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Abstract. Given the Riemann, or the Weyl, or a generalized curvature tensor K,
a symmetric tensor b;; is called compatible with the curvature tensor if b;" Kjkim +
b;™ Kkitm + b Kijim = 0. In addition to establishing some known and some new proper-
ties of such tensors, we prove that they form a special Jordan algebra, i.e. the symmetrized
product of K-compatible tensors is K-compatible.

1. Introduction. Let (M, g) be an n-dimensional Riemannian or pseudo-
Riemannian manifold, and K, a generalized curvature tensor (the Riemann
tensor, the Weyl tensor, or any tensor with the algebraic properties of the
Riemann tensor). In [I4] we introduced this concept: a symmetric tensor b;;
is K-compatible if
(1) bi" Kjgim + 05" Kgitm + b Kijim = 0.

We call (K,b) a compatible pair. The motivation was the following theo-

rem [14]: if b;; is K-compatible with eigenvectors X,Y, Z and eigenvalues
x,y,z with z # x,y, then

(2) KijimX'YIZ™ = 0.

It extends a result by Derdzinski and Shen [6] who proved the same for the Rie-
mann tensor, under the hypothesis that b;; is a Codazzi tensor, V;bj, = Vb
Despite the increased generality, the replacement of the Codazzi condition
with the algebraic condition , allowed a much simpler proof of the new
theorem.

Equation with Riemann’s tensor originally appeared in a paper by
Roter on conformally symmetric spaces [20, Lemma 1]. Riemann and Weyl
compatible tensors were studied in [I5] 17, [7].

Examples of Riemann compatible tensors are the Codazzi tensors [14],
the Ricci tensors of Robertson-Walker space-times or perfect-fluid general-
ized Robertson—-Walker space-times [18], the second fundamental form and
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the Ricci tensor of a hypersurface embedded in a (pseudo)Riemannian man-
ifold [17], the Ricci tensors of ‘weakly Z-symmetric’ manifolds (V;Z;, =
Al‘ij + BjZik + DkZij with Zz‘j = Rij + ©gij, A — By, a closed 1—form)
[16] that include ‘weakly Ricci-symmetric’ ones (¢ = 0) [24] and others (see
[3,2]), or ‘pseudosymmetric manifolds’ [9] ([Vs, V] Riimp = LQkimpij, where
L # —1/3 is a scalar function and (@ is the Tachibana tensor built with the
Riemann and Ricci tensors).

A Riemann compatible tensor is also Weyl compatible, but not con-
versely. The Ricci tensors of Godel [10, Th. 2| or pseudo-Z symmetric space
times [19] are Weyl compatible.

In Sections 2 and 3 we review Riemann and Weyl compatible tensors,
with some new results and examples, and their relation to known identities
due to Lovelock. Then, in Sections 4, 5 and 6, we investigate the algebraic
properties of generalized curvature tensors and K-compatible tensors. The
main result is that the latter form a special Jordan algebra, i.e. the set of
K-compatible tensors is closed under the symmetrized product.

2. Riemann compatible tensors. A symmetric tensor is Riemann
compatible if

(3) bi" Rjkim + b;" Riiim + bk Rijim = 0.

This relation may be written as b;" Rjgym = 0, where (ijk) denotes the
sum over cyclic permutations of the indices. Contraction with the metric
tensor ¢/¢ gives R b — b, Ry = 0, so that b commutes with the Ricci
tensor. Contraction with b7 gives b;™ jklmbﬂ + bkaijlmbjl = 0, and hence
b commutes with the symmetric tensor }A%jm = jklmbkl.

ExaMPLE 2.1. Codazzi tensors are Riemann compatible.

Proof. In the identity [V;, V;]by = —Riji™bkm — Rijir™bmi, sum over
cyclic permutations of ijk. The first Bianchi identity R;;x)™ = 0 gives

Vi, Vilbe 4+ [V, Vi]bi + [V, Vilbj = — (0" Rjkim + b Riitm + 0™ Rijim)-
The left-hand side is zero for Codazzi tensors. =
EXAMPLE 2.2. If V; Ay, = pj Ay, then A;A; is Riemann compatible.

P7‘00f. We have Ai[Vj,Vk]Al = Ai(Vjpk - Vkpj)Al = Al[Vj,Vk]AZ-.
Then A;Rjj™" Am = A1Rjii™ Apy; the sum over cyclic permutations of ijk
gives zero on the right-hand side. =

2.1. Codazzi deviation. In [15] we introduced the natural concept of
Codazzi deviation of a symmetric tensor:

(4) Citt = Vb — Vibji.
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It satisfies Cju1 = —Crji, Cijr + Crij + €11 = 0, and
(5)  ViCiu + ViCri + ViCiji = —(bimRji™ + bjmBRia™ + bpmRiji"™).
Once again we see that a Codazzi tensor is Riemann compatible. By the

differential condition V;€;); = 0 is equivalent to the algebraic formula .
A Veblen-type identity holds:

(6)  ViCuk + VCra + Vi€ + ViCir;
= bimRji™ + bjmBra"™ + bpm Riji™ 4 by Rigy™ -
EXAMPLE 2.3. For a concircular vector field X, with V;X; = pg;;, the
tensor X; X, is Riemann compatible.
Proof. One has Cj = (Vjp)gr — (Vip)gj and Vi€ = (ViVip)gr —
(ViVip)gji- The left-hand side of thus equals zero. =

Note: the existence of a concircular time-like vector field is necessary and
sufficient for a space-time to be generalized Robertson-Walker [5].

EXAMPLE 2.4 (Lovelock’s identities). 1. The Codazzi deviation of the
Ricci tensor is € = VjRy — ViRji = =V Rjiim. Property becomes
Lovelock’s identity for the Riemann tensor [13, p. 289]:

(7) ViV Rjkim + ViV Riitm + ViV Rijim = —R™ (i Rjyim-
2. The Codazzi deviation of Schouten’s tensoris Cini= —ﬁvajklm.
Property (5) reads V ;€1 = —(n—3)S™ (;Rjg)im- The term with the metric

tensor in S;; does not contribute (due to the Bianchi identity), and one is
left with (see [15])

n—3
n—2
In particular, for n > 3, if V,,,Cj™ = 0 (conformally symmetric spaces,
Roter [20]) then the Ricci tensor is Riemann compatible.

8)  ViV"Cikim + ViV Critm + ViV Cijim = — R™ i Rjiyim

PROPOSITION 2.5. If w;u; is Riemann compatible, and uFuy, # 0, then
u; 15 an eigenvector of the Ricci tensor.

Proof. Since w;u; is Riemann compatible, it commutes with the Ricci
tensor: R;ju’uy = Ryju/u;. Contraction with uk gives

Rijw? (upuF) = (Rpjwu®)u; = 0. m
We extrapolate a simple statement from [7, Proposition 5.1]. A direct

proof is possible, by writing for the Ricci tensor in warping coordinates:

(') Schouten’s tensor is Si; = -5 [Ri; — Q(T}il)glj]. It satisfies V1 S®; = V;5%,

vmcjklm = (TL — 3)(Vk5jl — V]'Skl).
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PROPOSITION 2.6. In a warped-product spacetime
ds® = +dt* + a(t)2g;l,dx“d:c"

the Ricci tensor is Riemann compatible if and only if the Ricci tensor of the
Riemannian submanifold (M*, g*) is compatible with the Riemann tensor of
the submanifold:

R;athp)\o- + R;UR;;MO- + R:O’ ZV)\U =0.

2.2. Geodesic maps. A map (M,g) — (M,q) is geodesic if every
geodesic line is mapped to a geodesic line. For the identity mapping of M to
be geodesic, it is necessary and sufficient that there exists a 1-form such that
the Christoffel symbols are related by f?j =1 Z’; +6;FX § + X0 ; (Levi-Civita,
1896). The relation between the Riemann tensors then is

Rjklm = 78]'FZ; + 8kF;7} - FMT;Z + Fjlfzzbi = Rjklm — 5kmpjl + 5ijkl7

where Py = Vi X; — X X; = Pj. One has le = le + (n — 1)le.
Geodesic maps preserve the (3,1) projective curvature tensor [23]: P ™
= jklm, where ijlm = jklm + -1 T (5ijkl — 5kaj ).

n—

PROPOSITION 2.7 ([15]). For a geodesic map and a symmetric tensor
bij = bj;, the following identity holds:

9)  bimRig™ + bjmRrit™ + bemRiji”™ = bimRjkt™ + bjm Riit™ + brem Riji™
Therefore, if (R,b) is a compatible pair, also the pair (R,b) is compatible.
3. Weyl compatible tensors. A symmetric tensor is Weyl compatible
if
(10) bimCir™ + bjmCri™ + bimCiji™ = 0.
The following identity holds for any symmetric tensor [15]:
(11)  bimCir™ + bjmCriat™ + bemCiji"™ = bimRjp™ + bjmRia™
+ bemRiji™ + 5[0k (bimR;™ — bjmR™) + git(bjmRe™ — bim ;™)
+ 9t (bkm Ri™ — bim Ri™)).

A simple consequence is obtained in dimension n = 3, where the Weyl tensor
is zero (see [§], in a less simple manner):

PROPOSITION 3.1. In dimension n = 3 the Ricci tensor is Riemann
compatible.

If b;; is Riemann compatible, then it commutes with the Ricci tensor. As
a result, shows that b;; is also Weyl compatible. Therefore, Riemann
compatibility is a stronger condition than Weyl compatibility. The identity
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can be rewritten in terms of the Codazzi deviation:
(12)  bimCim™ + bjmCrit™ + bemCiji"™ = ViDjt + Vi Drat + Vi Diji
— LNV (Cimrt + Cikmit + Crim3jt)s

n—2
where Py = Cint — —5 (Cim™ 9t — Com™gj1)-
EXAMPLE 3.2. If a vector field is torqued [4), i.e. V;7; = pgi; + o7 with
a,™" = 0, then 7;7; is Weyl compatible.
Proof. One evaluates € = —p(Tjgr — Trgj1) and Dji = —ﬁ%jkl. It
turns out that the right-hand side of is zero. m

Note: the existence of a torqued time-like vector is necessary and sufficient
for a space-time to be twisted [4].

PROPOSITION 3.3 (see [II, Remark 4.2]). In a space-time of dimension
n =4, if uyu; is a Weyl compatible and time-like unit (uuy = —1) then the
Weyl tensor is completely determined by the electric tensor Ey = Cjipmu’ u™:
(13) Cabed = 2(UguaEpe — taqtcEpa + upticEaqg — uptia Bac)
+ 9adEbe — JacEvd + gbeEad — GbdEac
Proof. Inn = 4 the following Lovelock identity holds [13] Ex. 4.9, p. 128]:

0 = 9arChest + gorCeast + GerCabst + 9atChers + 9ot Cears + 9et Cabrs
+ 9asCoctr + gbsCeatr + gesCabtr
Contraction with u*u" gives
0= — Cpest + uptt" Cerst + uctt” Crpst + uttt” Cpers + ot u" Cears
+ getu"u" Coprs + ust” Coerr + gost™u” Ceatr + Gest™u" Copy
= — Cpest + U (upCiter + ucCrpst + U Cepsy + UsCheir)
+ gvtEes — get Evs — gosEct + ges Et-

This gives the Weyl tensor in terms of its single and double contractions
with u*. If w;u; is Weyl compatible, the single contraction is Cjg,u” =
upEj — ujEy, and the result follows. For an extension to n > 4 see [11]. =

3.1. Conformal maps. The identity map (M,g) — (M, g) is confor-
mal if gi = e?"gkl for some function . The Christoffel symbols transform
according to F[j” = 1"27}’4—5”1in +X;0™;—g;; X™, where X; = V;o0. A confor-
mal map leaves the (3,1) Weyl tensor unchanged: C’jklm = Cj™. Therefore,
Weyl compatibility is a property invariant under conformal maps.

4. K-compatible tensors. Riemann and Weyl compatibility may be
generalized to K-compatibility, where K is a generalized curvature tensor
(GCT), i.e. a tensor with the algebraic properties of the Riemann tensor
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under permutations of indices [12]:

(14) Kikim = —Kgjim = —Kjkmi,
(15) Kjiim + Kiijm + Kijem = 0,
(16) Kjklm = Klmjk-

In analogy with the Riemann tensor, one shows that and imply
the symmetry , and the identity Kjxym) = 0. The tensor Kj; = Kjm™
is symmetric.

A symmetric tensor b;; is K-compatible if
(17) bi" Kjim + 0" Kpgitm + b8 Kijim = 0,
and (K, b) is then called a compatible pair. This can be written as b™ ; Ky,
=0.

The metric tensor is K-compatible, by the Bianchi property . The
tensors b;; and K;; commute: b;"" K, — K, b™ = 0 (contract with g7
and use symmetry).

Examples of K-compatible tensors were obtained by Shaikh et al. (see
for example [22] 21]) starting from specific metrics. Bourguignon [1] proved
that if b;; is a Codazzi tensor then Rjiiy, = Rjgrsb" 0%, is a GCT. We prove
a more general statement:

PRrROPOSITION 4.1. If a;; and b;; are K-compatible, then [%jklm
Kjprs(a"1b%y + 0716 p,) is a GCT.

Proof. The properties and are obvious; the Bianchi property
completes the proof: K(jrym = a" 1 Kjk)rs b%m + 0" 1 Kjp)yrs a*m = 0 be-
cause each term is zero, both a¢ and b being K-compatible. =

4.1. Properties of K-compatible tensors. A linear combination of
K-compatible tensors obviously is K-compatible. Now we prove:

THEOREM 4.2. If a and b are K-compatible, then 3(ab+ ba) is K-com-
patible.

Proof. Let ¢;; = aikbkj + bikakj. Then
" (i Kjkyem = @i°0s" Kjgrm + a5°bs"™ Kipm + a°bs™ Kijem +a S b
= —a;°(b;" Kisrm + 0" Kgjrm) — a;° (b Kisrm + 0™ Ksorm)
—ar’ (0" Kjspm + b;" Kgipm) +a = b
= —(a;°b;™ — a;°0;"") Kisrm — (a°b1™ — a°0;"™) Kisrm
— (ap’b™ — ai*by" ) Kjorm +a S b
= —(a;°b;" — a;°b;"™") (Krsrm — Kimrs)
— (a;°0:™ — ax’b;™) (Kisrm — Kimrs)
— (arb"™ — ai®bp™ ) (Kjsrm — Kjmrs)
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= (a;°b;™ — a;°0;"" ) Krsm + (a;°b5™ — ar°b;"™") Kirom
+ (ap’b;™ — a;°bp™ ) Kjrom

= (a;°b;™ + b°a;") Kirsm + (a;°01™ + 0% ar™) Kirom
+ (aksbim + bksaim)Kjrsm

o

= Kirij + Kirji + Kjrii = Kigrip; =0
because K is a GCT by Proposition "

Therefore, the linear space of K-compatible tensors is a special Jordan
algebra.

In particular, the powers of b are K-compatible (powers with expo-
nents n,n + 1,... are linear combinations of lower powers by the Cayley—
Hamilton theorem). In particular (by the exchange of indices) the tensor
(b%);5(b*)" Kysim is a GCT. This enables us to come up with the simple
proof of the theorem in [I4], so short that we reproduce it here:

THEOREM 4.3 (Extended Derdzinski-Shen theorem). Let b;; be K-comp-
atible, and let X', Y, Z* be eigenvectors of b;™ with eigenvalues x, vy, z. If
T # z and y # z then

(18) K X'YIiZF = 0.
Proof. Consider the identities
9" K =0, V" Kjpym =0, (03 (K jkym =0

and contract them with X?Y7Z*. The three algebraic relations are put in
matrix form:

1 1 1] [KjuX'YizF 0
y oz | | K XYIZE| = |0
z? y? 2| | Ky X'YIZk 0
The determinant of the matrix is (x —y)(z — z)(z — y). If the eigenvalues are

all different then K5, X 'Yizk = 0 (with contraction of any three indices). If
x =y # z, the reduced system of equations still implies K X'Y"/ ZF=0.m

PROPOSITION 4.4. If b is K-compatible and invertible, then b=' is K-
compatible:

(19) (0~ (s Krprs = 0.

Proof. Multiply by (b7 )%, (b71)7 5 to obtain the identity (b™1)7 s Ky
+ (b7 Kyis + (b_l)ir(b_l)jsbkaijlm = 0. Rewrite it as

O (Koyrg — (07 K g + (071 (071 0™ K, = 0.
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The last two terms cancel, as shown by
(O 1 Ky =0 (0 " Kijim == Kb a=0"(b"")7 0™ 1 K ajim
= VKb o = b0 1 Kacim
= Kipea = Koo,
which is true as K is a GCT. u
We prove a Veblen-type identity:
PROPOSITION 4.5. If b;; is K-compatible, then
(20) bi" Kjkim — 0" Kitgem + 0™ Kitjm — 0" Kjgim = 0.
Proof. We have
0= 0""Kjpim + b;" Kpitm + b Kijim
= b;" Kjkim — b;" (Kikm + Kikim) + 01" Kijim
= b;" Kjkim — 0" Kitkom + 0" Kijim + b Kjtim + 0" Kijim
=b;"Kjpim — ;" Kitgem + 0" Kijim — b Kiijm. =
4.2. More on generalized curvature tensors. A linear combination
of GCTs is a GCT. Given two compatible pairs (K,a) and (K,b), a new

GCT tensor is obtained in Proposition . In particular, if a;; = g;; (the
metric tensor), the following K’ is a GCT:

(21) j/'klm = Kjkrs((slesm + brlésm) = Kjklsbsm - Kjkmsbsl‘
PROPOSITION 4.6. If b is K-compatible, then it is K'-compatible.

Proof. The tensor K;'klm = Kpirb"m — Kjrmrb'; is a GCT. Let us eval-
uate

o

b"; = " Kb m — 0" K b1 = (02) i Kjktr — Kjim.-

Both tensors yield zero if the cyclic sum (ijk) is taken. =

/
Jkim

PROPOSITION 4.7. (K, b) is a compatible pair for every symmetric tensor
b if and only if

22 sz: il9im — JimJj
(22) jl n(n—l)(glg] JimGit)

where K is a scalar.

Proof. The symmetry of the tensor is made explicit by writing b;; =
%b” (9ir9js + 9isgjr)- The compatibility relation must hold for any ™, so

0= girKjris + gjr Krits + grr Kijis + 9is Kjrir + 9is Kiitr + grs Kijir-

Contraction with ¢g** gives (n — 1) Kyjir = 95Kyt — gir Kji; contraction with
g% gives Kj,. = %gj,«K *; and follows. The converse, namely, that
implies , is shown by direct check. m
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A pseudo-Riemannian manifold of dimension n > 2 is an Einstein man-

ifold if R;j = %Rgij where R is the scalar curvature. Since VZRij = %V]R,
the scalar curvature is constant. A manifold is a constant curvature mani-
fold if the Riemann tensor has the form . Such manifolds are Einstein
manifolds.

COROLLARY 4.8. A manifold is a constant curvature manifold if and only

if ;"™ Rjkim + ;" Riitm + bk Rijim = 0 for all symmetric tensors.
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