
LESSON 6: TRIDIAGONAL MATRICES

LUCA GUIDO MOLINARI

1. General properties (transfer matrix for eigenvectors and spectral duality, char-
acteristic polynomials, Christoffel-Darboux sums, eigenvectors)
2. Real symmetric tridiagonal matrices (simplicity of eigenvalues, eigenvectors,
Vandermonde determinant of eigenvalues, map to eigenvalues and a unit vector,
periodic matrices, bands, lemniscates)
3.Tridiagonal models (free particle, particle in electric field, Harper model, 1D An-
derson model, Thouless formula, Hatano-Nelson model, Lloyd model)
4. Measures of localization of eigenvectors (probability width, participation ratio,
entropy).
5. Methods of tridiagonalization (Lanczos and Householder), Beta ensembles
6. Dynamical localization in quantum chaos (the kicked rotator, the Maryland con-
struction)

1. General properties

We first discuss general tridiagonal matrices n × n, with real or complex ma-
trix elements. Off diagonal elements are always taken to be non-zero. It is very
convenient to consider also the matrix with corner terms, with τ = exp(ξ + iϕ).
The matrices describe some open or closed chain model, with different boundary
conditions.

M =


a1 b1 0

c1
. . .

. . .

. . .
. . . bn−1

0 cn−1 an

 M(τn) =


a1 b1 τ−n

c1
. . .

. . .

. . .
. . . bn−1

τn cn−1 an


The eigenvalues of M(τn) are continuous functions of the parameter. An interesting
question is how are they affected by it (see figg. 1 and 2). The following similar-
ity relation holds. It balances the matrix and makes the numerical evaluation of
eigenvalues feasible when n is large:


1
τ

. . .
1
τn

M(τn)

 τ
. . .

τn

 =


a1 b1τ 1/τ

1
τ c1

. . .
. . .

. . .
. . . bn−1τ

τ 1
τ cn−1 an

 = MB(τ)
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Figure 1. The eigenvalues of a tridiagonal matrix with indepen-
dent matrix elements uniformly distributed in the unit disk with
ξ = 0 (left) and ξ = .5 (right). The eigenvalues inside the ’cir-
cle’ are swept to the boundary, while eigenvalues outside the circle
appear to be unaffected (from [16]).

-1.5 -1 -0.5 0.5 1 1.5

-2

-1.5

-1

-0.5

0.5

1

1.5

Figure 2. The motion of n = 100 eigenvalues of a tridiagonal
matrix with independent matrix elements uniformly distributed in
the unit disk as ξ increases from 0.3 to 0.6 Outermost ones appear
to be unaffected (from [16]).

1.1. Transfer matrix for eigenvectors and spectral duality. The equations
for the right eigenvectors of the two matrices differ in the boundary terms:

u0 + a1u1 + b1u2 = zu1

ckuk−1 + akuk + bkuk = zuk, k = 2, ..., n− 1(1)

bn−1un−1 + anun + un+1 = zun

It is u0 = 0 and un+1 = 0 for the first matrix, and u0 = τ−nun, un+1 = τnu1 for
the second one. The 2-term recursion can be recast as a 1-term recursion,[

uk+1

uk

]
=

[
b−1
k 0
0 1

] [
x− ak −1

1 0

] [
1 0
0 ck−1

] [
uk
uk−1

]
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Iteration gives the transfer matrix for vectors:[
un+1

un

]
= Tn(z)

[
u1

u0

]
(2)

Tn(z) =

[
z − an −1

1 0

] [
b−1
n−1 0
0 cn−1

]
· · ·
[
b−1
1 0
0 c1

] [
z − a1 −1

1 0

]
(3)

The determinant is a constant: detTn(z) = (b−1
1 c1)...(b−1

n−1cn−1).
If the length n can be large, the eigenvalues of the transfer matrix determine the

large n behaviour of the vector components un, given u0 and u1. Typically, the
eigenvalues of Tn(z) grow or decrease in modulus as expnξ(z).
As the transfer matrix is derived from M , the following spectral duality is useful.

Remark 1.1 (Spectral Duality).
If u is an eigenvector of M(τn) with eigenvalue z, then un+1 = τnu1 and un =
τnu0, i.e. (u1, u0)T is eigenvector of Tn(z) with eigenvalue τn.
If (u1, u0)T is eigenvector of Tn(z) with eigenvalue τn, then the pair uniquely re-
constructs an eigenvector of M(τn) via the recursion.
Therefore, z is eigenvalue of M(τn) iff τn is eigenvalue of T(z): the rôle of eigen-
values and parameters exchange.

Proposition 1.2 (Duality identity).

det[z −M(τn)] = (b1...bn−1) trTn(z)− τn(b1...bn−1)− 1

τn
(c1...cn−1)(4)

Proof. According to spectral duality, det[z −M(τn)] = 0 iff det[Tn(z) − τn] = 0.
The second expression coincides with detTn(z)−τntrTn(z)+τ2n. The determinant
is a number, and the trace is a polynomial with leading term (b1...bn−1)−1zn. Then:

det[z −M(τn)] = − 1

τn
(b1...bn−1) det[Tn(z)− τn](5)

which is another form of duality, equivalent to (4). �

The exponents ξ(z) of the transfer matrix can be obtained by Jensen’s formula
of complex analysis: if f(τ) is holomorphic with f(0) 6= 0, and τ1, ..., τn are its
zeros in the disk |τ | < r, then:∫ 2π

0

dϕ

2π
log |f(reiϕ)| = log |f(0)| −

∑
k

log(
|τk|
r

)

The identity is applied to the log of the duality identity (5) with r = 1, i.e. ξ = 0:∫ 2π

0

dϕ

2π
log |det[z −H(eiϕ)]| =

∑
k

log |bk|+ log |detTn(z)|+ nξ−(z)

This exact result is an expression for the positive exponent of the transfer matrix:

ξ+(z) =
1

n

∫ 2π

0

dϕ

2π
log |det[z −H(eiϕ)]| − 1

n

∑
k

log |bk|(6)
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1.2. Characteristic polynomials. We adopt the notation Mj:k to denote the
principal sub-matrix of M whose diagonal elements are aj ...ak; thus M1:n = M ,
M2:n−1 is the matrix of size n− 2 obtained from M by deleting rows and columns
1 and n, and M1:k is the k × k sub-matrix obtained by deleting rows and colums
k + 1, ..., n in M .

The polynomials pk(z) = det[z −M1:k] are monic of degree k, and satisfy the
recurrence

pk(z) = (z − ak)pk−1(z)− bk−1ck−1pk−2(z)(7)

with initial conditions p1(z) = z − a1 and p0(z) = 1. It shows that the eigenvalues
of a tridiagonal matrix depend on bk and ck only through their product (thus, real
eigenvalues are ensured by ak real and (bkck) > 0 for all k).
The two-term recursion is translated to one-term[

pk(z)
pk−1(z)

]
=

[
z − ak −bk−1ck−1

1 0

] [
pk−1(z)
pk−2(z)

]
= ... = Tk(z)

[
1
0

]
Tk(z) =

[
z − ak −bk−1ck−1

1 0

]
· · ·
[
z − a2 −b1c1

1 0

] [
z − a1 −1

1 0

]
Next, consider the characteristic polynomials of the sub-matrices M2:k where the
first row and column are deleted: qk−1(z) = det[z − T2:k]. They are monic polyno-
mials of degree k−1, with q1(z) = z−a2, and obey the recursion (7) with different
initial conditions: [

qk−1(z)
qk−2(z)

]
= Tk(z)

[
0
−1

]
We obtain the result of the product that defines the transfer matrix:

Tk(z) =

[
pk(z) −qk−1(z)
pk−1(z) −qk−2(z)

]
(8)

det Tk(z) = −pk(z)qk−2(z) + pk−2(z)qk−1(z) = (b1...bk−1)(c1...ck−1)(9)

Now let’s turn to the characteristic polynomial of the matrix with corners. It
can be evaluated with the rules for determinants1, and expressed with the transfer
matrix:

det[z −M(τn)] = det[z −M ]− det[z −M2:n−1]− (b1...bn−1)τn − 1

τn
(c1...cn−1)

= Tr Tn(z)− (b1...bn−1)τn − 1

τn
(c1...cn−1)(10)

1.3. Christoffel-Darboux sums. Multiply (7) by pk−1(z′) and subtract the re-
sult with z and z′ exchanged:

[pk(z)pk−1(z′)− pk−1(z)pk(z′)]− bk−1ck−1[pk−1(z)pk−2(z′)− pk−2(z)pk−1(z′)]

= (z − z′)pk−1(z)pk−1(z′)

1The formula is true also with τ = bn and 1/τ = c0: det[z −M(c0, bn)] = det[z −M1:n] −
c0bn det[z −M2:n−1]− (b1...bn)− (c0...cn−1) = pn(z)− c0bnqn−2(z)− (b1...bn)− (c0...cn−1).
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Divide by bk−1ck−1...b1c1 and sum for k = 2...n. Most terms cancel. The result is
the Christoffel-Darboux summation:

pn(z)pn−1(z′)− pn−1(z)pn(z′)

bn−1cn−1...b1c1(z − z′)
= 1 +

n∑
k=2

pk−1(z)pk−1(z′)

bk−1ck−1...b1c1
(11)

The limit z = z′ gives a second formula:

p′n(z)pn−1(z)− p′n−1(z)pn(z)

bn−1cn−1...b1c1
= 1 +

n∑
k=2

p2
k−1(z)

bk−1ck−1...b1c1
(12)

1.4. Eigenvectors. The eigenvalue equation Mu = z u, has solution for z = zj , a
zero of the characteristic polynomial pn(zj) = 0. If the recursion for the polyno-
mials (7) is divided by bk−1bk−2...b1, one obtains the recursion of eigenvectors (1).
Therefore:

uk(zj) = qj
pk−1(zj)

bk−1 . . . b1
, k = 2, . . . , n.(13)

where u1(zj) ≡ qj is determined by the normalization condition, and can always be
chosen real and positive.
Left eigenvectors solve vTM = z vT i.e. MT v = z v. The difference is the exchange
of ck with bk. The formulae (11) and (12) imply v(zj)

Tu(zk) = 0 if zj 6= zk and

v(zj)
Tu(zj) = qjq

′
j

p′n(zj)pn−1(zj)

bn−1cn−1...b1c1

2. Real symmetric tridiagonal matrices

H =


a1 b1

b1
. . .

. . .

. . .
. . . bn−1

bn−1 an


ak and bk are real; the zeros of pk(z) are real.

2.1. Simplicity of eigenvalues. By Cauchy’s theorem, the zeros of pk−1 inter-
twine those of pk. The recursion (7) shows that intertwining is strict, otherwise all
pk would share the same zero. As a consequence, the zeros are simple. We give
another proof.

Theorem 2.1. The eigenvalues of a real symmetric tridiagonal matrix are simple.

Proof. The second Christoffel-Darboux formula (12) in the real symmetric case is:

p′m(z)pm−1(z)− pm(z)p′m−1(z)

b2m−1...b
2
1

= 1 +
∑

k=2...m

pk−1(z)2

b2k−1...b
2
1

> 1(14)

It follows that pm and p′m are never simultaneously zero, for all m. �
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Since all roots of pn(x) = xn + a1x
n−1 + · · ·+ an are real and simple, according

to Descartes’ rule the number of positive roots (i.e. eigenvalues of T ) is equal to
the number of sign differences between consecutive non-zero coefficients.
For example, the characteristic polynomial p3(x) = x3−3x2−5x+12 has 2 positive
(and 1 negative) roots.

2.2. Eigenvectors. The eigenvalue equation Hu = z u, is solved for real z = xj ,
a zero of the characteristic polynomial pn(xj) = 0, and

uk(xj) = qj
pk−1(xj)

b1 . . . bk−1
, k = 2, . . . , n.(15)

The first component u1(xj) ≡ qj is determined by the normalization condition
‖u(xj)‖2 = 1, which is evaluated with the formula (14):

1 = q2
j + q2

j

∑
k=2...n

p2
k−1(xj)

b21...b
2
k−1

= q2
j

p′n(xj)pn−1(xj)

b21...b
2
n−1

i.e.

(b1...bn−1)2 = q2
j pn−1(xj)

∏
k,k 6=j

(xj − xk)(16)

The normalised eigenvectors u(xj) are the columns of an orthogonal matrix that
diagonalizes H:

H = QXQT , X = Diag(x1 > x2 > .... > xn), Qij = ui(xj)

The relations QQT = 1 and QTQ = 1 correspond to completeness and orthonor-
mality of eigenvectors in Rn:∑

j=1...n

uk(xj)um(xj) = δkm,
∑

k=1...n

uk(xj)uk(xm) = δjm(17)

In particular
∑n
j=1 q

2
j = 1.

2.3. Vandermonde determinant of eigenvalues.

n−1∏
j=1

bn−jj =

n∏
k=1

qk
∏
j<k

(xj − xk)(18)

Proof. The determinant det[uk(xj)] = ±1 can be evaluated:

det


u1(x1) . . . u1(xn)
u2(x1) . . . u2(xn)

...
...

un(x1) . . . un(xn)

 =

∏
j qj

bn−1
1 bn−2

2 . . . bn−1

det


1 . . . 1

p1(x1) . . . p1(xn)
...

...
pn−1(x1) . . . pn−1(xn)


=

∏
j qj

bn−1
1 bn−2

2 . . . bn−1

∏
i>k

(xi − xk)

If eigenvalues are ordered x1 > ... > xn the determinant is +1 �



7

2.4. A map to eigenvalues and a unit vector. We now show that the unit
vector q with qj = u1(xj) > 0, and the ordered vector of eigenvalues, uniquely
determine the matrix H with positive bj and the eigenvectors.

Theorem 2.2 (Parlett, [17]). For a real symmetric tridiagonal matrix H, there is a
one-to-one correspondence of {a,b} with {q,x} where q is a unit norm n−dimensional
vector of positive real entries, and x a strictly increasingly ordered sequence of n
real numbers.

Proof. Write QH = XQ. Now, the eigenvectors of H are the rows of Q, and qk
are the columns of Q. The j-th column of the relation is the recurrence relation:

bjqj+1 = Xqj − ajqj − bj−1qj−1 ≡ rj(19)

with b0 = bn = 0. The scalar product with qj gives aj = qj · Xqj . It is also
bj = ‖rj‖ and qj+1 = rj/bj . Then, bj−1, qj−1 determine in turn aj , rj , bj and
qj+1 for j = 1, ..., n. Since b0 = 0, the vector q1 determines alone a1 = q1 ·Xq1,
r1 = (X−a1)q1, b1 = ‖r1‖ and q2 = r1/b1 and so, by finite induction, it determines
uniquely all the elements of H and Q.
Similarly, one may show that qn and X determine T and Q uniquely. �

As a consequence, we prove the following formula for the infinitesimal volumes:

Theorem 2.3 (see Forrester, [6] p.46).

n∏
k=1

dak

n−1∏
j=1

dbj =
1√

1−
∑n
j=1 q

2
j

∏n−1
r=1 br∏n−1
r=1 qr

n∏
k=1

dxk

n−1∏
j=1

dqj(20)

Proof. Let T = QTXQ, where X is the diagonal matrix of eigenvalues and Q is or-
thogonal with first column being the unit vector q. Then: (T k)11 = (QTXkQ)11 =∑n
j=1 q

2
jx
k
j and d(T k)11 =

∑
j kq

2
jx
k−1
k dxj + 2qjx

k
j dqj . The condition ‖q‖2 = 1

gives qndqn =
∑
j<n qjdqj , then:

d(T k)11 =

n∑
j=1

kq2
jx
k−1
k dxj +

n−1∑
j=1

2qj(x
k
j − xkn)dqj , k = 1, 2, ..., 2n− 1

L(da, db) = M(dx, dq)

The matrix L has a triangular structure: dT11 = da1, d(T 2)11 = 2a1da1 + 2b1db1,
d(T 3)11 = ...+b21da2, ... , d(T 2n−1)11 = ...+b21b

2
2 · · · b2n−1dan. Dots mean differential

terms with dak and dbk that are accounted by lower powers of T :

1
... 2b1

... b21
... 2b21b2

. . .

2(b1 · · · bn−2)2bn−1

... ... ... ... (b1...bn−1)2





da1

db1
da2

db2
...

dbn−1

dan


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The right-side term is:

... q2
k ... ... 2qj(xj − xn) ...

... 2qkxk ... ... 2qj(x
2
j − x2

n) ...
...

...
...

...
...

...
... (2n− 1)q2

kx
2n−2
k ... ... 2qj(x

2n−1
k − x2n−1

n ) ...





dx1

...
dxn
dq1

...
dqn−1


where the colums are k = 1, .., n, j = 1, .., n− 1.
Thus we have (da, db) = L−1M(dx, dq). The ratio of volume elements is∏

j=1...n

daj
∏

k=1..n−1

dbk =
detM

detL

∏
j=1...n

dxj
∏

k=1..n−1

dqk

where detL = 2n−1
∏n−1
k=1 b

4(n−k)−1
k and detM = 2n−1(q1...qn−1)3q2

n detM ′,

M ′ =


1 ... 1 x1 − xn ... xn−1 − xn

2x1 ... 2xn x2
1 − x2

n ... x2
n−1 − x2

n
...

...
...

...
(2n− 1)x2n−2

1 ... (2n− 1)x2n−2
n x2n−1

1 − x2n−1
n ... x2n−1

n−1 − x2n−1
n


the result detM ′ =

∏
i>j(xi − xj)4 is proven in the appendix (see ref.[14]). There-

fore:

detM

detL
= q2

n

n−1∏
k=1

q3
j

b
4(n−j)−1
j

∏
i>k

(xi − xk)4

The Lemma says that:
∏n−1
j=1 b

4(n−j)
j =

∏n
k=1 q

4
k

∏
j>k(xj − xk)4 and the Vander-

monde simplifies. �

The resolvent. The resolvent of the tridiagonal matrix G(z) = det(z−H)−1 can
be evaluated both by the formula for inversion and by the spectral representation.

G(z)ij =
∑
a

〈i|xa〉〈xa|j〉
z − xa

=
det(z −Hji)

det(z −H)
(21)

where Hji is the matrix H with row j and column i removed. In the limit z = xa,
the residues are obtained:

〈i|xa〉〈xa|j〉 =
det(xa −Hji)∏′

b(xa − xb)
(22)

In particular, from G(z)1n we reobtain (16).
The equation for the resolvent (z −M)G(z) = 1, i.e.

−bjG(z)j+1,k + (z − aj)G(z)j,k − bj−1G(z)j−1,k = δj,k

is liable of a transfer matrix solution. In particular, the components of the transfer
matrix can be expressed as follows:

Tn(z) =
1

G1,n

[
1 G1,1

−Gn,n Gn,nG1,1 −Gn,1G1,n

]
(23)

The large n behaviour of the transfer matrix can be related to the decay properties
of the inverse of tridiagonal matrices.
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2.5. Periodic tridiagonal matrices. Now consider the real tridiagonal matrices
with the addition of corner terms τn and 1/τn that enter as b.c. in the eigenvalue
equation:

H(τn) =


a1 b1 1/τn

b1
. . .

. . .

. . .
. . . bn−1

τn bn−1 an

(24)

When |τ | = 1 the matrices are Hermitian and correspond to the Bloch decompo-
sition of infinite periodic matrices, Hi+n,j+n = Hi,j , with Bloch phase τ . If also
ξ 6= 0 the matrices are no longer Hermitian, but this is advantageous for the study
of localization of eigenvectors.
The Duality identities (4) and (5) become:

det[z −H(τn)]

b1...bn−1
= trTn(z)− (τn +

1

τn
) = − 1

τn
det[Tn(z)− τn](25)

Note the useful identification:

det[z −H(±i)] = (b1...bn−1) trTn(z)(26)

Proposition 2.4. The eigenvalues of H(τn) solve the equation

det[z −H(i)] = (τn +
1

τn
)(b1...bn−1)(27)

They are determined by the intersections of the fixed line y = det[z − H(i)], with
the line y = (τn+ 1

τn )(b1...bn−1). This can be visualized for z = x real, in the plane
(x, y), and τn = exp(iϕ) or τ = exp ξ.

2.6. Bands. For τn = exp(iϕ) the matrix H(eiϕ) is Hermitian and the eigenvalues
are real, periodic functions xj(ϕ) with period 2π, and solve:

det[x−H(eiπ/2)] = 2(b1...bn−1) cosϕ(28)

They are the abscissae of the n intersections of the fixed line y = det[x−H(eiπ/2)]
with the line y = 2(b1...bn−1) cosϕ, and such n intersections exist and are distinct.
As the angle changes, the eigenvalues sweep bands in the real axis. The extrema
(inversion points) of each interval are at ϕ = 0, π (periodic or antiperiodic b.c.).
Since for any ϕ there are n distinct real eigenvalues, the bands do not overlap (at
most may touch at extrema).

The level velocity ẋj(ϕ) is related to the slope of the polynomial at x = xj(ϕ):

ẋj(ϕ) = −2 sinϕ
b1...bn−1

p′n(xj(ϕ); i)
(29)

where pn(x; i) = det[x−H(i)]. It vanishes at the band’s ends.

2.7. Lemniscates. For τ = ±eξ and increasing ξ, the intersection of the polyno-
mial line with the line y = ±2(b1...bn−1) cosh(nξ) continues to have n intersections,
that determine eigenvalues xj(nξ) that now enter the gaps between bands, and
eventually collide. A collision occurs at a local maximum or minimum of p(x; i).
After the collision they become complex.
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Figure 3. y = det[x−T (eiϕ)] for 3 Anderson matrices 6×6, with
W = 1 and W = 2. From above: ϕ = 0 (periodic b.c.), ϕ = π

2 and
ϕ = π (antiperiodic b.c.). The eigenvalues for ϕ = 0 and ϕ = π
bound the spectral bands. The lateral bands are narrower: the
eigenvalues are less sensitive to variations of b.c., and eigenstates
are more localized. Larger disorder (right) gives narrower bands
(stronger localization).
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-1
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1

Figure 4. The superposition of five spectra of n = 600 eigenval-
ues of a random matrix with diagonal elements uniformly chosen
in [−3.5, 3.5], bk = 1, for values of ξ increasing from 0 to 1. They
lie on spectral curves ξ = 1

n log τ(z), where τ(z) is eigenvalue of
the transfer matrix Tn(z) (from [16]).

3. Tridiagonal models

Several models on the 1D lattice are described by Hamiltonian matrices H =
T + D, where (Tu)k = uk+1 + uk−1 is the kinetic term and (Du)k = akuk is a
potential specified by numbers ak. The eigenvalue equation is

uk+1 + uk−1 + akuk = xuk

3.1. Free particle. uk+1+uk−1 = xuk. General solution: uk(p) = Aeipk+Be−ipk,
x(p) = 2 cos p. The parameter p is fixed by b.c. Open chain (u0 = un+1 = 0):

uk(xj) =
√

2
n sin( 2π

n+1jk), xj = 2 cos( 2π
n+1j), j = 1...n. Periodic chain (uk = uk+n):

uk(xj) = 1√
n

exp(±i 2π
n jk), xj = 2 cos(2π

n j), j = 1...n.

3.2. Particle in electric field. uk+1 + uk−1 + Ek uk = xuk.
General solution with Bessel functions.

3.3. Harper (or almost-Mathieu) equation. uk+1 + uk−1 + 2g cos(2πkα +
β)uk = xuk, g 6= 0. The case g = 1 arose from the study of en electron in a
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square lattice and magnetic field (Hofstadter), and attracted a lot of interest. The
Fourier transform

uk = eiβk
∑
m∈Z

eim(2παk+β)vm

reproduces the equation, vk+1 +vk−1 + (2/g) cos(2παk+β)vk = xvk, with coupling
g → 1/g. The model is self-dual for g = 1. The spectrum of the Hamiltonian is a
Cantor set for all irrational α [1].

3.4. 1D Anderson model. Consider the ensemble of random matrices H = T+D
where the potential D is specified by i.i.d. random numbers ak. In the Anderson
model ak have uniform distribution [−W,W ] (W is the parameter of disorder).
The spectrum is contained in the interval |x| ≤ 2 + W and for the infinite system
it remains pure point for all values W > 0. The eigenvectors are exponentially
localized (see fig.5).

The transfer matrix Tn(x) is the product of n independent random matrices,
and has unit determinant. For large n, with probability 1, its eigenvalues are
exp[±nγ(x)], where γ(x) is independent of n and of the realization of disorder
(Furstenberg’s theorem, (1963), see [13]). It is the inverse of the localization length.
The exponential localization of eigenvectors for W > 0, implies that the matrix H
has pure point spectrum in the n→∞ limit. The rate of decay is evaluated by the
Herbert-Jones [12] and Thouless formula.

Proposition 3.1 (Thouless formula, [19], 1972).

γ(x) =

∫
dx′ log |x− x′|ρ(x′)− 〈log b〉(30)

where ρ(x) is the density of eigenvalues of the tridiagonal matrix T (i).

Proof. The log of the modulus of eq.(26) is

1
n

∑n

j=1
log |x− xj(i)| = 1

n

∑n−1

k=1
log |bk|+ 1

n log trTn(z)

The large n limit and Furstenberg’s theorem, trTn(x) ≈ enγ(x), give the result. �

20 40 60 80 100

50

100

150

Figure 5. An eigenvector of the Anderson model, N=100, W=4.
It plots − log |uk|2, where |uk|2 is the probability of occupation of
site k, versus k = 1...100. The eigenstate is exponentially localized
around site k = 35.
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3.5. Hatano-Nelson model. Hatano and Nelson [11] inaugurated a study of lo-
calization of eigenvectors by modifying the Anderson Hamiltonian as follows:

eξuk+1 + e−ξuk−1 + akuk = E(ξ)uk(31)

For ξ = ξcr, the first pair of real eigenvalues collide at value E ≈ 0 becoming
complex. This critical value is ξcr = γ(0). As ξ grows, more eigenvalues in the
center of the band turn to complex, and distribute on a single a line

γ(Ex + iEy) = ξ

with tails of real eigenvalues at the edge of the spectrum, where eigenstates are
more localized. The study in depth of the single line of eigenvectors was done by
Goldsheid and Khoruzhenko [7], [8],[9] and several others.
The explanation is simple. Eq.(31) results after a similarity transformation of a
matrix H(enξ) with unit hopping, and terms exp(±nξ) in the corners. For ξ = 0
all eigenvalues are real and eigenvectors are exponentially localized with rate γ(E).
The similarity multiplies uk by ekξ. If ξ is big enough, it overcomes the exponential
localization e−γ|k−k0| and two eigenvalues jumps to complex. This means that the
eigenvectors feel the non-Hermitian b.c., i.e. the exponential localization e−kγ(E)

is destroyed by the factor ekξ.
The analogous behaviour in tridiagonal matrices with complex spectrum, was in-
vestigated by Molinari and Lacagnina [16].

3.6. The Lloyd model. In 1969 P. Lloyd introduced a tight-binding model with
Cauchy disorder for the study of the Anderson localisation in 3D. Its main feature
is that the average spectral density may be analytically evaluated [15].
The evaluation can be extended to H = H0 +D, where H0 is any Hermitian matrix
of size n and D is diagonal with i.i.d. elements aj distributed according to the
Cauchy distribution

p(a) =
δ

π

1

a2 + δ2
(32)

Spectral density. Let H be a n×n Hermitian random matrix, with resolvent G(z) =
(z −H)−1 and eigenvalues xk. The averaged density of the eigenvalues is

ρ(x) =
〈 1

n

∑
k

δ(x− xk)
〉

=
1

π
lim
ε→0

Im 〈 1
n

trG(x− iε)〉(33)

-4 -2 0 2 4 6

0.05

0.10

0.15

0.20

0.25

0.30

Figure 6. The eigenvalues of a random matrix (Hu)k = uk+1 +
uk−1 + εkuk of size n = 4000, with Cauchy disorder δ = 0.3. The
line is the theoretical distribution eq.(38).
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The following formula holds:

trG(z) = − d

dz

det(z′ −H)

det(z −H)

∣∣∣
z′=z

(34)

The ratio of determinants can be expressed as a supersymmetric integral, which
makes the averaging possible:

det(x′ −H)

det(x− iε−H)
=

∫ n∏
k=1

dψ̄kdψk
d2ϕk
π

e−iψ̄(x′−H)ψ−iϕ†(x−iε−H)ϕ(35)

The Lloyd model is simplest example of evaluation of an average on disorder.
The average of (35) factors because the aj are independent. A factor is

〈eia (ψ̄jψj+|ϕj |2)〉 =

∫
da p(a) eia |ϕj |

2

(1 + iaψ̄jψj) = e−δ(ψ̄jψj+|ϕj |
2)

〈 det(x′ −H)

det(x+ iε−H)

〉
=

∫ n∏
k=1

dψ̄kdψk
d2ϕk
π

e−iψ̄(x′−H0−iδ)ψ−iϕ†(x−H0−iδ)ϕ

=
det(x′ −H0 − iδ)
det(x−H0 − iδ)

Then 〈ρ(x)〉 = 1
π Im 1

n trG0(x − iδ) where G0(z) is the resolvent of H0. If xk are
the eigenvalues of H0, the spectrum of H averaged on Cauchy disorder is just a
superposition of Cauchy distributions:

ρ(x) =
1

n

∑
k=1...n

1

π

δ

(x− xk)2 + δ2
(36)

If H0 is the adjacency matrix for the cubic lattice Zd with spacing L, the spectral
density per unit volume is

ρ0(x) =
1

Ld

∑
1≤ki≤L

δ(x− 2 cos( 2πk1
L )− ...− 2 cos( 2πkd

L ))

=

∫
Rd

dk

(2π)d
δ(E − 2

∑
j

cos kj) =

∫ ∞
0

ds

π
J0(2s)d cos(xs)

The spectral density of H0 +D evaluated as a convolution integral,

ρ(x) =

∫ +∞

−∞
dy
δ

π

ρ0(y)

(x− y)2 + δ2
=

∫ ∞
0

ds

π
J0(2s)de−δs cos(xs)(37)

The integral for d = 1 is known (GR 6.751.3). See fig.6 for a plot:

ρ(x) =
1

π
√

2

√
4 + δ2 − x2 +

√
(4 + δ2 − x2)2 + 4x2δ2√

(4 + δ2 − x2)2 + 4x2δ2
(38)

The Lyapunov exponent of the 1D Lloyd model can be analytically evaluated:

cosh γ(x) = 1
4

√
(x− 4)2 + δ2 + 1

4

√
(x+ 4)2 + δ2(39)
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Figure 7. The distributions of eigenvalues of the Laplacian and of
the Laplacian with Cauchy diagonal (Lloyd model, δ = 0.3) on the
square and cubic lattices. The van Hove singularities are smoothed
and the disorder adds tails to the sharp band [−2d, 2d].

4. Measures of localization of eigenvectors

Consider a Hermitian n × n matrix Hij =
∑
a xa〈i|xa〉〈xa|j〉, with propagator

U(t) = exp(−itH), resolvent G(z) = (z −H)−1.
The spectrum of the matrix says nothing about the eigenvectors, unless one perturbs
the matrix to detect the shift of the eigenvalues: linear response relates the shift
to an expectation on the unperturbed state. Other measures of localization require
the eigenvector components. Usually, the measures have to be normalized with
respect to some reference system. Below, we list some.

Width of probability. The numbers |〈j|Ea〉|2, j = 1...n are probabilities for the
occupation of ”site” j. The perturbation of H with δHij = εδijj gives, by linear
response, the shifts δEa = ε

∑n
j=1 j|〈j|Ea〉|2 i.e. the baricenters ja of the probability

distribution. The perturbation δHij = εδijj
2 provides the values (j2)a and, finally

∆a =
√

(j2)a − (ja)2 measures the width of the probability distribution: i.e. where
the particle is most likely to be.

Inverse participation ratio. The inverse participation ratio (IPR) of a normalized
vector u is the sum

∑n
j=1 |uj |4. Its inverse (the participation ratio) is a measure of

-2 -1 1 2
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50

100
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Figure 8. Anderson model, n = 600, W = 0.5. Left: the
baricenters of the eigenstates are almost uniformly scattered in
(0,600) for all values of the energy in [−2.5, 2.5]. Middle: the
eigenstates near the edges of the spectrum are localized, while at
the center of spectrum they are still delocalized. Right: at W = 2
all states are localized (variance localization ∆).
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localization of the vector:

ξ2 = (

n∑
j=1

|uj |4)−1(40)

The inverse participation ratio measures the time-average of the probability of
return:

πjj = lim
T→∞

1

T

∫ T

0

dt|〈j|U(t)|j〉|2

=
∑
rs

|〈j|xa〉|2|〈j|xb〉|2 lim
T→∞

1

T

∫ T

0

dt e−it(xa−xb) =
∑
a

|〈j|xa〉|4

Since U(t)θ(t) = −
∫ +∞
−∞

dx
2πiG(x+ iε)e−ixt, it is πmn =

∫ +∞
−∞

dx
2π |G(x+ iε)n,m|2.

Entropy length. The Shannon entropy associated to a normalized probability is
S[u] = −

∑n
j=1 |uj |2 log |uj |2. The entropy length is

ξ0 = expS(41)

The last two measures are special cases of ξq = (
∑n
k=1 |ui|2q)1/(1−q).

The table summarizes some special distributions:

Vector ∆ ξ2 ξ0 Notes

Box L
2
√

3
L L

Exponential 1√
2shγ

th(2γ)
th2γ

exp[2γ/sh(2γ)]
thγ

Constant 1
2
√

3
n n n

Open chain 1
2
√

3
n 2

3n large n

GOE(n) 1
3n

1
2n large n

(42)

- Box state, |uk|2 = 1/L for k = 1...L, and 0 otherwise.
- Exponential state, uk =

√
tanh γ exp(−γ|k|).

- GOE (n) eigenvectors are uniformly distributed on the sphere ‖u‖ = 1 in Rn. The
average values are: 〈S〉 = ψ(n2 )− ψ( 3

2 )→ log n− 0.7296, 〈
∑n
k=1 |ui|4〉 →

3
n .

- Open chain, uk(j) =
√

2
n+1 sin( kjπn+1 ).

Note: The eigenvectors of GOE (n) matrices are uniformly distributed on the surface
of the unit sphere in Rn. With x = |uk|2, it is:

p(x) =
Γ(n2 )

Γ(n2 + 1
2 )Γ( 1

2 )
x−1/2(1− x)

n−3
2 → p(y) =

1√
2πy

e−y/2(43)

The large n expression (for y = x/n) is the Porter - Thomas distribution.

5. Methods of tridiagonalization

5.1. Lanczos. With the Lanczos algorithm, a real symmetric matrix S is brought
to tridiagonal by an iterative process that only involves matrix multiplication of
vectors. The steps are:
i) Choose a normalized vector with Sq1 6= 0 and put a1 = q1

TSq1 (this is T11).
ii) The vector q′2 = (S − a1)q1 is orthogonal to q1. Put b1 = ‖q′2‖ (i.e. T12). The
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vector q2 = q′2/b1 is normalized; put a2 = q2
TSq2.

iii) continue with the steps:

q′k+1 = (S − ak)qk − bk−1qk−1,

bk = ‖q′k+1‖,
qk+1 = q′k+1/bk, ak+1 = qk+1

TSqk+1

The vectors qk are orthonormal and are, in the order, the colums of an orthogonal
matrix O such that SO = OTT , where T is generated step by step.

5.2. Householder transformation. A symmetric matrix S can be reduced to
tridiagonal form by a sequence of special transformations. It is sufficient to discuss
the first step: the others produce similar results of smaller and smaller blocks.
Given a normalized vector v define the symmetric orthogonal matrix H(v)ij =
δij − 2vivj . Its action on a vector is a reflection with respect to the hyperplane
orthogonal to v. The action on S is:

S′ij = (HSH)ij = Sij − 2vi(Sv)j − 2(Sv)ivj + 4vivj(v
TSv)

Choose v1 = 0 and denote the first row of S as (S11, s). It is:

S′11 = S11, s′j = sj − 2(s · v)vj

The vector v is chosen such that s′ = (S′12,0). Then: v3 = λs3, ..., vn = λsn
where 0 = 1 − 2λS12v2 − 2λ2(‖s‖2 − S2

12) and the normalization condition is 1 =
v2

2 + λ2(‖s‖2 − S2
12). Now, S′ has the form

S =

[
S11 s
sT [S]11

]
→ S′ =

 S11 S′12 0
S′12 ... ...
0 ... ...

 S′12 = ‖s‖ =

√√√√ n∑
j=2

S2
1j

Another transformation is made, acting on the block [S′]11, with a new vector
(0, 0,v′). In the end, a tridiagonal symmetric marix is obtained, with off diagonal
elements being positive.
Each Housholder transformation is orthogonal, then the eigenvalues of the tridiag-
onal matrix coincide with those of S.

5.3. Beta ensembles. If the symmetric matrix S belongs to GOE(n), the matrix
elements are Gaussian random variables. After one Housholder step, S′11 = S11 is
N[0,1] while S′12 ∈ χn−1[ 1√

2
], where χ2

n−1[ 1√
2
] is the probability distribution for the

sum of n− 1 independent squared Gaussian variables in N[0, 1√
2
]. Being the vector

v independent of the matrix elements in [S]11, the submatrix [S]11 is a member of
GOE(n− 1).
Another Housholder step gives S′′22 = S′22 ∈ N[0,1] and S′′23 ∈ χn−2[ 1√

2
].

In the end we obtain a random tridiagonal matrix with a probability densities for
matrix elements

T =


N [0, 1] χn−1[ 1√

2
]

χn−1[ 1√
2
]

. . .
. . .

. . .
. . . χ1[ 1√

2
]

χ1[ 1√
2
] N [0, 1]

(44)
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The ensemble of matrices T has the same joint probability for eigenvalues as GOE:

p(x1, ..., xn) =
1

23n/2

∏
k=1...n

1

Γ(1 + k/2)
|∆(x)| exp(− 1

2‖x‖
2)

It has been proven [3][4][6] that the set of random tridiagonal matrices with diagonal
elements ak ∈ N [0, 1] and subdiagonal elements bk ∈ χβk has joint probability
density for the eigenvalues proportional to

exp[− 1
2

∑
λ2
k]
∏
j<k

|λk − λj |β

6. Dynamical localization in quantum chaos

6.1. The kicked rotator. (see [2][10][18]). Quantum chaos is the study of quan-
tum manifestations of classical chaos, i.e. a dynamics characterised by exponential
instability of the time evolution as initial conditions are varied. The kicked rotator
is one of the simplest models exhibiting classical chaos (1979). It is a particle on
the circle, that is periodically kicked, with strength v(θ + 2π) = v(θ):

H(θ, p, t) = 1
2p

2 + v(θ)
∑
n

δ(t− n)(45)

The classical dynamics is described by the standard map (Chirikov-Taylor) in
[−π, π]× R, for the evolution of the state (θ, p) in one time-period:{

θn+1 = θn + pn+1 mod. 2π

pn+1 = pn + v′(θn)

The map is area-preserving.
For v(θ) = κ cos θ, there are non KAM curves for κ > 63

64 . The map is then chaotic,
with shrinking stability islands around the fixed point (π, 0). Iteration gives pn =

p0 + κ
∑n−1
k=0 sin θk. Squaring: (pn − p0)2 = κ2

∑
k sin2 θk + κ2

∑
k 6=k′ sin θk sin θk′ .

By assuming that the angles are randomly distributed, one obtains that the energy
increases linearly in time (diffusion):

(pn − p0)2 = 1
2κ

2n

where the average is on a bunch of initial angular conditions.
The quantum dynamics is described by the unitary time-evolution on a period
(Floquet operator) given by a free evolution of duration T = 1 with Hamiltonian

−~2

2 ∂
2
θ , and a kick:

F = exp(− i
~
κ cos θ) exp(− i

2~
p2
θ)(46)

The eigenvalues of F , exp(− i
~Tε), define the “quasi-energies” ε (here T = 1).

In the basis of angular momentum, F is the matrix Fn,m = J|n−m|(
κ
~ )e

i
2~m

2

. Since

for large ν, fixed x: Jν(x) ≈ 1√
2πν

( ex2ν )ν , then Fn,m is exponentially small for

|n−m| > κ/~. Fn,m is a “random” banded matrix with bandwidth b ≈ κ/~.

For κ > κc it was discovered that the energy 〈p
2
θ

2 〉, increases in time n as in the
classical map up to a time nc, when it reaches a saturation value. This phenomenon
is a consequence of dynamical localization: an initial eigenstate |m〉 of angular
momentum evolves in time n to

∑
m′ |m′〉〈m′|Fn|m〉. Localization means that, for

n > nc the number of states coupled by Fn does not increase with n. The number
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Figure 9. The standard map on the torus. The dynamics of
a single initial point θ = 0.83, p = 1.32. κ = 1.1 with 500, 5000
and 20.000 iterations; κ = 3, with 500, 5.000; κ = 5 with 5.000
iterations. For κ = 3 the point explores all the available surface
except the island around the stable fixed point (π, 0), which is
invaded at κ = 5.

of coupled states ∆n is the localization length.
Qualitatively, ∆n =

√
Dn where D = k2/2. Diffusion stops at time nc when

discreteness of the quasi-energy spectrum is resolved, i.e. 2π√
Dnc
· nc ≈ ~. The

relation gives nc ≈ ~2D/4π2, and ∆n =
√
Dnc ≈ ~κ2/2π. This relation gave an

important insight, that was later proved: a banded random matrix with band-width
b has eigenstates that are localized in a length b2.

6.2. The Maryland construction. The eigenvalue equation of the Floquet oper-
ator (46) can be mapped to a 1D tight-binding model, thus relating the dynamical
localization to Anderson localization [5]. The angle-dependent unitary factor can
be represented as the Cayley transform of a Hermitian (multiplication) operator:

e−
i
~v(θ) =

1− iW (θ)

1 + iW (θ)
=⇒W (θ) = tan[ 1

2~v(θ)]

The eigenvalue equation Fu = e−iε/~u becomes:

(e−
i
~ (p2/2−ε) − 1)u− iW (e−

i
~ (p2/2−ε) + 1)u = 0

By renaming (e−
i
~ (p2/2−ε) + 1)u = v it is: tan[ 1

2~ (p
2

2 − ε)]v −Wv = 0. In the basis

of p2 (free rotator), it reads: Wn,mvm + tan(~n2

4 −
ε

2~ )vn = 0. With the choice
v(θ) = 2~ arctan(cos θ) it is:

vn+1 + vn−1 + tan(~n2

4 −
ε

2~ )vn = 0

Appendix

6.3. Normal variable. A random variable x belongs to N [µ, σ] if it has Gaussian
probability density

p(x) =
1√
2πσ

exp(− (x− µ)2

2σ2
)
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The variable x = x2
1 + · · ·+ x2

n, where all xk ∈ N [0, σ], belongs to χ2
n[σ]:

p(x) =
1

2σ2Γ(n/2)

( x

2σ2

)n
2−1

exp(− x

2σ2
)

The variable x =
√
x2

1 + · · ·+ x2
n, where all xk ∈ N [0, σ], belongs to χn[σ]:

p(x) =
2√

2σ2Γ(n/2)

(
x√
2σ2

)n−1

exp(− x2

2σ2
)

6.4. Cauchy variable. A random variable x belongs to C[a+ ib] (b > 0) if it has
Cauchy probability density

p(x) =
b

π

1

(x− a)2 + b2

The random numbers can be generated by x = a + b tan θ, with θ uniformly dis-
tributed in [−π/2, π/2].
If x belongs to C[z] then the variable 1/x belongs to C[1/z∗].
If x1 ∈ C[z1] and x2 ∈ C[z2], then x1 + x2 ∈ C[z1 + z2].
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