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Abstract. Given the Riemann, or the Weyl, or a generalized curvature tensor K,
a symmetric tensor bij is called compatible with the curvature tensor if bi

mKjklm +
bj

mKkilm + bk
mKijlm = 0. In addition to establishing some known and some new proper-

ties of such tensors, we prove that they form a special Jordan algebra, i.e. the symmetrized
product of K-compatible tensors is K-compatible.

1. Introduction. Let (M, g) be an n-dimensional Riemannian or pseudo-
Riemannianmanifold, andKjklm a generalized curvature tensor (the Riemann
tensor, the Weyl tensor, or any tensor with the algebraic properties of the
Riemann tensor). In [14] we introduced this concept: a symmetric tensor bij
is K-compatible if
(1) bi

mKjklm + bj
mKkilm + bk

mKijlm = 0.

We call (K, b) a compatible pair. The motivation was the following theo-
rem [14]: if bij is K-compatible with eigenvectors X,Y, Z and eigenvalues
x, y, z with z 6= x, y, then
(2) KijlmX

iY jZm = 0.

It extends a result by Derdziński and Shen [6] who proved the same for the Rie-
mann tensor, under the hypothesis that bij is a Codazzi tensor,∇ibjk = ∇jbik.
Despite the increased generality, the replacement of the Codazzi condition
with the algebraic condition (1), allowed a much simpler proof of the new
theorem.

Equation (1) with Riemann’s tensor originally appeared in a paper by
Roter on conformally symmetric spaces [20, Lemma 1]. Riemann and Weyl
compatible tensors were studied in [15, 17, 7].

Examples of Riemann compatible tensors are the Codazzi tensors [14],
the Ricci tensors of Robertson–Walker space-times or perfect-fluid general-
ized Robertson–Walker space-times [18], the second fundamental form and
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the Ricci tensor of a hypersurface embedded in a (pseudo)Riemannian man-
ifold [17], the Ricci tensors of ‘weakly Z-symmetric’ manifolds (∇iZjk =
AiZjk + BjZik + DkZij with Zij = Rij + ϕgij , Ak − Bk a closed 1-form)
[16] that include ‘weakly Ricci-symmetric’ ones (ϕ = 0) [24] and others (see
[3, 2]), or ‘pseudosymmetric manifolds’ [9] ([∇i,∇j ]Rklmp = LQklmpij , where
L 6= −1/3 is a scalar function and Q is the Tachibana tensor built with the
Riemann and Ricci tensors).

A Riemann compatible tensor is also Weyl compatible, but not con-
versely. The Ricci tensors of Gödel [10, Th. 2] or pseudo-Z symmetric space
times [19] are Weyl compatible.

In Sections 2 and 3 we review Riemann and Weyl compatible tensors,
with some new results and examples, and their relation to known identities
due to Lovelock. Then, in Sections 4, 5 and 6, we investigate the algebraic
properties of generalized curvature tensors and K-compatible tensors. The
main result is that the latter form a special Jordan algebra, i.e. the set of
K-compatible tensors is closed under the symmetrized product.

2. Riemann compatible tensors. A symmetric tensor is Riemann
compatible if

(3) bi
mRjklm + bj

mRkilm + bk
mRijlm = 0.

This relation may be written as b(imRjk)lm = 0, where (ijk) denotes the
sum over cyclic permutations of the indices. Contraction with the metric
tensor gjl gives Rkmbmi − bkmRmi = 0, so that b commutes with the Ricci
tensor. Contraction with bjl gives bimRjklmbjl + bk

mRijlmb
jl = 0, and hence

b commutes with the symmetric tensor R̂jm = Rjklmb
kl.

Example 2.1. Codazzi tensors are Riemann compatible.

Proof. In the identity [∇i,∇j ]bkl = −Rijlmbkm − Rijk
mbml, sum over

cyclic permutations of ijk. The first Bianchi identity R(ijk)
m = 0 gives

[∇i,∇j ]bkl+[∇j ,∇k]bil+[∇k,∇i]bjl = −(bimRjklm+ bj
mRkilm+ bk

mRijlm).

The left-hand side is zero for Codazzi tensors.

Example 2.2. If ∇jAk = pjAk, then AiAj is Riemann compatible.

Proof. We have Ai[∇j ,∇k]Al = Ai(∇jpk − ∇kpj)Al = Al[∇j ,∇k]Ai.
Then AiRjkl

mAm = AlRjki
mAm; the sum over cyclic permutations of ijk

gives zero on the right-hand side.

2.1. Codazzi deviation. In [15] we introduced the natural concept of
Codazzi deviation of a symmetric tensor:

(4) Cjkl = ∇jbkl −∇kbjl.
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It satisfies Cjkl = −Ckjl, Cjkl + Cklj + Cljk = 0, and

(5) ∇iCjkl +∇jCkil +∇kCijl = −(bimRjklm + bjmRkil
m + bkmRijl

m).

Once again we see that a Codazzi tensor is Riemann compatible. By (5) the
differential condition ∇(iCjk)l = 0 is equivalent to the algebraic formula (3).
A Veblen-type identity holds:

(6) ∇iCjlk +∇jCkil +∇kClji +∇lCikj
= bimRjlk

m + bjmRkil
m + bkmRlji

m + blmRikj
m.

Example 2.3. For a concircular vector field X, with ∇iXj = ρgij , the
tensor XiXj is Riemann compatible.

Proof. One has Cjkl = (∇jρ)gkl − (∇kρ)gjl and ∇iCjkl = (∇i∇jρ)gkl −
(∇i∇kρ)gjl. The left-hand side of (5) thus equals zero.

Note: the existence of a concircular time-like vector field is necessary and
sufficient for a space-time to be generalized Robertson–Walker [5].

Example 2.4 (Lovelock’s identities). 1. The Codazzi deviation of the
Ricci tensor is Cjkl = ∇jRkl − ∇kRjl = −∇mRjklm. Property (5) becomes
Lovelock’s identity for the Riemann tensor [13, p. 289]:

(7) ∇i∇mRjklm +∇j∇mRkilm +∇k∇mRijlm = −Rm(iRjk)lm.

2. The Codazzi deviation of Schouten’s tensor (1) is Cjkl=− 1
n−3∇

mCjklm.
Property (5) reads ∇(iCjk)l = −(n−3)Sm(iRjk)lm. The term with the metric
tensor in Sij does not contribute (due to the Bianchi identity), and one is
left with (see [15])

(8) ∇i∇mCjklm +∇j∇mCkilm +∇k∇mCijlm = −n− 3

n− 2
Rm(iRjk)lm.

In particular, for n > 3, if ∇mCjklm = 0 (conformally symmetric spaces,
Roter [20]) then the Ricci tensor is Riemann compatible.

Proposition 2.5. If uiuj is Riemann compatible, and ukuk 6= 0, then
ui is an eigenvector of the Ricci tensor.

Proof. Since uiuj is Riemann compatible, it commutes with the Ricci
tensor: Rijujuk = Rkju

jui. Contraction with uk gives

Riju
j(uku

k) = (Rkju
juk)ui = 0.

We extrapolate a simple statement from [7, Proposition 5.1]. A direct
proof is possible, by writing (3) for the Ricci tensor in warping coordinates:

(1) Schouten’s tensor is Sij = 1
n−2

[
Rij − R

2(n−1)
gij

]
. It satisfies ∇kS

k
j = ∇jS

k
k,

∇mCjklm = (n− 3)(∇kSjl −∇jSkl).
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Proposition 2.6. In a warped-product spacetime

ds2 = ±dt2 + a(t)2g∗µνdx
µdxν

the Ricci tensor is Riemann compatible if and only if the Ricci tensor of the
Riemannian submanifold (M∗, g∗) is compatible with the Riemann tensor of
the submanifold:

R∗µσR
∗
νρλ

σ +R∗νσR
∗
ρµλ

σ +R∗ρσR
∗
µνλ

σ = 0.

2.2. Geodesic maps. A map (M, g) → (M, g) is geodesic if every
geodesic line is mapped to a geodesic line. For the identity mapping of M to
be geodesic, it is necessary and sufficient that there exists a 1-form such that
the Christoffel symbols are related by Γ kij = Γ kij+δi

kXj+Xiδ
k
j (Levi-Civita,

1896). The relation between the Riemann tensors then is

Rjkl
m = −∂jΓ

m
kl + ∂kΓ

m
jl − Γ

d
klΓ

m
jd + Γ

d
jlΓ

m
kd = Rjkl

m − δkmPjl + δj
mPkl,

where Pkl = ∇kXl −XkXl = Plk. One has Rjl = Rjl + (n− 1)Pjl.
Geodesic maps preserve the (3, 1) projective curvature tensor [23]: P jklm

= Pjkl
m, where Pjklm = Rjkl

m + 1
n−1(δj

mRkl − δkmRjl).

Proposition 2.7 ([15]). For a geodesic map and a symmetric tensor
bij = bji, the following identity holds:

(9) bimRjkl
m + bjmRkil

m + bkmRijl
m = bimRjkl

m + bjmRkil
m + bkmRijl

m.

Therefore, if (R, b) is a compatible pair, also the pair (R, b) is compatible.

3. Weyl compatible tensors. A symmetric tensor is Weyl compatible
if

(10) bimCjkl
m + bjmCkil

m + bkmCijl
m = 0.

The following identity holds for any symmetric tensor [15]:

(11) bimCjkl
m + bjmCkil

m + bkmCijl
m = bimRjkl

m + bjmRkil
m

+ bkmRijl
m + 1

n−2 [gkl(bimRj
m − bjmRim) + gil(bjmRk

m − bkmRjm)
+ gjl(bkmRi

m − bimRkm)].
A simple consequence is obtained in dimension n = 3, where the Weyl tensor
is zero (see [8], in a less simple manner):

Proposition 3.1. In dimension n = 3 the Ricci tensor is Riemann
compatible.

If bij is Riemann compatible, then it commutes with the Ricci tensor. As
a result, (11) shows that bij is also Weyl compatible. Therefore, Riemann
compatibility is a stronger condition than Weyl compatibility. The identity
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(11) can be rewritten in terms of the Codazzi deviation:

(12) bimCjkl
m + bjmCkil

m + bkmCijl
m = ∇iDjkl +∇jDkil +∇kDijl

− 1
n−2∇

m(Cijmgkl + Cjkmgil + Ckimgjl),

where Djkl = Cjkl − 1
n−2 (Cjm

mgkl − Ckm
mgjl).

Example 3.2. If a vector field is torqued [4], i.e. ∇iτj = ρgij +αiτj with
αkτ

k = 0, then τiτj is Weyl compatible.

Proof. One evaluates Cjkl = −ρ(τjgkl − τkgjl) and Djkl = − 1
n−2Cjkl. It

turns out that the right-hand side of (12) is zero.

Note: the existence of a torqued time-like vector is necessary and sufficient
for a space-time to be twisted [4].

Proposition 3.3 (see [11, Remark 4.2]). In a space-time of dimension
n = 4, if uiuj is a Weyl compatible and time-like unit (ukuk = −1) then the
Weyl tensor is completely determined by the electric tensor Ekl = Cjklmu

jum:

Cabcd = 2(uaudEbc − uaucEbd + ubucEad − ubudEac)(13)
+ gadEbc − gacEbd + gbcEad − gbdEac

Proof. In n = 4 the following Lovelock identity holds [13, Ex. 4.9, p. 128]:

0 = garCbcst + gbrCcast + gcrCabst + gatCbcrs + gbtCcars + gctCabrs

+ gasCbctr + gbsCcatr + gcsCabtr

Contraction with uaur gives

0 = − Cbcst + ubu
rCcrst + ucu

rCrbst + utu
rCbcrs + gbtu

aurCcars

+ gctu
aurCabrs + usu

rCbctr + gbsu
aurCcatr + gcsu

aurCabtr

= − Cbcst + ur(ubCstcr + ucCrbst + utCcbsr + usCbctr)

+ gbtEcs − gctEbs − gbsEct + gcsEbt.

This gives the Weyl tensor in terms of its single and double contractions
with ui. If uiuj is Weyl compatible, the single contraction is Cjklrur =
ukEjl − ujEkl, and the result follows. For an extension to n > 4 see [11].

3.1. Conformal maps. The identity map (M, g) → (M, ĝ) is confor-
mal if ĝkl = e2σgkl for some function σ. The Christoffel symbols transform
according to Γ̂mij = Γmij +δ

m
iXj+Xiδ

m
j−gijXm, whereXi = ∇iσ. A confor-

mal map leaves the (3, 1) Weyl tensor unchanged: Ĉjklm = Cjkl
m. Therefore,

Weyl compatibility is a property invariant under conformal maps.

4. K-compatible tensors. Riemann and Weyl compatibility may be
generalized to K-compatibility, where K is a generalized curvature tensor
(GCT), i.e. a tensor with the algebraic properties of the Riemann tensor
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under permutations of indices [12]:

Kjklm = −Kkjlm = −Kjkml,(14)
Kjklm +Kkljm +Kljkm = 0,(15)
Kjklm = Klmjk.(16)

In analogy with the Riemann tensor, one shows that (14) and (15) imply
the symmetry (16), and the identity Kj(klm) = 0. The tensor Kjl = Kjml

m

is symmetric.
A symmetric tensor bij is K-compatible if

(17) bi
mKjklm + bj

mKkilm + bk
mKijlm = 0,

and (K, b) is then called a compatible pair. This can be written as bm(iKjk)lm

= 0.
The metric tensor is K-compatible, by the Bianchi property (15). The

tensors bij and Kij commute: bimKmk−Kimb
m
k = 0 (contract (17) with gjl

and use symmetry).
Examples of K-compatible tensors were obtained by Shaikh et al. (see

for example [22, 21]) starting from specific metrics. Bourguignon [1] proved
that if bij is a Codazzi tensor then R̊jklm = Rjkrsb

r
lb
s
m is a GCT. We prove

a more general statement:

Proposition 4.1. If aij and bij are K-compatible, then K̊jklm =
Kjkrs(a

r
lb
s
m + brla

s
m) is a GCT.

Proof. The properties (14) and (16) are obvious; the Bianchi property
(15) completes the proof: K̊(jkl)m = ar(lKjk)rs b

s
m + br(lKjk)rs a

s
m = 0 be-

cause each term is zero, both a and b being K-compatible.

4.1. Properties of K-compatible tensors. A linear combination of
K-compatible tensors obviously is K-compatible. Now we prove:

Theorem 4.2. If a and b are K-compatible, then 1
2(ab+ ba) is K-com-

patible.

Proof. Let cij = ai
kbkj + bi

kakj . Then

cm(iKjk)rm = ai
sbs

mKjkrm + aj
sbs

mKkirm + ak
sbs

mKijrm + a� b

= −ais(bjmKksrm + bk
mKsjrm)− ajs(bkmKisrm + bi

mKskrm)

− aks(bimKjsrm + bj
mKsirm) + a� b

= −(aisbjm − ajsbim)Kksrm − (aj
sbk

m − aksbjm)Kisrm

− (ak
sbi

m − aisbkm)Kjsrm + a� b

= −(aisbjm − ajsbim)(Kksrm −Kkmrs)

− (aj
sbk

m − aksbjm)(Kisrm −Kimrs)

− (ak
sbi

m − aisbkm)(Kjsrm −Kjmrs)
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= (ai
sbj

m − ajsbim)Kkrsm + (aj
sbk

m − aksbjm)Kirsm

+ (ak
sbi

m − aisbkm)Kjrsm

= (ai
sbj

m + bi
saj

m)Kkrsm + (aj
sbk

m + bj
sak

m)Kirsm

+ (ak
sbi

m + bk
sai

m)Kjrsm

= K̊krij + K̊irjk + K̊jrki = K̊(kri)j = 0

because K̊ is a GCT by Proposition 4.1.

Therefore, the linear space of K-compatible tensors is a special Jordan
algebra.

In particular, the powers of b are K-compatible (powers with expo-
nents n, n + 1, . . . are linear combinations of lower powers by the Cayley–
Hamilton theorem). In particular (by the exchange of indices) the tensor
(b2)j

s(b2)k
rKrslm is a GCT. This enables us to come up with the simple

proof of the theorem in [14], so short that we reproduce it here:

Theorem 4.3 (Extended Derdziński–Shen theorem). Let bij be K-comp-
atible, and let Xi, Y i, Zi be eigenvectors of bim with eigenvalues x, y, z. If
x 6= z and y 6= z then

(18) KijklX
iY jZk = 0.

Proof. Consider the identities

gm(iKjk)lm = 0, bm(iKjk)lm = 0, (b2)m(iKjk)lm = 0

and contract them with XiY jZk. The three algebraic relations are put in
matrix form:  1 1 1

x y z

x2 y2 z2


KjkliX

iY jZk

KkiljX
iY jZk

KijlkX
iY jZk

 =

 0

0

0

 .
The determinant of the matrix is (x−y)(x− z)(z−y). If the eigenvalues are
all different then KijklX

iY jZk = 0 (with contraction of any three indices). If
x = y 6= z, the reduced system of equations still implies KijklX

iY jZk = 0.

Proposition 4.4. If b is K-compatible and invertible, then b−1 is K-
compatible:

(19) (b−1)j(sKrl)kj = 0.

Proof. Multiply (17) by (b−1)ir(b
−1)js to obtain the identity (b−1)jsKjklr

+ (b−1)irKkils + (b−1)ir(b
−1)jsb

m
kKijlm = 0. Rewrite it as

(b−1)j(sKrl)kj − (b−1)j lKsrkj + (b−1)ir(b
−1)jsb

m
kKijlm = 0.
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The last two terms cancel, as shown by

(b−1)j lKsrkj=(b−1)ir(b
−1)jsb

m
kKijlm ⇐⇒ Ksrkbb

r
a=b

i
b(b
−1)jsb

m
kKajlm

⇐⇒ bscKsrkbb
r
a = blbb

m
kKaclm

⇐⇒ K̊kbca = K̊acbk,

which is true as K̊ is a GCT.

We prove a Veblen-type identity:

Proposition 4.5. If bij is K-compatible, then

(20) bi
mKjklm − bjmKilkm + bk

mKiljm − blmKjkim = 0.

Proof. We have

0 = bi
mKjklm + bj

mKkilm + bk
mKijlm

= bi
mKjklm − bjm(Kilkm +Klkim) + bk

mKijlm

= bi
mKjklm − bjmKilkm + bl

mKkjim + bk
mKjlim + bk

mKijlm

= bi
mKjklm − bjmKilkm + bl

mKkjim − bkmKlijm.

4.2. More on generalized curvature tensors. A linear combination
of GCTs is a GCT. Given two compatible pairs (K, a) and (K, b), a new
GCT tensor is obtained in Proposition 4.1. In particular, if aij = gij (the
metric tensor), the following K ′ is a GCT:

(21) K ′jklm = Kjkrs(δ
r
lb
s
m + brlδ

s
m) = Kjklsb

s
m −Kjkmsb

s
l.

Proposition 4.6. If b is K-compatible, then it is K ′-compatible.

Proof. The tensor K ′jklm = Kjklrb
r
m −Kjkmrb

r
l is a GCT. Let us eval-

uate

bmiK
′
jklm = bmiKjklrb

r
m − bmiKjkmrb

r
l = (b2)riKjklr − K̊jkim.

Both tensors yield zero if the cyclic sum (ijk) is taken.

Proposition 4.7. (K, b) is a compatible pair for every symmetric tensor
b if and only if

(22) Kijlm =
K

n(n− 1)
(gilgjm − gimgjl)

where K is a scalar.

Proof. The symmetry of the tensor is made explicit by writing bij =
1
2b
rs(girgjs + gisgjr). The compatibility relation must hold for any brs, so

0 = girKjkls + gjrKkils + gkrKijls + gisKjklr + gjsKkilr + gksKijlr.

Contraction with gks gives (n− 1)Kijlr = gjrKil − girKjl; contraction with
gil gives Kjr = 1

ngjrK
i
i and (22) follows. The converse, namely, that (22)

implies (17), is shown by direct check.
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A pseudo-Riemannian manifold of dimension n > 2 is an Einstein man-
ifold if Rij = 1

nRgij where R is the scalar curvature. Since ∇iRij = 1
2∇jR,

the scalar curvature is constant. A manifold is a constant curvature mani-
fold if the Riemann tensor has the form (22). Such manifolds are Einstein
manifolds.

Corollary 4.8. A manifold is a constant curvature manifold if and only
if bimRjklm + bj

mRkilm + bk
mRijlm = 0 for all symmetric tensors.
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