NOTES ON RANDOM MATRICES

LESSON 3: POSITIVE MATRICES AND STATISTICS
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1. POSITIVE MATRICES

A complex Hermitian matrix P is positive semi-definite (P > 0) if
(1) z' Pz >0, Vz € Cy

If the inequality is strict, the matrix is positive-definite, P > 0.
e Positive semi-definite matrices form a convex set:

P>0,Q>0 = tP+(1-)Q>0 Vte[0,1]

e For P > 0 or P > 0, suitable choices of vectors z give the properties:

- the diagonal matrix elements of P are non-negative or positive,

- the eigenvalues of P are non-negative, or positive.

- the principal submatrices of P are positive semi-definite or definite,

- if z is zero except for z; = 1 and |z;| = 1, then for a suitable z;:

(2) [Pyl < 5(Pii + Pjj)

e Sylvester’s Inertia theorem states that the numbers of positive, zero and negative
eigenvalues of a Hermitian matrix H and of K tHK > 0 are the same for any choice
of invertible square matrix K. Then, if P > 0 it is KTPK > 0, and if P > 0 it is
K'PK > 0.

e Theorem (see [21]): If P > 0 and Q > 0, there exists an invertible matrix K
such that both KTPK and KTQK are diagonal.

If P >0, then K can be chosen so that KTPK =1 and KTQK is diagonal.

e Theorem (I. Schur 1911): If P > 0 and @ > 0 then Po @ > 0 and det(Po Q) >
(det P)(det @), where the Hadamard product is (P o Q);; = P;;Q;; (see [18]).

e Proposition If X € CP*", then XXT >0 and XTX > 0.

If P> 0 then P = UAUT with A > 0 diagonal and U unitary. Then P = XXT
where X = UAY2. P > 0 iff P = XX for some invertible matrix.

Date: 18 jan 2018 — revised nov. 2022.



2 L. G. MOLINARI

1.1. Inequalities. For positive definite matrices the famous Hadamard inequality
holds (1893, [8]):

(3) detP§ Pll"‘Pnn

The inequality was improved by Fischer (1907, [5]): if P is partitioned in 4 blocks,
then det P < det P’ det P” where P’ and P” are the diagonal blocks. The iteration
eventually terminates with Hadamard’s statement. Thompson’s inequality (1961,
[20]) states that if P is partitioned in square blocks P, then det P < det[det Pyp).
This inequality is due to Hermann Minkowski [4]:

(4) det(P + Q) > (det P)# + (det Q)=

with equality only if @ = c¢P, ¢ > 0.

1.2. Metric properties. The set P(n,R) of positive-definite matrices is convex,
and is an open subset in the space of Hermitian matrices with inner product

(A|B)2 = tr(AB) (see [3]). In other words, for every P > 0 there is a disk of
matrices that are all positive:

ifP>03r>0 st. fQ=QT and||Q—Pla<r = Q>0

P(n,R) is a symmetric space (a Riemannian manifold with a geodesic-reversing
isometry at each point). It is a Riemannian manifold with local distance [3]

ds* = tr(P~'dPP'dP)
The line element is invariant under the action of GL(n,R), P’ = GT PG.
The distance of two elements is the length of the shortest path joining two matrices.
This unique geodesic joining matrices P and @ is
y(t) = PYVA(PY2QPTYUATPIZ e o]
The distance has the explicit expression:
(5) d(P,Q) = || log(P~'2QP~/?)]

The exponential map is continuous from the Hilbert space of symmetric matrices
with the trace-norm?(check) to the metric space of positive definite matrices with
distance d.

2. PARAMETRIZATIONS AND INVARIANT MEASURES

2.1. The invariant measure. A real positive matrix P is specified by the indepen-
dent matrix elements P;; ¢ < j, that form a vector P € R27(n+1) A transformation
P’ = KTPK induces a linear transformation P’ = QgP that is a representation:
Qrn = QxQy. In particular, Q1 = Q' Let K = S™'AS, where A is diago-
nal, then Qx = Q5'Qx Qs and det Q. = det Q5 = (det )"+ = (det K)"*1. The
Jacobian of the linear transformation P’ = QP is: ‘3P’/6P’ = | det K|t

If dP =[], ; dP;j, the invariant measure is

dP

(6) dpn(P) = (et P 5D

It is du,(GT PG) = du,,(P) for all G € GL(n,R).
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Example: if Q > 0, the following integral results with the change P’ = Q/2PQ'/?:
(7) / djin (P)(det P)?e=(PQ) Z T ()(det Q)
The constant is evaluated in eq.(9).

2.2. Triangular coordinates. (Muirhead [13], theorems A9.7 and 2.1.9)
If P € P(n,R) then there exists a unique upper triangular matrix T with positive
diagonal elements such that P = T7T (proof by induction). Moreover,

(8) dpn(P) = 2" [ [ 7557 T] dTn

j=1 i<k
Proof. We reproduce the proof in [13]. For ¢ < j write P;; = Zk<j T5iTr;
First row: it is dP;; = 2711dTh1; being Py, = Ti1T1k, in taking the exterior
product of differentials, the factor d771 necessarily comes from dP;; and should not
be repeated. Then, for the purpose of exterior product: dP; = T11dT1x. Then it
is Hk dplk = 2T1n1 Hk dle
Second row: Py = T122 + T222 gives dPas = 2T52dT55. Then Poy, = TioT1) + TooToy
only provides the factor dPyy, = Taad Ty, k = 2...n; then [, dPoy = 2Ty ' [], dToy.
And so on. Then:

n

dp = 2" [[ 75~ T dzon

j=1 i<k

Since det P = (det T)* = []; 77, the factors T ;}‘H simplify to give the invariant

measure. O

Example. With det P = (detT)* = [[, T};, trP = 3_, ., Tf; let’s evaluate

n o] ) +o0o
Tn(a) = / dpin(P)(det P)*e~F =27 T /0 Ty T e T ] / T e T
j=1 v

1<j©
in(n— - :
(9) =ra" DT (e -3 - 1))
j=1

2.3. Iwasawa parametrizations. (from Terras [19]).
For p 4+ ¢ = n the partial Iwasawa! block-factorizations of real positive matrices
provide useful coordinates. The first one is

(10) P{Ip XTHV OHIp 0}[V+XTWX XTW}

0 I, o W |Xx I1,]|"” WX w

where V € P(p,R), W € P(¢,R) and X € R9*P. The other factorization is

(11) p_ I, 0 V o I, Y | Vv VY

LYt o, 0o w 0 I, | | YV YTVY+W
where Y € RP*4. The correspondences are one-to-one with P. The invariant length
takes the forms:

ds® = ds¥ + ds¥y + 2t [V HXTWdX] = ds?, + dsy, + 2tr[dY WY TV

IKenkichi Iwasawa, 1917-1998
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The metric tensors are block-diagonal. In the first case the Haar measure is:
(12) djin(P) = dpp(V)dpig(W) (det V)~9*(det W)P/?dX

The blocks V', W may be further decomposed. The full Iwasawa decomposi-
tion is P = n” A%2n where A is diagonal positive and n € N.
N is the group of upper triangular matrices with unit diagonal. Its invariant mea-

sure for left or right multiplication by elements in N is dn =[], j dx;;.
Example:
1 0 0 ab 0 0 1 z12 13
P= 12 1 0 0 a% 0 0 1 I23

T13 T3 1 0 0 d? 0 O 1
In the full Iwasawa parametrization, the invariant measure is found to be:

(13) /dun / Hdaﬂ " 2]“/ [ dwisf(n" A%n)

1<J

2.4. Spectral coordinates. A real positive matrix factors as P = RTAR, where
R €S0(n) and A = diag(A1,...,A,), where A; > 0 are the eigenvalues of P.

The invariant measure is
. _1
(14) dp,(P) = C, dR HdAk)‘kZ(nH) H|)‘j_)\k|
k=1 i<k

where f dR = 1. The constant C,, is now obtained:

1 n
Cn _ 7_(_%n(n-',-l) -
n

Proof. Consider the integral
/dPe’” F=c, H/ dhee™ 2™ T 1IN = Ml
<k

The left-hand side is Gaussian: 227"+ zzn(n=1) [T}, T(5*). The right-hand

side is a form of Selberg’s integral (Cor. 8.2.2 in [1] with k = 0):

i hpa a2
H/ LB | DY —Ak|—22"(n+1)H ;g)( 3)
5

<k

The comparison of the integrals gives C,,. O

o If P> 0 and P’ = P~! then P’ > 0 and du,(P') = du,(P).

3. INTEGRALS ON POSITIVE MATRICES

Various integrals of real positive variable extend to integrals on positive matrices
[14, 15, 19]. We mention a few.
o Multivariate Gamma function (Albert E. Ingham [11])

2

(15) Fn(a):/ dP(det P)*~ 3Dt — pin(=DTT" T(a - £31)
P>0 k=1



We already evaluated the extension with source @ > 0:

(16) /P >Odun(P)(det P)*e (PR — T (o) (det Q)™

An application to the evaluation of moments of negative powers of GUE determi-
nants is found in [7] (with a connection to Riemann’s zeta function).

e Multivariate Beta function.

Multiply (16) by (det Q)*TPe=t(@H) dy,,(Q) and integrate both sides:

(17) Tu(a+f) /P i (P)(det PY[det(P 4+ H)) ™~ = T (o) (3)(det 1)~

The choice H = 1 gives an identity by Carl Ludwig Siegel [17]:

o —(a+p) _ Ln(a)T0(B)
(18) /P>O dpn (P) (det P)* det(1 + P)~(@+h) = Tt s

The result is the multivariate Beta function, which is defined by the integral

(19)  Bu(a.B) = /O ., din(P) (det P det(1 = P)P0D Fﬂfiﬁ(ﬁﬁ))

that, basically, is Selberg’s integral S, (v — 3(n+ 1), — 3(n+1),3) (1944) [1]:
0 Swlurn) =] [ doafn - 2860
0

_ﬂF(u—i—1+j)\)1“(u+1+j)\)1“()\+1+j>\)
N T(p+v+2+(N+j—1DND(1+N)

Eq.(18) may be obtained from (19) with the change P’ = P(1 + P)~!. Then
[>P'>0and dP = dP'(det P')~"".
e The choice H =1+ eK in (17) and expansion in € gives:

B
a+p
e Matrix confluent hypergeometric functions of the | and Il kind ([19], p.68)

Iy (c)
én b =" Nt . N
(a,¢.Q) I'n(a)Ty(c—a)
The function of IT kind was introduced by Muirhead ([13], p.472)
1
(22) Wn(a,cQ) = 7/ dpin (P) e P9 (det P)[det(1 + P)]"=*2(m+D)
In(a) Jpso

e Multivariate Gamma function The matrix Gamma function I',(«) has a general-
ization, by Selberg. Define the (complex) power of P € P(n,R)

tr K

(21) /P>Odun(P)(detP)“[det(P+ D] Ptr[(P+1)"'K] = B,(a,B)

/ dpin (P) et (PQ) (det P)*[det(1 — P)]C*afé(nJrl)
o<P<I

(23) Py(P) = ﬁ(det P)*, zeC"
k=1
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where P, is the matrix k& x k of the first £ rows and columns of P.
The multivariate Gamma function is

(24) Io(z) = /P g djin, (P)P,(P)e~ "

n
— pin(n—1) H T(zppg1+ -+ 2n — %)
k=1

The function 'y, («) in eq.(9) corresponds to the choice z = (0, ..., 0, @).
e Matrix K-Bessel function (Bengtson [2])
If A>0and B > 0 then

(25) K, (24, B) = / djin(P)P,(P) e APTBP ™)
P>0

Bengtson proved the correspondence:

mn

(26) / dXP,((A+ XTX)™1) 2t (BX) — 2*3* K (2'|A, RTR)
RWLXH

where A >0, R € R™*", 2’ =z +(0,0,...,0, = %).
In particular,

e2itr(RX) . e—tr(AP+RTRP™)
27 dX—r o =72 dpiy, (P =
( ) /Rmxn det(A—l—XTX)‘X T P>0 ‘LL ( ) (det P)T_a

e Matrix Laplace transform If f : P(n,R) — C, the Laplace transform of f at a
symmetric complex matrix X = U +:V is

(28) (Z0)(X) = [ aperOpp)
P>0
that converges for U > Uy € P(n,R). The inversion formula is:

1 .
(29)  f(P) = (2mi) 2"("FY / AV " PUHV) (2 £\ (U + V)
X:XT,U>U(J

4. REAL RECTANGULAR RANDOM MATRICES

R™ P n > p, is the set of rectangular real matrices n x p of rank p. The set
is invariant for left and right multiplication by invertible square matrices in R™*"
and RP*P. If M' = M B then M/, = 6x;Bpa My, OM'/OM = I @ B. The Jacobian
of the linear transformation is |J| = det( ® B) = (det B)". With dM = [],, dMiq,
the right-invariant measure is

dM
R —
iy, (M) = (det MTM)E
It is d,uﬁp(MB) = % = d,urr]f,p(M)
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4.1. Polar decomposition. Let M = [my,...,m,|, where the columns m;, are
linearly independent vectors in R™. Right multiplication by a p x p matrix G~ is
MG~ whose columns are linear combinations of the columns of M. Choose G~*
such that the columns in MG~! =V are orthonormal.

o V,,={VeR™ VTV = [,} is the Stiefel> manifold of orthonormal p-frames in
R™, i.e. the p columns of V' are orthonormal vectors in R™. The set is invariant for
left multiplication by O(n) and right multiplication by O(p). V,, ,, is the orthogonal
group O(n).

e Now it is M = VG with MTM = GTG = P?, with P € P(p,R). Then G has
polar decomposition G = RP for some R € O(p). Since VR € V,, ,,, we obtain the
polar representation of rectangular matrices:

(30) ’M:VP, VGVWJ,P>O‘

o If M € R™*P, then M has the unique representation M = VT where V €V, ,
and T is upper triangular with positive diagonal ([13] Thrm A9.8).
The measure is ([13] thrm 2.1.13):

p
dM = [ 1} 7drdv
j=1

4.2. Joint probability measure. The integration measure that corresponds to
M =V PY?is (Lemma 1.4 in [9]):

dpft, (M) = 277dV du, (P)

The evaluation [ dMe " M™M) — 9=p [ gy Jpwo dip(P)(det P)*/2e=*F gives

the normalization
/ IV 2p7Tn,p/2
= 0-1’7,, = —
Van P Ty(n/2)

4.3. Rectangular integrals.
. fdMe_”(MTMQ) = ﬂ-%np(det Q)2

o [dMB(Q — MTM) =270, ,(det Q)2 "~)  where 6(P) = [[,», 8(P)

5. WISHART RANDOM MATRICES

Multivariate Normal. For an historical introduction read [16].

The extension of the normal distribution N (u,0?) to p variables is the multivariate
normal distribution.

A real random vector x = {x1,...,z,} has multivariate normal distribution with
mean ft = {f1,..., ftp} and covariance matrix ¥ € RP*? ie. x ~ N,(u,X), if the
joint probability density function of z1, ...,z is

1
31 X)=—————exp|[-i(x—p) TS (x—
(31) p(x) T vans p[—3(x—p)" 57 (x — p)]
It is E[zg]) = px and E[(z; — pj)(xx — px)] = Lk [16]. The distribution (marginal)
of a subset of x, say {x1,...,x%}, is multivariate normal with covariance matrix
given by the rows and columns 1, ..., k of X.

2Eduard Stiefel, 1909-1978
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Given n independent random variables with identical distribution N[0, 0?], the
sum of their squares has a x?2[o] distribution. In analogy, consider n independent
random vectors X ...X, in R?, with same distribution N,(0,X). The distribution
of the sum " =1 X]XT is named Wishart distribution®. The sum can be rewritten
as XX7T, where X is the p x n matrix [Xy,...,X,]. The p x p matrix P = XX7 is
positive.

5.1. Wishart distribution (1928). The Wishart distribution is a multivariate
generalization of the x? distribution.

A real p x p random matrix P > 0 has the (central) Wishart distribution with
n degrees of freedom (n > p) and covariance matrix 3, i.e. P ~ Wy,(n,X), if its
probability density function is

1
32 P) =
(52 »(P) T, (1/2) (20 det £)"/2
with respect to Lebesque measure on the cone of symmetric positive definite ma-
trices. I'p(a) is the multivariate Gamma function.
If P € Wi(n;0?), then P € x2[o].
The normalization in (32) is Ingham’s integral (16) with @ = %E_l € P(p,R).

(det P)%("_p_l) exp[—3tr(S7'P)]

5.2. Sample statistics. Let xj,...,x, be a sample of n random vectors in RP
taken from a distribution N,[u,0?]. The sample mean and sample variance are:

B 1 n _ 1 n _ _\T
X = Zk Xk S = n_lzkzl(xk_x)(xk_x)
Proposition: the random variables x and S are independent and
Vn(x — p) ~ N,[0, 3], (n—1)S ~W,(n—1,Y)

Thus a random draw from the Wishart distribution is some matrix that, upon
rescaling, is a covariance matrix for multivariate normal data.

6. THE LAGUERRE ENSEMBLE

If ;; = 0%4;;, the matrix elements of X € RP*" are independent identically
distributed (i.i.d.) random variables with distribution N(0,02). The Wishart dis-
tribution of the p x p matrix P = X X7 simplifies,

1
- 3(n—p—1)
p(P) @20 T, (n2) (det P)2 exp[— 52z tr P]
It only depends on the eigenvalues of P, that have joint distribution
n—p—1)
(33) PO ) = Cape AN T A exp(—5)

The positive-definite matrices with this distribution form the Laguerre ensemble.

3John Wishart (Perth 1898, Acapulco 1956) was introduced by the mathematician Edmund
Whittaker to the influential statistician Karl Pearson, at University College in London. As PhD
student, he was engaged in the preparation of the numerical tables for the incomplete Gamma
function. Years later, he became director of the Statistical Laboratory in Cambridge. He was
editor of the important journal Biometrika, created in 1901 by K. Pearson, W.F.D. Welton and
C. Davenport.



6.1. Marcenko-Pastur distribution (1967). [12]
In the large n and p limits, with finite ratio = p/n, the eigenvalues 7y ... 7, of the
real positive square matrix P = %LX XT have the distribution with support [a, b]

1 (b—7)(T—a)

2mro? T

where a = 02(1 — /7)%, b= o?(1 + /7)%

(34) p(7) =

Proof. The partition function for the eigenvalues of positive matrices described by
the probability (33) is Z = [ d\1...d\, exp[—p*S] with

1 <& [1 Ak 1(n 1) } 1
S =- (21— 2 ) loghk| — =—= ) log |\ — A\
[t 202 2 \p D 2p2j; A |

With the rescaling 7, = A\i/n, in the limit of large n,p with fixed r = p/n, the
eigenvalues are described by a density p(7). Up to a constant, it is:

S[p] = /dfp(T) {27;2 - ( - ) logT] . // drdr’ p(r)p(') log |7 — 7|

In the saddle point approximation the spectral density is an extremum. The con-
straint of normalization is implemented by the additional term —pu[[ drp(T) — 1].
The extremum solves: 7/2ro? — (1/2r —1/2)logT — pu = [dr'p(7')log|r — 7'|. A
derivative in 7, and a multiplication by 7 give:

d,Tp( ) T 1 1
T -7 2ro2  2r 2’

The solution is p(7) = C+/(b — 7)(7 — a)/7 with normalization constant

2 1
c=2=

™ (Vb Va)?

The equations for a and b are:

1
C/ d)\\/ — 27’02_7_7’ C/ d)\V)\— 202 +§

The two integrals are equal, and give: C5(b—a) = ——t=—3ir+a+3
ie. 2rCno? =1 and b+ a =202(1+7). O

6.2. The complex case. Let P = XX where X € C"*™, n > m with indepen-
dent Gaussian elements. The joint distribution of eigenvalues of P is:

1 m
(35) p(>\1, ey )\m) = A()\)2 H 6_)\j/a)\;.l7m

Jj=1

(36) Crmn = am”HL(n—j)!(m—J)!



10 L. G. MOLINARI

The orthogonal polynomials associated to this probability are the associated La-
guerre polynomials:

(37) /0 " dwe L (2) () = *];!k)! 5,
(38) (k+1)LE (2) 4+ (x —1—2k — O)Li(x) + (k+ 0 LE_ 1 (z) =0
(39) Kn(2,y) = 20t Z)!Lﬁ(sﬂ)Lﬁ(y)
_ (D) Ly (@) Ly (y) — Li(y) Ly (2)
 (n40)! x—y

7. SPHERICAL DISTRIBUTIONS

The simple assumption of normality is not always appropriate. A generalization
is provided by spherical distributions of random vectors, studied by Isaac Jacob
Schoenberg (1938). In general, a spherical distribution of a vector x is characterized
by p(x) = p(Ox), for the orthogonal group. The multivariate distribution with
Yij = 025ij is spherically symmetric.

7.1. Spherical coordinates in R?. Let x = rn, where r = ||x|| and n belongs to
the unit surface 4! in R?. In polar angles the components are:

ny =sinf;sinb, . ..sinfy_osinfy_1

ng = sinf; sinfsy...sinf _9 cosfy_1

n3 = sinf;sinby . ..cosby_o

Ng—1 = sin 6 cos O
ng = cos 6

where 0; € [0,27] and 6y, ...,04_1 € [0,7]. The volume element is dx = %~ !drdn
with dn = (sind_2 01 d01)(sind_3 02 d92) . (sin @d_g d@d_g)d@d_l.
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The area of the surface S¢1 is

d— I‘ i d/2
—27TH / sin 0Fdo = 27 H ZI 22 ):5&/2)

Let n be uniformly distributed in S¢~!. Because of the rotational invariance, the
characteristic function E(e?*™) is a function Q4(¢). To evaluate the function, we
may choose t in the direction d. Then:

1 f% df et s 91 (sin §, )42

Qq(t :—/dne“"d: L = oFi(d, —1¢?
®) wWd f02 df (sin 67)d—2 oFil it’)

Note the large d limit: Qq(tv/d) — exp(—t2/2), uniformly in z.

7.2. Borel’s lemma. Let n be a random point of the unit surface in R?. Then,

T
dz
(40) P(Vdny < t) —>/ T2 (d - o)
With the same hypothesis:
ap+1
(41) E[[n1|* ... |na|*"] = [(= ) 3 Lo e T(55—) [, T(*5=)

2 L%, 257)
A random vector has spherical distribution with characteristic function ®(t) if
and only if

O(t) = /dxp(x)Qp(xt)
Theorem 7.1 (Schoenberg, 1938).

The following integrals were proven in [7]. Let @, H be Hermitian matrices of
size n, @ > 0, Imu > 0, N > n then;

(42) /ng;(E)(Ztr(Iif)g]z/ (det Q)N n zp,trQ

7;7L2+N—n(27.r)%n(n—i—l)
T(NT(N —1)...T(N —n+ 1)

For real symmetric matrices, @ >0 and N > $(n + 1):

C:

(43) /dS(j;(E)Ztr SQ) (d tQ)N n zptrQ

2nZN+%(n2—1)7T%n(n+3)

- I(N)[(N - 1)...T(N — 251)

The integrals are zero if we allow for a negative eigenvalue of Q.

7.3. Bernstein identity. Let A = det(0”9), where @ = (97})nxm, then:

(44) A(det X7 X)M2 = B(A)(det X7 X) 3!
45) BOY= (- [[ A+ )2 —n—A+1)

=0
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