
LESSON 4: HAAR MEASURES

LUCA GUIDO MOLINARI

1. Euler angles for SO(n), Example SO(3).
2. Invariant measures on the linear groups of invertible real and complex matrices.
3. Haar measures on classical groups (Euler angles, Weyl parametrization, Cayley
transform).

Haar measures on classical groups

The first appearance of Random Matrices in mathematics occurred in relation
to the Haar measure on classical groups. A nice account is given in [2].
The story begins in 1897, when Adolf Hurwitz parameterised orthogonal and uni-
tary matrices in terms of Euler angles, and computed the volumes of the groups.
In 1933 Alfred Haar (a doctorate student of David Hilbert) proved the existence of
an invariant measure on any separable compact topological group. Soon after, von
Neumann proved uniqueness1.

There are three and only three associative division algebras2 over the field of the
real numbers: R, C and quaternions H (Frobenius, 1877). The corresponding com-
pact continuous groups are the classical groups: the orthogonal O(n), the unitary
U(n), and the symplectic Sp(2n) groups. The latter was introduced by Hermann
Weyl [10].

1. Euler angles for SO(n)

Hurwitz’s construction is simple enough to be presented (taken from the book
by Girko [5]). Given a n× n rotation matrix Q, consider the product of Q with a
simple (inverse) rotation:

Q′ = QRT12(θ12) =

[
q11 q12 . . .
q21 q22 . . .
. . . . . . . . .

] [
cos θ12 sin θ12
− sin θ12 cos θ12

In−2

]
The product Q′ is again a rotation. Choose the angle θ12 in [0, π] such that q′12 =
q11 sin θ12 + q12 cos θ12 = 0. Next multiply Q′ by RT13(θ13):

Q′′ = Q′RT13(θ13) =

 q′11 0 q′13 . . .
q′21 q′22 . . .
...

...


 cos θ13 0 sin θ13

0 1 0
− sin θ13 0 cos θ13

In−3


Date: 18 jan 2018.
1J. Diestel and A. Spalsbury, The joys of Haar measure (AMS, 2014)
2In a division algebra, for every elements a and b 6= 0 there exist precisely one element c such

that a = bc and one element c′ such that a = c′b.
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Figure 1. Adolf Hurwitz (Hildesheim 1859, Zurich 1919) stud-
ied in Munich and was doctoral student of Felix Klein in Leipzig.
As professor in Königsberg he influenced the career of the young
Hilbert and Minkowski. After the departure of Frobenius he moved
to the University of Zurich (now ETH).

Figure 2. Hermann Weyl (Germany 1885, Zurich 1955) had a
great impact on the development of theoretical physics and math-
ematics. He took his doctorate in Gottingen with David Hilbert.
While professor of mathematics in Zurich, he was colleague of
A. Einstein, who was working on General Relativity, and E.
Schrödinger. In 1930 he left to become successor of Hilbert in
Gottingen, but three years later the racial laws forced him to flee
to U.S. where he permanently held a position in the new Institute
for Advanced Studies in Princeton.

This leaves the element q′′12 = 0. Choose the angle θ13 in [0, π] such that q′′13 = 0.
Proceeding in this way a matrix Q(1) = QRT12(θ12) . . . RT1n(θ1n) is obtained with
row elements q(1)12 = · · · = q(1)1n = 0. Since Q(1) is a rotation, rows and columns
have norm 1. Then q(1)11 = ±1 and, necessarily, q(1)21 = · · · = q(1)n1 = 0:

Q(1) =

[
±1 0

0 Q̃

]
where Q̃ is orthogonal and (±1) det Q̃ = 1. If the matrix element −1 occurs, the
change θ1n → θ1n + π makes it equal to 1. Therefore:

SO(n) =

[
1 0
0 SO(n− 1)

]
R1n . . . R12

where θ1n ∈ [0, 2π] and the other angles are in [0, π].

The process is repeated on Q̃ with rotations RT23 . . . R
T
2n that make all elements

in the second row and column equal to zero, except for the element (22) that equals
1 for a suitable θ2n ∈ [0, 2π]. In the end, the factorisation of a rotation matrix Q
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into 1
2n(n− 1) simple rotations has been obtained,

Q = [Rn−1,n] · · · [R2n · · ·R23][R1n · · ·R12](1)

with n−1 Euler angles θj,n ∈ [0, 2π] and Euler angles θj,k ∈ [0, π], j = 1, . . . , n−1,
k = j + 1, . . . , n− 1.

Example 1.1. A matrix in SO(3) factors into three simple rotations:

R = ABC =

 1 0 0
0 ca −sa
0 sa ca

 cb 0 −sb
0 1 0
sb 0 cb

 cc −sc 0
sc cc 0
0 0 1


with Euler angles θa, θb ∈ [0, 2π], and θc ∈ [0, π] and ca = cos θa, sa = sin θa.
Let us evaluate the Haar measure. Since R(dRT ) + (dR)RT = 0 then ds2 =
tr(dR)(dRT ), where dR = (dA)BC+A(dB)C+AB(dC) and [dA,A] = [dA,AT ] = 0
etc.

AT dA =

 0 0 0
0 0 −1
0 1 0

 dθa, BT dB =

 0 0 −1
0 0 0
1 0 0

 dθb, CT dC =

 0 −1 0
1 0 0
0 0 0

 dθc
ds2 =tr[dAdAT + dBdBT + dCdCT − 2(AT dA)(BT dB)

− 2(CT dC)(BT dB)− 2(AT dA)B(CT dC)BT ]

=2(dθ2a + dθ2b + dθ2c )− 4(sin θb)dθadθc

=
2 [ dθa dθb dθc ]

 1 0 − sin θb
0 1 0

− sin θb 0 1

 dθa
dθb
dθc


Then det g = 23 cos2 θb. The Haar measure is dµ = 2

√
2 | cos θb| dθadθbdθc. The

volume of SO(3) is: V = 2
√

2
∫ 2π

0
| cos θb|dθb

∫ 2π

0
dθa

∫ π
0
dθc = 16

√
2π2. �

2. Invariant measures on the linear groups
of invertible real and complex matrices

GL(n,R) is the linear group of real invertible n×n matrices. The column vectors
of a matrix X are images of the canonical basis in Rn, and span a volume |detX|.
An invertible linear transformation X → X ′ = XY , has Jacobian matrix

∂X ′ia
∂Xjb

= δijYba =⇒ det
∂X ′

∂X
= det(In ⊗ Y ) = (detY )n

Therefore, if dX =
∏n
i,j=1 dXij , then d(XY ) = dX |detY |n and, similarly, d(Y X) =

dX |detY |n. It follows that the invariant measure for left or right matrix multipli-
cation of GL(n,R) is [8]

dµ(X) =

∏
ij dXij

|detX|n
(2)

GL(n,C) is the linear group of complex invertible n × n matrices Z = X + iY .
By representing vectors in Cn as vectors in R2n, the matrix Z corresponds to a
block matrix RZ with real blocks(

Xij −Yij
Yij Xij

)
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An invertible linear transformation Z ′ = ZW , W = T + iS, corresponds to a
transformation RZ ′ = (RZ)(RW ) of real matrices, with Jacobian matrix (RW )⊗
In. By permuting colums and rows, up to unit factors:

det(RW ) = det

[
T −S
S T

]
= det

[
W̄ −S
iW̄ T

]
= det

[
iW̄ −iS
0 W

]
= |detW |2

Therefore, if d2Z =
∏n
i,j=1 dXijdYij , then d2(ZW ) = d2Z |detW |2n and, simi-

larly, d2(WZ) = d2Z |detW |2n. The invariant measure for left or right matrix
multiplication of GL(n,C) is

dµ(Z) =

∏
ij dXijdYij

|detZ|2n
(3)

A transformation of similarity Z ′ = W−1ZW does not change the invariant mea-
sure. Any invertible matrix is diagonalized by similarity Z = V ΛV −1, where V is
the matrix whose columns are the eigenvectors of Z, and Λ is the diagonal matrix
of eigenvalues.

3. Haar measure of classical groups

The Haar measure of SO(n) is induced by the requirement that the action of
SO(n) on a single unit vector of Rn uniformly covers the unit sphere. Hurwitz gave
the invariant measure [2]:

dµ = 2n(n−1)/4
n−1∏
j=1

n∏
k=j+1

(sin θj,k)j−1dθj,k(4)

The volume of the rotation group is

Vol[SO(n)] = 2
n(n−1)

4 (2π)n−1
n−1∏
j=2

[∫ π

0

dϕ(sinϕ)j−1
]n−j

= 2
n
2−1

n∏
k=1

(2π)k/2

Γ(k/2)
.(5)

The volume of O(n) is twice the value. The set O(n)/O(1)n is realized by requiring
that the first entry in each column be positive. This reduces the volume of O(n)
by 2n.

Euler angles can also be introduced for unitary matrices. The result is

Vol[U(n)] = 2n(n+1)/2
n∏
k=1

πk

Γ(k)

The set U(n)/U(1)n is realized by requiring that the first component of each column
be real positive, thus reducing the volume of U(n) by (2π)n.

Given a parameterization of the group elements and the composition law U(x)U(x′)
= U(ϕ(x, x′)), the Haar measure can be constructed as shown in Hamermesh or
Shilov. An alternative route is the evaluation the metric tensor gab(x) for the line
element in parameter space, that is invariant for left and right multiplication by a
matrix. Since (UV )−1d(UV ) = V −1(U−1dU)V , the invariant line element is

ds2 = −tr(U−1dU)(U−1dU) = gab(x)dxadxb(6)

Then, the Haar measure is∫
dµ(U)f(U) =

∫
dx
√

det g(x) f(x)(7)
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Hermann Weyl. In his book on the classical groups (1939, [10]), Weyl decom-
posed the invariant measures for SO(n) and U(n) in terms of eigenvalues and eigen-
vectors. Let V ∈ U(n), by writing V = U†LU where U ∈ U(n)/U(1)n is the matrix
of eigenvectors and L = diag(eiθ1 , . . . , eiθn) is the matrix of ordered eigenvalues,
one has

dµ(V ) =
∏

1≤j<k≤n

|eiθk − eiθj |2dθ1 · · · dθn dµ′(U).(8)

Since the eigenvalue and eigenvector sectors factor, one reads off the eigenvalue
probability function for matrices chosen with Haar measure from U(n)

dµ(θ) =
1

(2π)nn!

∏
1≤j<k≤n

|eiθk − eiθj |2dθ1 · · · dθn(9)

0 ≤ θj < 2π. Here, the ordering of the eigenvalues implicit in (8) has been relaxed.

4. Cayley transform

Toyama (1948, [9]) provided the Haar measure for the classical compact groups
by parameterizing the elements via the Cayley transform.
SU(n). The Cayley transform of a unitary matrix requires a Hermitian matrix:

U =
In + iH

In − iH
(10)

The infinitesimal volume element of Haar measure of the unitary group U(n) is

dµ(U) =
dH

det(In +H2)n
(11)

where dH =
∏
j dHjj

∏
i<j dReHij dImHij .

SO(n). The Cayley transform of a rotation matrix requires a real anti-symmetric
n× n matrix (not having eigenvalue −1, see [4]):

O =
In −A
In +A

(12)

The infinitesimal volume element of the Haar measure is :

dµ(O) =
dA

det(In +A2)
1
2 (n+1)

(13)

Sp(2n). A unitary symplectic matrix has Cayley’s representation (10) with matrix

H =

[
A B
B† −A

]
(14)

where A = A† and B is complex. The infinitesimal volume element of Haar measure
of Sp(2n) is

dµ(U) =
dH

det(I2n +H2)n+
1
2

(15)

Let us give a proof for the unitary group. It is ds2 = −tr(U−1dU)(U−1dU) =
tr(dUdU†). If U = (1+iH)(1−iH)−1, then it is: U†dU = 2i(1+iH)−1dH(1−iH)−1

and ds2 = 4tr[(1 + H2)−1dH]2. If dT = (1 + H2)−1dH, then the flat measure for
T is the Haar measure and: dµ(U) = det(1 +H2)−ndH.
Note that in the three cases the power of the determinant is the dimension of the
group divided by the matrix size n.
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A construction of the Haar measure. [L. G. Molinari]
Consider a Lie group with elements U = exp(iH), where H belongs to the Lie
algebra. If Ta are the generators, with normalisation tr(TaTb) = δab and struc-
ture constants [Ta, Tb] = ifabcTc, the elements of the Lie algebra are the linear
combinations H = xaTa, with xa = tr(HTa). The invariant line element is

ds2 = i2tr(U−1dUU−1dU) = gab(x)dxadxb

By means of the Lie-Trotter formula d(eA) =
∫ 1

0
dt e(1−t)A(dA)etA, let’s evaluate:

U−1dU = e−iH
∫ 1

0

dtei(1−t)H(idH)eitH = idxa

∫ 1

0

dte−itHTae
itH

gab =

∫∫ 1

0

dt1dt2 tr[e−it1HTae
i(t1−t2)HTbe

it2H ] =

∫ +1

−1
dt(1− |t|)tr[eiHtTae−iHtTb]

where we made the change of variables t = t2− t1, 2s = t1 + t2 and integrated in s.
The expansion eiHtTae

−iHt = cab(tx)Tb has coefficients cab(tx) = tr[eiHtTae
−iHtTb]

that may be obtained by solving the equation of motion:

d

dt
cab(tx) = −itr(eiHtTae−iHt[H,Tb]) = cad(tx)fcbdxc

with cab(0) = δab. The solution is cab(xt) = exp[tM(x)]ab, where M(x) = xcfcba is
an antisymmetric matrix whose size is the linear dimension of the algebra.

gab =

∫ +1

−1
dt(1− |t|)etM(x)

Being M = −M t, the non-zero eigenvalues of M come in pairs ±iλ with real λ.
The matrices g and M are diagonalized by the same rotation matrix, therefore if
iλk is an eigenvalue of M , the corresponding eigenvalue of g is:

gk =

∫ 1

−1
dt(1− |t|)eitλk = 2

∫ 1

0

dt(1− t) cos(tλk) =
sin2(λk/2)

(λk/2)2

The eigenvalue equation M(x)abvb = iλva corresponds to [V,H(x)] = iλV , where
V = vaTa. The eigenvalues that contribute to the Haar measure are the differences
{hi− hj}i<j of eigenvalues of H(x) = xaTa. Since sin2(hi/2− hj/2) ≈ |ehi − ehj |2,
up to a normalization the invariant measure for the group is:

√
g =

∏
λk>0

sin2(λk/2)

(λk/2)2

dµ(U) =

∏
i<j |ehi − ehj |2

∆(h1, . . . , hn)2

∏
a

dxa

The Lie algebra of U(n) is the linear space of Hermitian matrices. In the basis of
generators T (r)ij = δirδjr, T (rs)ij = δirδjs + δisδjr and T ′(rs)ij = iδirδjs − iδisδjr
the set {xa} of parameters is {Hii,ReHij , ImHij , i < j}. The invariant measure is
(up to constants)

dµ(U) =

∏
i<j |ehi − ehj |2

∆(h1, . . . , hn)2
dH ≈

∏
i<j

|ehi − ehj |2dh1 . . . dhn(16)
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Proposition 4.1 (Borel’s lemma). Let u = (u1, . . . , un) be a random point of the
sphere ‖u‖ = 1 in Rn. Then,

P (
√
nu1 ≤ t)→

∫ t

−∞

dx√
2π
e−x

2/2 (n→∞)(17)

With the same hypothesis:

E[|u1|α1 . . . |un|αn ] = Γ(
n

2
)n

1
2
∑
αk

∏
k Γ(αk+1

2 )

Γ(
∑
k
αk+1

2 )
(18)
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