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Random Matrix: matrix whose entries are random variables

They have many applications nuclear physics

econophysics

biology

gravitational wave 
physics

WHAT ARE RANDOM MATRICES
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SOME HISTORY
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One of the first applications of random 
matrices to physics is due to Jenö Pál 
Wigner

Problem: how to determine the energy levels of  
heavy nuclei (such as Uranium)

Difficulties: it is a very complicated system, we do not 
know how to write the Hamiltonian

HΨn = EnΨn

SOME HISTORY
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Wigner observed that the space, s, between neighbouring 
energy levels were governed by the following probability 
density

P(s) = Cβsβ exp(−αβs2) Wigner surmise

SOME HISTORY
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II Idea: define an ensemble of Hamiltonians with statistical 
properties as those that the real Hamiltonian might have if it 
could be written explicitly

RANDOM MATRIX THEORY

give up intrinsic details of the system in order to 
collect information on average properties

I Idea: interpret the distance between energy levels as the 
distance between eigenvalues of the Hamiltonian of the 
system

SOME HISTORY
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THEORY IN A NUTSHELL
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Gaussian Ensembles: independent, identically distributed 
Gaussian entries

Gaussian Orthogonal Ensemble: real symmetric matrices

Gaussian Unitary Ensemble: complex Hermitian matrices

Gaussian Symplectic Ensemble: quaternionic Hermitian 
matrices

The eigenvalue spacing distribution of these ensembles is 
approximated by the Wigner surmise

Eβ
N

Dyson index  : counts the 
number of real components 
per matrix element

β

THEORY IN A NUTSHELL
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These matrices can be diagonalized as

M = UΛU−1

Λ = (λ1, . . . , λn) ∈ Rn

The matrix U is

- a real orthogonal matrix if        GOE

- a complex unitary matrix if        GUE

- a complex symplectic matrix if        GSE

M ∈
M ∈

M ∈

angular radial 
decomposition

THEORY IN A NUTSHELL
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Let X be a n-dimensional complex Hermitian matrix with

•         i.i.d. with zero mean and finite variance   ,

•         i.i.d. with bounded mean and variance.

Then the eigenvalues of    tend in distribution to the 
semicircle law

(Xij)i<j
(Xkk)

n−1/2X

σ

ρ =
1

2πσ2
4σ2 − x2

Wigner semicircle law

Gaussian Ensembles follow this eigenvalue distribution

THEORY IN A NUTSHELL
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APPLICATION TO GW DETECTION

!11



14 September 2015: FIRST direct detection

- two low mass black hole 
merger

first detection of 
this type of event

effective proof that these 
phenomena may take place 
within the current age of 
the universe


GRAVITATIONAL WAVE ASTRONOMY ERA

APPLICATION TO GW DETECTION

Gravitational waves: perturbations of the gravitational field 
that travel at the speed of light
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Gravitational wave stochastic background: superposition of 
signals from unresolved sources

Gaussian

Problem: the stochastic background data may hide a 
gravitational wave signal

We need a method to look for long-memory effect in the 
background

Idea: RANDOM MATRICES

D. Grech & J. Miśkiewicz, Europhysics Letters, Volume 97, Issue 3, February 2012

Random matrix approach in search of weak signals 
immersed in background noise

APPLICATION TO GW DETECTION
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I STEP: BUILD THE MATRICES AND THE ENSEMBLE

{xi}
•time series 

• i=1,…,N+1

•N>>1

{Δxi} • increment time series

•we have Δxi = xi+1 − xi

sk = {Δx(k−1)L+1, . . ΔxkL} •k=1,…,N/L

• lenght L

Renormalize according to

sk → ̂sk =
sk

Lσk

APPLICATION TO GW DETECTION
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I STEP: BUILD THE MATRICES AND THE ENSEMBLE

• the first L subseries build the first LxL matrix

• the second L subseries build the second LxL matrix

• …

• thus, we get N/L^2 matrices        (n=1,…,N/L^2)

Strategy: Further steps rely on examination 
of eigenvalue spectra properties for the 
ensamble  of symmetrized matrices with (i,j) 
entries                 and on a comparison 
with a spectrum known a priori. Any 
distortion from this a priori spectrum is 
interpreted as a weak signal hidden in the 
background

APPLICATION TO GW DETECTION
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M(n)

(M(n)
ij + M(n)

ji )/2



II STEP:SIMPLE EXAMPLE

• assume that the noise is pure white noise

• add a sinusoidal signal for different s/n

• if only white noise the eigenvalue spectrum should 
disappear for |λ | > 2

ρ(λ) =
1

2π
−λ2 + 4

APPLICATION TO GW DETECTION
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ensemble of 1000 matrices of size 200x200

s/n = 10k k = − 2, − 1,0

APPLICATION TO GW DETECTION
II STEP:SIMPLE EXAMPLE
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III STEP: CHARACHTERIZE THE NOISE OF A REAL EXPERIMENT

•  NAUTILUS, ultra-cryogenic resonant gravitational wave detector


•  built to detect gravitational bursts

•  no longer running, yet it collected some data


APPLICATION TO GW DETECTION
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• ensemble of 1000 matrices of dimension 200x200

• triangular shape in the spectrum due to the specifics of 
the instrument


• if we shuffle the data we get Wigner

III STEP: CHARACHTERIZE THE NOISE OF A REAL EXPERIMENT

APPLICATION TO GW DETECTION
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if we compare real noise and simulated noise we see a 
difference in the tail

this can be important for the detection of periodic weak signals

III STEP: CHARACHTERIZE THE NOISE OF A REAL EXPERIMENT

APPLICATION TO GW DETECTION
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IV STEP: A SIMPLE EXAMPLE

tails matter!

APPLICATION TO GW DETECTION
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APPLICATION TO GW DETECTION
V STEP: A PHYSICAL EXAMPLE

• gravitational wave signal from a freely precessing anti-
symmetric star


• the level of background noise was reduced by a factor

(k=0,-1,-2,-3)

10k

response of a detector with 
background switched off

response of a detector with 
background switched on
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V STEP: A PHYSICAL EXAMPLE

APPLICATION TO GW DETECTION

Magnified central part of the 
spectra 


Magnified tail part of the 
spectra 


good performance of the method
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• weak signal may be hidden in the background data

• random matrix approach can help in revealing this  
coded signal


• compare the density distribution of the eigenvalues 
with a known one


• pay attention to the tails

FIN

CONCLUSIONS
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