NOTES ON RANDOM MATRICES

LUCA GUIDO MOLINARI

The large-N limit of the free energy of a multi-matrix model provides the count-
ing of multi-matrix planar graphs, and this counting may correspond to the sum-
mation of configurations of a statistical model on random planar graphs. The
thermodynamic limit of the statistical model is realised by g — ¢g.r, and may show
phase transitions, that are influenced by the fluctuations of the surface that sup-
ports it. The critical exponents differ from those of the statistical model on a
regular lattice in a way predicted by KPZ [13]. Here are some models:

o Ising model (Kazakov, 1986 [8]);

Ising model with magnetic field (Boulatov & Kazakov, 1987 [3]);
g-state Potts model (Kazakov, 1988 [9]);

O(n) model (Duplantier & Kostov, 1988 [7]);

Percolation on a fractal (Kazakov, 1989 [10]);

Three colour problem (Cicuta & al., 1993 [5]);

8-vertex model (a case) (Kazakov & P. Zinn-Justin, 1999; [12]);
Baxter colouring problem (Kostov, 2002 [15])

1. ISING MODEL ON RANDOM PLANAR GRAPHS

In the Ising model on a connected graph, a spin ¢ = +1 is allocated at each
vertex, and adjacent spins (i.e. connected by an edge) have interaction energy
Jo;o; with ferromagnetic coupling J = —1 (i.e. parallel spins have lower energy).
The partition function for the Ising model on a graph! in a uniform magnetic field
is:

(1) Zising (G, 8, H) = Z exp —,BJZO'Z'GZ‘]‘UJ' + HZai
ij i

O'/L':i].

If V is the number of vertices of the graph, there are 2" spin configurations.
Given a graph with a spin configuration on it, (G, ), let E, and E, be the numbers
of edges connecting parallel and antiparallel spins, and V4, V| be the numbers of
vertices with spin +1 or —1. The magnetisation is ) o; = V4 — V. The statistical
weight of (G, o) is

(2) exp[B(Ep — Ea) + H(V; = V)]

If all vertices have coordination 4 then 4V = 2FE, where V = V4 + V|, FE = E,+ E,.
The Ising model on the regular square lattice with H = 0 was solved in the
infinite V' limit by Lars Onsager (1944) and for H # 0 near T, by Chen Ning Yang

Date: 25 may 2018.
1A graph with V' vertices labelled 1...V is described by the V' x V' adjacency matrix G;; = 1 if
vertices ¢j are connected by an edge, 0 otherwise. 3, G;; is the number of edges with extremum
j (coordination of vertex j).
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(1952) who found spontaneous magnetisation for 7' < T.. Since the square lattice
is self-dual, the critical temperature was obtained, 8. ~ 2.269.

Amazingly, the analytic solution of the Ising model on a connected planar graph
becomes feasible if, besides summing on spin configurations on the graph, one also
sums on the planar graphs themselves, with V' vertices:

ZIsing(V,ﬂ,H) = ZG ZZIsing(Gpl,ﬂ>H)

The Ising model on random planar graphs with coordination 4 and H = 0 was solved
in 1986 by Kazakov [8] by mapping it to a 2-matrix model. Soon after Boulatov
and Kazakov [3] modified the 2-matrix model in order to include a magnetic field:

® o) = [dAdB N AR g

A, B are Hermitian N x N matrices, 0 < ¢ < 1.

The power expansion in g corresponds to a sum of Feynman graphs with quartic
vertices of type A or B, that correspond to spin orientations 1 or |. In a graph the
vertices are connected by propagators (edges) of two types:

1 1 1 1 c
—(trAA) = —(trBB) = ——, —(trAB)=-——

y\wdd) = uBB) = =5, FwdB) =775

Since 0 < ¢ < 1, edges connecting parallel spins are enhanced. A connected graph
has weight in the parameters

\%
NX(geH)VA(gefH)VB<AA>Ep<AB>Ea = NX {(1 902)2] ¢~ 3(Bp—Ed) JH(V2—V)
— C

where x = V + F — E is the Euler number of the closed surface that hosts the graph.
Planar graphs (x = 2) dominate the large-N limit of the model. The generator of
connected planar graphs is the planar free energy:

o

(4)  Fole,g, H) = — li 1y M_Z LVF( H)
PROG T TN N B 2(e,0,0) T &[T -] TV

The coefficients Fy (¢, H) of the power expansion in g take record of all the planar
connected Feynman graphs with V' vertices. Each one corresponds to a configura-
tion (G, o) of the Ising model (the Feynman graph is G, with the further information
that its vertices are A and B). Comparison among the weight of a graph and of an
Ising configuration (2) gives the correspondence:

(5) FV (C, H) = ZIsing(M Bv H)a c= 672B

The expansion (4) in powers of g of the planar free energy F}, has a finite radius
of convergence g..(c, H). Hadamard’s formula gives the leading behaviour of the
coefficients, i.e. of the free energy Fy (¢, H) for large V:

clger(c, H)|
(1—¢2)2
Accordingly, the free energy per site of the Ising model is evaluated by the formula

7l C|gcr(C7H)|]
v (1—¢2)?

-V
Fy(c,H) ~ [ ] x sub-leading factors

FIsing = IOg ZIsing(Vy 67 H) ~ 1Og |:
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Bi-orthogonal polynomials. For any N, the two-matrix integral (3) is amenable
to the eigenvalues x; and y; of A and B by means of the HarishChandra-Itzykson-
Zuber integral, in the form by Mehta [17] that is here used.

If A=UXU" and B = VYV, where U,V are unitary and X,Y are diagonal, it is:

ZN:/dXdYAQ(:I;)AZ(y)e—NZi(x?+y,-2+4geHm?+4ge*Hy;1)/dWechtr(WXWTy)

with potential v(z,y) = 22 + 3% — 2cxy + 4gefl 2* + 4geHy*.
By writing A(z) = det[Py, (x%)] 50 % and A(y) = det[Qu (yr)]7= ' ~t, with
monic polynomials P, (z) and Q.,(yx), and by choosing them bi-orthogonal,

/ dady e VYD P(z) Q;(y) = hidr,y

the partition function is Zy = N'lhg...hy_1.
The polynomials are fully determined by the condition. Since v(—z, —y) = v(z,y)
the polynomials may be chosen with definite parity.

Proposition 1.1.
(6) l‘Pk(l‘) = Pk+1($) + Rkpk_l(l‘) + Skpk_g(l‘)
(7) YQr(r) = Qry1(2) + RpQp—1(x) + S1.Qr—3(x)

Proof. Suppose that the expansion of z Py (z) contains a term Ty P,_5(x). Multiply
(6) by Qr—5(y) and integrate with the measure. It is [ dzdy exp(—Nv)zPy(2)Qr—5(y) =
Tihi_5. The first integral is dealt with the second of the identities:

(8) Lge—NU(%y) + e V@Y (1 4 8gel?) = cye NV
(9) o aie—Nv(ac,y) + e—NU(z,y) <y + 8g€_Hy3) — Cl,e—NU(x,y)
Y

2N Oz
10
Then cTphy—5 = [ dedye™N"(y + 8ge " y®) Py (2)Qi—5(y) = 0.
Similarly, ¢TI} hy—5 = [ dedye NV (z + 8gef 23) Py_5(x)Qr(y) = 0. O

Proposition 1.2. Define fi, = hi/hi—1, then:

(10) Sk =8ge™ " fufu1fr—2

(11) Sy = 8ge™ fi fr—1fr—2

(12)  cRy = [1+8ge ¥ (Rjyy + Rj, + Ry 1)) fi

(13)  cR), =[1 +8ge (Rpy1 + Ry + Ri_1)] fx
)

(14 = —c fr +8ge MRy (Rj 1y + Ri + Ri_y) + Shyo + Sty + Skl + R},

2N

(15) = —c fx +8ge” [Ry(Rgs1 + Ry + Re—1) + Sky2 + Sey1 + Sk] + Ry

2N
Proof. Eq.(10). Multiply (6) by c@x—3 and integrate with the weight, then use (9)

cSkhy—3 = 8ge™ " / dadye NV EQp s Py(x) = 8ge M hy,
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Eq.(12). Multiply (6) by ¢Qr—1(y) and integrate with the weight, and use (9):

cRyhp_1 = / dzdye M@V (y + 8ge M y*) Qi —1 (y) P ()

=hi[1+8ge™ " (R y + Ry + Ry _y)]
Eq.(14). Multiply (6) by ¢Qr+1(y) and integrate with the weight, and use (9):
_ _ k+1
Chitr = / dadye™ ") (y + 8ge ™ y*) Qi (W) Pi() — 5
=8ge™ " hy[Riy 1 (Riin + R+ Ri_o) + Siis + Sia + Sipl]
k+1
2N
The other equations are similarly obtained. (I

hi

+ Ry e — hi

The partition function is now expressed in terms of fy:

N-1
(16) log Zn (¢, g, H) = log NI+ Nlog hy + ZkZl (N — k) log f

The large N limit selects planar graphs. The coefficients fy, Rk, Sk, ... are inter-
polated by functions, and the recursive equations become algebraic. With ¢ < 1
the boundary conditions fy, Ry, ..., f1, R1, ... allow for interpolation of coefficients
by single functions, as fr = f(k/N) = f(z), 0 < < 1. One can do more by
expanding in 1/N, fry1 =~ f(x) + (1/N)f'(x) + ... and approach g., and N — oo
to account for all topologies (double scaling) [16].

The case ¢ > 1 and H = 0, has boundary conditions that require different functions
to interpolate even or odd coefficients [18, 4].
The recursive equations become:

cS(x) = 8ge 1 f3(x)

cS'(x) = 8ge! f3(x)

cR(z) = [1+ 24ge™ "R/ ()] f (x)

cR'(z) = [1+ 24ge™ R(2)] f ()

cx + 2% f(x) — 24(49)° f3(z) = 2¢ R/ (z)[1 + 24ge H R'(z))
cx + 267 f(x) — 24(49)? £3(x) = 2¢ R(z)[1 + 24ge™ R(2)]

The free energy. Since limy_,o N ?loghg = 0, the planar free energy of the
2-matrix model is the integral

N-1

1 k f ! f
Fates g, 1) = Jim 3 3701 )l f = - | ot =0 f(ff;)
The equation for f(x) is obtained from the system:
r 12(4g)? .. f(x) (cosh H — 1)
2= IO = O g T O P

and gives for g, H = 0: fo(z) = %cx/(l — ¢?). The perturbative expansion is

2getl + 2ge=1 B e
(1—-1¢2)? (1—c2)4

Fy = [4c* +32¢% +18(e* 721 ...



By setting z(z) = (24¢g/¢) f(x):

2

(1-22)2

1.2.3 z 2
(17) 4gm——cz+ PP+ 3 +3

S —2) (coshH — 1) = w(z)

9
T

5k

FIGURE 1. The function w(z, 3, H) versus z, for H = 0 (left) and
H = 0.1 (right).

By assuming that f(z) is one-to-one, integration by parts gives the planar free
energy in terms of ¢ = z(1), solution of the equation 49 = w(¢, ¢, H):

1 1 !/
Fy = —3log J{O((l)) +/O d:zzj}((;)) (z—12%) -3
¢(1—c? ‘d 1 [‘d
=—1log =< 1290 ) + — 4g Zzw(z) ~ 3 |, §w2(z) -3

The “thermodynamic limit” (when the average number of vertices is divergent) is
obtained at the critical values g... They result from the equation w’(z) = 0:

(14 2)41 - (1 - 2)Y
4z(1 4+ 22)
The solutions z. (¢, H) are entered in w(z, ¢, H) to give 4ger(¢c, H) = wer(c, H).

(18) coshH —1=—

Case H = 0. According to the discussion of the 2-matrix model, the singular
behaviour of F' is determined by the points: z. = —1 for ¢ < 1/4 and z_ =1 — \%
for ¢ > 1/4 with corresponding values w(z,c,0) = 2¢* — {5 and w(z_,c,0) =

—2¢? + 2¢ — 3\/c. As the parameter z is varied from 0 to 1 — 1//c, the first
singularity that is encountered is z = —1 for 0 < ¢ < 1/4 and z = 1 — 1//c for
1/4 < ¢ < 1. The value ¢ = 1/4 marks a phase transition.

22 1 <l | -
(19) 49 < 4¢.r(c,0) = 902 5 122 \ ?<c 1 (low T)
—3c?+3c—5ve 1 <c<1(highT)

Case H # 0. For small H the zeros of w'(z) = 0 are :
V2H H N
(1 16¢2)1/4 (1 —16¢2)3/2
1 c2c—2yc+1 ,
zo(e, H) = (1— —=) [ —H
=02 2 ave -1

z1(c, H) =
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and correspond to two phases:

(20)  4ge(c, H) = wz) =22 - L+ YE2 L g<e<!
cr\Gy W(ZZ):—302_’_%0—%\&4_%‘[{2_’_”” i§0<1

1.1. Magnetization. The average magnetisation per vertex in the thermodynamic
limit is

M(c,H) = lim 19 (¢, H)

V=00 V@HFV
o 0 1 Ower
fa—Hloggcr(c, H) = 6—H10gwcr(((H, ¢),H) = v OH

because w’(¢) = 0. The equations for M and w’ = 0 provide M and H parametri-
cally in ¢:

V=200 — 0+ 07
4c2(1 = (2)%2 +3 — 8¢2
1+ -1 =)
AC(1+¢?)
-for ( - 0itis H — oo and M — 1 i.e. all spins are aligned with H.
-for ( = —1itis H=0and M = 3v1 —16¢2/(3 — 8¢?) (spontaneous magnetiz.).
-for(=1-1/\/citis H=0and M =0.

(21) M=3

(22) coshH =1-—

T S S S R S S
0.2 0.4 0.6 0.8 1.0

FIGURE 2. The magnetisation M per vertex as a function of H for
¢ = 1/7 (dashed, low temperature phase), ¢ = 1/4 (thick, critical
temperature) and ¢ = 1/4/2 (line, high temperature phase). Note
the spontaneous magnetisation for ¢ = 1/7 and the different slopes
in the origin. M =1 is the saturation value.

The critical exponents. (See the book by Stanley for definitions [21]) We study
the free energy and the magnetisation near the phase transition temperature ¢ =
1/4, H — 0.



e Specific heat at constant H, oo = —1.
Definition: Cy ~ ¢~%, where ¢ = (T — T.) /T, is the reduced temperature.
The free energy near c., = 1/4 has continuous first and second derivatives
in ¢, and finite discontinuity of the third derivative (derivative of specific
heat). This means o = —1.

e Spontaneous magnetization, 3 = 1.
Definition: M/(c,0) = (—¢)®. The average magnetization for H — 0 is:

0 high T
M(c,0) =
@O =\amme o 1

Near o = 1, M(c,0) = =122 /e —cie. M ~ (T —T.)/2
e Magnetic susceptibility, v = 2.
Definition: x = %‘H—o =1@2Ve—-1)2 o (T. - T)77.
e Exponent § = 5. -
Definition: |M (c., H)| = |H|'/?.
At ¢ = 1/4 and small H, the equation w’(z) = 0 is solved by z; =
—1+ (2H)*. Correspondingly, M (3, H) o< H'/®.

The exponents satisfy the scaling identities of critical phenomena:

a+28+~=2 (Rushbrooke)
§—1= % (Widom)

2—a=vd (Josephson)

criticalexp | @« S8 v 6 vd Ysr
regular 0 1/8 7/4 15 2 -
random | -1 1/2 2 5 3 —1/3

Table: the critical exponents of the Ising model on regular 2d lattices and on ran-
dom planar graphs. The latter fit the predictions of the theory by KPZ [13]. To
test universality Boulatov and Kazakov also solved the Ising model on cubic graphs
and obtained the same exponents.
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