coverings of the related graph. If
the third conjecture holds, the formula (2.5) for detHn(1,1) counts the coverings of the
graph (with (n + 1)2 vertices):

n #G

0 1
1 5
2 20
3 132
4 1.452
5 26.741
6 826.540

Example 2.3.2. Coverings of the Hückel graphs of honeycomb triangles for n = 1,2 and
x = y = 1 (the site numbering is shown in Fig. 2.2):

detH1(1,1) = [1][234] + [13][24] = (2)2 + (−1)2 = 5

detH2(1,1) = [56789][detH1(1,1)] + [1][234876][59] + [13][59][26784]

+ [1][59][67][84][23] + [1][59][78][34][26]

= (2) ⋅ 5 + (2)(−2)(−1) + (−1)2(2) + (2)(−1)4 + (2)(−1)4 = 20

where [m...] is a loop, [mn] is a dimer and [1] is the (odd) loop on top. In round parenthesis
are the weights of the factors: a dimer has length 2 and contributes with weight (−1), an
even loop is (−2) because of two orientations, while an odd loop is (+2). The exponents
count their numbers in the covering.

Figure 2.2: Hückel graph with 3 rows. The graph represents the Hückel matrix H2(1,1),
i.e. the adjacency matrix of H2.

¶An adjacency matrix is a graph-related square matrix, whose elements indicate whether the vertices of
a graph are adjacent or not. The adjacency matrices of Hückel graphs of honeycomb triangles and trapezia,
only have unit or null elements, respectively indicating the presence or the absence of an edge in the graph.
In other words, they are equal to the matrices Hn(x,y) and Hk,n(x,y), with x = y = 1.
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Chapter 3

Some proofs and results

We begin the last chapter by providing a demonstration of the identity (2.2.1) for k = n−1, in
an attempt of proving in general the second conjecture, and thus the first one. In the second
part of the chapter, assuming the conjectures to be true, we draw conclusions regarding the
Hückel spectrum of graphene nanocones and reconnect to the aforementioned GHR (Section
1.4.1).

3.1 An attempt of demonstration

In approaching the conjecture for honeycomb trapezia, our main strategy resides in the
principle of induction: the idea is to prove the identity (2.2.1) for decreasing k = n,n−1, ..., 0,
i.e. for trapezia with progressively increasing number of rows, eventually inferring an
inductive hypothesis that would allow us to demonstrate the conjecture in general, for all k.
Clearly, such a demonstration would automatically prove also the conjecture for honeycomb
triangles, since the matrices Hn are special cases of the matrices Hk,n, with k = 0. First of
all, it is necessary to introduce a new matrix:

Proposition 3.1.1. The matrix Mn−1(x, y) = RTnT−1n (x, y)Rn is a rank-1 chequered matrix
of size 2n − 1.

Example 3.1.1. Matrices M2 and M3, of sizes 5 × 5 and 7 × 7, respectively:

M2(x, y) =
xy

x + y

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 +1 0 −1
0 0 0 0 0
+1 0 −1 0 +1
0 0 0 0 0
−1 0 +1 0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

M3(x, y) =
xy

x + y

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 0 −1 0 +1 0 −1
0 0 0 0 0 0 0
−1 0 +1 0 −1 0 +1
0 0 0 0 0 0 0
+1 0 −1 0 +1 0 −1
0 0 0 0 0 0 0
−1 0 +1 0 −1 0 +1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Proof. The inverses of Tn(x, y), with size 2n+ 1, are given by the following matrices divided
by x + y.
- if n = 2k, the matrix has size 4k + 1 and the structure:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1 y −1 −y) (1 y . . . −y) 1
x xy y −xy −y xy . . . −xy −y
−1 x 1 y −1 ⋱ −1
−x −xy x xy ⋱ ⋱ y
1 −x −1 ⋱ ⋱ 1
x xy ⋱ ⋱ −y
⋮ ⋮ ⋱ ⋮

−x −xy y
1 −x −1 x 1 −x . . . x 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.1)

- if n = 2k + 1, the matrix has size 4k + 3 and the structure:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(−1 y 1 −y) (−1 y . . . y 1
x −xy y xy −y −xy . . . −xy y
1 x −1 y 1 ⋱ −1
−x xy x −xy ⋱ ⋱ −y
−1 −x 1 ⋱ ⋱ 1
x −xy ⋱ ⋱ y
⋮ ⋮ ⋱ ⋮

x −xy y
1 x −1 −x 1 x . . . x −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.2)

If xy = 1, T−1n is a Toeplitz matrix, i.e. a matrix where all descending diagonals from left to
right are constant. Multiplication with the rectangular matrices Rn and R⊺

n deletes the first
and last rows and columns, and replaces even rows and columns with zeros. ∎

The chequered matrices Mn−1 are projections and their eigenvalues consist of one n and
2(n − 1) zeros; they can be decomposed as follows:

Mn−1(x, y) = −
xy

x + y
un−1u⊺n−1 u⊺n−1 = [ +1, 0, −1, . . . , 0, +1 ] (n odd)

Mn−1(x, y) =
xy

x + y
un−1u⊺n−1 u⊺n−1 = [ +1, 0, −1, . . . , 0, −1, ] (n even)

(3.3)
Continuing with the previous example, we have:

Example 3.1.2. Matrices Mn−1 viewed as products un−1u⊺n−1, for n = 3,4:

M2(x, y) = −
xy

x + y
u2u

⊺
2 u⊺2 = [ +1, 0, −1, 0, +1 ]
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M3(x, y) =
xy

x + y
u3u

⊺
3 u⊺3 = [ +1, 0, −1, 0, +1, 0, −1, ]

We are now able to properly approach the demonstration of the second conjecture. The
proof of the first case∗ is trivial; in fact, for k = n, the matrix Hk,n shrinks to the matrix Tn,
whose determinant is detTn = xn + yn, thus satisfying the identity (2.2.1). Consider now a
graphene trapezium with two rows of carbon atoms, of lengths 2n − 1 and 2n + 1:

Figure 3.1: Honeycomb trapezium with two rows. The rows consist of 2n − 1 and
2n + 1 carbon atoms and have Bloch parameters of (xn−1, yn−1) and (xn, yn), respectively.

Its Hückel matrix Hn−1,n is a block matrix with the structure:

Hn−1,n(xn−1, xn, yn−1, yn) = [
Tn−1 R⊺

n

Rn Tn
] , where:

Tn−1(xn−1, yn−1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 yn−1
1 ⋱ ⋱

⋱ 1
xn−1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2n−1

2
n−

1 Tn(xn, yn) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 yn
1 ⋱ ⋱

⋱ 1
xn 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2n+1

2
n+

1

Rn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 . . . 0
1

0
1

⋱

1
0

1
0 0 0 0 0 . . . 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2n−1

2
n+

1

∗It is the case of the graphene “trapezium” that consists in just one row of n + 1 carbon atoms.
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Proposition 3.1.2. The determinant of the matrix Hn−1,n, of size 4n, coincides with that
of the following 2 × 2 matrix:

detHn−1,n(xn−1, xn, yn−1, yn) = det [
xn + yn −(

n
1
)yn

(
n
1
)xn xn−1 + yn−1

] (3.4)

Proof. Let us evaluate detHn−1,n with Schur’s formula:45

det [
A B
C D

] = detD det(A −BD−1C)

In this case, the full matrix is Hn−1,n and the formula gives:

detHn−1,n = detTn det(Tn−1 −R⊺
nT

−1
n Rn)

= (xn + yn)det(Tn−1 −Mn−1)

= (xn + yn)det[Tn−1 − (−1)n
xnyn
xn + yn

un−1u⊺n−1]

where Mn−1 is the chequered matrix defined in Prop. 3.1.1, while un−1 and u⊺n−1 are shown
in (3.3). If a is a number, Schur’s formula gives:

det [
a b⊺

c A
] = adet(A − 1

acb
⊺)

Therefore, with a = xn + yn, A = Tn−1, b⊺ = (−1)nynu
⊺
n−1 and c = xnun−1, we can write:

detHn−1,n(xn−1, xn, yn−1, yn) = det [
xn + yn (−1)nynu

⊺
n−1

xnun−1 Tn−1(xn−1, yn−1)
]

At this point, we deem convenient to evaluate the determinant of the new matrix with the
Cauchy expansion:45

det [
a b⊺

c A
] = adetA − b⊺adj(A)c

where adj(A) is the adjugate matrix of A, i.e. the transpose of its cofactor matrix. In
particular, adj(A) = det(A)A−1. It follows that:

detHn−1,n = (xn + yn)detTn−1 − (−1)nynu
⊺
n−1adj(Tn−1)xnun−1 =

= (xn + yn)(xn−1 + yn−1) − (−1)nynu
⊺
n−1(xn−1 + yn−1)T

−1
n−1xnun−1

where T−1n−1 is the matrix shown in (3.1) and (3.2), divided by xn−1 + yn−1.
For the sake of simplicity, we will assume that n is odd, since the demonstration is symmetrical
for the case of n even. Therefore one finds that:

(xn−1 + yn−1)(−1)nynu⊺n−1T
−1
n−1xnun−1 =
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⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−yn
0
yn
0
⋮

0
yn
0
−yn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺ ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1 yn−1 −1 −yn−1) (1 yn−1 . . . −yn−1) 1
xn−1 xn−1yn−1 yn−1 −xn−1yn−1 −yn−1 xn−1yn−1 . . . −xn−1yn−1 −yn−1
−1 xn−1 1 yn−1 −1 ⋱ −1

−xn−1 −xn−1yn−1 xn−1 xn−1yn−1 ⋱ ⋱ yn−1
1 −xn−1 −1 ⋱ ⋱ 1

xn−1 xn−1yn−1 ⋱ ⋱ −yn−1
⋮ ⋮ ⋱ ⋮

−xn−1 −xn−1yn−1 yn−1
1 −xn−1 −1 xn−1 1 −xn−1 . . . xn−1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xn
0
−xn
0
⋮

0
xn
0
−xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
(2n−1)+1

2 yn

−ynyn−1 +
(2n−1)−1

2 ynxn−1
(2n−1)+1

2 yn

2ynyn−1 −
(2n−1)−3

2 ynxn−1
−

(2n−1)+1
2 yn
⋮

−
(2n−1)+1

2 yn

−
(2n−1)−3

2 ynyn−1 − 2ynxn−1
(2n−1)+1

2 yn
(2n−1)−1

2 ynyn−1 − ynxn−1
−

(2n−1)+1
2 yn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺ ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xn
0
−xn
0
xn
0
⋮

0
−xn
0
xn
0
−xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −
(2n−1)+1

2 xnyn(1 + 1 +⋯ + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(2n−1)+1
2

) = −n2xnyn

Hence we have:

detHn−1,n(xn−1, xn, yn−1, yn) = (xn + yn)(xn−1 + yn−1) + n2xnyn

= (xn + yn)(xn−1 + yn−1) + [(
n

1
)]

2

xnyn

from which the identity 3.4 follows. ∎

For further details about the reduction of Hückel determinants through Schur’s formula, see
Appendix A.

Unfortunately, we could not iterate Schur’s reduction to prove the conjecture for k = n − 2,
due to the occurrence of more complicated matrices. In fact, while the procedure was
successfully applied17 to reduce determinants of matrices with small sizes (n ≤ 4), it turned
out to be unsuitable for treating general n-dimensional cases.
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3.2 Eigenvalues of Hückel matrices

In this section, we focus our attention on Hückel matrices of honeycomb triangles, providing
some important results about their eigenvalues and discussing them in the context of the
generalized Hückel rule.

Proposition 3.2.1. If z is an eigenvalue of Hn(x, y), then −z is an eigenvalue of Hn(−x,−y).
In particular, Hn(i,−i) has real eigenvalues in opposite pairs ±λ and, if n is even, a zero
eigenvalue.

Proof. By applying the similarity transformation in Prop. 2.1.1 with t = −1 to the matrix
Hn(x, y) − zIn+1, we obtain:

−Dn(−1)[Hn(x, y) − zIn+1]Dn(−1) =Hn(−x,−y) + zIn+1

Then det[Hn(x, y) − zIn+1] = 0 implies det[Hn(−x,−y) + zIn+1] = 0, thus proving the first
statement.
The second statement is a consequence, since Hn(−i, i) and Hn(i,−i) = [Hn(−i, i)]

⊺ have
the same eigenvalues. Clearly, if the size is odd (i.e. n even), one of the eigenvalues must be
equal to zero, which is a self-opposite. ∎

Consider now the notation Hn(θ) = Hn(e
iθ, e−iθ). The matrix is Hermitian and has real

eigenvalues that are continuous functions of the parameters, with sum cos θ.

Proposition 3.2.2. If θ ≠ ±π/2, then detHn(θ) ≠ 0.

Proof. Let qj and 1/qj be the eigenvalues of the symmetrical Pascal matrix Qn, with the
addition of unity if n is even. Then, through Eq. (2.3), we find:

detHn(θ) =

⎧⎪⎪
⎨
⎪⎪⎩

∏j[2 cos(2θ) + qj + 1/qj] n odd
2 cos θ∏j[2 cos(2θ) + qj + 1/qj] n even

(3.5)

For any positive real x, it is x + 1
x ≥ 2, and equality holds only if x = 1.

Therefore, for n odd, it is detHn(θ) ≠ 0 if 2θ ≠ ±π, while for n even, it is detHn(θ) ≠ 0 if
2θ ≠ ±π and cos θ ≠ 0. ∎

If n is even, Hn(±π/2) has a zero eigenvalue (this is the sure eigenvalue, corresponding to
the unit eigenvalue of Qn). Besides the sure null eigenvalue, for n even or odd, detHn(θ)
can vanish only if θ = ±π/2 and if the Pascal matrix has pairs of unit eigenvalues.
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3.2.1 Towards a formal proof of the GHR

At this point, we are able to correlate the previous results with the physics of graphene
nanocones, thus delineating an analytical demonstration of the generalized Hückel rule.

First of all, consider the determinants of the first Hückel matrices Hn(θ):

detH0 = 2 cos (θ)

detH1 = 2 cos (2θ) + 3

detH2 = 2 cos (3θ) + 18 cos (θ)

detH3 = 2 cos (4θ) + 58 cos (2θ) + 72

detH4 = 2 cos (5θ) + 198 cos (3θ) + 1252 cos (θ)

detH5 = 2 cos (6θ) + 702 cos (4θ) + 12168 cos (2θ) + 13869

detH6 = 2 cos (7θ) + 2550 cos (5θ) + 129948 cos (3θ) + 694040 cos (θ)

They can be generalized with the formula:

detHn(θ) =

⌊n+1
2

⌋
∑
k=0

ak cos [(n + 1 − 2k)θ] (3.6)

where the coefficients ak are strictly positive, since, according to Eq. (2.3), they derive
directly from the elements of the symmetric Pascal matrix Qn. By exploiting Chebyshev
polynomials of the first kind †, we can rewrite the determinant (3.6) as follows:

detHn(θ) =

⌊n+1
2

⌋
∑
k=0

bk(cos θ)
n+1−2k (3.7)

which is a polynomial with the same parity of n + 1.

Example 3.2.1. Determinants of Hn(θ) written as Chebyshev polynomials, for n = 1,2,3:

detH1 = 4 cos2 θ + 1

detH2 = 8 cos3 θ + 12 cos θ

detH3 = 16 cos4 θ + 100 cos2 θ + 16

Numerical checks made by Evangelisti et al.,9 suggested that the coefficients bk in Eq. (3.7)
are always positive. On closer inspection, this fact can be proven to be true by using Prop.
3.2.2; consider the second member of Eq. (3.5): by rewriting 2 cos(2θ) as 4 cos2 θ − 2, it is

†They are polynomials of degree n with argument cos (θ), defined by: Tn(cos θ) = cos (nθ).
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straightforward that all terms in the sum are positive, since qj + 1/qj ≥ 2 for any j, Q.E.D.
Therefore, Eq. (3.7) implies that detHn(θ) never vanishes if n is odd, while it vanishes for
θ = ±π/2 if n is even.

At the risk of oversimplifying, the GHR claims the ability of predicting the ground state
nature of a graphene nanocone based on the parity of the number of its carbon rings (i.e.
n+ 1): if n is odd, the graphannulene is a stable closed-shell with a wide HOMO-LUMO gap
(Fig. 3.2a); vice-versa, if n is even, it might exhibit an open-shell character,‡ meaning that
the Fermi level crosses partially occupied orbitals (Fig. 3.2b). In other words, by proving
Prop. 3.2.2, we incidentally prove the generalized Hückel rule.

Clearly, all the arguments used in this section can be effortless extended to truncated
nanocones. In this case, instead of the number of carbon rings, we take into account the
difference do − di, which, for the record, has the same parity of n. We remind that the two
indices di and do represent the distance (in benzenoids unit) of the central annulene from
the innermost and outermost carbon ring, respectively.

It is important to remark that the proof of Prop. 3.2.2, and thus of the GHR, depends on
the validity of the main statement (2.3), which, in turn, arises from Eq. (2.2).
However, as mentioned above, the full demonstration of the conjecture turned out to be far
from trivial. Ergo, while this manuscript is being written, new ideas and proving strategies
are being explored, mostly including combinatorial approaches. In particular, there are good
hints17 that the Lindström–Gessel–Viennot counting lemma29 might be hiding the secret
to solving the problem. For this reason, efforts are being made by Molinari et al., in an
attempt of turning the conjecture into the latest achievement of this «marvelous piece of
mathematical reasoning».30

‡Actually the case of n even is more complex and includes several sub-cases which we overlook here. For
further details about the GHR we recommend the reading of Evangelisti’s paper.13
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(a) GA5(0,1) (corannulene)
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Figure 3.2: Energy spectra of graphannulenes. The graphs show the energy levels over
the infinite-system limit of two graphannulenes: the closed-shell corannulene (a) and the
open-shell GA4(0, 2)(b). Notice how, in the former, the Fermi level (in red) passes through
the gap between two distinct bands, while, in the latter, it crosses the band exactly in
θ = ±π/2, as predicted by the GHR and confirmed by our arguments (Evangelisti,9 2021).
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Conclusion

The main aim of this thesis was to provide an analytical proof of the generalized Hückel
rule (GHR): a new formula for predicting the nature of the ground state wavefunction of
graphannulenes, a wide class of hydrocarbons roughly coinciding with graphene nanocones.
To this end, we investigated the Hückel matrices (tight-binding Hamiltonians) of graphene
nanocones and truncated cones, conjecturing three identities for their determinants.
After a brief preamble about graphene and its nanostructures, we introduced the main
elements of this dissertation: Hückel matrices and Pascal matrices. By using arguments of
rotational symmetry, we were able to restrict the Hamiltonian of a nananocone (or truncated
cone) to that of a graphene triangle (or trapezium) with certain Bloch boundary conditions.
The central part of the manuscript was dedicated to the conjectures; two of them speculate
about the identity between the determinants of Hückel matrices and those of certain binomial
matrices, while, in the third one, the Hückel determinant is supposed to be equal to the
corresponding permanent. In particular, from the first conjecture it was derived the main
statement of this thesis, which is an identity between the Hückel determinant and that of
a Pascal-related matrix. Besides, several connections with combinatorial problems were
pointed out.
Finally, we presented a proof of the second conjecture for a greatly simplified case, in an
attempt of inferring a recursive mechanism that would have allowed us to demonstrate it
in general. However, our method turned out to be unsuitable for our purposes, due to the
occurrence of too complicated matrices. At the time of writing, work is in progress for a full
demonstration. Despite this fact, we successfully provided a sequence of statements that,
from the first conjecture (assumed to be true), brings to the GHR, thus proving that the
former implies the latter.

Clearly, the present work does not claim to be complete, but if something new has been said,
we believe that it must be sought in the countless unexpected relations between a moltitude
of problems -physical, chemical, algebraic, combinatorial- and a mysterious triangular array
(Pascal’s triangle), which, after centuries, is still able to amaze with its secrets.
Moreover, if this manuscript will have the effect to stimulate further studies on the subject,
it has already reached the goal of drawing the attention to a problem that, through some
beautiful mathematics, does not fail to reveal hidden physical realities.
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Appendix A

Reduction of Hückel determinants

In this section, the reduction procedure used in Prop. 3.1.2 is discussed in detail, and
examples of the first iterations are provided.

Proposition A.0.1. The determinant of the matrix Hn, of size (n + 1)2, coincides with
that of the bordered matrix of size n2 + 1:

detHn(x,y) = det [
xn + yn (−)nynU

⊺
n−1

xnUn−1 Hn−1(x′,y′)
] (A.1)

where (x,y) = (x1, ..., xn, y1, ..., yn) and (x′,y′) = (x1, ..., xn−1, y1, ..., yn−1), while the vector
U⊺
n−1 = [0, ..., 0,u⊺n−1] begins with (n− 1)2 zeros, followed by u⊺n−1, that has 2n− 1 alternating

components 1,0,−1,0,1, ....

Proof. We evaluate detHn by applying Schur’s formula:45

det [
A B
C D

] = detD det(A −BD−1C).

Since Hn(x,y) is the full matrix, A is equal to Hn−1(x′,y′), C and B represent the
rectangular matrix Rn and its transpose, respectively, while D = Tn(xn, yn), with detTn =
xn + yn. Then the formula and Prop.3.1.1 give:

detHn(x,y) = (xn + yn)det [Hn−1(x′,y′) − (−1)n
xnyn
xn + yn

Un−1U⊺
n−1]

If a is a number, Schur’s formula gives:

det [
a b⊺

c A
] = adet(A −

1

a
cb⊺)

Hence, with a = xn + yn, A = Hn−1(x′,y′), b⊺ = (−1)nynU
⊺
n−1 and c = xnUn−1 the (A.1)

follows. ∎
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Example A.0.1. Schur’s reduction produces the following bordered matrices, for n = 1, 2, 3:

detH1 = ∣
x1 + y1 −y1
x1 x0 + y0

∣ detH2 =

RRRRRRRRRRRRRRRRRRRRRRRR

x2 + y2 0 y2 0 −y2
0 x0 + y0 0 1 0
x2 0 0 1 y1
0 1 1 0 1
−x2 0 x1 1 0

RRRRRRRRRRRRRRRRRRRRRRRR

detH3 =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

x3 + y3 0 0 0 0 −y3 0 y3 0 −y3
0 x0 + y0 0 1 0 0
0 0 0 1 y1 0 1
0 1 1 0 1 0 0
0 0 x1 1 0 0 1
x3 0 0 0 0 0 1 0 0 y2
0 1 1 0 1 0 0
−x3 0 0 1 0 1 0
0 1 0 0 1 0 1
x3 x2 0 0 1 0

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

The bordering vectors and the off diagonal matrices have nonzero elements in different rows
and columns. This makes it possible to iterate the procedure with Schur’s formula, which
progressively eliminates a block by adding a border. In the end, after n iterations, the
reduction is complete and the determinant of the matrix of size (n + 1)2 condensates to a
that of a bordered matrix of size n + 1.

For the second and third iterations, we only quote the results:

● Second iteration (n is even):

detHn =

RRRRRRRRRRRRRRRRRRRR

xn + yn −(
n
1
)yn

(
n
1
)xn xn−1 + yn−1

0⊺ ynv
(1)⊺
n−2

0⊺ −yn−1u⊺n−2
0 0

xnv
(1)
n−2 xn−1un−2

Hn−2

RRRRRRRRRRRRRRRRRRRR

(A.2)

The bordered matrix has dimension (n − 1)2 + 2; the null vectors have lenght (n − 2)2, while
the column vectors v(1)

n−2 and un−2, of length 2n − 3, have the following structure:

v
(1)
n−2 = [(

n − 1

1
),0,−(

n − 2

1
),0,(

n − 3

1
),0, ...,−(

2

1
),0,(

1

1
)]

⊺

un−2 = [1,0,−1, ...,−1,0,1]⊺
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Example A.0.2. For n = 2 the reduction is complete:

detH2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x2 + y2 −2y2 y2
2x2 x1 + y1 −y1
x2 x1 x0 + y0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

● Third iteration (n is even):

detHn =

RRRRRRRRRRRRRRRRRRRRRRRRRR

xn + yn −(
n
1
)yn (

n
2
)yn

(
n
1
)xn xn−1 + yn−1 −(

n−1
1

)yn−1
(
n
2
)xn (

n−1
1

)xn−1 xn−2 + yn−2

0⊺ ynv
(2)⊺
n−3

0⊺ −yn−1w
(1)⊺
n−3

0⊺ yn−2u⊺n−3
0 0 0

xnv
(2)
n−3 xn−1w

(1)
n−3 xn−2un−3

Hn−3

RRRRRRRRRRRRRRRRRRRRRRRRRR

(A.3)

In this case, the bordered matrix has size (n − 2)2 + 3, while the null vectors have lenght
(n − 3)2. The column vectors v

(2)
n−3, w

(1)
n−3 and un−3, of length 2n − 5, have the following

structure:

v
(2)
n−3 = [(

n − 1

2
),0,−(

n − 2

2
),0,(

n − 3

2
),0, ...,(

3

2
),0,−(

2

2
)]

⊺

w
(1)
n−3 = [(

n − 2

1
),0,−(

n − 3

1
),0,(

n − 4

1
),0, ...,(

2

1
),0,−(

1

1
)]

⊺

un−3 = [1,0,−1, ...,1,0,−1]⊺

Example A.0.3. For n = 4, the reduction is still uncomplete; one more iteration is needed
to bring the determinant to its fully 5 × 5 binomial form:

detH4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x4 + y4 −(
4
1
)y4 (

4
2
)y4 0 3y4 0 −y4

(
4
1
)x4 x3 + y3 −(

3
1
)y3 0 −2y3 0 y3

(
4
2
)x4 (

3
1
)x3 x2 + y2 0 y2 0 −y2

0 0 0 x0 + y0 0 1 0
3x4 2x3 x2 0 0 1 y1
0 0 0 1 1 0 1
−x4 −x3 −x2 0 x1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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