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Abstract

The spectrum of exponents of the transfer matrix provides the localization

lengths of Anderson’s model for a particle in a lattice with disordered potential.

I show that a duality identity for determinants and Jensen’s identity for

subharmonic functions give a formula for the spectrum in terms of eigenvalues

of the Hamiltonian with non-Hermitian boundary conditions. The formula

is exact; it involves an average over a Bloch phase, rather than disorder. A

preliminary investigation into non-Hermitian spectra of Anderson’s model in

D = 1, 2 and into the smallest exponent is presented.

PACS numbers: 71.23.An, 02.20.−a

1. Introduction

Several models in physics are described bymatriceswith banded or block-tridiagonal structure.

Examples are the Laplacian matrix, the Anderson Hamiltonian for transport in a lattice with

random impurities, band random matrices, tight binding models in condensed matter and

chemistry. The matrix structure reproduces that of a system consisting of a chain of units with

the same number of internal states, with nearest neighbor’s interaction. Finite size effects are

often dealt with by imposing periodicity; the limit of a large number of units is eventually

taken.

The matrix structure calls for a transfer matrix description of the eigenstates, and the

spectrum of exponents of the transfer matrix describes the decay lengths of the eigenstates.

For the Andersonmodel or band randommatrices, most of the knowledge on Lyapunov spectra

relies on numerical computations.

With great generality, I showed that an analytic tool to access the decay lengths is a duality

relation, that connects the spectrum of the transfer matrix of a block tridiagonal Hermitian

matrix with the spectrum of a non-Hermitian extension of it [1–4]. The extension arises by

mere generalization of boundary conditions for the eigenstates. If Euk specifies the state of a

unit of the chain (k = 1, . . . , n), the boundary conditions (b.c.) are parametrized by a complex

number z:

Eun+1 = znEu1, Eu0 =
1

zn
Eun. (1)
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This destroys the Hermiticity of the Hamiltonian matrix, but highlights a nice property of the

transfer matrix:

T (ǫ)

[

Eu1
1
zn Eun

]

= zn

[

Eu1
1
zn Eun

]

. (2)

The ensuing spectral duality and Jensen’s identity for subharmonic functions allow one

to evaluate the counting function of exponents. This paper is intended to introduce the

theory and explore its application to the long-studied problem of Anderson’s localization. In

section 2 the duality relation is reviewed and the main formula (12) for the exponents is

obtained from Jensen’s theorem. The theory can be extended to include the spectrum of the

(Lyapunov) exponents of the matrix T† T, by constructing a corresponding non-Hermitian

block tridiagonal matrix, twice the size of the original Hamiltonian matrix. In section 3 a

preliminary study of the eigenvalues of non-Hermitian Hamiltonian matrices in D = 1 and

D = 2 is made, with the purpose of illustrating the duality. The spectral formula is used to

evaluate the smallest exponent ξmin.

Because of their relevance in mathematics, numerical analysis and physics, block

tridiagonalmatrices are an active area of research [5–7]. Thiswork extends in a newperspective

the work by Hatano and Nelson [8] which, together with the works by Feinberg and Zee [9],

started an interest for non-Hermitian matrix models in physics.

2. Theory

2.1. Transfer matrix

Consider the following block tridiagonal matrix with corners, of size nm × nm,

H =















A1 B1 B
†
n

B
†

1

. . .
. . .

. . .
. . . Bn−1

Bn B
†

n−1 An















. (3)

The blocks have size m × m: Bk are complex matrices with detBk 6= 0, Ak are Hermitian

matrices. To the matrix ǫInm − H there corresponds the transfer matrix [1]

T (ǫ) =

[

B−1
n (ǫIm − An) −B−1

n B
†

n−1

Im 0

]

· · ·

[

B−1
1 (ǫIm − A1) −B−1

1 B
†
n

Im 0

]

. (4)

Im is the m × m identity matrix. The transfer matrix is so named because it transforms

the eigenvalue equation Hu = ǫu into a relation for the end-components of the vector

u = (Eu1, . . . , Eun)
t :

T (ǫ)

[

Eu1
Eu0

]

=

[

Eun+1

Eun

]

. (5)

The corners in the matrix (3) imply a condition of periodicity Eu0 = Eun and Eun+1 = Eu1, that
can be used to obtain the eigenvalue ǫ in alternative to diagonalization of H. By comparing

equations (2) and (5) one arrives at the main point: to study the spectrum of T (ǫ), one must
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impose the generalized b.c. (1). We thus introduce an instrumental non-Hermitian matrix

depending on a parameter z
(

0 6 arg z 6 2π
n

)

H(zn) =















A1 B1
1
zn B

†
n

B
†

1

. . .
. . .

. . .
. . . Bn−1

znBn B
†

n−1 An















. (6)

The matrix is Hermitian for Bloch b.c. (|z| = 1) but, for the purpose of studying the spectrum

of T (ǫ), it will be considered for z ∈ C0. The matrix can be brought by similarity to the

balanced form Hb(z) = Z−1H(zn)Z,

Hb(z) =















A1 zB1
1
z
B

†
n

1
z
B

†

1

. . .
. . .

. . .
. . . zBn−1

zBn
1
z
B

†

n−1 An















, (7)

by means of the block diagonal matrix Z with blocks {zIm, . . . , znIm}. Therefore, no site of
the chain is privileged. While the matrix Hb(z) does change if arg z is increased by 2π/n, its

eigenvalues do not.

2.2. Symplectic properties and exponents

The following relations hold for the transfer matrix [1]:

T (ǫ∗)†6nT (ǫ) = 6n, 6n =

[

0 −B
†
n

Bn 0

]

T (ǫ)6−1
n T (ǫ∗)† = 6−1

n , 6−1
n =

[

0 B−1
n

−B
†
n

−1
0

]

.

(8)

Let us denote as zn
1 . . . zn

2m the 2m eigenvalues of T (ǫ). The relations imply that if zn
a is an

eigenvalue of T (ǫ), then
(

z−n
a

)∗
is an eigenvalue of T (ǫ∗). In this study we are concerned

with the exponents

ξa(ǫ) = ln|za|. (9)

Since |det T (ǫ)| = 1, it is always
∑

a ξa(ǫ) = 0. For real ǫ the exponents of T (ǫ) come in

pairs ±ξa .

2.3. Duality, Jensen and spectrum of exponents

Since the extremal components Eu1 and Eun of the eigenvector H(zn)u = ǫu enter in the

eigenvalue equation (2) of T (ǫ), it follows that the characteristic polynomials of the two

matrices are linked by a

Duality relation. ǫ is an eigenvalue of H(zn)iff zn is eigenvalue of T (ǫ):

det[ǫInm − H(zn)]

det[B1 · · ·Bn]
=

(−1)m

znm
det[T (ǫ) − znI2m]. (10)

A proof of duality that holds also for non-Hermitian matrices, with blocks B
†

k being replaced

by blocks Ck , is found in [4].
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The spectrum of exponents can be obtained from the spectrum of H(zn) through the

following identity for analytic functions, which is a particular case of a theorem by Poisson

and Jensen for subharmonic functions [10]:

Jensen’s identity. Let f be an analytic function in the open disk of radius R, where it has zeros

z1, . . . , zk that are ordered according to increasing modulus. Then, if 0 < |z1| and for r such

that |zℓ| 6 r 6 |zℓ+1| we have
∫ 2π

0

dϕ

2π
ln|f (r eiϕ)| = ln

rℓ|f (0)|

|z1 · · · zℓ|
. (11)

Proposition. For real ξ and complex ǫ it is

1

m

∑

ξa<ξ

[ξ − ξa(ǫ)]− ξ = −
1

nm

n
∑

k=1

ln|detBk|

+

∫ 2π

0

dϕ

2π

1

nm
ln|det[ǫInm − H(enξ+iϕ)]|. (12)

Proof. Jensen’s identity is applied to the polynomial f (z) = det[T (ǫ) − znI2m], with

|f (0)| = 1 and z = exp(ξ + iϕ/n). The duality relation is then used to obtain the formula.

¤

For ξ = 0 a formula for the sum of positive exponents follows. It involves eigenvalue spectra

of Hermitian matrices H(eiϕ),

1

m

∑

ξa>0

ξa(ǫ) = −
1

nm

∑

k

ln|detBk| +

∫ 2π

0

dϕ

2π

1

nm
ln|det[ǫInm − H(eiϕ)]|. (13)

Equations (12) and (13) are exact and valid for a single, general transfer matrix. If the

parent block tridiagonal matrix is sampled from an ensemble of random matrices, with a

probability measure, and the large n limit is taken, it is natural to ask if the exponents given

by equation (12) exist and are sample independent. What is then their relationship with the

Lyapunov exponents of random matrix products? Do they scale in the transverse dimension

m? These are difficult questions and are not answered here. A preliminary study of the spectra

of tridiagonal block matrices with non-Hermitian boundary conditions will be presented here,

as they are connected by duality to the spectra of exponents.

In the theory of disordered systems, a formula for the sum of exponents is known, where

Jensen’s angular average is replaced by the ensemble average [11–13]. No general formula is

known for the counting function of the exponents in random multiplicative matrix theory.

The left-hand side of (12) is a non-decreasing function of ξ (figure 1). For all ξ > ξMAX(ǫ)

(the maximum exponent of T (ǫ)), the right side is always equal to ξ . For all positive

ξ < ξmin(ǫ) (the smallest positive exponent), the right-hand side is constant and equal to the

average value of the exponents (13). For intermediate positive values of ξ the function is

piecewise linear, with discontinuities of order 1/m in the first derivative, at the values of the

exponents.

2.4. The matrix T† T

Let us introduce the matrix Q(ǫ) = T (ǫ∗)†T (ǫ), with exponents γa(ǫ). For real ǫ the matrix

is real and positive, and is preferred to T because of better large n behavior of the exponents.

If BnB
†
n = Im, the matrix Q is symplectic

Q(ǫ)6nQ(ǫ) = 6n (14)

4
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31 2

Figure 1. The behavior of the right-hand side of (12) as a function of ξ , for m = 3. The constant

value for ξ < ξ1 = ξmin is
1
3
(ξ1 + ξ2 + ξ3). At ξ = ξ1, ξ2 and ξ3 = ξMAX the slope increases

by 1/3.

and the exponents come in pairs±γa . Hereafter, the matrix Bn will be restricted to be unitary.

Under this restriction, it is shown in appendix A that (−1)nQ(ǫ) is unitarily equivalent to

the transfer matrix of a block tridiagonal matrix, which is transformed to obtain the duality

relation:

det[K(z2n) − ǫI2nm]
∏

k |detBk|2
=

(−1)m

z2nm
det[Q(ǫ) − z2nI2m], (15)

K(z2n) =





































A1 B1 z−2n

B
†

1

. . .
. . .

. . .
. . . Bn−1

B
†

n−1 An −Im

Im An B
†

n−1

Bn−1
. . .

. . .

. . .
. . . B

†

1

−z2n B1 A1





































. (16)

Some properties of the matrix K are presented in the appendix. The spectrum of exponents

{±γa(ǫ)} (the Lyapunov spectrum) is extracted by means of Jensen’s formula:

ξ +
1

m

∑

γa>ξ

[γa(ǫ) − ξ ] =
1

nm

n−1
∑

k=1

ln|detBk|

+

∫ 2π

0

dϕ

2π

1

2nm
ln|det[K(e2nξ+iϕ) − ǫI2nm]|. (17)

3. The Anderson model

The discrete Anderson model describes a particle in a lattice, subject to a random potential.

The potential of a sample is specified by a set {vj} of random numbers chosen independently.

5
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Anderson [14] considered a uniform density p(v) = 1/w in the interval [−w/2, w/2].

Lloyd [15, 16] studied the Cauchy distribution p(v) = δ
π
(v2 + δ2)−1, and evaluated the

energy distribution exactly in any space dimension. Anderson’s choice and the simple

hypercubic geometry are here considered. More complex lattices can be studied by the transfer

matrix [17].

For a given configuration of potential, the eigenvalue equation is
∑

e

uj+e + vjuj = ǫuj. (18)

The sum is on the unit vectors along the 2D directions, ǫ is the energy of the particle, the

lattice has lengths n1, . . . , nD . If the D axis is singled out, the sample is viewed as a number

n ≡ nD of sections each containing m ≡ n1 · · · nD−1 sites. Accordingly, the Hamiltonian

matrix is block tridiagonal

H =













A1 Im Im

Im

. . .
. . .

. . .
. . . Im

Im Im An













(19)

with Hermitian blocks Ai describing sections, and off-diagonal blocks describing hopping

among sections. The associated transfer matrix is

T (ǫ) =

n
∏

j=1

[

ǫIm − Aj −Im

Im 0

]

. (20)

For large n the exponents of T (ǫ) describe the inverse decay lengths of the eigenstates of

Anderson’s Hamiltonian. To study them, we introduce b.c. terms ±zn in the corner blocks of

(19), and choose periodic b.c. in the otherD −1 directions, that appear in the diagonal blocks.

Remark 0. For zero disorder the eigenvalues of H(zn) are complex for any nonzero value of

the parameter ξ that measures non-Hermiticity (z = exp(ξ + iϕ)):

Re ǫ = 2 cosh ξ cos

(

ϕ +
2π

n
ℓ

)

+ ǫr , Im ǫ = 2 sinh ξ sin

(

ϕ +
2π

n
ℓ

)

,

ℓ = 1, . . . , n and r = 1, . . . , m. There are n eigenvalues on each ellipse centered at

ǫr = 2
∑D−1

i=1 cos
(

2π ki

ni

)

, 1 6 ki 6 ni . Therefore, the spectrum has support onm identical but

shifted ellipses. In 1D there is a single ellipse centered in the origin. In 2D there are m = nx

distinct ones, while in 3D some of the m = nxny ellipses may overlap because centers may

be degenerate (figure 2). In appendix B it is shown that the exponents of T and T †T coincide,

for large n.

Remark 1. For non-zero disorder the eigenvalues of the Hamiltonian matrix H(zn) are all

contained inside the union of ellipses

(Re ǫ − ǫ0)
2

4 cosh2 ξ
+

(Im ǫ)2

4 sinh2 ξ
6 1, (21)

where ǫ0 ranges in the interval [−2D + 2− w/2, 2D − 2 + w/2].

Proof. If Hb(z)u = ǫu, and u is normalized, the inner product ǫ = (u|Hb(z)u) in Cnm is

separated into real and imaginary parts:

Re ǫ − (u|Au) = 2|(u|Su)| cosh ξ cos(ϕ + θ), Im ǫ = 2|(u|Su)| sinh ξ sin(ϕ + θ).

6
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Figure 2. Complex energy spectra for zero disorder, large n, ξ = 1: in 2D (left, m = 5) and 3D

(right, nx = ny = 4, i.e. m = 16).

A is the block diagonal part of Hb, S is the periodic one-block shift matrix (SEuk = Euk+1),

and θ = arg(u|Su). The real number (u|Au) = ǫ0 ranges in the spectrum of A. Schwartz’s

inequality gives the bounds. ¤

Remark 2. Since H is real, under complex conjugation it is T (ǫ)∗ = T (ǫ∗). Then

ξa(ǫ) = ξa(ǫ
∗). The symplectic property (8) with Bn = Im implies that the exponents of

T (ǫ) come in pairs ±ξa for any ǫ.

Remark 3. Since the transposed matrix H(zn)t coincides with H(z−n), det[ǫInm − H(zn)] is

a polynomial of degree m of the variable (zn + z−n).

Remark 4. Since Hb(z e
i2π/n) ≃ Hb(z) (≃means similarity) and Hb(z)

∗ = Hb(z
∗), the

following symmetry holds: Hb

(

eξ+i(
2π
n

−ϕ)
)

≃ Hb(e
ξ+iϕ)∗.

3.1. The Lyapunov spectrum

The localization properties of Anderson’s model are usually derived from the spectrum of

positive Lyapunov exponents γ1 < · · · < γm of T (ǫ)†T (ǫ), with ǫ real. Oseledec’s theorem

[18] guarantees that for n → ∞ it does not depend on the realization of disorder. The most

interesting exponent for physics is γ1, that controls conductance. It is also the most difficult

one to study numerically, because of the larger ones [19, 20]. Thorough investigations of the

Lyapunov spectrum, its statistical properties and scaling, have been done in 2D [21] and 3D

[22]. The influence of b.c. was studied [23] with the corner parameters z±n of the present

theory being both replaced by the same parameter t ∈ [0, 1]. It was found that the critical
values of γ1 and of the disorder parameter wc are t-dependent, while the critical exponent ν is

not.

Analytic results for the Lyapunov spectrum are accessible in perturbation theory for the

2D strip [24–26], where n is large and m is finite. In such quasi-1D Anderson systems, the

large n limit of the exponent spectrum of T coincides with the Lyapunov spectrum. For this

reason here I concentrate on the spectral features of the matrix H(zn) to which T is linked

by duality. I will then show in another section that the spectral identity (12) allows one to

evaluate the smallest exponent ξmin, which converges to γ1 for large n.

7
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Figure 3. 1D Anderson model: the complex eigenvalues form a closed loop, with two wings of

real values (w = 7, n = 600, ξ = 1) (left). Superposition of the eigenvalues of five matrices

(same w and n) for ξ from 0.5 (inner blob) to 1 (outer) (right).

3.2. 1D Anderson model, Hatano and Nelson

For a chain of n sites the Hamiltonian is a tridiagonal n × n matrix and the transfer matrix

is 2 × 2. Hatano and Nelson [8] suggested to study 1D Anderson localization through the

non-Hermitian extension of the model

eξψi+1 + e
−ξψi−1 + viψi = ǫψi (22)

with periodic b.c. As ξ is increased from zero, the eigenvalues do not distribute randomly

in the complex plane but form a loop, figure 3 (left), whose analytic expression is known for

Cauchy disorder in the large n limit [28]. The loop has two outer wings of real eigenvalues,

that correspond to enough localized eigenstates, and evolves to a more and more regular

shape, while the wings reduce, figure 3 (right). The value ξc(ǫ) up to which an eigenvalue ǫ

persists in the real axis, measures the inverse localization length of the physical eigenvector

(the Lyapunov exponent): ξc = γ1(ǫ). The latter is evaluated through Herbert, Jones and

Thouless’ formula,

γ1(ǫ) =

∫

dǫ′ρ(ǫ′) ln|ǫ − ǫ′|, (23)

where ρ(ǫ) is the disorder-averaged level density of the matrix ensemble in the limit of large

n, ξ = 0. The model has been studied by several authors [30–34]; mathematical proofs

were established by Goldsheid and Khoruzhenko [35]. Numerical diagonalization of large

non-Hermitian matrices is a delicate issue, as approximate eigenvalues may occur which are

not close to the true ones [36].

The Hatano–Nelson model is a case m = 1 of the theory presented in section 2. The

duality relation (10) simplifies greatly:

det[ǫIn − H(zn)] = tr T (ǫ) − (zn + z−n) (24)

and implies that

tr T (ǫ) = det[ǫIn − H(i)] ≡ pn(ǫ). (25)

For a pure Bloch phase (24) describes the energy bands of H(einϕ) as intersections of the

polynomial y = pn(ǫ) with the strip y = 2 cos(nϕ). As the non-Hermitian regime is entered,

y = ±2 cosh(nξ), all eigenvalues of H(enξ ) are in the gaps, and approach pairwise for

increasing ξ . A pair collides at a zero of p′
n and becomes complex conjugate. This means that

2 cosh(nξ) equals the height |pn| at an extremum of the polynomial.

8
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1
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Figure 4. 1D Anderson model: the exponent ξ1(0) versus disorder parameter w, for n = 400,

averaged over 15 samples of disorder.

The sum of the two eigenvalues exp[±n(ξ1 + iϕ1)] of the transfer matrix is

pn(ǫ) = 2 cosh(nξ1) cos(nϕ1) + 2i sinh(nξ1) sin(nϕ1). (26)

Elimination of the phase results in an exact equation for the exponent ξ1(ǫ)

(Repn)
2

4 cosh2(nξ1)
+

(Impn)
2

4 sinh2(nξ1)
= 1. (27)

For large n it becomes exp[nξ1(ǫ)] = |pn(ǫ)|, and gives a convenient formula to compute the
exponent (figure 4).

ξ1(ǫ) =
1

n
ln|det[ǫIn − H(i)]|. (28)

For the 1D Anderson model, in the limit n → ∞, the exponent ξ1 becomes independent

of disorder sampling and is the Lyapunov exponent. Equation (28) becomes the Thouless

formula for γ1(ǫ).

Proposition. the eigenvalues of H(enξ ) distribute along the curve ξ1(ǫ) = ξ . Real eigenvalues

(wings) solve pn(ǫ) = 2 cosh(nξ). For large nξ the eigenvalues form the Lemniscate [27]

|pn(ǫ)| = exp(nξ).

3.3. 2D Anderson model

For a rectangular n × m lattice the Hamiltonian matrix (19) has diagonal blocks

Ai =













vi,1 1 1

1
. . .

. . .

. . .
. . . 1

1 1 vi,m













.

The eigenvalue spectrum of a 2D non-Hermitian Anderson model is studied, and explained in

the light of duality. Figure 5 shows the eigenvalues of two matrices H(enξ ) with same ξ and

different m. They are distributed along a number of loops which is precisely given by m, the

size of the blocks.

By varying only the phase ϕ of z, the eigenvalues of the matrixHb(z)move in the complex

plane along arcs which retrace the loops. Figure 6 shows that, as ϕ goes from 0 to 2π/n,

9
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Figure 5. 2D Anderson model: eigenvalues of a single matrix, with parameters w = 7, n = 100,

ξ = 1.5, ϕ = 0. Size of the blocks: m = 3 and m = 10. The size m of the blocks is the number

of loops.
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Figure 6. 2D Anderson model: motion of the eigenvalues in the complex plane for fixed disorder

w = 7 and parameters m = 3, n = 8 and ξ = 1.5 and varying the phase ϕ. The 24 eigenvalues

trace arcs: 0 6 ϕ 6 π/4 − δ (left) and 0 6 ϕ 6 π/4 (right). The arcs join to form three loops.

The loops are seen to contain different numbers of eigenvalues.

an eigenvalue moves along an arc that terminates where the arc of another eigenvalue starts.

The union of such consecutive arcs makes a loop, and there are m closed loops. In the limit

of large n, the eigenvalues of one matrix fill the loops. Differently from the w = 0 case, the

loops may contain different numbers of eigenvalues of the matrix. The occurrence of loops is

suggested by the duality equation: when a zero of det[Hb(z) − ǫInm] occurs, it is also a zero

of det[T (ǫ) − zn], i.e.

ξa(ǫ) = ξ, ϕa(ǫ) = ϕ mod
2π

n
, (a = 1, . . . , m). (29)

Loops are thus level curves of the exponents ξa , as functions of the complex variable ǫ.

In figure 7 only ξ is varied: the eigenvalues trace lines that originate on the real axis (at

ξ = 0 the matrix is Hermitian). For zero disorder the lines would be arcs of a hyperbola. In

the disordered case, for small ξ the pattern of eigenvalues is complex, but evolves to regular

loops. In figure 8 the parameters ξ and ϕ are kept fixed, and the eigenvalues are computed for

different realizations of disorder, with same strength w. They distribute along m loops, that

appear shifted along the real axis for the different samples.

3.4. The smallest exponent

Kuwae and Taniguchi [37] extended Hatano and Nelson’s approach from 1D to 2D, and

evaluated numerically the sample-average of the critical value ξc where the first pair of

10
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Figure 7. 2D Anderson model: motion of 24 eigenvalues for 0 6 ξ 6 1.5, w = 7, m = 3, n = 8,
ϕ = 0. The various wings terminate on m = 3 loops (at ξ = 1.5 the phase is allowed to vary over

2π ).
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-4
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1
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3

Figure 8. 2D Anderson model: superposition of eigenvalue spectra for various realizations of

disorder. For all, w = 7, n = 100, ξ = 1.5, ϕ = 0. m = 3, 20 realizations of disorder (left). m =
10, 5 realizations (right). The imaginary part of the eigenvalues is much less sensitive to disorder

sampling than the real part.

0.2 0.4 0.6 0.8

0.7

0.8

0.9

Figure 9. 2D Anderson model: evaluation of the rhs of (12) as a function of ξ for ǫ = 0, n =
50,m = 3, w = 7, average on 40 angles. The constant value is 1

3
(ξ1 + ξ2 + ξ3) = 0.547121. The

changes of slope identify ξ1 = 0.27, ξ2 = 0.62 and ξ3 = 0.72.

eigenvalues of H(enξ ) becomes a complex conjugate pair. They conjectured that the inverse

of the localization length coincides with this critical value, i.e. γ1(0) = ξc.

The spectral formula (12) allows to study the exponents numerically, at least for small m.

Let us assume that the exponents±ξa of T (ǫ) are isolated, 0 < ξmin < ξ2 · · · < ξm−1 < ξMAX.

11
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Figure 10. 2D Anderson model: eigenvalues for ǫ = 0, w = 7,m = 3, n = 50. Left: ξ = 0.27

(≈ξmin) Right: ξ = 0.72 (≈ξMAX). The angle ϕ is varied to produce the loop structures.

By increasing the boundary parameter ξ in the Hamiltonian from the value zero, the rhs of

(12) yields a constant value (the value at ξ = 0) until the value ξ = ξmin(ǫ) is reached. Then

the function becomes linear with slope 1/m until the value ξ = ξ2(ǫ) is reached, where a

new change of slope occurs. The first change of slope can be used to identify the smallest

exponent. Figure 9 illustrates the changes of slope that occur in the numerical evaluation of

the rhs of (12); compare it with figure 1. The numerical data allow one to read the values ξi

and the average value of the positive exponents at a given energy ǫ. For the given example,

the eigenvalues of H(enξ ) are evaluated for ξ close to ξ1 and ξ3 and the angle ϕ is varied.

Figure 10 (left) shows that most of them are in the complex plane, and at ξ = ξMAX the pattern

of eigenvalues is regular (right). Then ξmin is not precisely the value at which the first pair of

eigenvalues gains imaginary parts. This issue requires further study.

4. Conclusions

Based on a spectral duality relation for block tridiagonal matrices and Jensen’s identity, the

distribution of exponents of a transfer matrix can be evaluated from the eigenvalue spectrum

of the Hamiltonian with non-Hermitian boundary conditions. A preliminary numerical study

of the complex energy spectra of Anderson Hamiltonian matrices is made. The spectra have

support on loops, that are explained as sections of the exponents at fixed height: ξa(ǫ) = ξ .

This picture is complementary to the standard direct evaluation of the exponents ξa(ǫ) at fixed

energy ǫ, by diagonalization of the transfer matrix. The study of the changes in the topology

of the loops as ξ crosses the values ξa , is an interesting subject for further investigation.
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Appendix A

Step 1. (−1)nQ(ǫ) is unitarily equivalent to the transfer matrix of a block tridiagonal matrix.

12
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Proof. It is convenient to factor T (ǫ) as

[

B−1
n 0

0 Im

]

tnσn−1 · · · σ1t1

[

Im 0

0 B
†
n

]

. (A.1)

Accordingly,

Q(ǫ) = (−1)n
[

Im 0

0 Bn

]

u1σ
†

1 · · · σ †

n−1un

[

(

BnB
†
n

)−1
0

0 Im

]

tnσn−1 · · · σ1t1

[

Im 0

0 B
†
n

]

,

tk =

[

ǫIm − Ak −Im

Im 0

]

, uk =

[

Ak − ǫIm −Im

Im 0

]

, σk =

[

B−1
k 0

0 B
†

k

]

.

To obtain the structure (A.1) of a transfer matrix, it is necessary that B
†
nBn = Im. The first

and last factors containing Bn are not consistent with (A.1), and only the intermediate product

θ(ǫ) = u1σ
†

1 · · · σ1t1 is the transfer matrix of a tridiagonal block matrix. Therefore,

(−1)nQ(ǫ) =

[

Im 0

0 Bn

]

θ(ǫ)

[

Im 0

0 B
†
n

]

. (A.2)

Step 2. θ(ǫ) is the transfer matrix of the matrix

M(ǫ) =





































A1 − ǫ B1 Im

B
†

1

. . .
. . .

. . .
. . . Bn−1

B
†

n−1 An − ǫ Im

Im ǫ − An B
†

n−1

Bn−1
. . .

. . .

. . .
. . . B

†

1

Im B1 ǫ − A1





































.

Step 3. Factors z±2n are introduced in the corners as in (6) and a duality relation is obtained,

detM(ǫ, z2n)
∏

k |detBk|2
=

(−1)m

z2nm
det[Q(ǫ) − (iz)2nI2m]. (A.3)

Step 4. Since only the determinant matters, there is freedom to modify M to a form where

ǫ enters as a shift. Left and right multiplication of M by the block diagonal matrices

{Inm, Im,−Im,+Im, . . .} and {Inm,−Im, Im,−Im, . . .} give detM = (−1)nm det[K((iz)2n) −
ǫI2nm], where K(z2n) is shown in (16).

One can show the following properties of the matrixK(s). J is the matrix with 2n blocks

Im along the diagonal from lower left to upper right corners; S3 is the block diagonal matrix

{Inm,−Inm}. Then

JK(s)J = K(s∗)†, (A.4)

S3K(s)S3 = K(1/s∗). (A.5)

The two imply that K(s) is similar to K(1/s). ¤
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Appendix B

For the Anderson model with no disorder (w = 0), real energy ǫ and large n, the exponents

of T and T †T coincide.

Proof. It is

T =

[

ǫIm − A −Im

Im 0

]n

=

[

U 0

0 U

] [

ǫIm − 3 −Im

Im 0

]n [

U † 0

0 U †

]

, (B.1)

whereA = U3U † and3 is the diagonal matrix of eigenvalues {λ1, . . . , λm}. The eigenvalues
of T are m pairs z±n

k , where zk is a root of the equation z2k − (ǫ − λk)zk + 1 = 0.

The power n of the matrix can be computed by means of Cayley–Hamilton’s formula.

Because the blocks are diagonal, only powers zero and one of the matrix are needed:
[

ǫIm − 3 −Im

Im 0

]n

=

[

α 0

0 α

]

+

[

β 0

0 β

] [

ǫIm − 3 −Im

Im 0

]

α and β are diagonal matrices with elements constructed with the roots zk: z±n
k = αk + βkz

±1
k .

Since ǫ is real, αk and βk are real. The matrix T †T is then constructed, and diagonalized. Its

eigenvalues are pairs w±1
k , with sum

wk + w−1
k =

(

z2nk + z−2n
k

)

(

z2k + 1

z2k − 1

)2

−
8z2k

(

z2k − 1
)2

. (B.2)

If |zk| > 1 then, for large n, |wk| ≈ |zk|
2n (the spectrum of Lyapunov exponents of T †T and

the spectrum of exponents of T coincide). ¤
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