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The theorem by Gell-Mann and Low is a cornerstone in quantum field theory and

zero-temperature many-body theory. The standard proof is based on Dyson’s time-

ordered expansion of the propagator; a proof based on exact identities for the time

propagator is here given. © 2007 American Institute of Physics.
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I. INTRODUCTION

In the appendix of their paper “Bound States in Quantum Field Theory,” Murray Gell-Mann

and Francis Low
1
proved a fundamental relation that bridges the ground states uC0l and uCl of

Hamiltonians H0 and H=H0+gV by means of time propagators, and makes the transition of

time-ordered correlators from the Heisenberg to the interaction picture possible:

kCuTcs1d ¯ c†snduCl =
kC0uTScs1d ¯ c†snduC0l

kC0uSuC0l
. s1d

The single operator S=UIs` ,−`d contains all the effects of the interaction. The theorem borrows
ideas from the scattering and the adiabatic theories and makes use of the concept of adiabatic

switching of the interaction
2
through the time-dependent operator

Hestd = H0 + e
−eutugV s2d

that interpolates between the operators of interest, H at t=0 and H0 at utu→`. The adiabatic limit

is obtained for e→0+. With the operator H0 singled out, the theorem requires the time propagator

in the interaction picture,

UeIst,sd = ei/"tH0Uest,sde−i/"sH0, s3d

where Uest ,sd is the full propagator.3 The statement of Gell-Mann and Low’s theorem is as

follows.

Theorem: Let uC0l be an eigenstate of H0 with eigenvalue E0, and consider the vectors

uCe
s±dl =

UeIs0, ± `duC0l

kC0uUeIs0, ± `duC0l
. s4d

If the limit vectors uCs±dl for e→0+ exist, then they are eigenstates of H.

The theorem is used to represent the ground state of an interacting system starting from a

noninteracting one. For a time-dependent Hamiltonian, the eigenvalues evolve parametrically in

time: if they do not cross and are not degenerate, eigenvectors can be traced univocally. According

to adiabatic theory, the parametric evolution of eigenvectors is provided by time propagation and

multiplication by a phase factor.
4,5
Then Gell-Mann and Low’s theorem can be regarded as a
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Electronic mail: luca.molinari@mi.infn.it

JOURNAL OF MATHEMATICAL PHYSICS 48, 052113 s2007d

48, 052113-10022-2488/2007/48~5!/052113/4/$23.00 © 2007 American Institute of Physics

Downloaded 29 Jun 2009 to 159.149.103.6. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



statement concerning asymptotic states where the phase factor is properly dealt with. Adiabatic

evolution of degenerate states
6
or with more general switching functions

7
has been considered.

In many-body theory the adiabatic switch of the interaction is smooth for Fermi liquids and

takes free fermions into renormalized quasiparticles. It fails when symmetry changes: these sys-

tems require appropriate tools. In nonequilibrium theory the interaction is switched on in the past

only, and time ordering is defined along a time loop beginning and ending in the past.
8
High

energy physics emphasizes a scattering picture based on Lippmann-Schwinger equation.
2
The

covariant realization of the adiabatic switch of the interaction in Lagrangian formalism was

achieved by Bogoliubov and Shirkov.
9
The adiabatic switch is a tool to study interaction of

quantum particles with time-periodic external fields gVst+Td=gVstd, with eT!1.
10,11

The analytic

properties in g of the quasienergy states become intricate as the size of the Hilbert space increases

and avoided crossings coalesce.
12
The property that adiabatic evolution takes the eigenspaces of

H0 into eigenspaces of H is used in quantum field theory sQFTd to construct effective Hamilto-
nians for bound states in restricted Hilbert space.

13

Despite the validity of the theorem beyond pertubation theory, in the original paper
1
and in

textbooks
14–16

the proof makes use of Dyson’s expansion of the interaction propagator, and is

rather cumbersome. An elegant mathematical proof based on it was given by Hepp,
17
for the case

where H0 describes free particles and the interaction V is norm bounded. This ensures strong

convergence of the Dyson series for the propagators UIes0, ±`d, as discussed by Lanford.18 Other
mathematical proofs are based on versions of the adiabatic theorem.

19
They generally apply to a

portion of the spectrum of Hestd isolated from the rest at any time, but this gap condition can be

relaxed.
20

In this paper a simple equation for the propagator is derived, without use of Dyson’s expan-

sion. The equation can be used as intermediate nonperturbative result in the standard proof of

Gell-Mann and Low’s formula given in textbooks. This is described in the conclusion, where a

short derivation of Sucher’s formula is also given.

II. AN EQUATION FOR THE PROPAGATOR

Lemma: If Uest ,sd is the time propagator for Hestd then, for all positive e, the following

relations hold:

i"eg
]

]g
Uest,sd = HestdUest,sd − Uest,sdHessd if 0 ù t ù s , s5d

=− HestdUest,sd + Uest,sdHessd if t ù s ù 0. s6d

Proof: The trick is to make the g-dependence of the propagator explicit into the time depen-

dence of some related propagator. Schrödinger’s equation

i"]tUest,sd = HestdUest,sd, Uess,sd = 1 s7d

corresponds to the integral one, where we put g=eeu:

Uest,sd = I +
1

i"
E

s

t

dt8sH0 + e
esu−ut8udVdUest8,sd . s8d

Consider the g-independent operators Hs±dstd=H0+e
±etV, with corresponding propagators

Us±dst ,sd. For 0ù tùs, a time translation in Eq. s8d gives

Uest,sd = I +
1

i"
E

s+u

t+u

dt8Hs+dst8dUest8 − u,sd . s9d

Comparison with the equation for Us+dst+u ,s+ud
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Us+dst + u,s + ud = I +
1

i"
E

s+u

t+u

dt8Hs+dst8dUs+dst8,s + ud

and unicity of the solution imply the identification

Uest,sd = Us+dst + u,s + ud . s10d

Since u enters in the operator Us+dst+u ,s+ud only in its temporal variables, we obtain

]uUest,sd = ]tUest,sd + ]sUest,sd . s11d

By using Eq. s7d and its adjoint, the first identity is proven.
If tùsù0, the same procedure gives Uest ,sd=Us−dst−u ,s−ud and therefore ]uUest ,sd

=−]tUest ,sd−]sUest ,sd, which leads to the identity s6d. An identity for tù0ùs can be obtained by

writing Uest ,sd=Uest ,0dUes0,sd.
In the interaction picture, Eq. s3d, the identities transform straightforwardly into the following

ones:

i"eg
]

]g
UeIst,sd = HeIstdUeIst,sd − UeIst,sdHeIssd if 0 ù t ù s ,

=− HeIstdUeIst,sd + UeIst,sdHeIssd if t ù s ù 0, s12d

where HeIstd=e
i/"tH0Hestde

−i/"tH0.

By applying Eqs. s12d with s=−` or t=` to an eigenstate uC0l of H0, we obtain

SH − E0 ± i"eg
]

]g
DUeIs0, ± `duC0l = 0. s13d

This same equation is proven in the literature by direct use of Dyson’s expansion. From now on,

the proof of Gell-Mann and Low’s theorem proceeds in the standard path, and is sketched for

completeness in the next section.

III. CONCLUSION

The mathematical properties of the operators UIes0, ±`d were studied first by Dollard
21
for

the case H0=−D2 and square integrable or locally square integrable and asymptotically bounded

potential VsxWd, and extended to the many-particle Schrödinger equation. He showed that the

operators are unitary and the Hamiltonians Hestd do not have proper eigenstates. In the adiabatic
limit, under further restrictions on the potential, they yield isometric Möller operators V±

=lime→0+UIes0, ±`d. The intertwining property HV±=V±H0 implies that for scattering states the

g-derivative term in Eq. s13d is zero. The emergence of a bound state from the adiabatic evolution

of the unbounded states of H0 was investigated by Suura et al.
22
Through the study of the potential

Vsxd=−dsxd, that allows for a single bound state, they conjectured that bound states are associated
with nonanalytic behavior in e of the Dyson series for UIes0, ±`duC0l when E0,e. A bound state

requires a nontrivial adiabatic limit of Eq. s13d where the vector UeIs0, ±`duC0l develops a phase
proportional to 1/e: this has been checked in diagrammatic expansion.23,24 The singular phase is
responsible of the energy shift and is precisely removed by the denominator in the definition of the

vectors uCe
s±dl, before the limit is taken.

The standard steps of the proof are as follows.

s1d For finite e, the two identities, Eq. s13d, are projected on the vector uC0l, and yield a formula
for the energy shift, where Ee

s±d
= kC0uHuCe

s±dl,

7i"eg
]

]g
logkC0uUeIs0, ± `duC0l = Ee

s±d − E0. s14d
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s2d By eliminating E0 in Eq. s13d with the aid of Eq. s14d, with simple steps one obtains

SH − Ee
s±d ± i"eg

]

]g
DuCe

s±dl = 0. s15d

The adiabatic limit e→0+ is now taken, and the limit vectors uCs±dl obtained by pulling

onward or backward in time the same asymptotic eigenstate uC0l are eigenvectors of H

=H0+gV with eigenvalues Es±d.

s3d The time-reversal operator has the action T†Uest ,sdT=Ues−t ,−sd. If H0 commutes with T the

relation extends to the interaction propagator and T†UeIs0,`dT=UeIs0,−`d. If uC0l is also an

eigenstate of T, it follows that T†uCe
s+dl is parallel to uCe

s−dl and Es+d=Es−d. The proportionality

factor equals 1, since kE0 uCs+dl= kE0 uCs−dl.

The formula for the energy shift, Eq. s14d, can be recast in a form involving the S-operator.

From Eqs. s12d, the following relation follows:

− i"eg
]Se

]g
= H0Se + SeH0 − 2UeIs`,0dHUeIs0,− `d .

The expectation value on the eigenstate uC0l and use of the theorem give Sucher’s formula
25

E − E0 = lim
e→0

i"e

2
g

]

]g
logkC0uUeIs`,− `duC0l . s16d
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