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1. Positive matrices

A complex Hermitian matrix P is positive semi-definite (P ≥ 0) if

z†Pz ≥ 0, ∀z ∈ Cn0(1)

If the inequality is strict, the matrix is positive-definite, P > 0.
• Positive semi-definite matrices form a convex set:

P ≥ 0, Q ≥ 0 =⇒ tP + (1− t)Q ≥ 0 ∀t ∈ [0, 1]

• For P ≥ 0 or P > 0, suitable choices of vectors z give the properties:
- the diagonal matrix elements of P are non-negative or positive,
- the eigenvalues of P are non-negative, or positive.
- the principal submatrices of P are positive semi-definite or definite,
- if z is zero except for zi = 1 and |zj | = 1, then for a suitable zj :

|Pij | ≤ 1
2 (Pii + Pjj)(2)

• Sylvester’s Inertia theorem states that the numbers of positive, zero and negative
eigenvalues of a Hermitian matrix H and of K†HK ≥ 0 are the same for any choice
of invertible square matrix K. Then, if P ≥ 0 it is K†PK ≥ 0, and if P > 0 it is
K†PK > 0.
• Theorem (see [21]): If P ≥ 0 and Q ≥ 0, there exists an invertible matrix K
such that both K†PK and K†QK are diagonal.
If P > 0, then K can be chosen so that K†PK = 1 and K†QK is diagonal.
• Theorem (I. Schur 1911): If P ≥ 0 and Q ≥ 0 then P ◦Q ≥ 0 and det(P ◦Q) ≥
(detP )(detQ), where the Hadamard product is (P ◦Q)ij = PijQij (see [18]).
• Proposition If X ∈ Cp×n, then XX† ≥ 0 and X†X ≥ 0.
If P ≥ 0 then P = UΛU† with Λ ≥ 0 diagonal and U unitary. Then P = XX†

where X = UΛ1/2. P > 0 iff P = XX† for some invertible matrix.
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1.1. Inequalities. For positive definite matrices the famous Hadamard inequality
holds (1893, [8]):

detP ≤ P11 · · ·Pnn(3)

The inequality was improved by Fischer (1907, [5]): if P is partitioned in 4 blocks,
then detP ≤ detP ′ detP ′′ where P ′ and P ′′ are the diagonal blocks. The iteration
eventually terminates with Hadamard’s statement. Thompson’s inequality (1961,
[20]) states that if P is partitioned in square blocks Pab, then detP ≤ det[detPab].
This inequality is due to Hermann Minkowski [4]:

det(P +Q)
1
n ≥ (detP )

1
n + (detQ)

1
n(4)

with equality only if Q = cP , c > 0.

1.2. Metric properties. The set P(n,R) of positive-definite matrices is convex,
and is an open subset in the space of Hermitian matrices with inner product
(A|B)2 = tr(AB) (see [3]). In other words, for every P > 0 there is a disk of
matrices that are all positive:

if P > 0 ∃ r > 0 s.t. if Q = QT and ‖Q− P‖2 < r ⇒ Q > 0

P(n,R) is a symmetric space (a Riemannian manifold with a geodesic-reversing
isometry at each point). It is a Riemannian manifold with local distance [3]

ds2 = tr(P−1dPP−1dP )

The line element is invariant under the action of GL(n,R), P ′ = GTPG.
The distance of two elements is the length of the shortest path joining two matrices.
This unique geodesic joining matrices P and Q is

γ(t) = P 1/2(P−1/2QP−1/2)TP 1/2, t ∈ [0, 1]

The distance has the explicit expression:

d(P,Q) = ‖ log(P−1/2QP−1/2)‖2(5)

The exponential map is continuous from the Hilbert space of symmetric matrices
with the trace-norm?(check) to the metric space of positive definite matrices with
distance d.

2. Parametrizations and invariant measures

2.1. The invariant measure. A real positive matrix P is specified by the indepen-
dent matrix elements Pij i ≤ j, that form a vector P ∈ R 1

2n(n+1). A transformation
P ′ = KTPK induces a linear transformation P′ = ΩKP that is a representation:
ΩKH = ΩKΩH . In particular, ΩK−1 = Ω−1

K . Let K = S−1ΛS, where Λ is diago-

nal, then ΩK = Ω−1
S ΩΛΩS and det ΩK = det ΩΛ = (det Λ)n+1 = (detK)n+1. The

Jacobian of the linear transformation P′ = ΩKP is:
∣∣∣∂P′/∂P

∣∣∣ = |detK|n+1.

If dP =
∏
i≤j dPij , the invariant measure is

dµn(P ) =
dP

(detP )
1
2 (n+1)

.(6)

It is dµn(GTPG) = dµn(P ) for all G ∈ GL(n,R).
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Example: if Q > 0, the following integral results with the change P ′ = Q1/2PQ1/2:∫
dµn(P )(detP )αe−tr(PQ) = Γn(α)(detQ)−α(7)

The constant is evaluated in eq.(9).

2.2. Triangular coordinates. (Muirhead [13], theorems A9.7 and 2.1.9)
If P ∈ P(n,R) then there exists a unique upper triangular matrix T with positive
diagonal elements such that P = TTT (proof by induction). Moreover,

dµn(P ) = 2n
n∏
j=1

T−jjj
∏
i≤k

dTjk(8)

Proof. We reproduce the proof in [13]. For i ≤ j write Pij =
∑
k≤j TkiTkj .

First row: it is dP11 = 2T11dT11; being P1k = T11T1k, in taking the exterior
product of differentials, the factor dT11 necessarily comes from dP11 and should not
be repeated. Then, for the purpose of exterior product: dP1k = T11dT1k. Then it
is
∏
k dP1k = 2Tn11

∏
k dT1k

Second row: P22 = T 2
12 + T 2

22 gives dP22 = 2T22dT22. Then P2k = T12T1k + T22T2k

only provides the factor dP2k = T22dT2k, k = 2...n; then
∏
k dP2k = 2Tn−1

22

∏
k dT2k.

And so on. Then:

dP = 2n
n∏
j=1

Tn+1−j
jj

∏
i≤k

dTjk

Since detP = (detT )2 =
∏
j T

2
jj , the factors Tn+1

jj simplify to give the invariant
measure. �

Example. With detP = (detT )2 =
∏
j T

2
jj , trP =

∑
k≤j T

2
kj let’s evaluate

Γn(α) =

∫
dµn(P )(detP )αe−trP =2n

n∏
j=1

∫ ∞
0

dTjjT
−j+2α
jj e−T

2
jj

∏
i<j

∫ +∞

−∞
dTije

−T 2
ij

=π
1
4n(n−1)

n∏
j=1

Γ(α− 1
2 (j − 1)).(9)

2.3. Iwasawa parametrizations. (from Terras [19]).
For p + q = n the partial Iwasawa1 block-factorizations of real positive matrices
provide useful coordinates. The first one is

P =

[
Ip XT

0 Iq

] [
V 0
0 W

] [
Ip 0
X Iq

]
=

[
V +XTWX XTW

WX W

]
(10)

where V ∈ P(p,R), W ∈ P(q,R) and X ∈ Rq×p. The other factorization is

P =

[
Ip 0
Y T Iq

] [
V 0
0 W

] [
Ip Y
0 Iq

]
=

[
V V Y

Y TV Y TV Y +W

]
(11)

where Y ∈ Rp×q. The correspondences are one-to-one with P . The invariant length
takes the forms:

ds2 = ds2
V + ds2

W + 2tr[V −1dXTWdX] = ds2
V + ds2

W + 2tr[dYW−1dY TV ]

1Kenkichi Iwasawa, 1917-1998
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The metric tensors are block-diagonal. In the first case the Haar measure is:

dµn(P ) = dpµ(V )dµq(W ) (detV )−q/2(detW )p/2dX(12)

The blocks V , W may be further decomposed. The full Iwasawa decomposi-
tion is P = nTA2n where A is diagonal positive and n ∈ N.
N is the group of upper triangular matrices with unit diagonal. Its invariant mea-
sure for left or right multiplication by elements in N is dn =

∏
i<j dxij .

Example:

P =

 1 0 0
x12 1 0
x13 x23 1

 a2
1 0 0

0 a2
2 0

0 0 a2
3

 1 x12 x13

0 1 x23

0 0 1


In the full Iwasawa parametrization, the invariant measure is found to be:∫

dµn(P )f(P ) = 2n
∫ ∞

0

n∏
j=1

daj
aj

an−2j+1
j

∫ +∞

−∞

∏
i<j

dxijf(nTA2n)(13)

2.4. Spectral coordinates. A real positive matrix factors as P = RTΛR, where
R ∈ SO(n) and Λ = diag(λ1, . . . , λn), where λi > 0 are the eigenvalues of P .
The invariant measure is

dµn(P ) = Cn dR

n∏
k=1

dλkλ
− 1

2 (n+1)

k

∏
j<k

|λj − λk|(14)

where
∫
dR = 1. The constant Cn is now obtained:

Cn = π
1
4n(n+1) 1

n!

n∏
j=1

1

Γ(j/2)

Proof. Consider the integral∫
dP e−tr 1

2P = Cn

n∏
k=1

∫ ∞
0

dλke
− 1

2λk

∏
j<k

|λj − λk|

The left-hand side is Gaussian: 2
1
2n(n+1)π

1
4n(n−1)

∏n
j=1 Γ( j+1

2 ). The right-hand

side is a form of Selberg’s integral (Cor. 8.2.2 in [1] with k = 0):

n∏
k=1

∫ ∞
0

dλke
− 1

2λkλα−1
k

∏
j<k

|λj − λk| = 2
1
2n(n+1)

n∏
j=1

Γ(α+ j−1
2 )Γ(1 + j

2 )

Γ( 3
2 )

The comparison of the integrals gives Cn. �

• If P > 0 and P ′ = P−1 then P ′ > 0 and dµn(P ′) = dµn(P ).

3. Integrals on positive matrices

Various integrals of real positive variable extend to integrals on positive matrices
[14, 15, 19]. We mention a few.
• Multivariate Gamma function (Albert E. Ingham [11])

Γn(α) =

∫
P>0

dP (detP )α−
1
2 (n+1)e−trP = π

1
4n(n−1)

∏n

k=1
Γ(α− k−1

2 )(15)
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We already evaluated the extension with source Q > 0:∫
P>0

dµn(P )(detP )αe−tr(PQ) = Γn(α)(detQ)−α(16)

An application to the evaluation of moments of negative powers of GUE determi-
nants is found in [7] (with a connection to Riemann’s zeta function).
• Multivariate Beta function.
Multiply (16) by (detQ)α+βe−tr(QH) dµn(Q) and integrate both sides:

Γn(α+ β)

∫
P>0

dµn(P )(detP )α[det(P +H)]−α−β = Γn(α)Γn(β)(detH)−β(17)

The choice H = 1 gives an identity by Carl Ludwig Siegel [17]:∫
P>0

dµn(P ) (detP )α det(1 + P )−(α+β) =
Γn(α)Γn(β)

Γn(α+ β)
(18)

The result is the multivariate Beta function, which is defined by the integral

Bn(α, β) =

∫
0<P<I

dµn(P ) (detP )α det(1− P )β−
1
2 (n+1) =

Γn(α)Γn(β)

Γn(α+ β)
(19)

that, basically, is Selberg’s integral Sn(α− 1
2 (n+ 1), β − 1

2 (n+ 1), 1
2 ) (1944) [1]:

SN (µ, ν, λ) =

N∏
j=1

∫ 1

0

dxjx
µ
j (1− xj)ν |∆(x)|2λ(20)

=

N∏
j=1

Γ(µ+ 1 + jλ)Γ(ν + 1 + jλ)Γ(λ+ 1 + jλ)

Γ(µ+ ν + 2 + (N + j − 1)λ)Γ(1 + λ)

Eq.(18) may be obtained from (19) with the change P ′ = P (1 + P )−1. Then
I > P ′ > 0 and dP = dP ′(detP ′)−n−1.
• The choice H = 1 + εK in (17) and expansion in ε gives:∫

P>0

dµn(P )(detP )α[det(P + 1)]−α−βtr[(P + 1)−1K] = Bn(α, β)
β

α+ β
trK(21)

• Matrix confluent hypergeometric functions of the I and II kind ([19], p.68)

Φn(a, c,Q) =
Γn(c)

Γn(a)Γn(c− a)

∫
0<P<I

dµn(P ) etr(PQ)(detP )a[det(1− P )]c−a−
1
2 (n+1)

The function of II kind was introduced by Muirhead ([13], p.472)

Ψn(a, c,Q) =
1

Γn(a)

∫
P>0

dµn(P ) e−tr(PQ)(detP )a[det(1 + P )]c−a−
1
2 (n+1)(22)

• Multivariate Gamma function The matrix Gamma function Γn(α) has a general-
ization, by Selberg. Define the (complex) power of P ∈ P(n,R)

Pz(P ) =

n∏
k=1

(detPk)zi , z ∈ Cn(23)
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where Pk is the matrix k × k of the first k rows and columns of P .
The multivariate Gamma function is

Γn(z) =

∫
P>0

dµn(P )Pz(P )e−trP(24)

= π
1
4n(n−1)

n∏
k=1

Γ(zn−k+1 + · · ·+ zn − k−1
2 )

The function Γn(α) in eq.(9) corresponds to the choice z = (0, ..., 0, α).
• Matrix K-Bessel function (Bengtson [2])
If A > 0 and B > 0 then

Kn(z|A,B) =

∫
P>0

dµn(P )Pz(P ) e−tr(AP+BP−1)(25)

Bengtson proved the correspondence:∫
Rm×n

dXPz((A+XTX)−1) e2itr(RX) = π
mn
2 Kn(z′|A,RTR)(26)

where A > 0, R ∈ Rm×n, z′ = z + (0, 0, ..., 0,−m2 ).
In particular,∫

Rm×n

dX
e2itr(RX)

det(A+XTX)α
= π

mn
2

∫
P>0

dµn(P )
e−tr(AP+RTRP−1)

(detP )
m
2 −α

(27)

• Matrix Laplace transform If f : P(n,R) → C, the Laplace transform of f at a
symmetric complex matrix X = U + iV is

(L f)(X) =

∫
P>0

dP e−tr(PX)f(P )(28)

that converges for U > U0 ∈ P(n,R). The inversion formula is:

f(P ) = (2πi)−
1
2n(n+1)

∫
X=XT ,U>U0

dV etr(P (U+iV ))(L f)(U + iV )(29)

4. Real rectangular random matrices

Rn×p, n ≥ p, is the set of rectangular real matrices n × p of rank p. The set
is invariant for left and right multiplication by invertible square matrices in Rn×n
and Rp×p. If M ′ = MB then M ′ia = δkiBbaMkb, ∂M

′/∂M = I ⊗B. The Jacobian
of the linear transformation is |J | = det(I⊗B) = (detB)n. With dM =

∏
ia dMia,

the right-invariant measure is

dµRn,p(M) =
dM

(detMTM)
n
2

It is dµRn,p(MB) = (detB)ndM
(detBTMTMB)n/2 = dµRn,p(M).
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4.1. Polar decomposition. Let M = [m1, . . . ,mp], where the columns mk are
linearly independent vectors in Rn. Right multiplication by a p× p matrix G−1 is
MG−1 whose columns are linear combinations of the columns of M . Choose G−1

such that the columns in MG−1 = V are orthonormal.
• Vn,p = {V ∈ Rn×p, V TV = Ip} is the Stiefel2 manifold of orthonormal p-frames in
Rn, i.e. the p columns of V are orthonormal vectors in Rn. The set is invariant for
left multiplication by O(n) and right multiplication by O(p). Vn,n is the orthogonal
group O(n).
• Now it is M = V G with MTM = GTG = P 2, with P ∈ P(p,R). Then G has
polar decomposition G = RP for some R ∈ O(p). Since V R ∈ Vn,p, we obtain the
polar representation of rectangular matrices:

M = V P , V ∈ Vn,p , P > 0(30)

• If M ∈ Rn×p, then M has the unique representation M = V T where V ∈ Vn,p
and T is upper triangular with positive diagonal ([13] Thrm A9.8).
The measure is ([13] thrm 2.1.13):

dM =

p∏
j=1

Tn−jjj dTdV

4.2. Joint probability measure. The integration measure that corresponds to
M = V P 1/2 is (Lemma 1.4 in [9]):

dµRn,p(M) = 2−pdV dµp(P )

The evaluation
∫
dMe−tr(MTM) = 2−p

∫
dV
∫
P>0

dµp(P )(detP )n/2e−trP gives
the normalization ∫

Vn,p

dV = σn,p =
2pπnp/2

Γp(n/2)

4.3. Rectangular integrals.

•
∫
dMe−tr(MTMQ) = π

1
2np(detQ)−n/2

•
∫
dMδ(Q−MTM) = 2−pσn,p(detQ)

1
2 (n−p−1) where δ(P ) =

∏
i≥j δ(Pij)

5. Wishart random matrices

Multivariate Normal. For an historical introduction read [16].
The extension of the normal distribution N(µ, σ2) to p variables is the multivariate
normal distribution.
A real random vector x = {x1, . . . , xp} has multivariate normal distribution with
mean µ = {µ1, ..., µp} and covariance matrix Σ ∈ Rp×p, i.e. x ∼ Np(µ,Σ), if the
joint probability density function of x1, ..., xp is

p(x) =
1

(2π)p/2
√

det Σ
exp

[
− 1

2 (x− µ)TΣ−1(x− µ)]
]

(31)

It is E[xk] = µk and E[(xj − µj)(xk − µk)] = Σjk [16]. The distribution (marginal)
of a subset of x, say {x1, ..., xk}, is multivariate normal with covariance matrix
given by the rows and columns 1, ..., k of Σ.

2Eduard Stiefel, 1909–1978
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Given n independent random variables with identical distribution N [0, σ2], the
sum of their squares has a χ2

n[σ] distribution. In analogy, consider n independent
random vectors x1 . . .xn in Rp, with same distribution Np(0,Σ). The distribution
of the sum

∑n
j=1 xjx

T
j is named Wishart distribution3. The sum can be rewritten

as XXT , where X is the p× n matrix [x1, ...,xn]. The p× p matrix P = XXT is
positive.

5.1. Wishart distribution (1928). The Wishart distribution is a multivariate
generalization of the χ2 distribution.
A real p × p random matrix P > 0 has the (central) Wishart distribution with
n degrees of freedom (n ≥ p) and covariance matrix Σ, i.e. P ∼ Wp(n,Σ), if its
probability density function is

p(P ) =
1

Γp(n/2)(2p det Σ)n/2
(detP )

1
2 (n−p−1) exp[− 1

2 tr(Σ−1P )](32)

with respect to Lebesque measure on the cone of symmetric positive definite ma-
trices. Γp(a) is the multivariate Gamma function.
If P ∈W1(n;σ2), then P ∈ χ2

n[σ].
The normalization in (32) is Ingham’s integral (16) with Q = 1

2Σ−1 ∈ P(p,R).

5.2. Sample statistics. Let x1, . . . ,xn be a sample of n random vectors in Rp
taken from a distribution Np[µ, σ

2]. The sample mean and sample variance are:

x̄ =
1

n

∑n

k=1
xk, S̄ =

1

n− 1

∑n

k=1
(xk − x̄)(xk − x̄)T

Proposition: the random variables x̄ and S̄ are independent and
√
n(x̄− µ) ∼ Np[0,Σ], (n− 1)S̄ ∼Wp(n− 1,Σ)

Thus a random draw from the Wishart distribution is some matrix that, upon
rescaling, is a covariance matrix for multivariate normal data.

6. The Laguerre ensemble

If Σij = σ2δij , the matrix elements of X ∈ Rp×n are independent identically
distributed (i.i.d.) random variables with distribution N(0, σ2). The Wishart dis-
tribution of the p× p matrix P = XXT simplifies,

p(P ) =
1

(2p/2σ)nΓp(n/2)
(detP )

1
2 (n−p−1) exp[− 1

2σ2 trP ]

It only depends on the eigenvalues of P , that have joint distribution

p(λ1, . . . , λp) = Cn,p,σ|∆(λ)|
∏p

j=1
λ

1
2 (n−p−1)
j exp(− 1

2σ2λj)(33)

The positive-definite matrices with this distribution form the Laguerre ensemble.

3John Wishart (Perth 1898, Acapulco 1956) was introduced by the mathematician Edmund
Whittaker to the influential statistician Karl Pearson, at University College in London. As PhD
student, he was engaged in the preparation of the numerical tables for the incomplete Gamma

function. Years later, he became director of the Statistical Laboratory in Cambridge. He was
editor of the important journal Biometrika, created in 1901 by K. Pearson, W.F.D. Welton and
C. Davenport.
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6.1. Marcenko-Pastur distribution (1967). [12]
In the large n and p limits, with finite ratio r = p/n, the eigenvalues τ1 . . . τp of the
real positive square matrix P = 1

nXX
T have the distribution with support [a, b]

ρ(τ) =
1

2πrσ2

√
(b− τ)(τ − a)

τ
(34)

where a = σ2(1−
√
r)2, b = σ2(1 +

√
r)2.

Proof. The partition function for the eigenvalues of positive matrices described by
the probability (33) is Z =

∫
dλ1...dλp exp[−p2S] with

S =
1

p

p∑
k=1

[
1

2σ2

λk
p
− 1

2

(
n

p
− 1− 1

p

)
log λk

]
− 1

2p2

∑
j 6=k

log |λj − λk|

With the rescaling τk = λk/n, in the limit of large n, p with fixed r = p/n, the
eigenvalues are described by a density ρ(τ). Up to a constant, it is:

S[ρ] =

∫
dτρ(τ)

[
τ

2rσ2
−
(

1

2r
− 1

2

)
log τ

]
− 1

2

∫∫
dτdτ ′ρ(τ)ρ(τ ′) log |τ − τ ′|

In the saddle point approximation the spectral density is an extremum. The con-
straint of normalization is implemented by the additional term −µ[

∫
dτρ(τ) − 1].

The extremum solves: τ/2rσ2 − (1/2r − 1/2) log τ − µ =
∫
dτ ′ρ(τ ′) log |τ − τ ′|. A

derivative in τ , and a multiplication by τ give:

−
∫ b

a

dτ ′
τ ′ρ(τ ′)

τ − τ ′
=

τ

2rσ2
− 1

2r
− 1

2
, a ≤ τ ≤ b.

The solution is ρ(τ) = C
√

(b− τ)(τ − a)/τ with normalization constant

C =
2

π

1

(
√
b−
√
a)2

The equations for a and b are:

C

∫ b

a

dλ

√
λ− a
b− λ

=
b

2rσ2
− 1

2r
− 1

2
, C

∫ b

a

dλ

√
b− λ
λ− a

= − a

2σ2
+

1

2r
+

1

2

The two integrals are equal, and give: C π
2 (b−a) = b

2rσ2 − 1
2r −

1
2 = − a

2rσ2 + 1
2r + 1

2

i.e. 2rCπσ2 = 1 and b+ a = 2σ2(1 + r). �

6.2. The complex case. Let P = X†X where X ∈ Cn×m, n ≥ m with indepen-
dent Gaussian elements. The joint distribution of eigenvalues of P is:

p(λ1, . . . , λm) =
1

Cm,n
∆(λ)2

∏m

j=1
e−λj/aλn−mj(35)

Cm,n = amn
∏m

j=1
(n− j)!(m− j)!(36)
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Figure 1. The Marcenko-Pastur distributions (34) for ratios r =
1
2 ,

1
4 ,

1
8 ,

1
16 (inner curve for smaller r) and σ2 = 1.

The orthogonal polynomials associated to this probability are the associated La-
guerre polynomials: ∫ ∞

0

dx e−xx`L`j(x)L`k(x) =
(`+ k)!

k!
δjk(37)

(k + 1)L`k+1(x) + (x− 1− 2k − `)L`k(x) + (k + `)L`k−1(x) = 0(38)

Kn(x, y) =

n∑
j=0

j!

(j + `)!
L`j(x)L`j(y)(39)

=
(n+ 1)!

(n+ `)!

L`n(x)L`n+1(y)− L`n(y)L`n+1(x)

x− y

7. Spherical distributions

The simple assumption of normality is not always appropriate. A generalization
is provided by spherical distributions of random vectors, studied by Isaac Jacob
Schoenberg (1938). In general, a spherical distribution of a vector x is characterized
by p(x) = p(Ox), for the orthogonal group. The multivariate distribution with
Σij = σ2δij is spherically symmetric.

7.1. Spherical coordinates in Rd. Let x = rn, where r = ‖x‖ and n belongs to
the unit surface Sd−1 in Rd. In polar angles the components are:

n1 = sin θ1 sin θ2 . . . sin θd−2 sin θd−1

n2 = sin θ1 sin θ2 . . . sin θd−2 cos θd−1

n3 = sin θ1 sin θ2 . . . cos θd−2

. . . . . .

nd−1 = sin θ1 cos θ2

nd = cos θ1

where θ1 ∈ [0, 2π] and θ2, ..., θd−1 ∈ [0, π]. The volume element is dx = rd−1drdn

with dn = (sind−2 θ1 dθ1)(sind−3 θ2 dθ2) . . . (sin θd−2 dθd−2)dθd−1.
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The area of the surface Sd−1 is

ωd = 2π
∏d−2

k=1

∫ π

0

sin θkdθ = 2π
∏d−2

k=1

√
πΓ(k+1

2 )

Γ(k+2
2 )

=
2πd/2

Γ(d/2)

Let n be uniformly distributed in Sd−1. Because of the rotational invariance, the
characteristic function E(eit·n) is a function Ωd(t). To evaluate the function, we
may choose t in the direction d. Then:

Ωd(t) =
1

ωd

∫
dn eitnd =

∫ 2π

0
dθ1e

it cos θ1(sin θ1)d−2∫ 2π

0
dθ1(sin θ1)d−2

= 0F1( 1
2d,−

1
4 t

2)

Note the large d limit: Ωd(t
√
d)→ exp(−t2/2), uniformly in x.

7.2. Borel’s lemma. Let n be a random point of the unit surface in Rd. Then,

P (
√
dn1 ≤ t)→

∫ T

−∞

dx√
2π
e−x

2/2 (d→∞)(40)

With the same hypothesis:

E[|n1|α1 . . . |nn|αn ] = Γ(
n

2
)n

1
2
∑
αk

∏
k Γ(αk+1

2 )

Γ(
∑
k
αk+1

2 )
(41)

A random vector has spherical distribution with characteristic function Φ(t) if
and only if

Φ(t) =

∫
dxp(x)Ωp(xt)

Theorem 7.1 (Schoenberg, 1938).

The following integrals were proven in [7]. Let Q,H be Hermitian matrices of
size n, Q > 0, Imµ > 0, N > n then;∫

dH
exp itr(HQ)

det(H − µ)N
= C(detQ)N−neiµtrQ(42)

C =
in

2+N−n(2π)
1
2n(n+1)

Γ(N)Γ(N − 1) . . .Γ(N − n+ 1)

For real symmetric matrices, Q > 0 and N ≥ 1
2 (n+ 1):∫

dS
exp itr(SQ)

det(S − µ)N
= C(detQ)N−neiµtrQ(43)

C =
2niN+ 1

2 (n2−1)π
1
4n(n+3)

Γ(N)Γ(N − 1) . . .Γ(N − n−1
2 )

The integrals are zero if we allow for a negative eigenvalue of Q.

7.3. Bernstein identity. Let ∆ = det(∂T∂), where ∂ = (∂2
ij)n×m, then:

∆(detXTX)λ/2 = B(λ)(detXTX)
1
2λ−1(44)

B(λ) = (−1)m
m−1∏
i=0

(λ+ i)(2− n− λ+ i)(45)
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