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Abstract

Modeling and prediction of RNA folding structure is an open and challenging problem in
biophysics. In these notes, I will introduce the Matrix Models approach to the problem first
defined in [1], and describe in detail the topological characterization of RNA folding structures
in the easiest setting possible, as presented in [2]. Finally, I will review the comparison results
between this analytical characterization and the observed topology of RNA folding structures.

Contents
1 Motivation: RNA secondary structures 1

2 Topological expansion for the enumeration of RNA secondary structures 2
2.1 The partition function as a GUE average . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Hubbard-Stratonovich simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 The spectral density of GUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 So, what about the genus of RNA sequences? 5

A On Gaussian integrals over GUE matrices 6
A.1 Gaussian integrals and Hubbard-Stratonovich transformations . . . . . . . . . . . . 6
A.2 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

B GUE spectral density 7

C The determinant of a Replica Symmetric matrix 8

1 Motivation: RNA secondary structures
An RNA molecule can be modeled as a chain of L nucleotides. A folding configuration (tipically
called secondary structure in the literature) of an RNA molecule is determined by a pairing of its
nucleotides, so that paired nucleotides lie at short distance one from the other in the embedding
3D space. Formally, a secondary structure can be described as a map s : [L] → [L] such that
s(i) = j ⇐⇒ s(j) = i for all 1 ≤ i, j ≤ L; in this case, the pair of nucleotides (i, j) is matched
(notice that there may be unpaired nucleotides such that s(i) = i). Here [L] denotes the set of
integers from 1 to L.

In nature, the secondary structure of an RNA molecule is determined, at equilibrium, by the
interaction between nucleotides and by the characteristics of the backbone, that favor stacking of
paired nucleotides and prevent nucleotides that are too near to each other to be paired due to its
rigidity. In these notes, we will neglect all backbone considerations, and restrict our attention to
the pair-pair interaction.

Define Vij = exp (−βεij) to be the Gibbs-Boltzmann weight for the interaction εij between
the two nucleotides i, j at inverse temperature β. Then, the partition function is a sum over the
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number of pairings of all possible pairing configurations:

ZL = 1 +
∑

1 pairing

V1 +
∑

2 pairings

V1V2 + . . .

= 1 +
∑
i<j

Vij +
∑

i<j<k<l

(VijVkl + VikVjl + VilVjk) + . . .
(1)

where in the first line Vi denotes the energy of the i-th pairing in the sum.
A graphical representation of this sum is given in Figure 1 of [2], where a RNA chain is

represented on the x axis and its paired nucleotides are drawn as arcs between the nucleotides on
the upper half-plane. In this representation, one can easily see that different secondary structures
are characterized by a different number of crossing between the pairing arcs: if the number of
crossings is non-null, then we say that the secondary structure contains a pseudoknot.

We would like to characterize pseudoknots by their topological genus, i.e. the number of handles
that we must glue to a 2-sphere to be able to draw the arc diagram of the pseudoknot without
crossings between arcs. For example, 0 crossing diagrams have genus 0, 1 crossing diagrams have
genus 1 etc. . . , but diagrams with a higher number of crossings c can have arbitrary genus g in
1 ≤ g ≤ c, as different crossings may benefit from the same handle.

2 Topological expansion for the enumeration of RNA sec-
ondary structures

2.1 The partition function as a GUE average
One can recognize that the expression for the partition function in Equation 1 strictly resembles
the solution, due to Wick’s theorem, of the following integral over L n× n hermitian matrices φl:

ZL(n) =

∫ ∏L
l=1 dφl exp

[
−n2

∑L
i,j=1(V −1)ij Tr (φiφj)

]
1
n Tr

(∏L
l=1 (1 + φl)

)
∫ ∏

l=1L dφl exp
[
−n2

∑L
i,j=1(V −1)ij Tr (φiφj)

]
=

〈
1

n
Tr

(
L∏
l=1

(1 + φl)

)〉 (2)

where brackets denote the average over the matrix measure in question, that is a L dimensional,
coupled GUE measure with covariance matrix n

2 (V −1)ij .
Let’s check this claim by explicitly applying Wick’s theorem. First, let’s identify better the

observable we would like to average:〈
1

n
Tr

(
L∏
l=1

(1 + φl)

)〉

= n−1

〈
Tr (I) +

∑
i

Tr (φi) +
∑
i<j

Tr (φiφj) + · · ·+
∑

i1<···<iL

Tr (φi1 . . . φiL)

〉
= 1 +

∑
i<j

〈Tr (φiφj)〉+
∑

i<j<k<l

〈Tr (φiφjφkφl)〉+ . . .

(3)

where all terms with an odd number of matrices are null as we are considering a GUE ensamble
with null mean.

The propagator is (latin letters run in [L] over different matrices, greek letters run in [n] over
the elements of a single matrix)

〈φa,αβφb,γδ〉 =
∑
i,j

OTaiOjb 〈ψi,αβψj,γδ〉 (4)
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where O is the rotation that diagonalizes the covariance matrix, i.e.

(V −1)ab =
∑
k

OTakλkOkb

ψi =
∑
k

Oikφk
(5)

In the ψ coordinates, the L GUE integrals decouple and one obtains

〈φa,αβφb,γδ〉 =
∑
i,j

OTaiOjb 〈ψi,αβψj,γδ〉 = n−1
∑
i

OTaiOibλ
−1
i δαγδβδ = n−1Vijδαγδβδ . (6)

Now, expansion of the traces and application of Wick’s theorem give that

ZL(n) = 1 +
∑
i<j

Vij +
∑

i<j<k<l

(
VijVkl + n−2VikVjl + VilVjk

)
+ . . . (7)

so that the ZL = ZL(n = 1). This procedure not only recovers the wanted partition function, but
also introduces a new parameter n that refines the enumeration; in fact, associated to each power
g of n−2, one has the secondary structures whose arc diagram has genus g.

Is g really the genus? It is! This matrix theory is analogous to a t’Hooft model, where the
N−2 expansion selects precisely the genus of each Feynman diagram. A more precise treatment of
the parallel between the t’Hooft topological expansion and the topology of arc diagrams is given
in [1, 3].

2.2 Hubbard-Stratonovich simplifications
To simplify the problem, assume that V = aI + vU, where Uij = 1 is the matrix with all entries
equal to 1 as done in [2] (the general case is more difficult, and it’s treated in [1]).

First of all, one has to ensure that V is a positive definite matrix, so that the GUE mea-
sure is well defined. Noticing that V is a RS (Replica Symmetric) matrix, one can compute the
determinant (see Appendix C):

detV = (a+ Lv)aL−1 (8)

so that for any v, a > 0 ensures positive definitness. Notice that no diagonal term of V is present
in the expression for ZL(n), so the result is independent from a. To sum it up, for any v, let’s
choose a random positive a: this grants the convergence of our integrals, and does not alter our
partition function.

In the following, we will need the inverse of this matrix. It has the same structure V −1 = cI−dU
with c = a−1,d = cv2

Lvc+1 , and the minus sign grants that both coefficients can be taken positive.
Under this simplifying assumptions, one can rewrite the matrix integrals using an Hubbard-

Stratonovich (H-S) transformation. First, rewrite the exponent of the GUE measure by explicitly
using the structure of Vij∑

i,j

Tr (φiφj) (V −1)ij = (c− d)
∑
i

Tr
(
φ2i
)
− d

∑
i 6=j

Tr (φiφj)

= c
∑
i

Tr
(
φ2i
)
− dTr

(∑
i

φi

)2
 ,

(9)
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so that the second term can be expanded using an H-S transformation. This gives

ZL(n) =

=

∫
dτ
∏L
l=1 dφl exp

[
−nc2

∑L
i=1 Tr

(
φ2i
)
− 1

2nd Tr
(
τ2
)

+ Tr (τ
∑
i φi)

]
1
n Tr

(∏L
l=1 (I + φl)

)
∫
dτ
∏L
l=1 dφl exp

[
−nc2

∑L
i=1 Tr (φ2i )− 1

2nd Tr (τ2) + Tr (τ
∑
i φi)

]

=

∫
dτ exp

[
−Tr(τ2)

2nd

]
1
n Tr

(∏L
i=1

∫
dφl exp

[
−nc2 Tr

(
φ2l
)

+ Tr (τφl)
]

(I + φl)
)

∫
dτ exp

[
−Tr(τ2)

2nd

]∏L
i=1

∫
dφl exp

[
−nc2 Tr (φ2l ) + Tr (τφl)

]
=

∫
dτ exp

[
−Tr(τ2)

2nd +
LTr(τ2)

2nc

]
1
n Tr

((
I + τ

nc

)L)
∫
dτ exp

[
−Tr(τ2)

2nd + LTr(τ2)
2nc

]
=

∫
dσ exp

[
− n

2v Tr
(
σ2
)]

1
n Tr

(
(I + σ)

L
)

∫
dσ exp

[
− n

2v Tr (σ2)
]

(10)

where in the last line a change of variable was performed (τ = σnc), and the relation between
L, v, c, d was exploited to simplify the variance. The normalization factor (denominator) Ã(n) is
an easy Gaussian integral that evaluates to

Ã(n) =
√

2
n
√
πv

n

n2

. (11)

2.3 The spectral density of GUE
Equation 10 can be further simplified by expanding the power using the Newton binomial and
expressing the GUE integral in the eigenvalue measure:

ZL(n) =

∫
dσ exp

[
− n

2v Tr
(
σ2
)]

1
n Tr

(
(I + σ)

L
)

∫
dσ exp

[
− n

2v Tr (σ2)
]

=

∑L
k=0

(
L
k

) ∫
dσ exp

[
− n

2v Tr
(
σ2
)]

1
n Tr

(
σL
)∫

dσ exp
[
− n

2v Tr (σ2)
]

=

∑L
k=0

(
L
k

) ∫ ∏n
i=1 dσi∆(σ)2 exp

[
− n

2v

∑
i σ

2
i

]
1
n

∑
i σ

L
i∫ ∏n

i=1 dσi∆(σ)2 exp
[
− n

2v

∑
i σ

2
i

]
(12)

where {σi}’s are the eigenvalues of the matrix σ and ∆(σ) is the Vandermonde determinant of the
eigenvalues. Finally, one has:

ZL(n) =

∑L
k=0

(
L
k

) ∫ ∏n
i=1 dσi∆(σ)2 exp

[
− n

2v

∑
i σ

2
i

]
1
n

∑
i

∫
dλδ (λ− σi)λL∫ ∏n

i=1 dσi∆(σ)2 exp
[
− n

2v

∑
i σ

2
i

]
=

∫
dλ(1 + λ)L

∫ ∏n
i=1 dσi∆(σ)2 exp

[
− n

2v

∑
i σ

2
i

]
1
n

∑
i δ (λ− σi)∫ ∏n

i=1 dσi∆(σ)2 exp
[
− n

2v

∑
i σ

2
i

]
=

∫
dλ(1 + λ)Lρn(λ)

(13)

where ρn(λ) is the spectral density of the GUE ensamble.
The spectral density can be exactly computed through the orthogonal polynomial technique,

as sketched in Appendix B, and we will use it in the form given in [4]:

ρn(λ) =
e−

nλ2

2v

√
2πnv

n−1∑
k=0

(
n

k + 1

)
H2k

(√
n
2vλ
)

2kk!
. (14)
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Moreover, one can analytically sum the exponential generating function of ZL(n) to obtain

G(t, n, v) =
∑
L≥0

ZL(n)
tL

L!
=

∫
dλρN (λ)et(1+λ) . (15)

So, in conclusion, one has to evaluate the known integral∫
dλH2k

(√
n

2v
λ

)
e−

n
2vλ

2+tλ =

√
2v

n

∫
dxH2k (x) e−x

2+t
√

2v
n x

=

√
2vπ

n

(
t

√
2v

n

)2k

exp

[
2vt2

n

] (16)

giving

G(t, n, v) =
1

n

n−1∑
k=0

(
n

k + 1

)
vkt2k

k!nk
exp

[
2v

n
t2 + t

]
= exp

[
2v

n
t2 + t

]
1

n
L
(1)
n−1

(
−vt

2

n

) (17)

where we used the definition of the generalized Laguerre polynomial L(1)
j (z).

Now, expanding the function G(t, n, v) in powers of tL, n−2g and vk allows to enumerate
the secondary structures of and RNA molecule with L nucleotides, k pairings of nucleotides and
topological genus g, giving the wanted result.

3 So, what about the genus of RNA sequences?
The expansion in L of G(t, n, v) recovers an expression for ZL(n)

ZL(n)

ZL(1)
=
∑
g≥0

aL,gN
−2g

(18)

where we set v = 1 as we are not interested in the specific number of pairings, and the normalization
ZL(1) grants that the aL,g are a probability distribution in g.

There are two main points to be made:

• at fixed L, the average genus 〈g〉L scales numerically as ∼ 0.23L, and the measures is quite
concentrated, so that most diagrams are not planar;

• at fixed L, there is a maximum value for the genus, that is g ≤ L
4 .

In [5], the genus distribution in real RNA dataset was studied, finding that even for large values
of L, the genus of a sequence typically remains much smaller then the typical values given above.

In [6], the genus distribution is studied numerically by Monte Carlo simulations for a model of
self avoiding walk on the 2D and 3D lattices, with short-range attractive interaction. The model
is known to have a phase transition between a compact globular phase and a swollen phase which
can have very complicated features. The genus distribution is different in the two phases, with
typical values much larger in the compact phase then in the swollen phase. Moreover, the typical
values are more in line with real RNA molecules, while still being extensive in L.

In [7] a new Hamiltonian for RNA folding is discussed, with penalty terms for the genus and for
the crossing number. They discuss a renormalization procedure that allow to collapse complicated
diagrams into simpler one, but show no analytical or numerical results.

5



A On Gaussian integrals over GUE matrices
In this appendix, we collect results on Gaussian integrals over hermitian matrices.

In the following, all matrices are n× n hermitian. The integration measure is defined as

dσ =

n∏
i=1

dσii
∏

1≤i<j≤n

dσ
(r)
ij dσ

(i)
ij (19)

where the superscripts (r) and (i) denote real and imaginary parts.
Recall the 1d Gaussian integral:∫

dx exp
[
−a

2
x2 + bx+ c

]
=

√
2π

a
exp

[
b2

2a
+ c

]
∀a, b, c : a > 0 . (20)

A.1 Gaussian integrals and Hubbard-Stratonovich transformations
We compute the following integral:∫

dX exp
[
−a

2
Tr
(
X2
)

+ bTr (XY )
]

(21)

over n× n hermitian matrices X, and with a > 0, Y hermitian.
First of all, expand the traces:

Tr
(
X2
)

=
∑
α

X2
αα + 2

∑
α<β

(
(X

(r)
αβ )2 + (X

(i)
αβ)2

)
Tr (XY ) =

∑
α

XααYαα + 2
∑
α<β

(
X

(r)
αβY

(r)
αβ +X

(i)
αβY

(i)
αβ

)
.

(22)

The integral is now straightforward as it is factorized in 1d gaussian integrals, giving∫
dX exp

[
−a

2
Tr
(
X2
)

+ bTr (XY )
]

=

√
π

a

n2

√
2
n

exp

[
b2

2a
Tr
(
Y 2
)]

. (23)

The inversion of this formula gives the Hubbard-Stratonovich transformation used in the main
text.

The same line of reasoning allows to compute∫
dX exp

[
−a

2
Tr
(
X2
)

+ bTr (XY )
]
X =

√
π

a

n2

√
2
n

exp

[
b2

2a
Tr
(
Y 2
)] b
a
Y . (24)

A.2 Wick’s theorem
Here we perform an explicit computation for the 4-point function∫

dX exp
[
−n2

∑
i,j(V

−1)ij Tr (φiφj)
]

1
n Tr (φiφjφkφl)∫

dX exp
[
−n2

∑
i,j(V

−1)ij Tr (φiφj)
] =

1

n

∑
α,β,γ,δ

〈φi,αβφj,βγφk,γδφl,δα〉

.

(25)

for 1 ≤ i < j < k < l ≤ L, with propagator

〈φi,αβφj,γδ〉 = n−1Vijδαγδβδ . (26)
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Wick’s theorem allow to expand the 4-point function onto two-point functions, giving

1

n

∑
α,β,γ,δ

[〈φi,αβφj,βγ〉 〈φk,γδφl,δα〉+ 〈φi,αβφk,γδ〉 〈φj,βγφl,δα〉+ 〈φi,αβφl,δα〉 〈φj,βγφk,γδ〉

=
1

n3

∑
α,β,γ,δ

[VijVklδαγδββδγδδδδ + VikVjlδαδδβγδβαδγδ + VilVjkδααδβδδβδδγγ ]

=
1

n3
[
VijVkln

3 + VikVjln+ VilVjkn
3
]

= VijVkl + VikVjln
−2 + VilVjk

(27)

B GUE spectral density
In this Appendix, we will compute the spectral density of the GUE ensamble, i.e.

ρn(λ) =

〈
1

n

∑
i

δ (λ− σi)

〉
(28)

where {σi}’s are the eigenvalues of the GUE matrix σ. The spectral density can be computed by
passing to the eigenvalue measure, and then decoupling the Vandermonde by using the orthogonal
polynomials trick:

ρn(λ) =

∫ ∏n
i=1 dσi∆(σ)2 exp

[
− n

2v

∑
i σ

2
i

]
1
n

∑
i δ (λ− σi)∫ ∏n

i=1 dσi∆(σ)2 exp
[
− n

2v

∑
i σ

2
i

]
=

√
n

2v

∫ ∏n
i=1 dτi∆(τ)2 exp

[
−
∑
i τ

2
i

]
δ
(√

n
2vλ− τn

)∫ ∏n
i=1 dτi∆(τ)2 exp [−

∑
i τ

2
i ]

=

√
n

2v

∫ ∏n
i=1 dτi

[∑
~i,~j ε~i ε~j Hi1(τ1) . . . Hin(τn)Hj1(τ1) . . . Hjn(τn)

]
exp

[
−
∑
i τ

2
i

]
δ
(√

n
2vλ− τn

)
∫ ∏n

i=1 dτi

[∑
~i,~j ε~i ε~j Hi1(τ1) . . . Hin(τn)Hj1(τ1) . . . Hjn(τn)

]
exp [−

∑
i τ

2
i ]

=

√
n

2vπ
e−

nλ2

2v

∑
~iH

2
in

(√
n
2vλ
)
ε~ihi1 . . . hin−1∑

~i ε~ihi1 . . . hin−1
hin

=

√
1

2πnv
e−

nλ2

2v

n−1∑
i=0

H2
i

(√
n
2vλ
)

2ii!
.

(29)

where Hi(x) is the Hermite polynomial in the normalization such that∫
dxHi(x)Hj(x)

exp−x2√
π

= hiδij

hi = 2ii! .

(30)

An alternative form of the spectral density can be given be using the fact that

Hi(x)2 =

i∑
l=0

(i!)22i−l

(l!)2(i− l)!
H2l(x) (31)

and that
k∑
j=0

(
j + r

j

)
=

(
k + r + 1

k

)
(32)

so that

ρn(λ) =
e−

nλ2

2v

√
2πnv

n−1∑
k=0

(
n

k + 1

)
H2k

(√
n
2vλ
)

2kk!
. (33)
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C The determinant of a Replica Symmetric matrix
Let M(a, b) = aI + bU, where U is the matrix of ones, and all matrices are n × n. We want to
compute the eigenvalues of this matrix. We have that

[
M(a, b) · (v1 . . . vn)T

]
j

= avj + b

N∑
i=1

vi
!
= λvj ∀j = 1 . . . n (34)

so that

(a− λ)vj + b
∑
i

vi = 0 ∀j = 1 . . . n . (35)

Choosing λ = a allows to find n − 1 independent eigenvectors, those with v1 = 1, vj = −1
and all the other entries zero. Choosing v to be the unit vector, one finds λ = a+ nb, so that we
complete the eigensystem. Thus, the eigenvalues are a with n − 1 multiplicity and a + nb with
single multiplicity.
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